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1 Introduction

The goal of this note is to give some elementary techniques for understanding linear algebraic groups over
finite fields, and the sets on which they act, with an aim towards solving problems on the Stanford Algebra
Quals. There will be some exercises, which, while not necessarily easy, can be done in your head, and in any
case some exercises will be solved later on in the note.

By an algebraic group, I will mean a subgroup of the group

GLn(Fq) with n > 0, q a prime power.

Of course any finite group is such a group if n is taken large enough, as G embeds in GL|G|(Fq) for any
q via permutation matrices. So we will focus on groups cut out by a single polynomial equation (such as
det(A) = 1) or quotients thereof.

Example 1 (The General Linear Group). GLn(Fq) consists of those n×n matrices with entries in Fq whose
entries are invertible.

Example 2 (The Special Linear Group). SLn(Fq) ⊂ GLn(Fq) consists of those matrices with entries in Fq
with determinant 1.

Example 3 (Projective Groups). PGLn(Fq) is the quotient of GLn(Fq) by its center, the scalar matrices.
PSLn(Fq) is the quotient of SLn(Fq) by its center, which again consists of scalar matrices.

Exercise 1. Show that the centers of GLn(Fq), SLn(Fq) consist exactly of the scalar matrices. Which scalar
matrices are in SLn(Fq)?

There are several spaces that are commonly acted upon by such groups. Most obviously, any subgroup
of GLn(Fq) acts on the vector space Fnq , via linear transformations. But more generally, all of the groups
mentioned in examples 1− 3 act on the following type of space:

Example 4 (Flag Varieties). Let V be a vector space over Fq of dimension n, and fix an integer k < n and
integers 0 < i1 < i2 < · · · < ik < n. Then as a set, we have

Fli1,...,ik(V ) = {subspaces 0 ⊂ V1 ⊂ V2 ⊂ · · ·Vn ⊂ V such that dim(Vj) = ij for all 1 ≤ j ≤ k}.

In words, the flag variety consists of nested sequences of vector subspaces with specified dimensions. The flag
variety has additional structure—it has a topology, for example—but that won’t be relevant to our purposes.

There are several important examples of flag varieties, which you’ve likely run into in the past. Flr(V ) is
the Grassmannian of r-planes in V , Gr(r, V )—namely, its points correspond to r dimensional subspaces of
V . If r = 1, we have Flq(V ) = Gr(1, V ) = P(V ), the projectivization of V , whose points are one-dimensional
subspaces, or lines, in V .

GLn(Fq) and SLn(Fq) act on the flag varieties through linear transformations; it should be clear that
scalar matrices act trivially, inducing actions by PGLn and PSLn.
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Exercise 2. Let V be a two-dimensional vector space over Fq. How many points are in P(V )?

Exercise 3 (Important!). Check that the action PSLn(Fq) on Fl1,2,...,n−1(Fnq ) is transitive. Note that this
implies the action of all the groups we’ve mentioned on every flag variety we’ve mentioned is transitive. Fix
your favorite point x ∈ Fl1,2,...,n−1(Fq)n and find its stabilizer in GLn(Fq).

2 Counting Points

One common problem involves counting points, either in linear algebraic groups, or in flag varieties. The
two important propositions here are both trivial and awesome.

Proposition 1. Let G be a group acting transitively on a set X. Let x ∈ X be any element, and let S be
the stabilizer of x in G. Then there is a “natural” isomorphism G/S

∼−→ X.

Proof. We define the map f : G/S → X as f(gS) = gx. This is well-defined, as if gS = g′S, then g′ = gs
for some s ∈ S, and thus g′x = gsx = gx.

Exercise 4. Check that f is bijective.

Proposition 2. Let G,X be as above, and let x, x′ ∈ X be two elements. Let S, S′ be the stabilizers of x, x′,
respectively. Then S and S′ are conjugate subgroups in G.

Proof. As G acts transitively on X, there exists g ∈ G with gx = x′. Then given s ∈ S, we have that

gsg−1x′ = gsx = gx = x′,

and thus gSg−1 ⊂ S′. Similarly, g−1Sg ⊂ S, so g conjugates S to S′.

