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Notes from Sarnak’s 60th Birthday Conference

Disclaimer
These are very rough and informal notes that I live-TEXed at the conference. I emphasize that they are my personal notes and
may not accurately reflect the actual contents of the talks. (In particular, I was unable to scribe for those of Brian Conrey
and Alex Eskin. Several other notes are incomplete.) Their faithfulness to the originals has suffered from my insufficiently
fast typing, lack of understanding, mental exhaustion, and in some cases shortage of computer battery. For some of the talks,
especially the Beamer presentations, only the first portion was captured. Of course, I take full responsibility and apologize
for all omissions and inaccuracies.

My intention in writing these notes was for private use, but I have made them public in case they turn out to be useful
for anybody. If something should pique your interest, then you can find recordings of the talks at the conference website
https://sites.google.com/site/asnt2014/videos.
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THE AVERAGE RANK OF ELLIPTIC CURVES: DATA,
CONJECTURES, AND THEOREMS

MANJUL BHARGAVA

1. INTRODUCTION

Our guiding question is easy to state:

What is the rank of elliptic curves over Q on average?

Now there are infinitely many different elliptic curves over Q, so in order
to formulate this question more precisely, we need a natural way to order
elliptic curves to have a meaningful notion of “average.”

The simplest such measure is the “naïve height,” which basically mea-
sures the size of the coefficients defining the elliptic curve. That is, if we
write

EA,B : y2 = x3 +Ax+B
then any E/Q is isomorphic to a unique EA,B such that p4 | A =⇒ p6 - B.
(Reason: one can perform a simple change of variables x 7→ x/p2, y 7→
y/p3.) So there is a canonical representation of any E/Q, and we define the
height simply by

H(EA,B) := max{|A|3,B2}.
There are other candidates: the Faltings height (essentially the logarithm of
the naïve height), the discriminant−4A3−27B2 (which should be about the
same as the naïve height in general), and the conductor.

These are all conjecturally comparable, but even counting isomorphisms
classes (let alone rank) with respect to the other invariants is difficult, so we
focus on the naïve height.

Now we can formulate our “averaging” question as follows:

What is lim
B→∞

∑H(E)≤B rank(E)

∑H(E)≤B 1
?

Conjecture 1.1 (Goldfeld, Katz-Sarnak). This quantity is 1/2, and more
precisely “50%" of elliptic curves should have rank 0 and 50% should have
rank 1.

Notes from Sarnak’s 60th Birthday Conference
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MANJUL BHARGAVA

The basic heuristic underlying the conjectures is that the parity of the rank
(which corresponds to the ε-factor of the elliptic curve) should be equally
distributed, and as small as possible in consideration of this.

Attempted computations of the average rank do not seem to lend much
support to this conjecture.

• Brumer and McGuinness (1990) observed that the proportion of
rank 2 curves seems to be increasing with the naïve height. This
was confirmed and extended in more recent computations.
• The average rank empirically starts around 0.7 and goes up to 0.87....

It is not even clear from the empirical data that the average rank is bounded.
However, there is some theoretical evidence towards this conclusion.

• In 1992, Brumer showed that GRH and BSD together imply that the
average rank is bounded (by 2.3).
• In 2004, Heath-Brown showed that GRH and BSD imply that the

average rank is at most 2, and this was improved in 2009 to 1.79.
Recently, Bhargava and Shankar proved an unconditional boundedness

result on the average rank of elliptic curves, which is the subject of our talk.

2. UNCONDITIONAL BOUNDEDNESS

We study the rank by studying the n-Selmer group S(n)(E). We won’t go
into the definition of what this is now, but it fits into an exact sequence

0→ E(Q)/nE(Q)→ S(n)(E)→XE [n]→ 0.

Since the n-torsion subgroup of E tends to be trivial, the left term tends to
be nrank(E). In particular, nrank(E) ≤ |S(n)(E)|.

Thus to prove the boundedness of average rank, it suffices to bound the
average size of |S(n)(E)| for any n > 1.

Theorem 2.1 (Bhargava-Shankar). Let n = 1,2,3,4, or 5. Then the average
size of S(n)(E) is σ(n) := ∑d|n d.

Remark 2.2. We shall see later a more natural formulation of the result.

Outline of Proof.
(1) For each n ≤ 5, construct a representation V of an algebraic group

G over Z such the n-Selmer group injects into its (integral) orbits.
More precisely:
(a) The action of G(C) on V (C) has a free ring of invariants gen-

erated by two elements, say A and B.
(b) There is an injective map

S(n)(EA,B) ↪→ G(Z)/V (Z)A,B.

Notes from Sarnak’s 60th Birthday Conference
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THE AVERAGE RANK OF ELLIPTIC CURVES: DATA,
CONJECTURES, AND THEOREMS

Remark 2.3. By a theorem of Borel and Harish-Chandra, this
already implies the finiteness of S(n)(EA,B), giving a new proof
of Mordell’s Theorem.

(2) Next count elements in G(Z)/V (Z)A,B having bounded A,B.
(3) Perform a sieve to obtain only the count of elements in the image

of the injection, which are defined by an infinite set of congruence
conditions.

2.1. Constructing the representations. The representations that we re-
quire were all constructed classically. We tabulate them below.

n G V Due to:
2 PGL2 Sym4(2) (binary quartics) Birch-Swinnerton-Dyer
3 PGL3 Sym3(3) (ternary cubics) Cassels/Cremona-Fisher-Stoll
4 < GL2×GL4 2⊗Sym2(4) (two quadrics in P3) Cassels/Cremona-Fisher-Stoll
5 < GL5×GL5 5⊗∧2(5) Buchsbaum-Eisenbud/Fisher

How were these obtained? An element of S(n)(EA,B) may be viewed as a
map C → Pn−1 (via a complete linear system of degree n), where C is a
genus 1 curve with Jacobian EA,B and C has points locally at every place.

(1) If you map to P1, you get 4 ramified points, hence a binary quartic.
If you map to P2, you get a plane cubic (ternary cubic).

