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DISCLAIMER

This document is a set of lecture notes that I took from a course taught by Dan Bump
at Stanford University in the winter quarter of 2015. I have taken the liberty of edit-
ing them, adding explanations or examples where I thought they would be helpful, and
pruning some discussions that were confusing (at least to me). There are inevitably er-
rors, which should be entirely attributed to me.
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1. SEMISIMPLE MODULES

We will frequently consider the setup of an algebra A and an artinian A-module M .
Some results will require the more restrictive hypothesis that A be a finite-dimensional
algebra over k (usually the group ring of a finite group) and M an A-module that is finite-
dimensional over k . In any case, that is a useful mental model for the general situation.

Definition 1.1. An A-module M is simple if it has no non-trivial (i.e. proper, non-zero)
submodules.

Theorem 1.2 (Jordan-Hölder). M has a filtration

M =M 1 ⊃M 2 ⊃ . . .⊃M m = 0, M i /M i+1 simple

which is called a composition series for M .
This is essentially unique in the sense that if M =M ′

1 ⊃ . . .⊃M ′
n = 0 is another compo-

sition series, then m = n and composition factors of the series are the same up to permu-
tation.

The proof is the same as for groups (see Lang’s book).

Definition 1.3. A module M is semisimple if it is a direct sum of simple modules.

Definition 1.4. A module M is complete reducible if for all submodules U ⊂ M , there
exists a complement submodule V ⊂ M such that M = U ⊕ V (i.e. M = U + V and
U ∩V = 0).

Proposition 1.5. If M is artinian, then M is semisimple if and only if it is completely
reducible.

Proof. First assume that M is semisimple, and let M =
⊕n

i=1 M i be a decomposition
into simple modules. Let I be a maximal set such that N ∩

⊕

i∈I M i = 0. We claim that
M =N ⊕

⊕

i∈I M i . If not, then some M j is not contained in N ⊕
⊕

i∈I M i . Then we can
append j to I to obtain a contradiction: since if any element of M j lies in N ⊕

⊕

i∈I M i ,
then all of M j does (by simplicity).

The other direction is straightforward.
�

Lemma 1.6. Submodules and quotient modules of a completely reducible module are
completely reducible.

Proof. Let N ⊂M be a submodule of a semisimple module. If U ⊂N is a subspace, then
we have M =U ⊕V by Proposition 1.5. We claim that N ∼=U ⊕ (N ∩V ). If n ∈N , then n
can be written uniquely as u +v with u ∈U , v ∈V and u ∈N =⇒ v ∈N .

Let Q be a quotient of M , with quotient map π: M → Q . Then kerπ admits a com-
plement, which maps isomorphically to Q . This gives a splitting of Q as a submodule of
M . �

Definition 1.7. We say a ring A is semisimple if it is semisimple as an A-module.

Proposition 1.8. A is semisimple if and only if all modules over A are semisimple.
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Proof. One direction is automatic. We have to show that if A is semisimple as a module
over itself, then all modules over A are semisimple. Since a direct sum of semisimples is
semisimple, any free A-module is semisimple. Any module is a quotient of a free module,
and a quotient of a semisimple module is semisimple by Proposition 1.6. �

Theorem 1.9 (Wedderburn). If A is a semisimple ring, then A is a direct sum of matrix
algebras over division rings.

When k = k , there are no non-trivial division algebras over k , so we have:

Corollary 1.10. If A is a semisimple algebra over an algebraically closed field k , then A is
a direct sum of matrix rings over k .

♠♠♠ TONY: [as an example, think about (maximal) ideals]
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2. THE JACOBSON RADICAL

2.1. Characterizations of the radical.

Definition 2.1. We define the radical of A to be

Rad(A) = {x | xS = 0 for all simple modules S}.

This is obviously a two-sided ideal of A.

Theorem 2.2. (1) Rad(A) is the largest nilpotent (two-sided) ideal.
(2) It is the intersection of all maximal left (or right) ideals.
(3) It is the smallest left ideal such that A/Rad(A) is semisimple.

Proof. For (1), the key idea is to break things down into composition series. If I1, I2 are
nilpotent ideals, i.e. I k

1 = 0 for some k and I `2 = 0 for some `, then (I1+ I2)k+` = 0 (here it
is important that we are working with ideals, as A is not necessarily commutative!). Thus
there is a maximal two-sided nilpotent ideal. We want to show that it is Rad(A).

First, let’s argue that Rad(A) actually is nilpotent. We have a composition series

A = A1 ⊃ A2 ⊃ . . .⊃ AN = 0.

Since A i /A i+1 is simple, Rad(A) annihilates it. That says that Rad(A)A i ⊂ A i+1, so Rad(A)N =
0.

Conversely, if J 6⊂Rad(A) then JS =S for some simple module S (indeed, JS = 0 or S if
S is simple). But then J cannot be nilpotent.

(2) Let J ′ be the intersection of all the maximal left ideals. Observe that if S is simple,
then S ∼= A/m for some maximal left ideal m. (Take some non-zero s ∈ S, and form the
submodule As ⊂ S, which must be all of S. If m is the kernel of the action, then m is
maximal as S has no proper non-zero submodules.) So

J =Rad(A) =
⋂

S

Ann(S)

and Ann(A/m) = {x ∈ A | x A ⊂ m} is the largest 2-sided ideal contained in m. Thus J =
⋂

Ann(A/m)⊂
⋂

m.
To show that J ′ ⊂ J , let S be a simple module. We want J ′S = 0. If not, then J ′S = S

so there exists some non-zero element s ∈ S with J ′s = S. Then x s = s for some x ∈ J ′,
so (1− x )s = 0. But we claim that 1− x is a unit. This is just the usual proof, with some
careful bookkeeping on left ideals. Indeed, A(1− x ) is a left ideal, and if it’s proper then
A(1−x )⊂m for some maximal ideal m. But then x ∈m and 1−x ∈m, which is a contra-
diction.

(3) First let’s show that A/Rad(A) is semisimple. We know that

Rad(A) =
⋂

m maximal

m=m1 ∩m2 ∩ . . .∩mN

because A is artinian. We have a homomorphism

A/m1 ∩ . . .∩mN → A/m1⊕A/m2⊕ . . .⊕A/mn
5
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sending a 7→ (a +m1, a +m2, . . .). Since A/mi is evidently semisimple (by the maximality
of mi ), so is the finite direct sum and hence so is any submodule of it.

Next we have to show that Rad(A) is the minimal ideal with respect to this property,
and that will be a consequence of the following more general result. �

Definition 2.3. If M is any A-module, then we define Rad(M ) :=Rad(A)M .

Proposition 2.4. If M is an A-module, then Rad(M ) is the smallest submodule such that
M/Rad(M ) is semisimple, and it is the intersection of all maximal left submodules of M .

We develop some preliminary results building up to the proof.

Lemma 2.5. A module M is semisimple if and only if the intersection of all maximal sub-
modules is 0.

Proof. If M is semisimple, then M =
⊕n

i=1 Si with Si simple. Then M i :=
∑

j 6=i S j is a

maximal submodule, and
⋂

i M i = 0.
In the other direction, if the intersection of all maximal submodules is 0, then we can

find finitely many maximal ideals M 1, . . . , M n such that
⋂

M i = 0 (since M is artinian by
assumption) and then we have an inclusion

M ,→
n
⊕

i=1

(M/M i ).

But each M/M i is simple as M i is maximal, hence the sum is semi-simple, and a sub-
module of a semisimple module is semisimple. �

Lemma 2.6. If N is any A-module, then N is semisimple if and only if Rad(A)N = 0.

Proof. If Rad(A)N = 0 then N is an A/Rad(A)-module, and A/Rad(A) is a semisimple so
N is semisimple. On the other hand, if N is semisimple, then N is a direct sum of simple
A-modules, which are all killed by Rad(A) (by definition). �

Proof of Proposition 2.4. The module M/Q is semisimple if and only if Rad(M/Q) = 0 ⇐⇒
Rad(A)M ⊂ Q . This shows that Rad(M ) is the smallest submodule whose quotient is
semisimple.

To see that this agrees with the third description, note that the intersection of all max-
imal submodules of M is the smallest submodule Q with the property that the intersec-
tion of all the maximal submodules of M/Q is zero.

�

2.2. The Krull-Schmidt Theorem. In the rest of the section, we specialize to the case
where A is an algebra over an algebraically closed field k , and modules are finite-dimensional
k -algebras.

Theorem 2.7 (Krull-Schmidt). Assume A is an algebra over an algebraically closed field
k . Let M be an A-module finite-dimensional over k , and write

M =U1⊕ . . .⊕Un U1, . . . ,Un indecomposable.

If
M =V1⊕ . . .⊕Vm V1, . . . , Vm indecomposable

6
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then m = n and Ui
∼=Vj up to permutation.

Definition 2.8. Let R be a finite-dimensional k -algebra. We say that R is local if R/Rad(R)∼=
k .

Proposition 2.9. R is local if and only if every element is either invertible or nilpotent.

Proof. As Rad(R) is the largest two-sided nilpotent ideal of R , if x ∈ R is not nilpotent
then x /∈ Rad(R). Let x be the image of x in R/Rad(R) ∼= k , and y = x−1 in k . Then
x y = 1+q where q ∈Rad(R), so (1+q ) is invertible with inverse 1−q +q 2+ . . ..

The converse is deeper, requiring the classification of simple k -algebras. we know
that R/Rad(R) is semisimple, hence isomorphic to a direct sum of matrix rings. If it is
not simple, then each of the summands contributes an idempotent, which is neither
nilpotent nor invertible. Thus we reduce to the case R/Rad(R)∼=Matn (k ), and it is again
clear that unless n = 1, we can produce an idempotent. �

Remark 2.10. From the proof we see that a slightly stronger statement is true: every el-
ement is either in Rad(R) or invertible. Recall that Rad(R) was defined to be the largest
two-sided nilpotent ideal, which could in general fail to contain all nilpotents. For in-
stance, a sum of nilpotents need not be nilpotent in general, but it will be in a local ring.

Proposition 2.11. M is an indecomposable A-module if and only if EndA (M ) is local.

Proof. If M is not indecomposable, then EndA (M ) contains an idempotent projection to
U , which is neither nilpotent nor invertible.

If M is indecomposable, then we want to show that every element of EndA (M ) is nilpo-
tent or invertible. We are basically going to use Jordan canonical form, which says that
M =

⊕

λMλ as A-modules. Since M is indecomposable, M =Mλ, from which the result
is obvious. �

Proof of Theorem 2.7. If there are two decompositions

M ∼=U1⊕ . . .⊕Um

∼=V1⊕ . . .⊕Vn

let πi ∈ EndA (M ) be the projection onto Ui , and let ρj be the projection onto Vj . Then
consider πiρj |U1 . This is either invertible or nilpotent, but

∑

j

π1ρj |U1 =
∑

π11M |U1 = 1U1 .

As π1ρj |U1 ∈ EndA (U1) for each j , and EndA (U1) is local, not all of them can be nilpotent.
Without loss of generality, we may assume that π1ρ1|U1 is invertible with inverse θ ∈
End(U1).

We have the composition

U1
ρ1|U1−−→
︸︷︷︸

α

V1
π1|V1−−→U1

θ−→
︸ ︷︷ ︸

β

U1.
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Then β ◦α = 1U1 by the definition of θ . We claim that V1
∼= Im (α)⊕ ker(β ). This is just

some accounting: if x ∈ Im (α)∩ ker(β ), then x = αy , hence y = βαy = βx = 0. Also, if
z ∈V1, then we may write

z = (z −αβz )
︸ ︷︷ ︸

∈kerβ

+αβz
︸︷︷︸

∈Im α

.

Since V1 is indecomposible and Im (α) 6= 0, we conclude that ker(β ) = 0 so α,β are iso-
morphisms U1

∼=V1.
Now, we claim that U1 ∩ (V2 ⊕ . . .⊕Vm ) = 0. That’s because if x ∈U1 ∩ (V2 + . . .+Vm ),

then x = βαx and α is a restriction of ρ1, which annihilates V2, . . . , Vm . Therefore, M =
U1 +V2 + . . .+Vm and the sum is direct, and U1

∼= V1, so M =U1 ⊕V2 ⊕ . . .⊕Vm . We are
done by induction, considering the decomposition

U2⊕ . . .⊕Un
∼=M/U1

∼=V2⊕ . . .⊕Vm .

�
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3. THE BRAUER-NESBITT THEOREM

Example 3.1. Consider the group

〈x , y | x 7 = y 3 = 1, y x y −1 = x 2〉.

This has a normal, abelian 7-Sylow subgroup. There are five conjugacy classes, so there
are five irreducible complex representations.

[1] [x ](3) [x−1](3) [y ](7) [y 2](7)
χ1 1 1 1 1 1
χ2 1 1 1 ρ ρ2

χ3 1 1 1 ρ2 ρ

χ4 3 θ θ 0 0
χ5 3 θ θ 0 0

Here ρ is a primitive cube root of unity , ξ is a primitive 7th root of unity, and θ = ξ+
ξ2+ξ4.

What about representations in characteristic p ? It turns out that the number of simple
modules for k [G ] is equal to the number of p -regular conjugacy classes, i.e. the number
of conjugacy classes consisting of elements whose order is not divisible by p . That is the
content of the Brauer-Nesbitt Theorem, which we discuss now.

Assume that k is algebraically closed, or at least “sufficiently large.” We let A = k [G ],
where G is a finite group.

Recall that a classical theorem in the representation theory of finite groups over C
says that the number of distinct irreducible representations is equal to the number of
conjugacy classes. The goal of this section is to prove the following generalization to
fields of positive characteristic.

Theorem 3.2 (Brauer-Nesbitt). The number of irreducible modules for A is the number of
p -regular conjugacy-classes.