We’ll now do some direct calculations.

Proposition 3. The number of points in GLn(Fq) is

(qn − 1)(qn − q)(qn − q2) · · · (qn − qn−1).

More generally, the number of full rank k × n matrices, 0 ≤ k < n, with elements in Fq is

(qn − 1)(qn − q) · · · (qn − qk−1).

Proof. An element of GLn(Fq) is the same as an ordered collection (e1, ..., en) of vectors in Fnq , such that the
ei are linearly independent. We will compute, by induction, the number of ordered collections (e1, e2, ..., ek)
of linearly independent vectors in Fnq for k < n. For k = 0, there is clearly one such collection—the empty
collection. Assume as the inductive step that there are

(qn − 1)(qn − q) · · · (qn − qk−1)

such collections of k vectors. Then we may choose our k + 1-th vector to be any vector not in the span of
e1, ..., ek. This span is a k-dimensional vector space by linear independence, and thus contains qk elements,
so its complement in Fnq contains qn − qk elements. Thus there are

(qn − 1)(qn − q) · · · (qn − qk−1)(qn − qk)

collections of k − 1 linearly independent vectors.
Taking k = n gives the first statement.

We’ll now very rapidly do an old qual problem, using propositions 1 and 3 above.
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Proposition 4. The number of points in Gr(k,Fnq ) is

(qn − 1)(qn − q) · · · (qn − qk−1)
(qk − 1)(qk − q) · · · (qk − qk−1)

.

Proof. The strategy will be to find a group acting transitively on the space in question, and then find the
size of the stabilizer of some point. This will allow us to apply Proposition 1 above.

By basic linear algebra, the group GLn(Fq) acts transitively on Gr(k,Fnq ) via linear transformations. Let
V ⊂ Fnq be the k-dimensional subspace spanned by e1, e2, ..., ek, the first k standard basis elements of Fnq .
Then the stabilizer of V consists of those invertible matrices of the form(

Ak×k Bk×(n−k)
0 C(n−k)×(n−k)

)
where the subscripts indicate the size of the block matrix. Ak×k may be any element of GLk(Fq); the
rightmost n−k columns of such a matrix may be any n−k linearly vectors completing the columns of Ak×k
to a basis of Fnq ; as before, there are

(qn − qk)(qn − qk+1) · · · (qn − qn−1)

options. Putting this together with proposition 3, the stabilizer S of V has size(
(qk − 1)(qk − q) · · · (qk − qk−1)

) (
(qn − qk)(qn − qk+1) · · · (qn − qn−1)

)
.

But by Proposition 1, Gr(k,Fnq ) ' GLn(Fq)/S, and thus dividing the numbers we’ve computed gives the
proof.

Remark 1 (On Simplifying Answers). A common way to simplify the ridiculous expressions one obtains in
these sorts of problems is as follows. Namely, define

[n]q =
qn − 1
q − 1

= 1 + q + q2 + · · ·+ qn−1

and let
[n]q! = [n]q[n− 1]q[n− 2]q · · · [1]q

and (
n

k

)
q

=
[n]q!

[k]q![n− k]q!
.

Note that as q → 1, [n]q → n, and thus [n]q!→ n!, and
(
n
k

)
q
→
(
n
k

)
, which perhaps should justify the notation.

Now you can check that we’ve shown that

#GLn(Fq) = [n]q!(q − 1)nq(
n
2)

(note that Wikipedia has an error here!) and

# Gr(k,Fnq ) =
(
n

k

)
q

.

So if you’d like, you can think of GLn(Fq) as the analogue of Sn over the finite field Fq, and perhaps more
convincingly, you can think of Gr(k,Fnq ) as being analogous to the collection of k-element subsets of a set
of size n. And indeed, if you carefully look at the proof that the binomial coefficient counts elements of this
latter collection, you’ll see that it is essentially identical to the proof of Proposition 4.