(2) If you map to P3, you get a complete intersection of two quadrics.
(3) If you map to P4, you no longer get a complete intersection. How-

ever, it was classically explored how to paramtrize genus one curves
in P4. Given 5 skew-symmetric matrices A,B,C,D,E, you get Ax+
By+Cz+Ds+Et. The determinant is 0, because it’s an odd sym-
plectic matrix, but its 4× 4 minors are (quartic) squares, so their
Pfaffians are quadrics. Thus one can obtain the curve as a (not nec-
essarily complete) intersection of 5 quadrics (construction due to
Cayley-Sylvester).

Amazingly, this theory works even over Z.

2.2. Counting lattice points. We next wish to count the total number of
elements of G(Z)\V (Z)A,B with H(A,B) := max{|A|3,B2}< X .

(1) First construct a fundamental set L for the action of G(R) on V (R)
that is absolutely bounded in V (R).

(2) Second, construct a fundamental domain F for the action of G(Z)
on G(R) that is contained in a “Siegel set” (as described by Harish-
Chandra) i.e. F = N′A′K where N′ is a bounded set of lower trian-
gular matrices, A′ is an unbounded set of elements in a torus, and K
is a maximal comapct subgroup of G(R).

Notes from Sarnak’s 60th Birthday Conference
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MANJUL BHARGAVA

Then for any g, the set FgL⊂V (R) is a fundamental domain for the action
of G(Z) on V (R).

Thus we wish to obtain the count of integral points in FgL having H(A,B)<
X . This region has finite volume but is unbounded, with many cusps going
off to infinity. Morally the number of lattice points should be well approx-
imated by the volume, but it turns out that the infinite tentacles may have
lots of integral points. This is in general a difficult problem, but here we can
exploit the fact that the number of points in this region FgL is independent
of the element g ∈ G(R).

The solution is to average over a compact continuum of the fundamental
domains, which has the effect of “thickening” the cusps, allowing a better
estimate for the number of integral points in the cusps.

At this point algebro-geomeric techniques come into play. Let N(V ;X)
be the number of generic G(Z)-orbits on V (Z) with height < X . Here
“generic” means that the corresponding map C→ Pn−1 does not correspond
to an n-Selmer element of order < n. The point is that it turns out to be eas-
ier to count “generic” elements after averaging.

Let G0 be the closure of a bounded open set in G(R). Then (tautologi-
cally)

N(V ;X) =

∫
g∈G0

#{v ∈FgL∩V (Z)gen : H(v)< X}dg
∫

g∈G0
dg

.

Now we can “switch the order of integration,” so this is
∫

h∈F=N′A′K #{v ∈ hG0L∩V (Z)gen : H(v)< X}dh∫
g∈G0

dg
.

Now the integrand is always nice (because G0 is compact). However, the
badness has been pushed off to the noncompact parts of F , and this in fact
has lots of lattice points. That is explained by an algebraic condition: the
presence of a variety with many integral points, which turns out to corre-
spond to non-genericness.

So one then partitions F into a main body and a cuspidal region depend-
ing on A′. This allows one to show that

N(V ;X) = Vol(FgL∩{v ∈V (R) : H(v)< X})+o(X5/6).

This would not be true if we were not restricting our attention to generic
points!

2.3. Sieving. Finally, one has to sieve to count only the elements of G(Z)\V (Z)
in the image of the map. To carry this out, one must essentially deter-
mine the density of squarefree values taken by the irreducible polynomial

Notes from Sarnak’s 60th Birthday Conference
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THE AVERAGE RANK OF ELLIPTIC CURVES: DATA,
CONJECTURES, AND THEOREMS

∆(v) = −4A(v)3−27B(v)2 (which in the case of n = 5, is a polynomial of
degree 60 in 50 variables!)..

This is the most technical part of the strategy. One has to be able to bound
points that lie on a small (say codimension 2) subvariety over Z for some
large prime p.

Theorem 2.4 (based on work of Ekedahl/Sarnak). Let B be a compact re-
gion in Rn of finite measure and let Y be any subvariety of An

Z of codimen-
sion k ≥ 2. Let r and M be positive real numbers. Then

#{a∈ rB∩Zn : a mod p∈Y (Fp)) for some p>M}=O(
rn

Mk−1 logM
+rn−k+1).

Once this theorem is proved, this takes care of sieving away those v that
have squarefull discriminant at p > M for (mod p) reasons: one gets two
conditions, hence a codimension 2 subvariety.

To handle those v that have squarefull discriminant at p for (mod p2)
reasons, we use the symmetry group G of V to transform the (mod p2)
condition on v to a (mod p) condition. (This is a useful general principle
whenever there is a “large enough” symmetry group.) For other applications
his hasn’t always worked in a straightforward way, in which case an ad hoc
solution is to map into a bigger space.

So we have reduced the problem to one of computing the volume of the
fundamental domain.

Lemma 2.5.∫

v∈V
f (v)dv = |J |

∫

g∈G(R)

∫

w∈L
f (g ·w)dAdBdg.

The remarkable thing here is that the Jacobian is constant: dv is pretty
much on the nose dAdBdg. Applying this, one gets a product over the
real place and all the finite ones which cancel by the product formula. The
remaining parts combine to the Tamagawa number, which is known.

2.4. Conclusion. We have shown that for n ≤ 5, the average number of
order n elements in the n-Selmer group is n. It is natural to conjecture that
this holds for all n.

Conjecture 2.6. For all n > 0, the average number of order n elements in
the n-Selmer group is n.

Therefore, the average number of order n elements in the n-Selmer group
is n. This is established for n≤ 5, but it is natural to conjecture for all n.

Proposition 2.7. Suppose the conjecture holds. Then 100% of elliptic curves
have rank 0 or 1. Furthermore if the equidistribution of root numbers is
true, then the strong Goldfeld-Katz-Sarnak conjecture is true.

Notes from Sarnak’s 60th Birthday Conference
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MANJUL BHARGAVA

Using what is known, one already gets that the average rank is at most
0.885. This implies, for instance, that 80% of elliptic curves have rank 0 or
1.

Combining this with work of Skinner, one can conclude that a positive
proportion have rank 1. In particular, the average rank is strictly positive.