Remark 3.3. Brauer originally proved a the following special case of the theorem: if ch k
is 0 or prime to |G |, then the number of irreducible modules is the number of conjugacy
classes.

Let’s recall the proof in the complex case, with the hope of generalizing to positive
characteristic.

First proof. The usual proof is to compute dimZ (k [G ]) in 2 ways. It is easily checked
that Z (k [G ]) consists of functions on G invariant under conjugation, so it has a basis
functions constant on conjugacy classes, and their number is the number of conjugacy
classes. On the other hand,

k [G ]∼=
⊕

Vi irreducible

End(Vi )

so dimZ (k [G ]) picks up a dimension for each irreducible representation. �

Unfortunately, this proof doesn’t generalize so well, so we try to find a different proof
that does.

9
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Second proof. We aim to exhibit a submodule of k [G ] whose codimension is both the
number of irreducibles and the number of conjugacy classes.

Let T be the subspace of A = k [G ] generated by commutators [x , y ] = x y − y x . We
claim that this consists precisely of things of the form

∑

a g g where the sum of a g over
every conjugacy class vanishes. This clearly implies that the codimension is equal to the
number of conjugacy classes.

So why is the claim true? T is spanned by things of the form [g , h] = g h − h g , and
replacing g by g h−1 we see that it’s spanned by things of the form g − h g h−1, so the
characterization is clear.

Now we have to compare the codimension to the number of irreducibles. To compute
the codimension of T , we again decompose

A =
⊕

Vi irreducible

End(Vi ).

Clearly the image of T in End(Vi ) ∼=Matd i (k ) is the subspace spanned by commutators,
which is just the subspace with trace 0, which has codimension 1. �

This proof does generalize, so let’s pass to the modular case. Let T = 〈[x , y ]〉 ⊂ A =
k [G ]. This isn’t quite the right object anymore, basically because it is not radical, so we
consider

S = {x ∈ A | x p N ∈ T for some N }.
We’ll show that this is a vector subspace, and then count its codimension in two different
ways.

Lemma 3.4. If a ,b ∈ A then a p +b p ≡ (a +b )p (mod T ).

Proof. Note that (a +b )p −a p −b p is a sum of groups of p terms involving compositions
of a and b , e.g. a ab ab abb . . .. We can group things that differ by a cyclic permutation,
and it suffices to show that such things are in T . Let’s call such a thing an orbit .

The commutator (a ab a . . .)x − x (a ab a . . .) ∈ T by definition, so a whole orbit is con-
gruent to p times the first term, which is 0. �

Lemma 3.5. If a ∈ T , then so is a p .

Proof. Indeed, if a =
∑

i [u i , vi ] then by the previous lemma

a p ≡
∑

(u i vi )p − (vi u i )p (mod T ).

But (u v )p − (v u )p = u w −w u ∈ T , where w = v u v u . . . v . �

Lemma 3.6. If a ,b ∈S then so is a +b .

Proof. From the previous lemma, we see that if the x p n ∈ T for some n then it is true for
all larger n . Therefore, we may assume that a p N ,b p N ∈ T and then by the first lemma
(applied many times)

(a +b )p
N ≡ a p N

+b p N
(mod T )

(this uses the second lemma too). �
10



Math 263B 2015

Before continuing with the proof, let’s recall the theory of the p -regular part (which
can be thought of as an analogue of Jordan decomposition). Recall that if g ∈ G , then
we can uniquely write g = g p g p ′ where g p and g p ′ commute, g p has order a power of
p , and g p ′ is p -regular. Indeed, given such a decomposition one can raise to a higher

power of p to kill g p , so you get g p m = g
p m

p ′ . For an appropriate choice of m , we can
make p m congruent to 1 modulo the order of g p ′ . Thus g p ′ ∈ 〈g 〉, hence g p too, which
implies the commutativity. It then suffices to prove the fact in a cyclic group, which is an
easy hands-on exercise.

Now we know that

T =
n∑

a g g |
∑

a g = 0 on each conjugacy class
o

.

Let {C i } be the p -regular conjugacy classes and Di = {x | xp ′ ∈C i }. Then G =
∐

Di and
we claim that

S =
n∑

a g g |
∑

a g = 0 on each Di

o

.

To see this, write |G | = p k m . Choose some N > k such that p N ≡ 1 (mod m ). Then
raising to the p N power maps each element g ∈G to its p -regular part, and S is the pre-
image of T under this map. Therefore,

S = { f ∈ k [G ] |
∑

g∈C i

f p N
(g ) = 0}= { f ∈ k [G ] |

∑

g∈Di

f (g )p
N
= 0}

But
∑

g∈Di
f (g )p N ≡

∑

g∈Di
f (g ) (mod p ).

Since Rad(A) is nilpotent, Rad(A)⊂S. By the classification of semisimple algebras over
k ,

A/Rad(A)∼=
⊕

simple

Matd i (k ).

We can consider the image of S or T in A/Rad(A) as before, and in each Matd i (k ) the
image of T the subring generated by commutators, which is the trace-zero part. The
image of S is then {x | x p N = T }, but Tr(x p N ) = 0 ⇐⇒ Tr(x )p N = 0. Thus S and T have the
same image in A/Rad(A), and since S ⊃Rad(A)we see that the codimension of S is equal
to both the number of p -regular conjugacy classes, and the number of distinct simple
representations.

11
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4. PROJECTIVE MODULES

4.1. Projective Indecomposables.

Definition 4.1. A module P is projective if and only if P is a summand of a free module.

Equivalently, given any surjective homomorphism M
φ
−→N → 0, and θ : P →N is any

map, then θ can be lifted to a map θ ′ : P→M making the diagram commute

M // N

P

OO >>

Indeed, if P is a free module then this is obvious. Therefore, a direct summand of a free
module has this property as well. Conversely, if P has this property then present P as a
quotient of a free module.

Theorem 4.2. If P is a projective indecomposable module, then P/Rad(P) is simple. The
association P 7→ P/Rad(P) is a bijection between isomorphism classes of projective inde-
composables and simple modules.

Proof. We claim that End(P/Rad(P)) is a quotient of End(P) (which we know is local),
hence local. Then P/Rad(P) is semisimple and indecomposable, hence simple.

Any endomorphism of P takes Rad(P) into itself, since Rad(P) = Rad(A)P . So there is
a map End(P)→ End(P/Rad(P)). We want to show that this is surjective. This is where
projectivity comes in to play. Indeed, we have the lifting diagram

P //

��

P/Rad(P)

��
P // P/Rad(P)

which attests to the surjectivity.
Now we want to show that if S is simple, then it’s a homomorphic image of some

projective indecomposable. It is certainly the quotient of some projective module P =
P1⊕ . . .⊕Pi where each Pi is indecomposable and projective. The image of some Pi is all
of S, as S is simple. Since Pi /Rad(Pi ) is simple, the kernel must be precisely Rad(Pi ) (it
has to contain the radical since the quotient is semisimple, and if it were bigger then the
map would be zero).

So it only remains to show that if P,Q are projective indecomposables such that P/Rad(P)∼=
Q/Rad(Q), then P ∼=Q . By the lifting property, we can lift both isomorphisms

P //

α

��

P/Rad(P)

��
Q // Q/Rad(Q)

12
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and
Q //

β

��

P/Rad(P)

��
P // Q/Rad(Q)

Sinceαβ ∈ EndA (Q) is not nilpotent (as it descends to an isomorphism on the quotients),
it is invertible. �

4.2. The submodule lattice.

Example 4.3. Consider G = S3 = D6 = 〈x , y | x 3 = y 2 = 1, y x y −1 = x−1〉. The character
table over characteristic 0 is

1 x y
χ1 1 1 1
χ2 1 1 −1
χ3 2 −1 0

If p = 3, then there are two p -regular conjugacy classes. We expect then two p -regular
Brauer characters (we will define these later, but they are the analogue of the trace of the
representation), and they are precisely the 1-dimensional characters.

1 y
φ1 1 1
φ2 1 −1

Let c i j be the multiple of the i th simple module in the j th projective indecomposable,
and set C = (c i j ). It is a theorem C = D t D where D is the decomposition matrix, ex-
pressing the reductions modulo p of the characteristic 0 irreducibles in terms of simple
modules. In this example, we have

D =

φ1 φ2

χ1 1 0
χ2 0 1
χ3 1 1

by inspection of the characteristic 0 character table mod 3.

So D t D =
�

2 1
1 2

�

. This predicts that the 2 projective indecomposables have P1 =

[V1, V1, V2] and P2 = [V2, V2, V1] as the composition factors in a Jordan-Hölder series.

Definition 4.4. The socle Soc(P) of P is the maximal semisimple submodule.

We are interested in studying the structure of the submodule lattice of a projective
module P . Let’s introduce some useful notation:

U

M

V

means that V ⊂U and U/V ∼=M .
13
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In general, for any modular projective indecomposable and any p ,G , the submodule
lattice looks like

P

S

Rad(P)

...
...

...

Soc(P)

S

1

We will prove this later.
In Example 7.8, the two projective indecomposables must have sublattices

1⊂V1 . . .⊂V1 P1 and 1⊂V2 . . .⊂V2 P2.

Also, k [G ] = P1⊕P2 by inspecting the character table.

Theorem 4.5. The multiplicity of Pi in A is equal to dimSi . In particular, every projective
indecomposable for G appears in A.

Proof. A/Rad(A) is a semisimple ring, so every simple (hence semisimple) module for A
has its module structured induced from a module structure of A/Rad(A). So

A/Rad(A)∼=
⊕

Matd i (k ),

where d i = dimSi , and Matd i (k ) is a direct sum as left A-modules of d i copies of Si

(explicitly, via the columns).
On the other hand, one has by Krull-Schmidt a decomposition A ∼=

⊕

c i Pi . Then

A/Rad(A)∼=
⊕

c i Pi /Rad(Pi )∼=
⊕

c i Si

so c i = d i . �

Example 4.6. Now we analyze the two projective indecomposables of S3. Write

a = (1+x +x 2)(1+ y ),

b = (1+2x )(1+ y ) = (1−x )(1+ y )

c = (1+ y )

14
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Considered as elements of k [G ], a is the sum of all g ∈ G , so x a = a and y a = a . We
have the following identities:

xb =b −a

y b =−b −a

x c = c −b ,

y c = c

Therefore,
1⊂V1 (k a )⊂V2 (k a +kb )⊂V1 (k a +kb +k c )

so k a + kb + k c is the projective indecomposable P1. If one replaces 1+ y with 1− y
everywhere one gets the other projective indecomposable P2.

15
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5. FROBENIUS ALGEBRAS

We want to prove the following theorem, which will require us to build up some results
on Frobenius algebras.

Theorem 5.1. P is a projective indecomposable if and only if P/Rad(P)∼= Soc(P).

Definition 5.2. A finite-dimensional algebra is a Frobenius algebra if there exists a sym-
metric bilinear formβ : A×A→ k which non-degenerate and satisfiesβ (x y , z ) =β (x , y z ).

Remark 5.3. An equivalent definition is that the left and right regular representations on
A, A∗ are equivalent. Here A∗ can be given an A-module structure in the following way:
forφ ∈ A∗, (aφ)(x ) =φ(x a ).

To see the equivalence, given an isomorphism θ : A ∼= A∗ we can define the bilinear
form β (x , y ) = θ (y )(x ). Then β (x a , y ) = θ (y )(x a ) = (a ·θ (y ))(x ) = β (x , a y ). Conversely,
given β then we define θ by the same formula.

The group ring A = k [G ] is a Frobenius algebra as follows. Define τ: A→ k by τ(g ) = 1
if g = 1 and 0 otherwise, and β (x , y ) =τ(x y ).

Now we choose a slightly different action on the dual: if φ ∈ V ∗ and g ∈ G , then we
define (gφ)(v ) =φ(g −1v ).

Lemma 5.4. If V is projective then so is V ∗, and if V is indecomposable then so is V ∗.

Proof. If k [G ]n ∼= V ⊕V ′, then k [G ]n ∼= (k [G ]∗)n ∼= V ∗ ⊕ (V ′)∗ so V ∗ is projective. Under
this isomorphism k [G ]→ k [G ]∗, g ↔δg (x ) = 1(x = g ).

If V is indecomposable, then V ∗ is also indecomposable, as a non-trivial splitting V ∗ =
W ⊕W ′ gives by duality a non-trivial splitting V ∼=W ∗⊕ (W ′)∗. �

Remark 5.5. This shows that projectives are also injectives in the category of k [G ]-modules.

Definition 5.6. If V is a k [G ]-module, then we define its socle to be

Soc(V ) = {x ∈V |Rad(A)x = 0}

Lemma 5.7. Soc(V ) is the maximal semisimple submodule of V .

Proof. If U , W ⊂ V are semismple, then so is U +W since U +W ∼=U ⊕W /(U ∩W ) and
U ⊕W is semisimple. Therefore, there is a maximal semisimple submodule, say S.

Observe that Soc(V ) is an A/Rad(A)-module, and A/Rad(A) is semisimple, so Soc(V )
is semismiple, Therefore, Soc(V )⊂S. The other containment is obvious, as Rad(A) anni-
hilates any simple module, hence also any semisimple module. �

Remark 5.8. If you dualize our earlier picture of the submodule lattice, then one gets
Soc(V )∗ =V ∗/Rad(V ∗) and Soc(V ∗)∼= (V /Rad(V ))∗.

The following theorem affirms what we mentioned (and observed for S3) earlier, which
is that the top composition factor for V is also isomorphic to Soc(V ).

Theorem 5.9. If V is a projective indecomposable, then V /Rad(V )∼= Soc(V ).
16
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Proof. Write A ∼=Q⊕R where Q is the direct sum of projective indecomposables isomor-
phic to V , and R is the direct sum of projective indecomposables not isomorphic to V .
(At this point, we may not know that this is independent of some presentation of A as a
direct sum of projective indecomposables.)