Exercise 5. Use this method to compute the number of points in some other flag variety; for example, if
you’ve done Exercise 3, counting points in Fl1,2,...,n−1(Fnq ) should be no trouble.
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3 Analyzing Group Structure

We’ll first consider the case n = 1. You’ve probably seen the following result, but I’ll include a proof for
completeness.

Proposition 5. GL1(Fq) ' F×q is cyclic of order q − 1.

Proof. I first claim that m := lcmx∈F×q |x| = q−1, where by |x| I mean the multiplicative order of x. Indeed,
xq−1 = 1 for any x ∈ F×q , as #F×q = q − 1, so |x| divides q − 1 for all x. Thus m ≤ q − 1.

But the polynomial xm − 1 vanishes for each x ∈ F×q , and thus has q − 1 zeros, so m ≥ q − 1 (as the
degree of a polynomial over a field is bounded below by the number of zeros it has).

Now
F×q =

∏
p prime

Cp,

where Cp is an Abelian p-group; it suffices to show each Cp is cyclic. But letting mp = maxx∈Cp |x|, we have
that ∏

p prime

#Cp = #F×q = q − 1 = lcmx∈F×q |x| =
∏

p prime

mp.

Thus by unique prime factorization, mp = #Cp, and so each Cp is cyclic as desired.

This result, as long as various tricks with counting and group action, will be the most important tool we
use in analyzing the structure of our linear algebraic groups.

We now are able to do (a bit of a strengthening) of another old qual problem:

Proposition 6. Let G be the group SL2(Fq). Then if p is an odd prime, the p-Sylow subgroup of G is cyclic,
unless p | q. In this case, (even if p = 2), the p-Sylow subgroup is isomorphic to the additive group of Fq (in
particular, if q = pk, then it is (Z/pZ)k).

Proof. We first compute the order of G. G is the kernel of the determinant map

det : GL2(Fq)→ F×q ,

which is surjective, and thus the kernel has order

#SL2(Fq) = #GL2(Fq)/#F×q = (q2 − 1)(q2 − q)/(q − 1) = (q − 1)q(q + 1).

If p is an odd prime, it divides at most one of q − 1, q, and q + 1. We do each case separately.
Case 1: (p | q − 1). It suffices to show that SL2(Fq) contains a cyclic group of order q − 1. But matrices

of the form (
a 0
0 a−1

)
for a ∈ F×q suffice, and this subgroup is cyclic as it is isomorphic to F×q .

Case 2: (p | q) This argument works even if p is even, as then it divides neither q − 1, q + 1. Consider
matrices of the form (

1 b
0 1

)
for b ∈ Fq. Then matrices of this form are isomorphic to the additive group Fq, giving the desired claim.

Case 3: (p | q + 1) It suffices to show that G contains a cyclic subgroup of order q + 1.
This is the trickiest part. Consider the field Fq2 , which is a two-dimensional vector space over Fq. Then

picking a basis of this vector space induces a natural inclusion F×q2 ↪→ GL2(Fq) (we identify an element of
F×q2 with the linear map corresponding to its action by multiplication on the two-dimensional vector space
Fq2).
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The elements of F×q2 that land in G via this inclusion are those elements g such that multiplication by
g is a linear map of determinant 1; namely, exactly those elements g of F×q2 with NFq2/Fq

(g) = 1. We claim
that there are exactly q + 1 such elements. Indeed, the norm map F×q2 → F×q is surjective, so the kernel has
size (q2 − 1)/(q − 1) = q + 1.

But then the norm 1 elements of F×q2 give a subgroup of G of size q + 1; but they are a subgroup of F×q2 ,
which is cyclic, completing the proof.

Case 3 above seems like a trick; I claim it’s really part of a more general technique. Say we are interested
in the group GLn(Fq) or some subquotient thereof. Often we have direct access to some large subgroup of
GLn(Fq) as follows:

Proposition 7. There is a natural map φ : Gal(Fqn/Fq)→ Aut(F×qn). Choosing a basis for Fqn as a vector
space over Fq induces an inclusion

F×qn oφ Gal(Fqn/Fq)→ GLn(Fq).