Further combining this stuff with work of Zhang on Kolyvagin systems,
one can conlude: most curves (at least 66%) have analytic rank 0 or 1, and
thus satisfy BSD (by Gross-Zagier). As mentioned above, if the average
size of the n-Selmer group is σ(n) for all n, then 100% of curves have
analytic rank 0 or 1.

This is just barely too little to deduce anything about the average rank
graph turning around, according to the old data. In fact, the average rank
graph (recomputed) goes past the proven bound, so it must turn around!
Happy birthday Sarnak!

Notes from Sarnak’s 60th Birthday Conference
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THE CRITICAL ZEROS - 100% SOMETIMES

HENRY IWANIEC

1. ZEROS OF L-FUNCTIONS

We consider an L-function with Euler product

L(s) = ∏
p
(1−λ (p)p−s +ν(p)p−2s)−1 = ∑

n
λ (n)n−s

such that |λ (p)| ≤ 2 and |ν(p)| ≤ 1.

Proposition 1.1. L(s) converges for Re s > 1 and admits a functional equa-
tion of the form

Λ(s) = Qs/2G(s)L(s) = ηΛ(t− s).

We denote a zero ρ of L by ρ = β + iγ for 0 < β < 1.

Definition 1.2. We set

N(T ) = #{ρ : |γ| ≤ T}
and

N0(T ) := #{ρ : β =
1
2
, |γ| ≤ T}

Proposition 1.3. We have

N(T ) =
2T
π

logQT +O(T ).

It’s important to remember that this estimate comes from the Gamma
factor, showing that every place is important!

Conjecturally (i.e. according to the Generalized Riemann Hypothesis)
we have N(T ) = N0(T ).

Definition 1.4. We set

N(α,T ) := #{ρ : β ≥ α, |γ| ≤ T}
Proposition 1.5.

N(α,T )� T 4α(1−α)(logT )A if α ≥ 1
2
,T ≥ QA.

Notes from Sarnak’s 60th Birthday Conference
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HENRY IWANIEC

This shows that almost all zeros are very close to the critical line Re s= 1
2 .

History. Concerning the critical zeros of ζ (s),
(1) Hardy-Littlewood showed that N0(T )� T .
(2) Selberg showed that N0(T )> κN(T ) for some κ > 0 (1942).
(3) Levinson showed that one can take κ = 0.342 (1974).
(4) Conrey improved this to 0.4088 (1989).
(5) Feng further improved this to κ = 0.4128 (2012).

2. SELBERG’S SIGN CHANGES

Let

f (t) =
G(1/2+ it)
|G(1/2+ it)

ζ (1/2+ it)

for some function G to be determined later. Selberg’s basic idea was to
estimate N0(T ) by estimating the sign changes of f (t) in short segments
which is derived by comparison of various integral mean values.

We introduce the mollifier

M(s) = ∑
m<M

a(m)m−s

Here M(s) “pretends to be” 1/ζ (s) and a(m) pretends to be µ(m).
We will argue by instead studying the sign changes of f (t)= G(1/2+it)

|G(1/2+it)|ζ (1/2+
it)M(1/2 + it). Now, we must take care that M not screw up the sign
changes, so Selberg proposed to take M(s) = |N(s)|2 where

N(s) = ∑
n≤N

b(n)n−s, N =
√

M.

Here N(s) pretends to be 1/
√

ζ (s) and b(n) pretends to be µ(n)/
√

τ(n).
Then one throws in some smooth cropping factor

(
1− logn

logN

)
to make the

sums nice. ♠♠♠ TONY: [like the Selberg sieve!]

2.1. Levinson’s work. Levinson’s method is different. He starts with a
linear combination of derivatives:

G(s) = L(s)+L′(s)/ log, logN � logT

and
F(s) = G(s)M(s), M(s) a mollifier.

We consider not the critical line but slightly to the left: s= 1
2−a+ it, a= 1−

α/ logT Q for some α > 0. By a functional equation for G(s), the argument

Notes from Sarnak’s 60th Birthday Conference
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THE CRITICAL ZEROS - 100% SOMETIMES

variations and the Littlewood rectangle lemma one gets the inequality

N00(T )≥N(T )− 1
πa

∫ T

−T
log |F(s)|dt+O(T )≥N(T )(1−α log I(T ))+O(T )

♠♠♠ TONY: [What’s N00? The number of zeros on the critical strip with
imaginary part bounded] where

I(T ) =
1

2T

∫ T

−T
|F(t)|dt ≤ c+o(1), c≥ 1.

The methods of Selberg and Levinson are diametrically opposite to each
other. Levinson’s approach is risky, because it may produce a negative re-
sult. But it has the great advantage of opening up the possibility of getting
100% of critical zeros if the mollification is nearly perfect, and one gets
F(s)+1+o(1).

So that raises the question: does there exist a perfect mollifier? No such
thing has been constructed, of course, but the question has been studied by
Conrey, Farmer, Goldston, Gonek, Ghosh, etc. For families of L-functions
possessing some structure (e.g. extra orthogonality).

Remark 2.1. Amusingly, if one assumes the Riemann Hypothesis then one
can prove by this method that 100% of the zeros are on the critical line.

3. LACUNARY L-FUNCTIONS

Suppose that we are considering an L-function

L(s) = ∑
n

λ (n)n−s

where λ (n) vanishes or is quite small frequently: quantitatively,

∑
Q2<n<N

|λ (n)|n−s ≤ ε
logN
logQ

.

HJence λ is “sparser” than the prime numbers in segments Q2 < n < QA for
any A > 2 if s is sufficiently small. We want a mollifier close to

L(s)−1 = ∑
m

ρ(m)m−s.

Perfect mollification can be achieved with short sums of the form

M(s) = ∑
m≤M

ρ(m)g(m)

where

g(m) =

(
1− logm

logM

)e

(cropping factor).

Here M is quite small, about T 1/2000.

Notes from Sarnak’s 60th Birthday Conference
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3.1. Exceptional Discriminants. Let K =Q(
√

D) be a quadratic number
field. Let ψ : Cl(K)→ C be a character of the ideal class group. Set

L(s,ψ) = ∑
a

ψ(a)Nm(a)−s.