Write 1= e + f where e ∈Q and f ∈R .

Lemma 5.10. If x ∈Q, then x e = x . If x ∈R, then x e = 0.

Remark 5.11. This shows that Q is uniquely determined.

Proof. If x ∈Q , then x = x e +x f so x f = x −x e . But x f ∈ R and x −x e ∈Q (since x ∈Q
and e ∈Q) so x f = 0 and x = x e .

If x ∈R , then we play the same game with x e = x −x f . �

Now, we know that S :=V /Rad(V ) is simple because V is a projective indecomposable,
and T := Soc(V ) = (V ∗/Rad(V ∗))∗ is also simple because (V ∗/Rad(V ∗)) is simple. Suppose
for the sake of contradiction that S 6∼= T . Let I be the sum of all simple left ideals of A
isomorphic to T .

We claim that I is a two-sided ideal contained in Q . It is clearly a left ideal. If E is a left
ideal isomorphic to T and a ∈ A, then either E a ∼= E or E a = 0, as E is simple. So I a is a
sum of left ideals isomorphic to T , verifying that I is also a right ideal.

Why is I contained inQ? Well, I is semisimple, hence I ⊂ Soc(A) = Soc(Q)⊕Soc(R), but
R has no submodules isomorphic to S since R is the sum of submodules not isomorphic
to V . So the projection of I to Soc(R) is 0, hence I ⊂ Soc(Q)⊂Q .

Now I 6= 0 (for instance, Soc(Q) is in it), so we can produce a contradiction by showing
that I = 0. If a ∈ I , then x 7→ x a is a map A → I , which is zero on R since R is a direct
sum of projective indecomposables that do not admit T as a quotient. Therefore, if f ∈R
then f a = 0, so we may write

a = e a + f a = e a = e a −a e

since a e = 0 (by the previous lemma). Since I is a two-sided ideal, this implies that for
all a ∈ I and b ∈ A (so that ab ∈ I ) we can write a = a e − e a and ab = ab e − e ab , hence

β (a ,b ) =τ(ab )

=τ(ab e − e ab )

= 0

Therefore, β (I , A) = 0 =⇒ I = 0 since β is non-degenerate.
�

Lemma 5.12. If H is a p -group, then H has a unique simple module (the trivial one) and
every projective module over H is free.

Proof. Let z ∈ Z (H ). In a representation π: H → End(V ), where V is a simple module,
π(z ) has only 1 as an eigenvalue since z p N = 1 and ch (k ) = p . So {x ∈ V | π(z )x = x } is
non-trivial, and since V is simple that means π(z )x = x for all x ∈ V . So H is a H/〈z 〉-
module, and by induction (there are always non-trivial elements of the center in a p -
group) it is trivial.

17
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In particular, there is only one projective indecomposable module k [G ]-module, and
it appears in k [G ]with multiplicity 1, so it is k [G ]. �

Corollary 5.13. Let P be a projective module for G . If p m | |G |, then p m divides dimk P.

Proof. LetP ⊂G be a p -Sylow subgroup, and say |P |= p m . If P is a projective indecom-
posable for G , then P remains projective as a k [P ]-module, since k [G ]∼= k [P ][G :P ]. So
P is a direct sum of copies of k [P ] as aP -module, hence its dimension is a multiple of
dimk k [P ] = |P |. �

18
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6. THE CDE TRIANGLE

Let k = Fq = Fp n , and consider the algebra k [G ] for a finite group G . If S1, . . . ,Sr are
the simple modules for k [G ] and P1, . . . , Pr are the corresponding projective indecom-
posables, then set c j i = c i j := the multiplicity of Si in Pj (in the sense of composition
factors). The Cartan matrix is defined as

C = (c i j ).

It is a theorem (yet to be proven) that C = t D ·D, where D describes the decomposition
of the characteristic 0 irreducibles in simple modules. What we now discuss is a “cate-
gorification” of this relation.

Consider a category of modules over a ring. Our mental model is the ring k [G ] where
G is a finite group and k = Fq or K [G ] where K is a complete field of characteristic 0
equipped with a discrete valuation, ring of integers O , and maximal ideal m, e.g. a finite
extension ofQp . Our modules are those induced by finite-dimensional representations,
or more specially finite-dimensional projective representations.

Definition 6.1. The Grothendieck group consists of the monoid of isomorphism classes
of modules in the category modulo the relations [M ] = [M ′]+ [M ′′] for every short exact
sequence

0→M ′→M →M ′′→ 0.

We denote by Rk (G ) or RK (G ) the Grothendieck group of finitely generated modules
over the relevant field, and Pk (G ) the Grothendieck group of finitely generated projec-
tive modules over k .

Remark 6.2. Note that RK (G ) = PK (G ) (the Grothendieck group of projective K [G ]-modules)
because K [G ]-representations are semisimple in characteristic 0, so the simple modules
are projective.

The main object of this section is to prove the existence of a commutative triangle

Pk (G )
c //

e

$$

Rk (G )

RK (G )

d
::

whose maps we now discuss (and which encode the Cartan matrix, among other things).

6.1. The map c . Here c is the categorical version of the Cartan matrix, sending [P] 7→ [P].
From the theory before, [Si ] are a basis of Rk (G ) as a Z-module (this is a reformula-

tion of the Jordan-Hölder Theorem). Also, [Pi ] is a basis of Pk (G ) as a Z-module (by the
the Krull-Schmidt theorem, and the bijection between projective indecomposables and
simple modules). Thus,

[Pj ] 7→
∑

i j

c i j Si .
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6.2. The map d . Given a finite-dimensional vector space V over K , a lattice is a finitely-
generated O -module L ⊂ V such that L spans V . This L will be a free module on some
basis of V , as O is a DVR.

Example 6.3. If V = K n , then L =O n is a lattice.

The idea of the map d is as follows. Choose a K [G ]-module E representing [E ] ∈
RK (G ). We want to take a lattice L ⊂ E and map this to [L/mL]∈Rk (G ).

There are several issues to resolve in order to be assured that this is actually well-
defined. For instance, we need to choose L to be G -invariant. But that is easy to arrange
by the usual averaging trick: if L is any lattice, then

∑

g∈G g L is G -invariant. A more seri-
ous issue is whether or not this is independent choice of lattice. Indeed one can obtain
distinct k [G ]-modules, but the key theorem of Brauer-Nesbitt is that they represent the
same class in Rk (G ).

Theorem 6.4 (Brauer-Nesbitt). If L, L′ ⊂V are G -invariant lattices, then L/mL and L′/mL′

have the same composition factors, i.e.

[L/mL] = [L′/mL′] in Rk (G ).

Proof. For some n , we have mn L′ ⊂ L. Replacing L′ by mn L′ doesn’t change L′/mL′, so
we may assume without loss of generality that L′ ⊂ L. Similarly, we have mN L ⊂ L′, hence
a tower

mN L′ ⊂mN L ⊂ L′ ⊂ L.

We prove the theorem by induction on N .
If N = 1, denote T = L/L′ and U = L′/L, and we have a tower

L

T

L′

U

mL

T

mL′

Then [L/mL] = [T ]+ [U ] = [L′/mL′].
Now for the general case, define L′′ = L′+mN−1L. Then we have

mN−1L′′ ⊂mN−1L ⊂ L′′ ⊂ L

and

mL′ ⊂mL′′ ⊂ L′ ⊂ L′′

as mL′′ = mL′ +mN L ⊂ L′. By induction, [L/mL] ∼= [L′′/mL′′] from the first tower, and
[L′′/mL′′]∼= [L′/mL′] by the second tower. �

20



Math 263B 2015

Lemma 6.5. Let A be a commutative ring and let P be an A[G ]-module which is projective
as an A-module. Then P is projective as an A[G ]-module if and only if there exists an A-
linear map u : P→ P such that

x =
∑

g∈G

g ·u (g −1x ) for all x ∈ P.

This gives a clean criterion to boost P to a projective A[G ]-module in terms of its A-
module structure.

Proof. We first show that this endomorphisms exists if P is projective over A[G ]. If P =
A[G ], then we can take u (g ) = 1 if g = 1 and 0 otherwise, and you can check that this
works. Therefore, we can find such a u if P = A[G ]n (i.e. P is free). Then we claim that
such a u exists if P is projective, as we can write P⊕P ′ = A[G ]n and compose the u from
the free case with the projection to P .

Now let’s prove the converse. Given an A[G ]-module homomorphism τ: P →M and

an A[G ]-module surjection M
f
−→ M ′′ → 0, we can find an A-module homomorphism

P→M lifting τ.
P

τ
��

s

}}
M

f // M ′′ // 0
However, s need not be an A[G ]-module homomorphism. So we try averaging it: let
σ : P→M be the map

σ(x ) =
∑

g∈G

g · s u (g −1x ).

This is now a G -module homomorphism by construction, although we don’t know a pri-
ori that it lifts τ, so let’s compute and see. Applying f to both sides, we get

f σ(x ) =
∑

g∈G

g ( f s u (g −1x ))

=
∑

g∈G

g (τu (g −1x ))

=
∑

g∈G

τ(g u (g −1x ))

=τ(x ).

�

Theorem 6.6. If P is an O [G ]-module that is free as an O -module, then P is projective
over O [G ] if and only if P/mP is projective as a k [G ]-module.

Proof. The direction =⇒ is easy. Given a diagram

P/mP

��
M ′ // M // 0
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we can compose with the morphism P→ P/mP , and lift to a map P→M ′ by considering
the diagram in the category of O [G ]-modules.

P

��

��

P/mP

��
M ′ // M // 0

Since m kills M ′, this lift factors through P/mP .
The other direction is trickier, and we need to use the preceding lemma. Suppose that

P := P/mP is projective, and let u : P→ P be an endomorphism as in the lemma. We can
lift u to a map u 0 : P→ P satisfying

x ≡
∑

g u 0(g −1x ) (mod mP).

Then we define

u 1(x ) =
∑

g∈G

g u 0(g −1x )

and we know that u 1 is a G -module homomorphism such that u 1(x )≡ x (mod mP). We
want to be able to arrange that this be an equality on the nose.

As P is a free O -module of finite rank (by assumption), the determinant of u 1 with
respect to some basis is a unit. (O is a local ring, and det u 1 ≡ 1 (mod m), so det ∈ O ×.)
This means that u 1 is invertible. Therefore, we can find v1 : P→ P such that u 1v1 = 1 on
P , and u 1 being a G -module homomorphism implies that so is v1. If we define u = u 0v1,
then

x = u 1v1(x ) =
∑

g∈G

g u 0(g −1v1x ) =
∑

g∈G

g u (g −1x ).

�

6.3. The map e . We also want to show that every projective k [G ]-module is of the form

P/mP for some projective O [G ]-module P . That defines the map [P]
e−→ [P]. So we begin

with some preliminaries on projective envelopes.

Definition 6.7. A homomorphismφ : T →U is essential if it is surjective, butφ restricted
to any proper submodule is not surjective.

A projective envelope is an essential homomorphismφ : P→M where P is projective.

Example 6.8. If U is semi-simple, then it’s a direct sum of simples, and for each simple
one can take the corresponding projective indecomposable.

Theorem 6.9. Let A be an artinian ring and M an A-module of finite length. Then M has
a projective envelope, which is unique up to isomorphism.
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Proof. Take M = L/R where L is projective. Choose N ⊂ R minimal (using the Artinian
assumption) such that L/N → L/R is essential (L→M would be essential if N =R). Take
Q minimal such that N +Q = L.

L

M

R

N

We claim that the morphism Q ,→ L → L/N is essential. It is clearly surjective, so by
projectivity of L we can find a lift

Q �
� // L // L/N

L

OO

q

gg

This q satisfies q (x ) ≡ x (mod N ) (just by the statement that it is a lift). The minimality
of Q implies Q→ L→ L/N is essential, as Q is minimal with the property that Q+N = L.
This also implies that q is surjective, as if the image were a proper submodule then that
proper submodule would surject onto L/N .

So at this point we just want to show that Q is projective. Let N ′ = kerq . We claim
that N ′ = N . Indeed, L/N ′ =Q → L/N is essential, and L/N → L/R is essential (it easy
to check from the definition that a composite of essential maps is essential) but N ′ ⊂N
and we chose N to be minimal with respect to this property, so N ′ =N .

Therefore, we can identify Q = L/ker(q ) = L/N , so we have a map q : L/N →Q and
Q → L→ L/N are inverse isomorphisms. This means that Q ∩N = 0 and L =Q ⊕N is a
direct sum. Therefore, Q is projective. �

Now we can construct the map e . We proved above that if P is an O [G ]-module that
is free as an O -module, then P is projective over O [G ] if and only if P/mP is projective as
a k [G ]-module. It’s also easy to show that if P and P ′ are projective O [G ]-modules such
that P/mP ∼= P ′/mP ′, then P ∼= P ′. Indeed, we have a diagram

P // P/mP

��
P ′ // P ′/mP ′

and we can use projectivity to lift maps P → P ′ and P ′ → P , which are inverse modulo
the maximal ideal. That implies that their composition is invertible, as O is a DVR.

Theorem 6.10. If P is a projective k [G ]-module, then P ∼= P/mP for some projectiveO [G ]-
module P.

Proof. Let p : Pn → P be a projective envelope of P as an (O /mN )[G ]-module. We claim
that P ∼= Pn/mPn .
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The map Pn → P obviously kills mPn , so we certainly have a surjection Pn/mPn → P .
We just have to argue that this is an isomorphism. There is a (k [G ]-linear) splitting s : P→
Pn/mPn since P is projective over k [G ]. Now s (P)maps isomorphically onto P , but since
p is essential the image of the splitting must be full: s (P) = Pn/mPn .