Proof. Having chosen a basis, left multiplication by an element of Fqn has a matrix form, as does the
action by Gal(Fqn/Fq); this gives a map of sets. I’ll leave checking that this is an injective homomorphism
as an exercise—it’s a tiny bit tricky, and worth doing yourself. Note that Gal(Fqn/Fq) acts on F×qn by
conjugation.

As an example, we’ll compute the structure of the 2-Sylow subgroup of GL2(F7), another old qual
problem.

Proposition 8. The 2-Sylow subgroup of GL2(F7) has presentation

〈x, g | g2 = x16 = e, gxg−1 = x7〉.

Proof. Note that #GL2(F7) = (72 − 1)(72 − 7) = 48 · 42, and thus its 2-Sylow subgroup has order 32. Now
consider the subgroup given by proposition 7 above, namely H := F×49 oφ Gal(F49/F7). As Gal(F49/F7) =
Z/2Z, this group has order 48 · 2, and thus also as 2-Sylow subgroup of order 32. Thus it suffices to find the
structure of the 2-Sylow subgroup of H.

H itself is a semidirect product of Z/48Z and Z/2Z, so the 2-Sylow subgroup in question is a semidirect
product of Z/16Z and Z/2Z; we must only determine which homomorphism Z/2Z → Aut(Z/16Z) induces
the semidirect product.

We may write F49 = F7[
√
−1], as it is the unique quadratic extension of F7. Choose the basis {1,

√
−1}.

Then x = 2 + 3
√
−1 is a primitive 16-th root of unity in F49, and the nontrivial element of the Galois group

action sends it to g(x) = 2− 3
√
−1 = x7. As the action of Gal(F49/F7) on F×49 in H is given by conjugation,

this completes the proof.

Finally we’ll do a problem involving a bit more of the structure of these groups, combining a lot of what
we’ve done before. This is a problem from the Fall 2010 Quals.

Proposition 9. Let G = GL2(Fq), where q = pn. Given three distinct p-Sylow subgroups P1, P2, P3, and
three distinct p-Sylow subgroups Q1, Q2, Q3, there exists g ∈ G such that

gP1g
−1 = Q1, gP2g

−1 = Q2, gP3g
−1 = Q3.

That is, G acts triply transitively (by conjugation) on its p-Sylow subgroups.

Proof. We first do a bit of counting. We have that

#G = (q2 − 1)(q2 − q) = (q − 1)2(q + 1)q.

As p does not divide q − 1, q + 1, the p-Sylow subgroups each have order q.

5



Now consider the action of G on P1(Fq), the set of one-dimensional subspaces of F2
q, which has size q+ 1.

As G acts transitively on P1(Fq), the stabilizer of a line S(`) has order (q− 1)2q; we claim that the stabilizer
of each line contains a unique p-Sylow subgroup (which by counting is then a p-Sylow subgroup of G).

It suffices to check this for a single line `; consider the line spanned by (1, 0). Then the stabilizer S(`)
consists of matrices of the form (

a b
0 c

)
with a and c both nonzero. The a p-Sylow subgroup is by inspection matrices of the form(

1 b
0 1

)
.

One may check directly that this is a normal subgroup of S(`), giving uniqueness. (For example, by noting
that conjugation by upper triangular matrices preserves the property of being upper triangular, and that
conjugation preserves eigenvalues.)

So we have that p-Sylow subgroups are in bijection with elements of P1(Fq), via sending a line to the
unique p subgroup in its stabilizer; by Proposition 2, it suffices to show that G acts triply transitively on
P1(Fq). Indeed, we show that given distinct lines `1, `2, `3, we may send the spans of (1, 0), (0, 1), and (1, 1) to
`1, `2, `3 respectively. Let `i be spanned by vi; we may write v3 = av1 +bv2, as v1, v2 are linearly independent
and thus form a basis.

Now let T ∈ G be the linear transformation such that

T (1, 0) = av1, T (0, 1) = bv2,

and extending by linearity. Then by inspection, T (Span(1, 0)) = `1, T (Span(0, 1)) = `2, T (Span(1, 1)) = `3,
and thus we have triple transitivity as desired.

6