♠♠♠ TONY: [missed some discussion]

Theorem 3.1. Let N00(T ) denote the number of simple zeros ρ = 1
2 + iγ of

L(s,ψ) with |γ| ≤ T and let N(T ) be the number of all zeros ρ = β + iγ
with 0 < β < 1 and |γ| ≤ T counted with multiplicity. Put ε = ε(D) =
L(1,χ) log |D|. Then we have

N00(T ) = {1+O(s(D)1/2)}N(T )+O(T )

for |D|1/2 < T < |D|A/ε with any constant A> 1, where the implied constant
depends only on A.

Definition 3.2. An infinite sequence of discriminants D with ε(D)→ 0 is
called exceptional.

Corollary 3.3. As D runs over an exceptional sequence, the number of
critical simple zeros of L(s,ψ) of height ≤ T approaches a 100% of all
its zeros of height ≤ T (counted with multiplicity) provided |D|1/2 ≤ T ≤
|D|A/ε .

Notes from Sarnak’s 60th Birthday Conference
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THE DISTRIBUTION OF MODULAR CLOSED GEODESICS
REVISITED

BILL DUKE

1. BINARY QUADRATIC FORMS

Let D be a fundamental discriminant (i.e. a discriminant of a quadratic
extension of Q). Let

ΛD = {Q(x,y) = Ax2 +Bxy+Cy2 : D = B2−4AC}/Γ = PSL(2,Z).

This is a finite set (but it’s non-trivial to prove that).

Proposition 1.1. If h(D) is the class number of Q(
√

D), then

#ΛD = h(D).

If D < 0, then associated to Q is the CM-point

zQ =
−B+

√
D

2A
∈H.

If D > 0, then we instead get a geodesic. If t2 −Du2 = 4 and t,u ≥ 1
are minimal (so ε = t+u

√
D

2 is a fundamental unit greater than 1) then the
geodesic corresponds to

gQ =±
( t+Bu

2 Cu
−Au t−Bu

2

)
∈ Γ.

♠♠♠ TONY: [so the geodesic is gQ acting on
(

es/2

e−s/2

)
]?

2. THE CLASS NUMBER FORMULA

Let

ζ (z,s) =
1
2

′
∑
m,n
|mz+n|−2s = ζ (2s)E(z,s)

where
E(z,s) = ∑

γ∈G∞\Γ
(Im γ)s.

Notes from Sarnak’s 60th Birthday Conference
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Then we have ζK(s) = L(s,χD)ζ (s) which is

ζK(s) = (
2√
D
)sζ (2s)∑

[Q]

E(z,s) if D < 0

and (perhaps more unfamiliar!)

ζK(s) = D−s/2 P(s)
P(s/2)2 ∑

[Q]

∫

gQ

E(zQ,s)

√
Ddz

Q(z,1)
if D > 0.

Theorem 2.1 (Class Number Formula). If D < 0< then

L(1,χD) =
2π
ω
|D|−1/2h(D).

If D > 0, then
L(1,χD) = D−1/2(logε)h(D).

The first formula clearly counts the number of CM points. One can think
of the second expression as the total length of the geodesics, as each one
has length logε . That gives a uniform interpretation of the class number
formula as relating the special value of L(1,χD) and a “volume.”

Siegel had the remarkable insight that even if Siegel zeros exist, one can
still establish an (ineffective) lower bound:

L(1,χD)�ε |D|−ε .

E(z,s) is part of the spectral resolution of ∆ = y2(∂ 2
x + ∂ 2

y ). If f is “nice,”
then it will have a decomposition o fthe form

f (z) =
∫ ∞

0
g(t)E(z,

1
2
+ it)dt +∑cnϕn(z)

3. VERTICAL DISTRIBUTION

Suppose D < 0. Let ϕ0 be a smooth, compactly supported function and

ϕ(z) = ∑
γ∈Γ0\Γ

ϕ0((Im γz)−1).

We want to study the sum
∑

zQ∈ΛD

ϕ(zQ).

To digest this, we introduce the Mellin transform

ϕ̃0(s) =
∫ ∞

0
ϕ0(t)ts dt

t
which satisfies an inverse Mellin transform property:

ϕ0(s) =
1

2πi

∫

Re s=c
ϕ̃0(s)y−s ds

Notes from Sarnak’s 60th Birthday Conference
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THE DISTRIBUTION OF MODULAR CLOSED GEODESICS
REVISITED

Applying this term by term to the sum defining ϕ , we obtain

∑
z∈ΛD

ϕ(zQ) =
1

2πi

∫

Re s=c
ϕ̃(s)∑

Q
E(z,s)ds

= c ·h(D)+O(|D|1/4
∫ ∞

−∞
|L(1

2
+ it,χD)||ϕ0(

1
2
+ it)|dt.

♠♠♠ TONY: [not exactly sure what happened here - some shift in con-
tour?] So we want a bound on the L-function for large |D|.
Theorem 3.1 (Burgess). We have

|L(1/2+ it)| � D
1
4−δ for δ < 1/16.

4. THE KATOK-SARNAK FORMULA

Let D < 0 and ϕ be a Maass cusp form (even, to avoid trivialities). Katok
and Sarnak consider

1
〈ϕ,ϕ〉∑Q

ϕ(zQ) = 24π|D|3/4 ∑
Fj→ϕ

ρ j(D)ρ j(1)

Here ρ j(D) is a Fourier coefficient of Fj, having weight 1/2. Iwaniec found
a way of estimating this nontrivially. Duke and Iwaniec used this idea to
prove the following:

Theorem 4.1 (Duke-Iwaniec). |ρ j(D)| � |D|−1/4−δ for some δ > 0.

This leads to equidistribution results.

5. GENUS CHARACTER

Factorizations D = D1D2 such that (D1,D2) = 1 parametrize characters
of the class group of K = Q(

√
D). ♠♠♠ TONY: [oh?] If you have a

factorization where D1 < 0 and D2 < 0, corresponding to the character χ ,
then

LK(s,χ) = iD−5/2 Γ(s)ζ (2s)
Γ( s+1

2 )2 ∑
Q

χ(Q)
∫

gQ

∂zE(z,s)ds

and

L(0,χD) = L(0,χD1)L(0,χD2)

=
4

ω1ω2
h(D1)h(D2)

=
1

12 ∑
Q∈ΛD

χ(Q)Ψ(Q)

♠♠♠ TONY: [what is Ψ?]
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There is a (signed) measure µχ which basically corresponds to adding
up the area weighted by an integer multiplicity, and the theorem is that it
becomes equidistributed.