Then we take P = lim←−Pn and this works. This is an O [G ]-module, and we only have to
argue that it is projective. But given any triangle

P

��
M // // N

we have also (by right exactness of tensoring)

Pn

∃

}} ��
M n

// // Nn

and this pieces together to a map

P = lim←−n
Pn

∃

ww ��
M = lim←−n

M n
// // N = lim←−n

Nn

�

6.4. Adjointness. There are dual pairings

γ: Pk (G )×Rk (G )→Z

and

β : RK (G )×RK (G )→Z
defined as follows. For ([P], [E ])∈ Pk (G )×Rk (G ), we define

γ([P], [E ]) = dimk Homk [G ](P, E ).

If S1, . . . ,Sk , P1, . . . , Pk are simple and corresponding projective indecomposables, then
they form a dual basis since Pi has a homomorphism to Si = Pi /Rad(Pi ) and to no other
S j .

The map β is the familiar pairing from character theory:

β ([E ], [E ′]) = dimK HomK [G ](E , E ′),

so β ([E ], [E ′]) =δE ,E ′ if E , E ′ are simple.

Proposition 6.11. The maps d and e are adjoint with respect to these pairings, i.e. if
[P]∈ Pk (G ) and [E ]∈RK (G ), then

β (e [P], [E ]) = γ([P], d [E ]).
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Proof. Unraveling the definitions of the maps, this means the following. If k =Fq and K
is the complete field of characteristic 0 with residue field k , then we can find a module
P ′ such that P ′/mP ′ ∼= P . Then e [P] = [P ′]. On the other hand, let L E be a G -stable lattice
in E , so k ⊗O L E is d [E ]. Then we wish to show the equality

dimK HomK [G ](K ⊗O P ′, E ) = dimk Homk [G ](P, k ⊗O E ′)

The left hand side is

dimK HomK [G ](K ⊗O P ′, K ⊗O L E ) = dimK K ⊗HomO [G ](P ′, L E )

and right hand side is

dimk HomG (k ⊗O P ′, k ⊗O L E ) = dimk k ⊗HomO [G ](P ′, L E ).

Since HomO [G ](P ′, E ′) is free of a given rank, the dimension in either case is equal to that
rank. �
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7. BRAUER CHARACTERS

7.1. Construction.

Definition 7.1. A K [G ]-module M is said to be absolutely irreducible over K if M ⊗K L is
irreducible for any field extension L/K , i.e. if

L⊗M =M 1⊕M 2

then M 1 = L⊗M or M 1 = 0.

Example 7.2. If G = Z/2 = 〈τ | τ2 = 1〉 then over Q, the module E =Q2 with τ acting by
�

0 −1
1 0

�

is irreducible but not absolutely irreducible (it splits after extending toQ(i )).

Definition 7.3. If K is a field of characteristic 0, then K is a splitting field if every irre-
ducible K [G ]-module is absolutely irreducible.

Theorem 7.4. If ch K = 0, then K has a finite extension that is a splitting field.

We will use the following criterion.

Lemma 7.5. If M is irreducible, then M is absolutely irreducible if and only if EndK [G ](M ) =
K .

Proof. One direction follows immediately from Schur’s Lemma. For the other, observe
that by Schur’s Lemma, EndK [G ](M ) is a division ring. But the assumption of absolute
irreducibility implies that after extending scalars to K , then one obtains just K , so the
division ring must have been K . �

Proof sketch of Theorem 7.4. If E1, . . . , Er are the irreducible modules for K [G ], then End(E i )
is a division ring (by Schur’s lemma). If you extend the ground field far enough you can
split all the division rings (take a maximal subfield of each such division ring, and then
the compositum of all these). �

Remark 7.6. Brauer proved (though we don’t need this) that if e is the least common mul-
tiple of the orders of the elements of G (soQ(ζe ), ζe = e 2πi/e contains all the eigenvalues
of all complex representations), then K (ξe ) is a splitting field.

If k =Fp , then k× is isomorphic to the subgroup of the roots of unityC× consisting of
elements of order prime to p . Fix such an isomorphism θ : k× ,→C×.

Let K1 be a splitting field containing ξe , Galois overQ, with ring of integers O1 and p1

a prime lying over p . Then O1/p1 = Fq (Galois implying that this doesn’t depend on p1).
We can arrange θ so that the following diagram commutes

µe ⊂O × �
� //

%%

K
×

µe ⊂ k×

θ

;;

♠♠♠ TONY: [exercise]
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Let M be a k [G ]-module. Then the associated Brauer character is

φM (g ) =
∑

i

θ (αi )

where {αi } are the eigenvalues of the endomorphism of M induced by g . If g is p -regular,
then this is determined by the class of M in Rk (G ).

If M is projective, then there is a lift to a K [G ]-module by the map e : Pk (G )→ RK (G ),
i.e. a projective K [G ]-module P such that P/mP ∼=M . This is well-defined in the Grothendieck
group, so its usual complex character ηP (g ) (by picking an inclusion K ,→ C) is defined
for all g .

Theorem 7.7. The value ηP (1) is a multiple of p k , the order of a p -sylow P ⊂ G , and
ηP (g ) = 0 if g is not p -regular.

Proof. Restrict P to k [P ]. Recall thatP has the trivial module as its only simple module,
so k [P ] is a projective indecomposable (hence all projectives are free). Since P is a free
k [P ]-module, its dimension is a multiple of p k = |P |. This proves the first part.

Now write g = g p g p ′ (the p -regular decomposition). We want that if g p 6= 1, then
η(g ) = 0. Well, P remains free when restricted to 〈g p 〉, and we may assume without loss
of generality that g p ∈P . Since g p ′ commutes with g , we have a decomposition

P =
⊕

Pα

where α runs through the eigenvalues of g p ′ on P and

Pα = {x | g p ′x =αx }.

Therefore, each Pα is a free module over the cyclic group 〈g p 〉. If g p 6= 1, then

Tr(g |P ) =
∑

α

αTr(g p |Pα )

but Tr(g p |Pα ) = 0 as Pα is some multiple of the regular representation of 〈g p 〉.
�

Example 7.8. Consider G =S3 and p = 3. Then the character table is

1 (123) (12)
χ1 1 1 1
χ2 1 1 −1
χ3 2 −1 0

The p -regular character table is
1 (12)

φ1 1 1
φ2 1 −1

From this we see by inspection

D =

φ1 φ2

χ1 1 0
χ2 0 1
χ3 1 1
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Thus we have

C = t D ·D =
φ1 φ2

η1 2 1
η2 1 2

Let’s recall what this predicts. The projective indecomposables Pi form a basis for Pk (G ),
and the simples S j form a basis for Rk (G ). Then c i j is the multiplicity of S j in Pi , so if ηi

is the Brauer character of Pk (G ) andφj is the Brauer character of S j , then

ηi = c i jφj .

which only is defined on the p -regular conjugacy classes (as the φj are only defined on
the p -regular conjugacy classes). Also, {ηi } and {φj } form dual bases under the natural
pairing (summation over p -regular conjugacy classes).

On the other hand, if χk are the complex characters associated to a basis of RK (G ),
then

ηi 7→
∑

k

d i kχk .

So the CDE triangle looks like

ηi �

##

� // c (ηi ) =
∑

c i jφj

∑

d i kχk

/

77

We can deduce the image of the χk by the adjointness relations in §6.4. For ηi and χk ,
we have

〈ηi , e (χk )〉= 〈d (ηi ),χk 〉.
Using the duality of the bases, this unravels as

〈ηi , e (χk )〉=
∑

j

〈ηi , ek jφj 〉= ek i .

On the other side,

〈d (ηi ),χk 〉=
∑

`

〈d i`χ`,χk 〉= d i k .

Therefore, we see that e j i = d i j , i.e.

χk 7→
∑

j

d j kφj .

This gives the identity C = t D ·D.
We seeη1 = 2φ1+φ2 on p -regular conjugacy classes, and we know that this extends to

a true character (of the corresponding characteristic 0 representation under e ) which is
expected to vanish on (123) (by the theorem), and similarly forη2. Indeed, this is verified:

1 (123) (12)
η1 3 0 -1
η2 3 0 -1
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7.2. Orthogonality relations. Recall from the theory of §6.4 the CDE triangle

Pk (G )

d $$

c // Rk (G )

RK (G )

e

::

We defined a pairing
Pk (G )×Rk (G )→Z

such that
〈[P], [E ]〉= dimk Homk [G ](P, E ).

A natural dual basis consists of the projective indecomposables {Pi } ⊂ Pk (G ) and their
associated simples Si ⊂Rk (G ):

〈[Pi ], [S j ]〉=δi j .

For the pairing
RK ×RK →Z,

similarly defined by
〈[M ], [M ′]〉= dimk Homk [G ](M , M ′)

the simple modules [Πi ] form an orthonormal basis with respect to this pairing.
The maps d , e are adjoint with respect to these pairings: for [P] ∈ Pk (G ) and M ∈

RK (G ),
〈d [P], [M ]〉= 〈[P], e [M ]〉.

We denoted d [Πi ] =
∑

j d i j [S j ], which implied e [Pj ] =
∑

i d i j [Πi ] as a formal conse-
quence of adjointness.

This translates into a statement about Brauer characters. Suppose

• φi is the Brauer character of [Si ] (supported on p -regular conjugacy classes),
• χi is the character of Πi , and
• ηi is the Brauer character of [Pi ], i.e. the ordinary character of e [Pi ] (which we can

extend to all conjugacy classes by declaring them to be 0 off p -regular conjugacy
classes).

Then the compatibility of the Brauer character with the relations in the Grothendieck
group imply that

ηj (g ) =
∑

i

d i jχi (g ) for all g , (1)

(all g since both sides vanish if g is not p -regular by Theorem 7.7)

χi (g ) =
∑

j

d i jφj (g ) on p -regular g (2)

(since theφj are not defined on g that are not p -regular.)
We now recall the usual inner products from character theory.

• Let H =
⊕

Zηj be the Grothendieck group of Brauer characters of projective
modules for k [G ],
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• B =
⊕

Zφi ,
• X =

⊕

Zχi (the ordinary characters).

Then we have a pairing
X ×X →Z

defined by

〈χi ,χj 〉=
1

|G |

∑

g∈G

χi (g )χj (g ).

We also define a pairing H × B→Z by

〈ηj ,φk 〉=
1

|G |

∑

g p -regular

ηj (g )φk (g )

(which can be interpreted as the sum over all g with the convention that 0 times unde-
fined is 0).

Theorem 7.9. With these definitions, we have

〈φj ,ηk 〉=δj k .

Proof. As noted above,
∑

i

d i jχi =ηj

so d i j = 〈ηj ,χi 〉 as the χi form an orthonormal basis of class functions. We also noted
that

χi (g ) =
∑

g

d i jφj (g )

if g is p -regular. Therefore,
∑

j

d i j 〈φj ,ηk 〉= 〈χi ,ηk 〉= d i k =
∑

d i jδj k .

We would like to conclude the result by multiplying by the inverse of (d i j ). Now, the
matrix (d i j ) is not square, but its rank is equal to the number of p -regular conjugacy
classes because D t D is the Cartan matrix, which has that rank. Therefore D has a left
inverse, which lets us conclude that 〈φj ,ηk 〉=δj k , as desired. �

Theorem 7.9 implies that the two pairings Pk (G ) × Rk (G ) → Z we defined (one by
Brauer theory, and the other by usual character theory) coincide.

Example 7.10. You can check that the relations hold in the example of S3, as worked out
in Example 7.8.

7.3. Future applications. We give a glimpse of some results that we will be able to prove
later.

Recall that a generalized character (also called virtual character) is a difference of two
characters, and an elementary subgroup is a product of an `-group (` a prime) and a
cyclic group.
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Theorem 7.11 (Brauer). If χ is a class function on G and χ |E is a generalized character
for all elementary subgroups E , then χ is a generalized character.

This has some interesting consequences. For instance, it can be used to show that the

map RK (G )
d−→ Rk (G ) is surjective. However, if a class in Rk (G ) is not represented by a

projective module then you don’t know that a representative for the lift can be chosen
with no negative coefficients. That means that if χ is any character, then χ restricted to
the p -regular conjugacy classes is a linear combination of Z-coefficients (possibly nega-
tive) ofφi .

Another consequence proved by Green (used in the classification of irreducible rep-
resentations of GLn over a finite field) is that if θ : k× → C× is a character (not neces-
sarily injective) and π: G → GL(n , k ) is a representation with π(g ) having eigenvalues
α1, . . . ,αk , then

χπ(g ) =
∑

i

θ (αi )

is a generalized character. Crucially, we are not assuming here that g is p -regular.
Yet another interesting consequence is that if p k = |P | is the order of a p -Sylow sub-

group of G , then p kφi can be extended to characters. We will see these applications in
the future.
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8. BLOCKS

The theory of blocks partitions G -modules into equivalence classes.

Let A be a finite-dimensional k -algebra (for our applications, A = k [G ]). Suppose that
we can find proper 2-sided ideals A1, A2 such that A = A1⊕A2. Writing 1 = e1+ e2 with
e i ∈ A i . Then A1, A2 are themselves rings, as

e1+ e2 = 12 = (e1+ e2)2 = e 2
1 + e1e2+ e2e1+ e 2

2 = e 2
1 + e 2

2 .

So e1 + e2 is a central orthogonal idempotent, and e1, e2 server as idempotents making
A i into a ring.

Exercise 8.1. Check that e1x = x e1 = x for any x ∈ A1, and e1x = x e1 = 0 if x ∈ A2.

Definition 8.2. If there is no such decomposition, then we say that A is indecomposable.

Lemma 8.3. There is a unique decomposition of A into indecomposable rings:

A = A1⊕ . . .⊕Ar .

Proof. Let B = A ⊗Aopp. Then A is a B-module via (a ⊗b )x = a xb . The two-sided ideals
of A are B-submodules of A, so by the Krull-Schmidt Theorem applied to B , they are
unique up to isomorphism. However, the assertion of the lemma is slightly stronger:
they unique on the nose.