Theorem 5.1. ∫
ϕ(z)dµχ∫
ϕ(z)dµ

→ 3
π

∫

Γ\H
ϕ dµ.
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MULTIPLICATIVE RELATIONS AMONG SINGULAR MODULI

JONATHAN PILA

1. SINGULAR MODULI

Singular moduli are “special values” of the j-function.

Definition 1.1. A singular modulus is j(τ) where [Q(τ) : Q] = 2.

Theorem 1.2 (Oort). The values τ and j(τ) are both algebraic if and only
if j(τ) is a singular modulus.

Let Σ be the set of singular moduli. André Oort’s conjecture deals with
the existence of “special” subvarieties of Cn (regarded as a Shimura vari-
ety), which are those having some coordinates in Σ.
♠♠♠ TONY: [So view Oort’s theorem as saying something about τ, j(τ)

being in “special position” with respect to each other.]

Definition 1.3. A multi-modular n-tuple is an n-tuple of distinct elements of
Σ which satisfy a non-trivial multiplicative relation, but such that no proper
subset of them does.

Theorem 1.4 (Pila, Tsimerman). There are only finitely many multi-modular
n-tuples.

Remark 1.5. This is ineffective.

This is all part of a more general framework of Zilber-Pink.
Let X := Xn := Cn× (C×)n. Special subvarieties in Cn are modular sub-

varieties M with a condition like some factor has coordinates all being sin-
gular moduli ♠♠♠ TONY: [actual condition was a little more technical].
Special subvarieties in (C×)n are “torsion cosets,” i.e. cosets T of subtori
by torsion points.

The special subvarieties in X× (C×)n are those of the form M×T .
There is also a weak version, where you allow xi = constant (not neces-

sarily in M).
Anyway, let V ⊂ X be defined by xi = ti. If P = (σ1, . . . ,σn) is a multi-

plicative tuple, then (P,P) lies on V . Note that this is an atypical situation:
(P,P) lies on the intersection of a codimension n and codimension n+ 1
variety.
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Conjecture 1.6 (Zilber-Pink). Let X be a variety of “mixed Shimura” type
and V ⊂ X. There is a finite subset SV of proper special subvarieties such
that if S is a special subvariety and A ⊂ V ∩ S is atypical then A ⊂ B for
some atypical B⊂V ∩T , where T ∈SV .

This encompasses many of the other conjectures: André-Oort, Mordell-
Lang, etc.
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PROBLEM SESSION

(1) (Matt Emerton) This is a question about talks that will come later.
Let Γ j be a decreasing sequence of Bianchi groups. It’s known that
that the R-Betti numbers of Bianchi groups grow sublinearly with
the volume, i.e.

bi(Γ j,Q)

Vol(Γ j)
→ 0

Is this same true for Betti numbers with Fp-coefficients?
(2) Here’s an analog of the preceding questionfor class groups of imag-

inary quadratic fields. Can we put good bounds on the p-part of
class groups?

Sound says that using GRH one should be able to prove some-
thing, e.g. “|D|1/2−1/p.”

(3) Continuing on this theme, can we prove nontrivial bounds for av-
erages and moments of p-parts of class groups (along the lines of
work of Heath-Brown)?

(4) Can we perhaps use computation to find examples of elliptic curves
with large rank (larger than Elkies’s record of 28), or examples with
small conductor and (relatively) large rank? This might shed insight
into the growth of the rank. Also, for all ranks up to 28 can we find
examples with maximal (or at least smaller) conductor? There is
good empirical “evidence” for this.

(5) (Frank Calegari) This is a question about thin groups. Let Γ ≤
SL3(Z) be a thin, Zariski-dense subgroup. Must Γ map to a finite
group that is not a quotient of SL3(Z)?

(6) (Sarnak) A theorem of Vinberg says that if F is a rational quadratic
form, G the orthogonal group of F , and R2 is the subgroup generated
by hyperbolic reflections in G(Z), then R2 is normal and G(Z)/R2
is infinite if dimF > 30.

Follow-up question: is this still true if you replace R2 with the
group generated by all reflections? The motivation is that one wants
to allow elements of the full Weyl group, not just the hyperbolic
reflections.

(7) Here is a question about central values of L-functions of GLn×GLr.
Fix a representation π of GLn a (self-dual) representation π ′ for GLr
such that

L(
1
2
,π×π ′) 6= 0.
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For r = n− 1, this is often possible. For r = 1, it is open (“more
difficult than the Riemann hypothesis”). For which pairs (n,r) can
we prove that it is possible?

Sarnak: some insight into these types of questions should come
out of an improved understanding of the trace formula. Can we
make the trace formula for GLn more “analytically flexible” (say, as
flexible as it is for GL2)?

A special case where one might try this is GLn×GLn ⊂ GL2n
(work of Friedberg and Jacquet).

(8) (Alex Lubotzky) Does SL3(Z) have a thin subgroup with the super-
rigidity property? More generally, to what extent do thin groups
behave like arithmetic ones?

Motivation: we should be able to construct more “complicated”
examples of thin subgroups.

(9) (Nick Katz) Are there thin groups of exceptional type (e.g. G2)
coming from monodromy?

(10) Definition of a Landau Siegel zero: a sequence of characters with

L(1,χ)≤ ε(q)
logq

and ε(q)→ 0 as q→∞. How could you recognize a Siegel zero “in
nature”?

(11) (Henrik Iwaniec) How can you exploit Sato-Tate in conjunction
with sieve methods to get new results about prime numbers? The
motivation is analogies with results exploiting exceptional charac-
ters.
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SUMS OF THREE SQUARES AND SPATIAL STATISTICS ON
THE SPHERE

ZEEV RUDNICK

1. INTRODUCTION

1.1. Classical results. Lagrange showed in 1770 that every positive inte-
ger is a sum of 4 squares. Jacobi refined this in 1834 by showing that the
number of such representations is

N4(n) = 8 ∑
d|n

d 6=0 (mod 4)

d =⇒ N4(n)≈ n1+o(1).

What about sums of two squares? Fermat showed that a prime p is a sum
of two squares if and only if p ≡ 1 (mod 4). More generally, an integer
n is a sum of two squares if and only if each prime factor congruent to 3
(mod 4) appears with even multiplicity. Therefore, asymptotically 0% of
integers can be expressed as a sum of two squares.

So most integers are sums of 4 squares in many ways, and most integers
are not sums of 2 squares. What about 3 squares?

Legendre/Gauss showed that n is a sum of 3 squares if and only if n 6=
4a(8n+7). If we define

Nn = #{(x,y,z) | x2 + y2 + z2 = n}
then if n is primitively representable as a sum of three squares, we have
Nn ≈ n1/2±ε . The ingredients of proof are Gauss’ formula

Nn ≈
√

nL(1,χ−n)

plus Siegel’s theorem on lower bounds for class numbers. The GRH would
give a good, effective lower bound.

1.2. Spatial distribution of solutions. We can project integer solutions of

x2 + y2 + z2 = n

onto the unit sphere (by scaling). We call the images Linnik points. Our
question concerns the distribution of these points. For instance, are they
“random” or “rigid”?
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By random, we mean the distribution obtained by drawing independently
from a uniform distribution. By rigid, we basically mean something that
looks like a lattice on the sphere.

Definition 1.1. A collection of subsets En in S2 become uniformly dis-
tributed if for any nice set B in S2,

#(En∩B)
#En

n→∞−−−→ µ(B).

Linnik conjectured that the Linnik points L(n) become uniformly dis-
tributed on S2. This was proved by Linnik “partially” assuming GRH (1940).
Much later, it was proved unconditionally by Duke, and by Golubeva-Fomenko
(1988). Pommerenke (1959) showed that a similar result holds in higher di-
mension.

Failures on the circle. Kátai-Környei (1977) and Erdös-Hall (1999) estab-
lish that for “almost all” n that are sums of two squares, the projected lattice
points (x,y)/

√
n ∈ S1 are uniformly distributed. (Recall that most n are not

sums of two squares, so one is conditioning on a strong condition.)
However, examples of specific sequences have been found such that the

limit distribution is not uniform.

2. ELECTROSTATIC ENERGY

The electrostatic energy of N points P1, . . . ,PN on the sphere S2 is

E(P1, . . . ,PN) :=
N

∑
i=1

∑
j 6=i

1
|Pi−Pj|

.

Problem. (Thompson, 1904) Find the configurations of charges on the
sphere which minimize energy.

These should be “stable configurations.” Thompson was motivated by
an attempt to model the atom as a “plum pudding” of electrons among a
“pudding” of positively charged matter. (Unfortunately, this model was
shortly disproved.)

This turns out to be a very difficult problem. They have been identified
numerically for N < 112. Rigorously, they are known only for 6 cases:
N = 2,3,4,5,6,12.

However, Wagner (1992) established that the energy of stable configura-
tions is ≈ N2. The basic idea is that

E(P1, . . . ,PN)≈ N2
∫

x

∫

|x−y|≤1

dy
|x− y| dx
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SUMS OF THREE SQUARES AND SPATIAL STATISTICS ON THE
SPHERE

Peeled (2010) showed that for N random points, the energy is about N2.
That suggests that random points should give an almost stable configuration.

Theorem 2.1 (Bourgain, Rudnick, Sarnak). The energy of the Linnik points
L(n) is close to minimal:

E(L(n)) = N2 +O(N2−δ ).

Proof. We would like to use uniform distribution to claim that for each
P ∈ L(N),

1
N ∑

Q 6=P

1
P−Q

∼
∫

S2

dx
|P− x| ≈ 1.

Therefore,

E(L(n)) = ∑
P∈L(n)

∑
Q6=P

1
|P−Q| ≈ N2.

There are some problems with this heuristic argument. One is that the func-
tion we are averaging is actually not continuous, so equidistribution does
not apply. Another is that there can be two points whose projection onto the
sphere is much closer than expected. For instance, if n = k2+(k+1)2, then
the projections of ((k+1),k,0) and (k,(k+1),0) are about

√
2√
n apart.

So we need to control the number of “unexpectedly close” pairs of points.
Introduce the counting function

A(n,h) := #{(X ,Y ) ∈ Z3×Z3 | |X |2 = |Y |2 = n, |X−Y |2 = h}.
Siegel’s mass formula gives a formula for this number as a product of local
densities. Eventually, after explicit computation of the the local factors, one
can show that the number of close pairs grows slowly, and that wraps up the
proof. �

3. NEAREST NEIGHBOR DISTANCES

Define the nearest neighbor distance

d(x) = min
y6=x
|x− y|.

Heuristically, we guess that among a set of N points, the nearest distances
should be about 1/

√
N.

This follows from a simple packing argument. We claim that for any set
X of N points on the sphere,

∑
x∈X

d(x)2 ≤ 16.

To prove this, estimate the area of a ball of radius A about each point, sup-
posing that no two such balls intersect, and bound this above by the total
surface area of the sphere.
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Dahlberg (1978) showed that in any stable configuration, the nearest
neighbor distances are all commensurable to 1/

√
N. On the other hand,

for random points the distribution of minimal distances versus 1/
√

N is
“unbounded.”

Based on empirical evidence, we conjecture:

Conjecture 3.1. For the Linnik ponts L(n), the distribution of nearest neigh-
bor distances is like those of random points.

Theorem 3.2. Assuming GRH, any possible limit of the distribution is ab-
solutely continuous.

This means that one has to show some upper bound on the number of
points with a certain nearest neighbor distance. This is a quantity A(n,h) of
the form mentioned earlier. One finds that this is essentially bounded by a
multiplicative function along a quadratic progression:

A(n,h)≤ 24Fn(h(2n−h)).

There is general machinery to evaluate sums of this form. The result is
some exponential sum. We don’t know how to bound it unconditionally, so
we resort to GRH.