Suppose we have two different decompositions

A1⊕ . . .⊕An
∼= A ′1⊕ . . .⊕A ′n .

If e1 is the identity element for A1, then e1 ⊗ e1 ∈ B is an idempotent for B , and it pre-
serves A1 and kills the other A i . Applying it to A ′1, we find that it induces an isomorphism,
hence an equality. �

Now assume that k is either algebraically closed or “sufficiently large.”

Proposition 8.4. If A is an indecomposable k -algebra and Z is its center, then Z has a
unique k -algebra homomorphism Z → k .

Example 8.5. Think about k [P ] where P is an abelian p -group. Then A is abelian, so
A =Z .

Proof. Take B = A ⊗Aopp, so A is an indecomposable B-module. Then EndA⊗Aopp (A) is
local. We have an embedding Z → EndA⊗Aopp (A) sending z to (a 7→ z ·a ). This is injective
because A has a unit, so Z is a subring of a local algebra. Moreover, the property of
commuting with A is preserved by inverses, so Z is itself local. Therefore Z/Rad(Z )∼= k .
This is the unique k -algebra homomorphism Z → k . (Any homomorphism to k must
kill the nilpotents, and so factors through this one). �

Now, the idea is that if A = B1⊕ . . .⊕ Bn is a decomposition of k [G ] into indecompos-
able ideals, the composition factors of each Bi will be considered an equivalence class
of simple modules, called a block.
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Example 8.6. If we have a characteristic 0 simple module E , then from the CDE triangle
we expect [E ] ∈ RK (G ) to map to a sum of simple modules in Rk (G ). We expect that the
simple k [G ]-modules in d ([E ]) are all in the same block and this will be proved later.
So E is attached to a unique block Bi . This shows that the notion of blocks are in some
sense compatible for different base fields.

Example 8.7. Let G =D10, which has character table:

[1] [x ](2) [x 2](2) [y ](5)
χ1 1 1 1 1
χ2 1 1 1 -1
χ3 2 α β 0
χ4 2 β α 0

where α = 2 cos(2π/5) and β = 2 cos(4π/5) (the latter two characters are induced from
Z/5). Let p = 5, so the p -regular conjugacy classes are [1] and [y ]. Then the decomposi-
tion matrix is

D =

φ1 φ2

χ1 1
χ2 1
χ3 1 1
χ4 1 1

So C =t D ·D =
�

3 2
2 3

�

. There’s only going to be one block, as P1 has composition series

(S1,S2,S1) and the other projective indecomposable has composition series (S2,S1,S2).

Here is an alternate formulation of blocks. If A = B1⊕ . . .⊕ Br with each Bi indecom-
posable, and e i is the unit of Bi , then e i acts by 1 on Bi , hence also on any submodule or
subquotient of Bi , and by 0 on any composition factor of B j for j 6= i .

Definition 8.8. We say that an A-module M belongs to the block Bi if e i ·M = M and
e j ·M = 0 for j 6= i .

Since M = 1 ·M =
⊕

e i M =
⊕

M i , we see that any module is a direct sum of modules
belonging to the same block. Thus if M is indecomposable, then all submodules belong
to some block. So all composition factors of a projective indecomposable belong to the
same block.

Remark 8.9. In general, there is a way of ordering the Brauer characters such that the
Cartan matrix will decompose into block matrices.
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9. MACKEY THEORY

Mackey theory investigates the relations between representations of G induced from
different subgroups. The goal is to calculate intertwining operators between induced
representations, or decompose restrictions of inductions of representations.

9.1. Frobenius Reciprocity. Let G be a group and H ⊂G a subgroup.

Definition 9.1. Let W be a G -representation, i.e. a k [G ]-module. We define the restriction
of W to H to be W regarded as an H-representation, i.e. the usual restriction of a module
to a subring, and denote it as WH (or occasionally just W ).

Definition 9.2. Let V be an H-representation, i.e. a k [H ]-module. We define the induc-
tion of V to G as

V G = { f : G →V | f (h g ) = h · f (g ) for h ∈H}.
with G acting on the right.

This definition generalizes well to infinite-dimensional representations, e.g. of Lie
groups, thought it can be a little harder to work with.

Theorem 9.3 (Frobenius Reciprocity). Let V be an H-representation and W a G -representation.
There are H-module homomorphisms ε: V → V G , and δ : V G → V such that composition
with ε and δ induce isomorphisms

HomG (V G , W )
ε∗−→HomH (V, WH )

and
HomG (W, V G )

δ∗−→HomH (WH , V )
such that δ ◦ε= 1V .

Proof. First let’s consider ε. We have to construct a canonical map taking an element
v ∈V to a function G →V , and a natural candidate is

ε(v )(g ) =

(

g ·v g ∈H ,

0 otherwise.

On the other ahnd, δ is a natural map from functions G →V to V , so a natural candidate

is δ( f ) = f (1). We will check that these indeed work.

Lemma 9.4. If f ∈V G then f =
∑

γ∈G /H γε( f (γ
−1)).

Proof. Note that the right hand side is unchanged if we replace γ 7→ γh since ε is an
H-module homomorphism and the definition of V G . �

Now we can prove the first isomorphism. Let T ∈HomG (V G
H , W ) and t = T ◦ε. Then

T ( f ) =
∑

γ∈G /H

γt ( f (γ−1)).

This proves that T 7→ t is injective, as T ( f ) can be recovered from t . Also, given t this
provides a formula for T ( f ), giving an inverse construction

The second isomorphism is even easier. �
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Remark 9.5. This shows that if k =C, and χW ,χV are the characters of W, V , then

〈χV G ,χW 〉G = 〈χV ,χWH 〉H .

It is illustrative to give a direct proof of this fact. The right hand side is of course

1

|H |

∑

h∈H

χV (h)χW (h).

To calculate the left hand side, it is useful to develop a different perspective on the in-
duced representation. Viewing k [G ] as functions G → k , we have

V G ∼= k [G ]⊗k [H ] V

with the G -action by right-translation as functions. If we pick left coset representatives

G /H = {γ1H , . . . ,γn H}

then we can thus identify V G ∼=
⊕n

i=1γi ·V . Then for g ∈G , we have g · γi ·V = γi ·V if
and only if g γi H = γi H , i.e. γ−1

i g γi = h ∈H . Therefore,

χV G (g ) =
∑

γ−1
i g γi=h

χV (h)

Therefore,

〈χV G ,χW 〉G =
1

|G |

∑

g∈G

χV G (g )χW (g )

=
1

|G |

∑

g∈G

χW (g )#{i | γ−1
i g γi = h} ·χV (g )

=
1

|G |

∑

g∈G

χW (g )
∑

γ−1
i g γi=h

χV (h)

=
1

|G |

∑

g∈G

χW (h)χV (h)#{i | γ−1
i g γi = h}

=
1

|H |

∑

h∈H

χW (h)χV (h)

as desired.

9.2. Mackey’s Theorem. Let H , L < G be two subgroups. The problem is to induce an
H-module V and restrict to L, and decompose the result into irreducibles. This process
is related to another process, obtained by first restricting to some other subgroup and
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then inducing to L.

V G

Res |L

""
V

IndG
>>

Res |?   

V G |L

??
IndL

<<

We want to figure out the mystery module ??. It can be thought of as all essentially dis-
tinct intersections of conjugates of H with L.

Let {γ} ∈ L\G /H be a set of coset representatives. Then Mackey’s Theorem asserts that

??=
⊕

γ

γHγ−1 ∩ L.

Definition 9.6. If V is an H-module and γ ∈G , then let (γ)V denote the γHγ−1-module
with underlying set is V and action twisted by γ. More precisely, if (γ)v ∈(γ) V is the
element corresponding to v ∈V and h ∈H , then

γhγ−1 · (γ)v = (γ)(h ·v ).

Theorem 9.7 (Mackey). If H , L <G then

V G |L ∼=
⊕

γ∈L\G /H

�

(γ)V |γHγ−1∩L

�L
.

Proof. Set Ωγ = { f ∈ V G | supp( f )⊂Hγ−1L}. This is closed under translation by L on the
right and H on the left, so we have an isomorphism of k [L]-modules

V G =
⊕

γ∈L\G /H

Ωγ.

We will exhibit an isomorphism of k [L]-modules

Ωγ ∼= (γ)V |γHγ−1∩L .

If f ∈Ωγ we can define a function f ′ : L→ (γ)V by

f ′(x ) = (γ)( f (γ−1x )).

Note that γ−1x ∈ Hγ−1L. We claim that f ′ ∈ (V |L∩γHγ−1 )L . To see this, we just have to
check an invariance property, so let γhγ−1 ∈ L ∩γHγ−1. Then

f ′(γhγ−1x ) = (γ)( f (hγ−1x ))

= ·(γ)(h · f (γ−1x ))

= γhγ−1 · (γ)( f ′(x ))

So f 7→ f ′ is an L-equivariant map. That it is a bijection is clear, because f is completely
determined by its values on γ−1L.

�
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Proposition 9.8. Let V be an H-module and U an L-module. Then

HomG (UG , V G ) =
⊕

γ∈L\G /H

HomL∩γHγ−1 (U , (γ)V ).

Proof. By Frobenius reciprocity,

HomG (UG , V G )∼=HomL(U , V G |L).

By Mackey’s theorem,

HomL(U , V G |L)∼=
⊕

L\G /H

HomL(U , ((γ)V |L∩γHγ−1 )L).

Finally, by (the other) Frobenius reciprocity
⊕

L\G /H

HomL(U , ((γ)V |L∩γHγ−1 )L)∼=
⊕

L\G /H

HomL∩γHγ−1 (U , (γ)V ).

�
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10. REPRESENTATIONS OF GLn (Fp )

Let G = GL(n ,Fp ). We investigate the representation theory of k [G ] where k = Fp or
k = C, which was originally worked out by Green. There is a close relationship with the
theory of automorphic forms, pointed out by Harish-Chandra in the paper “Eisenstein
series over finite fields.”

10.1. Parabolic subgroups.

Definition 10.1. A Borel subgroup of G is a subgroup conjugate to the upper-triangular
matrices. A parabolic subgroup is a group containing a Borel subgroup.

The maximal parabolic subgroups of GLn (Fp ) are conjugate to












GLm ∗
0 GLn−m













. (3)

A parabolic subgroup is a semidirect product of a semisimple group and a unipotent
group.

Example 10.2. B = TU where U is are the superdiagonal matrices, and T is the maximal
torus.







∗ ∗ ∗
∗ ∗
∗






=







∗ 0 0
∗ 0
∗













1 ∗ ∗
0 1 ∗
0 0 1






.

Example 10.3. The maximal parabolic in (3) has decomposition M P ·UP , where

M P =













GLm 0

0 GLn−m













∼=GLm ×GLn−m

and

UP
∼=
��

1m ∗
0 1n−m

��

.

Now suppose k =Fp . Then UB is a p -Sylow subgroup of GLn (Fp ), with normalizer B .

Definition 10.4. An irreducible representation (π, V ) is cuspidal if it has no fixed vector
with respect to the unipotent radical of any parabolic subgroup (it suffices to check the
maximal ones).

In other words, for every P =M PUP , the UP -coinvariants vanish:

VUP :=V /〈u ·v −v | u ∈UP 〉= 0.

The general goals are:

(1) Classify the cuspidal representations,
(2) Assemble cuspidal representations of Levi subgroups
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The cuspidal representations of Levi subgroups give rise to representations of G by
parabolic induction, and the result is often irreducible and always has a nice theory of
decomposition into irreducibles.

For the second objective, one uses Mackey theory and Hecke algebras. Green’s ap-
proach was to construct cuspidal representations using “lifts from characteristic p .”

10.2. Cartan subgroups.

Definition 10.5. A Cartan subgroup of G is a maximal torus, and is usually denoted by T .

The Cartan subgroups of G are of the form

T (Fp )∼=
∏

i

F×
pλi

and the data of the {λi } determine the conjugacy class of the Cartan subgroup.

Example 10.6. For GL(2,Fp ), the Cartan subgroups are isomorphic either to F×p ×F×p (of

order (p −1)2) or F×
p 2 (of order p 2−1).

There are two special Cartan subgroups:
∏

F×p (maximal split) and F×p n (maximal
anisotropic). Roughly speaking, irreducible representations are indexed by characters
of the maximal tori, and cuspidal representations are indexed by characters of maximal
anisotropic torus.

If G = GL(2) and M P is a Levi subgroup of G , then there is a parabolic subgroup
P = M PUP and a quotient map P → M P

∼= P/UP . Restricting to P and then inducing
to G establishes a correspondence between representations of Levi subroups and repre-
sentations of G , the inverse being given by the Jacquet functor.

For references, see: Tits, Springer, Cartier in AMS Proc Pure Math, Boulder (v.9), Cor-
vallis (v. 33), Borel and Tits (IHES).

Definition 10.7. Let

B =
�

∗ ∗
0 ∗

�

be the standard Borel subgroup of GL2(Fp ). For two charactersχ1,χ2 : F×q →C×, inducing
the character χ : B→C× via

χ

�

t1 ∗
0 t2

�

=χ1(t1)χ2(t2),

we define the principal series representation B (χ1,χ2) := IndG
B (χ) (over k =C).

Then dimk B (χ1,χ2) = [G : B ] = p +1 and we have the following fundamental result.

Theorem 10.8. If χ1 6= χ2, then B (χ1,χ2) is irreducible. All identifications among the
principal series are determined by

B (χ1,χ2)∼= B (µ1,µ2) ⇐⇒

(

χ1 =µ1,χ2 =µ2

χ1 =µ2,χ2 =µ1.