3.1. Least Spacing Statistic. What if we study not the minimum neigh-
bor distance for a given point, but the least such minimum over all points?
For “rigid” systems this value is about 1/

√
N, as discussed already, but for

“random” systems it is about 1/N.

Theorem 3.3. For almost all n,

dminL(n)≈ N−1+o(1).

This is random-like behavior (not rigid!).
This follows from the assertion that almost all n can be expressed as the

sum of two squares and a “mini-square,”

n = x2 + y2 + z2 , |z| ≤ nε .

Linnik conjectured this for all n, but it is open. However, Wooley (2013)
proved that for almost all n, one does get a good enough upper bound to
deduce the theorem.
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ARITHMETIC STATISTICS AND FUNCTION FIELDS

JON KEATING

1. INTRODUCTION

Let a(n) denote an arithmetic function (e.g. Λ(n),µ(n), . . .). The overar-
ching questions is:

What are the statistical characteristics of the fluctuations in a(n)?

More specifically, one could ask about the sum of a(n) over “short” in-
tervals, or “correlation sums” of the form

∑
n

a(n)a(n+h).

Here we are concerned with arithmetic statistics in function fields. Let Pn
be the set of poynomials of degree n over Fq and Mn ⊂Pn the subset of
monic polynomials. We define the norm of a polynomial 0 6= f ∈ Fq[t] to
be qdeg f .

2. PRIME NUMBER THEOREMS

2.1. The von Mangoldt function. The Prime Number Theorem says that

∑
n≤X

Λ(n)∼ X .

The Hardy-Littlewood conjecture predicts the correlations of the von Man-
goldt function:

∑
n≤X

Λ(n)Λ(n+h)∼CHL(h) ·X .

There is also a conjecture due to Goldston and Montgomery (1987) and
Montgomery and Soundararajan (2004) conerning the fluctuations in small
intervals. This says that for Xδ < H < X1−δ ,

1
X

∫ X

2

∣∣∣∣∣ ∑
n∈[x−H/2,x+H/2]

Λ(n)−H

∣∣∣∣∣

2

dx∼ H(logX− logH− γE − log2π).

It is related to the Hardy-Littlewood conjecture, capturing the correlations
among prime numbers.
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2.2. Function Fields. The“Prime Number Theorem” for function fields
says that

∑
f∈Mn

Λ( f ) = qn.

Interestingly, this is an exact formula. That might lead you to believe that
considering monic polynomials is too rigid. However, Keating and Rud-
nick showed the exact analogue of the Goldston-Montgomery conjecture
for variance of Λ in “intervals,” and this is quite subtle analytically.

Proof Sketch. Averaging over all monic polynomials is simple, using anal-
ogous techniques to those from analytic number theory, and the fact that the
zeta function has no zeros.

To evaluate over special subsets (e.g. intervals and arithmetic progres-
sions) one uses characters to “project” the sums. This leads to expressions in
terms of the associated L-functions, which have zeros and functional equa-
tion, etc. In particular, they can be expressed in terms of unitary matrices.
In the limit as q→∞ one uses equidistribution results due to Katz to express
the sums in terms of matrix integrals. �
Remark 2.1. These results apply in the “q limit” (q→∞), but we can’t show
anything in the “n limit” although they probably should be true.

2.3. The Möbius function. The Prime Number Theorem (reformulated) is

∑
n≤X

µ(n) = o(X).

The Chowla conjecture (1965) predicts that there is “no correlation” in the
Möbius function: for any distinct α1, . . . ,αm and exponents a1, . . . ,am at
least one of which is odd,

∑
n≤X

µ(n+α1)
a1 . . .µ(n+αm)

am = o(X).

If one defines an analogue for function fields, then one can prove analogues
of arithmetic conjectures for sums of Möbius in intervals.

Curiously, the variance of µ( f ) over small intervals is more subtle than
the number field setting.
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SEARCHING FOR THIN GROUPS

NICK KATZ

1. INTRODUCTION

Sarnak interested me in the following problem:

Find (over C) a one-parameter family of curves of genus g≥ 2 whose
integer monodromy group Γ ⊂ Sp(2g,Z) is Zariski dense but thin (of
infinite index).

I have not been able to find any such families, and I am beginning to
wonder if any exist at all.

Now, there are thin, Zariski-dense subgroups of Sp(4,Z) occurring in the
monodromy of one-parameter groups of three-dimensional varieties. One
might hope to “transport” these to a family of genus two curves, but this
turns out to be impossible (in any family of curves the Jordan blocks have
size at most two, but in the desired families the Jordan blocks have size 4).

1.1. Attempts. Here are three examples of families that I studied.

Example 1.1. The family

y2 = (x2g−1)(x− t)

or more generally
y2 = f2g(x)(x− t).

Here the (finitely many) bad values of t are the roots of f , and at each the
local monodromy is a transvection (unipotent pseudoreflection).

Example 1.2. The family

y2 = f2g+1(x)− t

for f2g+1(x) any chosen Morse polynomial of degree 2g+1 (i.e. f ′ has 2g
distinct zeros, and f separates them).

Example 1.3. The family

y2 = x2g+1 +ax+b

over the parameter space which is the curve of discriminant 1:

(n−1)n−1an +nnbn−1 = 1.
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Unfortunately, for all three families the monodromy group is of finite
index in Sp(2g,Z). Why?

There aren’t so many tools available to prove this kind of result, so we
can basically list all of them .

(1) A’Campo (1979): over the parameter space Config2g+1 the family
of curves

y2 =
2g+1

∏
i=1

(x−ai)

has an (explicitly known) monodromy of finite index in Sp(2g,Z).
(2) Margulis normal subgroup theorem (special case): if Γ⊂ Sp(2g,Z)

for g ≥ 2 is a subgroup of finite index and Γ1 ⊂ Γ is a normal sub-
group, then Γ1 is either itself of finite index in Sp(2g,Z) or trivial
or ±I.