This produces
�p−1

2

�

irreducible complex representations of G of dimension p +1.
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Proof. We shall determine the irreducibility by examining dimk HomG (χG ,µG ). By Mackey’s
Theorem,

dimk HomG (χG ,µG ) =
⊕

B\G /B

dimk HomB∩γBγ−1 (χ , (γ)µ).

Now, the Bruhat decomposition says that

B\G /B =
∐

w∈W

Bw B

where W is the Weyl group of G , which in the case of GL2 is simply S2, identified with the

group of permutation matrices. In this case, that means γ =
�

1 0
0 1

�

or γ =
�

0 1
1 0

�

, so

the right hand side above is

dimk HomB (χ ,µ)+dimk HomT (χ , (γ)µ).

If χ = µ and χ1 6= χ2, then the first dimension is 1 and the second is 0. Therefore,
Hom(χG ,χG ) is 1-dimensional, hence χG is indecomposable and in characteristic 0, ir-
reducible.

The rest of the accounting is similar. The first dimension can only be non-zero if χ =
µ, i.e. χi =µi , while the second can only be non-zero if the characters are swapped. �

Suppose χ =
�

χ1 0
0 χ2

�

is a character of the split torus, and χ ′ is a character of the

anisotropic torus. We will represent an element of the anisotropic torus as
�

α 0
0 αp

�

, α∈Fp 2 −Fp

even though such a representatioon only exists after extending scalars. Then we obtain
induced representations π,π′ by first restricting these to the Borel, and then inducing to
G . The resulting characters have the following values:

1

�

t1 0
0 t2

� �

α 0
0 αp

�

χ p +1 χ(t )+χ(w · t ) 0
χ ′ p −1 0 −χ(α)−χ(αp )

Here w · t denotes the image of t under the nontrivial element w of the Weyl group. This
follows from our earlier computation that

χG (t ) =
∑

γi g γ−1
i =b

χ(b )

where {γi } form coset representatives for G /B , which we can take to be

�

1 0
β 1

�

and w .

Roughly speaking, the characters of GL(n ,Fq ) are parametrized by orbits of characters
of maximal tori. These orbits are parametrized by partitions of n : if λ is a partition of n ,
then there is a maximal torus Tλ such that

Tλ(Fq )∼=
∏

F×
qλi

.
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In particular we have the maximal split torus

Ts = T(1,...,1)
∼= (F×q )

n

and the maximal anisotropic torus

Ta = T(n ) =F×q n .

The representations corresponding to characters of Ts are easy to construct by induc-
tion (as we just saw). The representations corresponding to characters of Ta are hard to
construct - they are called the cuspidal representations. So we discuss the problem of
constructing them.

Let χ : Fq n → C× be a character not factoring through the norm map Fq n → Fq d for
any d < n . Then there exists an irreducible cuspidal representation indexed by χ , whose
character σχ has the following description: if g is regular semisimple (i.e. has distinct
eigenvalues), thenσχ (g ) = 0 unless g is conjugate to an element of Ta , in which case

σχ (g ) = (−1)n+1
∑

αi eigenvalues

θ (αi )

where θ : F
×
q →C× is a fixed character as used in defining the Brauer character.

There are a couple approaches to the construction: one due to Deligne-Lustzig, and
the original method of Green. We will discuss the latter.

10.3. Green’s theorem.

Theorem 10.9 (Green). Let θ : F
×
q → C× be a character (not necessarily injective). Let

S(x1, . . . ,xn ) be a symmetric polynomial with integer coefficients. Let G be some finite
group and π: G → GL(n ,Fq ) a representation, and σ(g ) = S(θ (α1), . . . ,θ (αn )) where g
has eigenvalues α1, . . . ,αn . Thenσ is a generalized character.

In particular, if (π, V ) is a representation of G over Fp , then the map

g 7→
∑

eigenvalues αi

θ (αi )

(which we called a Brauer character when θ was injective) is a generalized character
We’ll need to use Brauer’s theorem for the proof - see the paper of Brauer and Tate.

Definition 10.10. If ` is a prime and E is a direct product of an `-group and a cyclic group,
then E is called `-elementary.

Theorem 10.11 (Brauer Theorem 1). Ifσ is a class function on G andσ|E is a generalized
character for every elementary subgroup E <G , thenσ is a generalized character.

Theorem 10.12 (Brauer Theorem 2). Any generalized character is a linear combination
of characters induced from one-dimensional representations of elementary subgroups.

One of the great original applications of this second result was:

Corollary 10.13. Artin L-functions are meromorphic.
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Proof of Green’s Theorem. It is sufficient to assume that θ is injective. Indeed, suppose
it is known for an injective character θ1. Suppose Fq N is sufficiently large to contain the
eigenvalues of π(g ) for all g ∈G . Given θ ,

θ |F×
qN
= θ r

1

for some r sinceF×q n is cyclic. Replacing S(x1, . . . ,xn ) by S(x r
1 , . . . ,x r

n )we may work with θ1.

Also, we may work with S(x1, . . . ,xn ) =
∑

x i because if the theorem is known in this case,
then we can replace π by its exterior powers we get the elementary symmetric functions,
and these generate the ring of symmetric functions.

So without loss of generality θ is injective and S(x1, . . . ,xn ) =
∑

x i . By Brauer’s theo-
rem, we may also assume that G is elementary. (In this case we will find thatσ is actually
a character, but in generalσ is only a generalized character.)

If G is elementary then G is a product of its Sylow subgroups. In particular, G = P ×H
where P is a p -group and p - |H |. Since p - |H |, the Brauer characters of H are ordinary
characters.

Let g = g p g H where g p ∈ P (the p -unipotent part) and g H ∈ H (the p -regular part).
Then we claim that π(g p g H ) has the same eigenvalues as π(g H ). The reason is that over
the algebraic closure, we may assume π(g ) is upper triangular. Then the p -regular part
is the usual semisimple part, and the p -unipotent part is the usual unipotent part. So we
have thatσ(g ) =σ(g H ) is an ordinary character of H . Thusσ factors as

G = P ×H
p2 //

σ
))

H

σ=ordinary character
��
C

�

Example 10.14. Let’s try to witness Green’s Theorem for GL(2,Fq ). In GL(2,Fq ) the con-
jugacy classes are the following:

Type # of classes size of class
�

a
a

�

q −1 1
�

a 1
a

�

q −1 q 2−1
�

a
b

�

a 6=b ∈F×q
1
2 (q −1)(q −2) q 2+q

�

α
αp

�

α∈Fq 2 −Fq
1
2 (q

2−q ) q 2−q
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If χ1,χ2 are characters of F×q , define π(χ1,χ2) = IndG
B (χ1,χ2). Let χ : F×

q 2 →C× be a char-

acter not factoring through F×q . Then we have the character values:

Type # classes class size π(χ1,χ2) π(χ)
�

a
a

�

q −1 1
�

a 1
a

�

q −1 q 2−1
�

a
b

�

a 6=b ∈F×q
�q−1

2

�

q 2+q χ1(a )χ2(b ) 0

+χ2(b )χ1(a )
�

α
αp

�

α∈Fq2 −Fq
1
2 (q

2−q ) q 2−q 0 −χ(α)−χ(αp )

We extend χ : F×
q 2 →C× to a character θ : Fq

×→C× (so θ =χ on Fq 2 ).

Now we apply Green’s theorem to the standard 2-dimensional representation of GL2(Fp ),
to obtain a characterσ. We’ll show that 〈σ,σ〉= 2.

Type # classes class size π(χ1,χ2) π(χ) σ
�

a
a

�

q −1 1 2θ (a )
�

a 1
a

�

q −1 q 2−1 2θ (a )
�

a
b

�

a 6=b ∈F×q
�q−1

2

�

q 2+q χ1(a )χ2(b ) 0 θ (a )+θ (b )
+χ2(b )χ1(a )

�

α
αp

�

1
2 (q

2−q ) q 2−q 0 −χ(α)−χ(αp ) θ (α)+θ (αp )

So what we would like to do is explicitly write down a linear combination of the char-
acters for π and π(χ1,χ2) that looks like σ. It should look like a principal series minus
cuspidal. The calculation 〈σ,σ〉 = 2 will suggest that there are two characters involved.
However, we will use a trick to avoid computation.

We have

〈σ,σ〉=
1

|G |

∑

g∈G

|σ(g )|2.

Now the possible values for |σ(g )|2 are:

Type # classes class size |σ|2
�

a
a

�

q −1 1 4
�

a 1
a

�

q −1 q 2−1 4
�

a
b

�

a 6=b ∈F×q
�q

2

�

q 2+q 2+θ (a/b )+θ (b/a )
�

α
αp

�

α∈Fq2 −Fq
1
2 (q

2−q ) q 2−q 2+θ (αp−1)+θ (α1−p )

This makes it clear that 1
|G |

∑

g∈G |σ(g )|2 is a polynomial in q . Therefore, to evaluate it we
may let q →∞.

(1) The sum of |σ|2 over the first row (central elements) is O(q −1).
(2) The sum over the second row is O(q 3).
(3) The sum over the third row is q 4+O(q 3).
(4) The sum over the last row is again q 4+O(q 3).
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Since |G |=q 4+O(q 3), this tells us that 〈σ,σ〉= 2+O(1/q ) = 2 for all suffiicently large q .
Now one has to argue further that the difference of the two characters is actually the

σ we want.

Example 10.15. The ordinary representation teory of SL(2) is similar to that of GL(2), but

there are more conjugacy classes. If a = ±1, then the conjugacy class of

�

a 1
a

�

splits

into two upon restriction to SL(2) (because

�

1 1
1

�

6∼
�

1 ε
1

�

if ε is not a square). The

q+1-dimensional irreducible splits into two irreducibles, with dimensions 1
2 (q+1) each.

The q − 1-dimensional irreducibles splits into two irreducibles with dimension 1
2 (q − 1)

each.

10.4. SL2 and the Brauer graph. We’re going to investigate an interesting relationship
between the complex representation theory of SL2(Fq ) and its modular (characteristic
p ) representation theory, which will be encoded by the “Brauer graph.”

The modular representation theory of algebraic groups is quite similar to that of the
corresponding Lie groups. In the case of SL(2,C) or more generally G (C) where G is a
semisimple algebraic group, the irreducible representations are parametrized by domi-
nant weights.

If G = SL(2,C), the maximal torus is

�

t 0
0 t −1

�

. We denote by X •(T ) and X•(T ) the char-

acter and cocharacter groups, which are both isomorphic to Z in this case. The elements
of X •(T ) =:Λ are called weights. With the convention that λa is the weight

λa

�

a
a

�

= t a ,

a dominant weight is one with a ≥ 0.
There is a partial order on Λ given by λa ≥ λb if a > b . Given a representation π,

restriction to T induces a decomposition

π|T =
⊕

µ∈Λ
mµµ.

The set of µ such that mµ 6= 0 are called the weights. For irreducible π, there is a unique
highest weight (this weight λ is dominant with mλ = 1), which gives a bijection between
irreducible representations and dominant weights. In particular, the dominant weight
k > 0 for SL(2,C) corresponds to the irreducible representation πk := Symk (C2).

We’re going to try to convey the picture in the modular case, without proving all the
facts yet. Let G = SL(2,Fq ). We set Sk = Symk−1F2

q . The eigenvalues of the element of

SL(2,Fp ) conjugate (over an extension) to

�

α 0
0 αp

�

forα∈Fq 2−Fp areαk−1,αk−3, . . . ,α1−k .

If θ : Fq →C× is the injective character used to make Brauer characters, then the Brauer
character of Sk is

φk (g ) = θ (α)k−1+θ (αk−3)+ . . .+θ (α)1−k .

Theorem 10.16. If k ≤ p , then Sk is irreducible.
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Proof. We basically want to imitate the usual Lie algebra proof. Extend the representa-
tion to a representation of Mat2(Fq ) in the obvious way, and denote

e =
�

0 1
0 0

�

and f =
�

0 0
1 0

�

.

Suppose x = (1, 0) and y = (0, 1) is a basis of k 2. Let

vk−1 = x ∨ . . .∨x

vk−3 = x ∨ . . .∨x ∨ y = (∨k−2x )∨ y ,

... =
...

vk−1−2r = (∨k−1−r x )∨ (∨r y )

Now you can check that (as usual) e and f are shifts:

e (y ) = x

e (x ) = 0

f (y ) = 0

f (x ) = y

So (up to constants) repeated applications of e take v1−k 7→ v3−k 7→ . . .. The key point is
that in characteristic p , the chain breaks off at k = p ! This is easy to see: in ∨p y , there
are p different ways of changing y to x , so the coefficient of e p (∨p y ) will be divisible by
p .

So we have

e (
∑

cm vm )∼
∑

m+2≤k−1

cm vm+2

If m is the smallest integer such that cm 6= 0, then e r (. . .) = cm vk−1. This means that
any non-zero submodule contains vk−1. Therefore, applying f shows that it contains all
basis vectors, so any non-zero submodule is the full space. That shows irreducibility as
an M 2(Fp )-module.

To argue for irreducibility as an SL2(Fp )-module, we try to imitate the exponential
map. Fortunately, in this case we have exp(e ), exp( f ) ∈ SL2(Fp ) and exp(e ) − I = e ,
exp( f )− I = f . �

Now let’s try to unravel the complex representation theory of SL(2,Fq ). There are q+4
conjugacy classes, of which q are p -regular. The q + 4 irreducible complex representa-
tions are comprised of:

• one trivial representation
• two of dimension 1

2 (q −1) (half-cuspidal),

• two of dimension 1
2 (q +1) (half-principal series),

• about q/2 of dimension q −1 (cuspidal),
• one of dimension q (Steinberg), and
• about q/2 of dimension q +1 (principal series).
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Type # Classes Class size

±
�

1
1

�

2 1

±
�

1 ε
1

�

2(q −1) 2q
�

t
t −1

�

, t ∈F×q , t 6=±1 1
2 (q −3)

�

α
αp

�

,α∈Fq 2 −Fq , N (α) = 1 1
2 (q −1)

This looks a lot like the theory for GL(2,Qp ), except in that case there are infinitely many
interesting infinite-dimensional representations.

Definition 10.17. The Brauer graph is a graph whose vertices are labelled by the {χi } and
{φj }, with the vertices corresponding to χi andφj connected if d i j 6= 0.

Proposition 10.18. The connected components of the Brauer graph of G are precisely the
blocks.

Proof. ♠♠♠ TONY: [TODO] �

Now let’s study the Brauer graph. We claim that there are at least three different blocks.

If i 6= j (mod 2), then φi and φj must lie in different blocks, because

�

−1 0
0 −1

�

acts by

−1 on Symk−1(F2
q ) if k is even and +1 if k is odd. Recall that each block corresponds to

one homomorphism Z (k [G ])→ k . The third component consists of the two Steinberg
representations. So the graph looks like

χ6 χ10 . . .

φ1 φ5 φ3 . . .

χ11 χ7 . . .

φ6 φ2 φ4 . . .

SteinbergC

SteinbergFq

You can compute all this using the decomposition matrix.
In general, for SL2(Fp ) the graph is roughly described as follows. By the CDE triangle,

c i j =
∑

k

d i k d j k
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is the multiplicity ofφi in ηj . If d k i 6= 0 and d k j 6= 0, then one will have

χk

φi φj

It turns out thatφi is adjacent toφp−1−i andφp+1−i except if i = 1 or p−1, in which case

one of these doesn’t exist. In the middle, i.e. i = p−1
2 , p+1

2 then we get a self-adjacency.
What is the significance of this?
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11. THE GREEN CORRESPONDENCE

11.1. Review of extensions.

Definition 11.1. Let M and N be G -modules. An extension of M by N is a module E fitting
into a short exact sequence

E : 0→N → E →M → 0.

We say that E ≡ E ′ if there exists a G -homomorphism E → E ′ making the diagram com-
mute

0 // N // E

��

// M // 0

0 // N // E ′ // M // 0

Given G -modules M , N , there is a group structure on the set of equivalence classes of
extensions of M by N , which will now be explained.

Choose a projective resolution of M , or more generally just a short exact sequence

0→Q→ P→M → 0

where P is projective. Then we get an exact sequence

0→Hom(M , N )→Hom(P, N )
i ∗−→Hom(Q , N )→ Ext(M , N ).

Define Ext to be Hom(Q , N )/i ∗Hom(P, N ), so the above fits into

0→Hom(M , N )→Hom(P, N )
i ∗−→Hom(Q , N )→ Ext(M , N )

(this can be continued further, but that is not important for us). You can prove that this
does not depend on the choice of resolution, using the lifting property for projective
modules.

We claim that Ext(M , N ) is in bijection with extensions. Given an extension, the pro-
jectivity implies that we can find lifts

0 // Q

g

��

// P

f
��

// M // 0

0 // N
α
// E

θ
// M // 0

Then g ∈ Hom(Q , N ) and we claim that the image of [g ] in Ext(M , N ) doesn’t depend
on the choice of f . Indeed, if f and f ′ are two maps inducing the identity on M , then
θ ( f − f ′) = 0 so f − f ′ has image in Im (α) = ker(θ ). Thus f − f ′ = α ◦ t for some t ∈
Hom(P, N ), i.e. f − f ′ ∈ Im (i ∗).

If S,S′ are simple then Ext(S,S′) 6= 0 =⇒ S,S′ lie in the same block. Conversely,
if S1,S2 are in the same block then we can find S′′ = T1, . . . , Tn = S2 such that either
Ext(Ti , Ti+1) 6= 0 or Ext(Ti+1, Ti ) 6= 0. We’ll prove this later. The point is that Ext groups
detect blocks.
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11.2. Special case of trivial intersections. Suppose P <G is a p -Sylow subgroup, and if
x ∈G −N (P) then x Px−1 ∩P = {1}, i.e. for any two p -Sylows P and P ′ we have P ∩P ′ = 1
or P . This is satisfied for instance when G = SL2(Fq ). Let L =N (P).

Theorem 11.2 (Green, special case). There exists a bijection
�

non-projective
indecomposables

of G

�

↔
�

non-projective
indecomposables

of L

�

If U ↔ V under this bijection, then V G ∼=U ⊕X where X is projective for G , and U |L ∼=
V ⊕Y where Y is projective for L.

Proof. The statement of the theorem makes it clear how to construct the bijection. If U
is a non-projective indecomposable of G , then we should consider U |L and split off a
non-projetive indecomposable. Similarly, if V is a non-projective indecomposable of L,
then we should consider V G and split off a non-projective indecomposable of G .

We will need the following useful result.

Lemma 11.3. Suppose [G : H ] is prime to p and U is a G -module such that U |H is projec-
tive. Then U is projective.

Proof. We have a diagram

U
θ

~~
g
��

M
f
// N // 0

We want to show that there exists θ : U →M with f ◦θ = g . We know that there exists θ1

that is an H-module homomorphism, as U is projective over H . Then we define

θ (u ) =
1

[G : H ]

∑

s∈G /H

sθ1(s−1u ).

It is easily checked that this is a G -module homomorphism that does the job. �

Let V be a non-projective indecomposable for L. By Mackey theory,

(V G )L =
⊕

s∈L\G /L

IndL
L∩s Ls−1 ((s )(V )).

We claim that if s 6= 1, then IndL
L∩s Ls−1 (s (V )) is projective. The key point is that L ∩ s Ls−1

does not contain any subgroup of order p . (P is the only sylow in L, and s Ps−1 ∩ P =
1 by assumption.) Since p - L ∩ s Ls−1, all modules are projective for k [L ∩ s Ls−1] (by
Maschke’s theorem), and induction preserves projectives (since projectivity has to do
with exactness of mapping out, and this is controlled by Frobenius reciprocity).

Now if we break up V G into a direct sum of indecomposables

V G =U1⊕U2⊕ . . . (indecomposables)

then we have

V G |L ∼= (U1)|L ⊕ (U2)|L ⊕ . . .
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but also by Mackey theory
V G |L ∼=V ⊕ (projective).

This means that exactly one (Ui )|L has V as a summand and all the others are projective
L-modules (hence projective G -modules, by the Lemma). Without loss of generality, we
may re-index the summands so that U1|L contains V . We know by this discussion that
U1|L ∼= V ⊕ (projective). Also, since the restriction of projective is projective (as k [G ] is a
free k [H ]-module), we know that U1 is non-projective for G . �

Proposition 11.4. If U ,U ′ are G -modules and V, V ′ are L-modules such that U↔V and
U ′↔V ′ under the Green correspondence, then

Extk [G ](U ,U ′)∼= Extk [L](V, V ′).

Proof. Write

U |L ∼=V ⊕Y

V G ∼=U ⊕X

U ′|L ∼=V ′⊕Y ′

(V ′)G ∼=U ′⊕X ′

Then X , X ′ are projective G -modules and Y , Y ′ are projective L-modules, as ensured by
the Green correspondence.

Note that if P is projective for k [G ], then Ext(P,−) = 0, and also Ext(−, P) = 0 because
projectives are automatically also injectives for k [G ] by duality.

Choose a resolution
0→Q→ P→V → 0

for V where P is projective over L. Then

0→QG → PG →V G → 0

is a resolution of V G with PG projective. The sequence defining Extk [L](V, V ′) is

0→Homk [L](V, V ′)→Homk [L](P,U ′)→Homk [L](Q ,U ′)→ Extk [L](V, V ′).

However, since U ′|L ∼= V ′⊕ (projective), and projectives being injectives have no higher
Ext groups, we can also compute Extk [L](V, V ′) by using U ′|L in place of V ′. Similarly, we
can compute Extk [G ](U ,U ′) by using (V ′)G in place of U ′. We then relate these two using
Frobenius reciprocity:

0 // Homk [L](V,U ′) //

∼=
��

Homk [L](P,U ′) //

∼=
��

Homk [L](Q ,U ′)

∼=
��

// Extk [L](V,U ′)

∼=
��

0 // Homk [G ](V G ,U ′) // Homk [G ](PG ,U ′) // Homk [G ](QG ,U ′) // Extk [G ](V G ,U ′)

�

Example 11.5. Let G = SL(2,Fq ). Then a p -Sylow subgroup is P =
�

1 ∗
1

�

and its normal-

izer is the Borel subgroup B . This satisfies the hypothesis of (our version of) the Green
correspondence, so we should get a bijection between non-projective indecomposables
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of P and non-projective indecomposables of B . That means that we can study represen-
tations of B to get information about G .

Consider V =Vλ⊕Vλ−2⊕. . .⊕Vλ−2k , which we found was an irreducible representation
of G by studying the maps e and f , which raised and decreased the weights, respectively.
When we restrict to a representation of B , we retain only the action of e (via the expo-
nential map).
♠♠♠ TONY: [this was not done clearly (at least that I recorded), both seem to be

projective indecomposables?]
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12. BACK TO BLOCKS

Let A = k [G ]. We proved that there is a unique decomposition

A =
⊕

Bi , Bi indecomposable 2-sided ideal.

The Bi are called blocks. Write

1=
∑

e i

where the e i ∈ Bi are orthogonal idempotents (the units of the Bi considered as rings).
We say that an A-module M “belongs to Bi ” if e i M =M and e j M = 0 for j 6= i . We also
proved that Z (Bi ) has a unique k -algebra homomorphism ωi : Z (Bi )→ k . We can now
give more characterizations of blocks.

Theorem 12.1. The following four equivalence relations on simple modules are the same.

(1) M ∼M ′ if M , M ′ belong to the same block.
(2) M ∼M ′ if M , M ′ are composition factors in the same indecomposable projective.
(3) M ∼M ′ if Ext(M , M ′) 6= 0
(4) M ∼M ′ if M , M ′ admit the same “central character.”

Proof. First, we make some observations concerning the interplay between projective
indecomposables and blocks. We claim that every projective indecomposable for A ap-
pears as a summand of some Bi .

Let P be a projective indecomposable of A. Then the A-endomorphisms P are local, so
in particular the idempotents e i act invertibly or nilpotently on P . But nilpotent idem-
potents are 0. Since

∑

e i = 1, some e i acts invertibly. If e i and e j both act invertibly, then
so does e i · e j , but that is 0. So P is associated to a unique block.

(2) =⇒ (1). This is clear from the preceding discussion.

(1) =⇒ (2). Suppose S is a simple module for A belonging to the block B according to
(1). Then we may decompose

B = P1⊕P2⊕ . . .
︸ ︷︷ ︸

P

⊕Q

where the Pi are the projective indecomposables whose composition factors are equiva-
lent to S according to (2), and and Q is the direct sum of the remaining projective inde-
composables for B . It suffices to show that Q = 0. By definition, P =

⊕

i Pi and Q have no
composition factors in common, hence Hom(P,Q) = 0.

We produce a contradiction by showing that P and Q are two-sided ideals. Since P
is closed under left multiplication by definition, it suffices to show that it is closed un-
der right multiplication. If α ∈ A, then right translation followed by projection to Q is in
Hom(P,Q), hence 0. Therefore, Pα ⊂ P . Thus P is a 2-sided ideal, and similarly so is Q ,
which gives a contradiction.

(3) =⇒ (2). Suppose Ext(M , M ′) 6= 0, so we have a non-split extension

0→M ′→ E →M → 0.
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If we let P be the projective envelope of M , then it has a lift to E :

P

f
��   

0 // M ′ // E // M // 0

We claim that f is surjective. If not, then f (P)∩M ′ = 0 (because M ′ is simple and f (P)∩M ′

must be proper, as otherwise it surjects to M ′ and M ). But that would imply f (P) ∼=M ,
and the isomorphism would split the short exact sequence.

Therefore, E is a quotient of P , so M ′ is a composition factor of P , hence M ∼M ′ via
(2)’s equivalence relation.

(2) =⇒ (3): It suffices to show that if P is a projective indecomposable with P/Rad(P) =
M , and W is a composition factor of P , then W ∼M with respect to the Ext equivalence
relation. (In other words, we reduce to the case where one of the modules is at the “top”
of the composition series).

Lemma 12.2. Suppose M is not semisimple, but Rad(M ) is semisimple. If W is a compo-
sition factor of Rad(M ), then Ext(U , W ) 6= 0 for some composition factor U of M/Rad(M ).

Proof. We may assume without loss of generality that W = Rad(M ), since if Rad(M ) =
W ⊕W ′ then by passing to M/W ′, we can arrange this to be the case. So we have

0→W =Rad(M )→M →M/Rad(M )→ 0

which does not split, as M is not semisimple. Therefore, Ext(M/Rad(M ), W ) 6= 0. But as
M/Rad(M )∼=

⊕

Ui , we have

Ext(M/Rad(M ), W )∼=
⊕

Ext(Ui , W )

so Ext(Ui , W ) 6= 0 for some summand Ui of M/Rad(M ).
�

If M i =Radi (P), then we have

P =M 0 ⊃M 1 ⊃ . . .⊃M n = 0

and M 0/M 1 = P/Rad(P)∼=M . By assumption, W is some composition factor of M i /M i+1

for some i . If i = 0 then M =W and there is nothing to show; if i > 0, then we have

M i−1

M i

W

M i+1

By the Lemma applied to M i−1/M i+1, W is related (via the Ext relation) to some compo-
sition factor U of M i−1/M i . In this way we can keep “going up the ladder,” until i = 0.
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(1)− (3) ⇐⇒ (4). If M is simple, then by Schur’s lemma Z (A) =
⊕

i Z (Bi ) acts on M
by scalars, i.e. via a homomorphismωM : Z → k determined by z ·m =ωM (z ) ·m . Since
e j ∈Z (B j ), M belongs to Bi if and only ifωM is the unique character Z (A)→ k killing e j

for e j 6= i . �

Example 12.3. We now explain why every irreducible characteristic 0 representation is
associated with a unique block. This boils down to “block decomposition of the Cartan
matrix.”

We have the CDE diagram

Pk (G )

e $$

c // Rk (G )

RK (G )
d

::

Let {Pi } be the projective indecomposables for k [G ], {Vk } the irreducibles for K [G ], and
{S j } the simple modules for k [G ]. Then we know that

c [Pi ] =
∑

j

c i j S j

d [Pi ] =
∑

k

d i k Vk

e [Vk ] =
∑

j

d k j S j

There would be a natural assignment of block to Vk if all the S j for which d k j were non-
zero belonged to a single block. Is this the case? Suppose that d k j 6= 0. We want to show
that if S j and S j ′ are in different blocks, then d k j ′ = 0.

We now know that the projective indecomposables of k [G ] are partitioned into blocks
in a way compatible with the partitioning of simple modules. In particular, S j is a com-
position factor of Pj , so S j ′ is not, i.e. c j j ′ = 0. But we know that

c j j ′ =
∑

k

d k j d k j ′

with all the d k j non-negative, which is a contradiction.
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13. CHARACTER THEORY

13.1. The central character. Let K = C, or a sufficiently large (i.e. splitting) field in
characteristic 0. Throughout, let (π, V ) be an irreducible module for G . Then Z (G ) (the
center of G ) acts by scalars on V by Schur’s Lemma. Similarly, the center of the group
algebra Z := Z (k [G ]) acts by scalars, so there is a k -algebra homomorphism ω: Z → K
such thatω(z ) ·v =ω(z )v . This is called the central character of (π, V ).

IfC1, . . . ,Ch are the conjugacy classes of G , then the c i :=
∑

x∈Ci
x for i = 1, . . . , h form

a basis for Z . We have

Lemma 13.1. For g ∈Ci , we have

ω(c i ) =
|Ci |χ(g )
χ(1)

and this value is an algebraic integer.

Proof. We know that c i : V →V acts as the scalarω(c i ), so the trace of c i is χ(1)ω(c i ). On
the other hand, it is evidently equal to |Ci |χi (g ). Comparing these formulas immediately
yields the claimed quality.

For algebraicity, write

c i c j =
∑

k

a i j k ck

for some a i j k ∈Z. Then applyingω, we have

ω(c i )ω(c j ) =
∑

k

a i j kω(ck ). (4)

Therefore, the Z-module spanned by theω(c i ) is finitely generated and and faithful and
invariant under multiplication byω(c j ). Therefore, theω(c j ) are algebraic. �

Corollary 13.2. If χ is the character of an irreducible representation of (π, V ) of G , then
χ(1) | |G |.

Proof. By the orthogonality of characters, we have

|G |=
∑

i

|Ci |χ(g i )χ(g i )

where g i is any representative ofCi , so

|G |
χ(1)

=
∑

�

|Ci |χ(g i )
χ(1)

�

χ(g i ).

The left hand side is clearly rational, and the right hand side is algebraic by Lemma 13.1.
�

13.2. Burnside’s Theorem.

Definition 13.3. For a representation (π, V ) define the subgroup

Z (π) = {g |π(g ) acts by a scalar}.

This is a normal subgroup. If χ is the character of a representation π, then we denote
Z (χ) =Z (π).
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Proposition 13.4 (Burnside). If gcd(χ(1), |Ci |) = 1, then for g ∈Ci we have either

(1) χ(g ) = 0 or
(2) |χ(g )|=χ(1) and g ∈Z (χ).

Proof. By hypothesis, there are integers a ,b such that

aχ(1)+b |Ci |= 1.

Then we multiply by χ(g )
χ(1) to get

aχ(g )+b
χ(g )
χ(1)

|Ci |=
χ(g )
χ(1)

.

The left hand side is manifestly an algebraic integer by Lemma 13.1. The norm of the
right hand side down to Q is the product over conjugates of χ(g )/χ(1), and each has
norm at most 1 sinceχ(g ) is a sum ofχ(1) roots of unity. Theefore, the norm ofχ(g )/χ(1)
down toQ is a rational integer with absolute value at most 1, hence either 0 or ±1.

If it’s 0, then we are in the first case. If it’s 1, then the eigenvalues of π(g ) all have
absolute value 1 and their sum has absolute value χ(1), so they must all be equal. �

Theorem 13.5 (Burnside). If G is a non-abelian simple group and C ⊂G is a conjugacy
class with |C |= p k , then C = {1}.

Proof. By the orthogonality relations for characters, we have

0=
∑

χ

χ(1)χ(g ) = 1+
∑

χ 6=1

χ(1)χ(g ). (5)

For non-trivialχ , we claim thatχ(g ) = 0 unless p |χ(1). Indeed, if p -χ(1) then (|C |,χ(1)) =
1, so Proposition 13.4 implies that χ(g ) = 0 or g ∈Z (χ). But Z (χ) is a normal subgroup
of G , hence trivial or all of |G | because G is simple, and the latter case is ruled out for
non-trivial irreducible representations because G is non-abelian. (Since G is simple and
χ corresponds to a non-trivial irreducible representation π, we have that π is a faithful
representation.)

This means that

p |
∑

χ 6=1

χ(1)χ(g )

hence p | 1 by (5), which is absurd. �

Theorem 13.6 (Burnside). If |G |= p a qb with a ,b > 0, then G is not a non-abelian simple
group.

Proof. Let P < G be a p -Sylow subgroup, and take a non-identity element g ∈ Z (P)
(which exists by the standard orbit-stabilizer argument for the conjugation action on
P). LetC be the conjugacy class of g . Then by orbit-stabilizer, we have

|C |= [G : C (g )]

By definition C (g ) ⊃ P , so #C | [G : Z (P)] = qb . By Theorem 13.5, C has size 1, but a
simple group cannot have non-trivial center. �
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13.3. Blocks. Let (π, V ) be an irreducible representation with character χ over a local
field K with residue field k of characteristic p . We have an associated central character
ωχ : Z (K [G ])→ K defined by

ωχ (C ) =
χ(1)|C |
χ(g )

where C is the sum of the conjugates of g , considered as an element of the group algebra.
If χ and χ ′ lie in the same block then they have the same central character, as K [G ] ∼=
⊕

A i and each A i admits a unique K -algebra homomorphism to K .
Because ωχ (C ) is an algebraic integer, it lies in the valuation ring R of K . We can

reduce modulo p to get a character of Z (k [G ]), which is spanned by the reduction C of
C to k .

Let π be the image of the representation π under the map

d : K [G ]−Mod→ k [G ]−Mod.

Then thatωχ is the central character attached to the block ofπ. Indeed, the CDE triangle
shows that π is a sum of simple modules appearing in the composition series of a single
projective indecomsable, which by Theorem 12.1 characterizes the blocks. There is a
unique k -algebra homomorphism which is non-trivial on exactly one block, and that is
the corresponding central character.

Theorem 13.7 (Brauer). Let G be a non-abelian simple group and χ an irreducible char-
acter of G in the principal block. If χ(1) = p k , then χ = 1.

Proof. As before, if we take g to be in the center of a p -Sylow subgroup P <G , then we
have #C = [G : C (g )] | [G : P], which is coprime to p . Then Burnside’s Theorem 13.5
implies that χ(g ) = 0 or g ∈ Z (χ), but the latter cannot occur since G is non-abelian
simple and χ is trivial, so we must have χ(g ) = 0.

On the other hand, we have the following general observation. If χ ,χ ′ are in the same
block thenωχ =ωχ ′ , so for any conjugacy classC and any g ∈C we have

|C |χ(g )
χ(1)

≡
|C |χ ′(g )
χ ′(1)

(mod m).

If χ is in the principal block, take χ ′ = 1. Then we deduce that

|C |χ(g )
χ(1)

≡ |C | (mod m).

Now take g andC as before. Recall that we are assuming that χ(1) is a power of p . This
certainly implies that χ(1) = p k and |C | are coprime. Then |C | is not in the maximal

ideal m ⊂ OK (as m∩Z = pZ), so we have a fortiori that |C |χ(g )
χ(1) 6= 0 (since it’s not even in

the maximal ideal), hence χ(g ) 6= 0. This is a contradiction. �

Theorem 13.8 (Block Orthogonality). If g and h ∈G are such that their p -unipotent parts
are not conjugate, then for any block B we have

∑

χ∈B

χ(g )χ(h) = 0
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Remark 13.9. This is a refinement of Schur orthogonality, which says that if g , h are not
conjugate, then

∑

B

∑

χ∈B

χ(g )χ(h) = 0.

We will content ourselves with proving the following special case of block orthogonal-
ity:

Proposition 13.10. If g is p -regular and h is not, then
∑

χ∈B

χ(g )χ(h) = 0.

Proof. Denote, as usual,

• {ηi } be the Brauer characters of the projective indecomposable k [G ]-modules,
• {χj } the characters of the irreducible K [G ]-modules, and
• {φi } the Brauer characters of the simple k [G ]-modules.

Recall the relations of the CDE triangle (2) and (1):

χi =
∑

j

d i jφj

on the p -regular conjugacy classes (φi is undefined on non p -regular conjugacy classes)
and

ηi =
∑

i

d i jχj

(ηi is defined and identically zero on the non p -regular conjugacy classes).
Setting χ =χi , we have (with the notation in the hypothesis)

∑

i∈B

χi (g )χi (h) =
∑

i ,j

d i jφj (g )χi (h)

=
∑

j

φj (g )ηj (h)

but ηj vanishes off of p -regular elements, and in particular on h.
�

Theorem 13.11. Let χ be an irreducible character and P <G a Sylow p -group. Suppose
that #P divides χ(1). Then χ lies in a block by itself (i.e. its reduction mod m is projective
and irreducible).

Corollary 13.12. Under the hypothesis of the preceding theorem, χ vanishes off the p -
regular elements.

Example 13.13. Consider S4. The character table is

1 (123) (12)(34) (12) (1234)
χ1 1 1 1 1 1
χ2 1 1 1 −1 −1
χ3 2 −1 2 0 0
χ4 3 0 −1 1 −1
χ5 3 0 −1 −1 1

58



Math 263B 2015

Take p = 3. Noting that χ3 =φ1+φ2, the Brauer characters are

1 (123) (12)(34) (12) (1234)
χ1 1 1 1 1 1
χ2 1 1 1 −1 −1
χ4 3 0 −1 1 −1
χ5 3 0 −1 −1 1

(We expect that the number of Brauer characters is the same as the number of 3-
regular conjugacy classes, which is consistent.) So the decomposition matrix looks like

φ1 φ2 φ3 φ4

χ1 1 0 0 0
χ2 0 1 0 0
χ3 1 1 0 0
χ4 0 0 1 0
χ5 0 0 0 1

Indeed we see that φ3,φ4 are projective irreducible, implying that each of χ4,χ5 com-
prises its own singleton blocks.

Direct proof of Corollary. Define the class function

θ (g ) =

(

χ(g ) g p -regular,

0 otherwise.

We have

0<
1

|G |

∑

g p -regular

|χ(g )|2 ≤
1

|G |

∑

g

|χ(g )|2 = 1

Suppose we know that θ is a generalized character. Then 〈θ ,χ〉 ∈Z automatically forces
〈θ ,χ〉= 1 and χ(g ) = 0 off of the p -regular elements.

The idea is to show that 〈θ ,ψ〉E ∈ Z for any elementary subgroup E and any irre-
ducible characterψ of E . This will show that θ is a generalized character of E , and then
we can invoke Theorem 10.11.

Let P and Q be Sylow subgroups of coprime orders in E . We’ll show that |P |〈θ ,ψ〉E ∈
Z and |Q |·|G |

χ(1) 〈θ ,ψ〉E ∈ Z. Since |Q |·|G |
χ(1) is coprime to |P | by assumption, this shows that

〈θ ,ψ〉E ∈Z.
Since Q is the subset of p -regular elements of E , we have θ |E =ψ on Q and 0 off of Q .

So

|P |〈θ ,ψ〉E =
|P |
|P ||Q |

∑

g∈Q

χ(g )ψ(g ) = 〈χ ,ψ〉Q ∈Z.

Note that this shows that 〈θ ,ψ〉E is rational, and hence |Q ||G |
χ(1) 〈θ ,ψ〉E , is rational, so it now

suffices to show that it is an algebraic integer. To that end, write

|Q ||G |
χ(1)

〈θ ,ψ〉E =
∑

g∈Q

|G |
|P |χ(1)

χ(g )ψ(g ).
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If g ∈Q , then [G :C (g )]χ(g )
χ(1) is an algebraic integer by Lemma 13.1. Since C (g )⊃ P , a fortiori

[G :P]χ(g )
χ(1) is an algebraic integer too. �

Theorem 13.14. If G is a non-abelian simple group and |G | = p a qb r for distinct primes
p ,q, and r , then if R is an r -Sylow we have R =C (R).

Proof. If C (R)>R then G has an element g of order p r or qr . Without loss of generality,
let’s assume that it is p r . Let B 0 be the principal block modulo p . We have

0=
∑

χ∈B 0

χ(1)χ(g )

so
−1=

∑

χ∈B 0,χ 6=1

χ(1)χ(g ).

It must be the case that q - χ(1) and χ(g ) 6= 0 for some non-trivial χ . We must have
r | χ(1), since otherwise χ(1) is a power of p but χ is not the trivial character, which
contradicts Theorem 13.7. But now |R |= r divides χ(1), so χ(g ) = 0 as g is not r -regular.
This is again a contradiction.

�

Corollary 13.15. If G is a non-abelian simple group, and |G |= 5p a qb for distinct primes
p ,q 6= 5, then G = A5, A6, or SO5(F3).
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