How do we construct normal subgroups? We use the low end of a long
exact homotopy sequence of a (Serre) fibration F → E → B, ending in (if
the fiber is connected)

. . .→ π1(B)→ π1(F)→ π1(E)→ π1(B)→ 1

so the image of π1(E) is normal.
Let’s try to apply these two tools to the first family. We consider a map

E = Config2g+1→ B = Config2g

by forgetting the last coordinate. The fiber over (b1, . . . ,b2g) ∈ B is the
subset of C\{b1,b2, . . . ,b2g} over which we have the one parameter family
y2 = f2g(x)(x− t) for f2g(x) := ∏2g

i=1(x−bi). By Margulis’s theorem (since
we already know that the monodromy for E is Zariski-dense a priori) we
must be in the finite index case.

A variant concerns the family

∏(x−ai) = x2g+1 +∑skxk

Recall that we wanted to restrict our attention to Morse polynomials. So we
need one more tool:

Lemma 1.4. If U is a smooth connected quasiprojective variety over C of
positive dimension and V ⊂ U is non-empty Zariski open, then π1(V ) �
π1(U).

Proof Sketch. This is clear if d = 1. If d ≥ 2, we reduce to the d = 1 case by
successively using the Lefschetz hyperplane theorem, which says that the
fundamental group of a general hyperplane section maps onto the original.)

�
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The point is that we can use this to apply our tools to the open Zariski
dense locus of Morse polynomials inside the locus of polynomials with non-
vanishing discriminant. That shows the failure of the second example.

Finally, we consider the third example. For the two parameter family
y2 = x2g+1+ax+b, the parameter space is A2[∆−1]. This is a fibration with
fibers the curves ∆= constant, and you use Margulis plus the known Zariski
density to win.

1.2. Conclusion. Given the difficulty of constructing the desired example,
we ask:

Is there any conceptual reason to think that we cannot get Zariski
dense thin subgroups of Sp(2g,Z) as monodromy of families of curves
(or of abelian varieties)?
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A STANDARD ZERO FREE REGION FOR RANKIN-SELBERG
L-FUNCTIONS ON GL(n)

XIAOQING LI

1. REVIEW OF POUSSIN’S METHOD

Vallée Poussin (1989) proved a zero-free region for ζ (s) using an aux-
iliary L-function satisfying certain conditions. His method works for all
automorphic L-functions. It also works for the Rankin-Selberg L-functions
L(s,π×π ′) if one of π and π ′ is self-dual.

However, if both are non-self-dual then this method doesn’t work. In that
case, the best zero-free region know is due to Brumley (2006), of the form

σ > 1− c
Qπ1Qπ2(|t|+2))N .

2. STATEMENT OF RESULTS

We want a “standard” zero-free region, which takes the form

σ > 1− c
log(Qπ−1Qπ−2(|t|+2))B .

We will focus on a Rankin-Selberg L-functions of the special form L(s, f ×
f ).

Theorem 2.1. Let π be an irreducible cuspidal unramified representation of
GL(n,AQ) for n≥ 2 which is tempered at all finite primes. Then a zero-free
region is given by

σ > 1− c
log5(|t|+2)

.

This follows directly from a lower-bound theorem: if f is a Maass cusp
form in the space of π as above, then

|L(1+ it, f × f )| � 1
log3(|t|+2)

.
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2.1. The Eisenstein Series method. Our proof is via the Eisenstein se-
ries method. In 1976, Jacquet and Shalika introduced this method for GLn
to prove the non-vanishing of L(1+ it,π). (This doesn’t give a zero-free
region, only non-vanishing.)

Shahidi proved non-vanishing of Rankin-Selberg L-functions on the 1-
line. Then Sarnak showed how to obtain a zero-free region for ζ using this
method, and with Gelbart and Lapid established a zero-free region for all
Langlands-Shahidi L-functions. In particular, they prove that

L(Sym9,1+ it)� 1
(|t|+1)A .

Our approach is based on Sarnak’s method.
It goes as follows. Let Γ = SL( 2,Z) and Γ∞ be the stabilizer of ∞. Let

EΓ(z,s) := ∑
γ∈Γ∞\Γ

Im(γz)s.

One considers an integral

I =
∫ ∞

η
η1

0 |ζ (1+2it)|2|EA(z,1/2+ it)|2d×z

where EA is a the “truncated Eisenstein series.” Sarnak established upper
and lower bounds for this integral, thus deducing the desired inequality.

Lemma 2.2.
I� 1

η
|ζ (1+2it)|(log2 t +2logA).

Proof Sketch. Use the Maass-Selberg relation for GL(2) to obtain an ex-
pression for the integral of the |EA(z,1/2+ it)|2. �
Lemma 2.3.

I� 1
η

1
log t

.

Proof Sketch. This is very tricky. First compute the Fourier expansion of the
(truncated) Eisenstein series (the coefficients are basically Bessel function
values). Then one uses Parseval’s identity to express the desired integral in
terms of these Fourier coefficients, and then use sieve theory to show that
many terms are non-vanishing. �
2.2. Outline of proof. Let G=GL(2n,R), Γ=SL(2n,Z) and K =O(2n,R).
Let Pn,n be the maximal parabolic, NP the unipotent radical, and MP the
standard Levi for NP. We define the cuspidal Eisenstein series using the
Iwasawa decomposition:

E(z, f ;s) := ∑
γ∈Pn,n\Γ

( |detm1|
|detm2|

)ns

f (m1) f (m2)|γ .
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This has meromorphic continuation and funcitonal equation, and the poles
are all at poles of the constant term.

Langlands showed that E(z, f ;s) has constant term CP along the parabolic
Pn,n and the constant term vanishes for all other parabolics.

We then consider Arthur’s “truncated Eisenstein series,” which is some-
thing like E(z, f ;s) minus stuff from the constant terms. Unfortunately, the
“sharp truncation” makes it hard to obtain the Fourier series. To deal with
this, we use a “mollifier” to create a “smoothed Arthur truncation” of the
Eisenstein series. This serves two purpose:

(1) It is easier to compute the Fourier expansion.
(2) It lives in the square-integrable space.

However, we have to go back and compare this to Arthur’s original trun-
cated Eisenstein series. We can establish an identity between the truncated
and untruncated Eisenstein series. We have to make sure that the growth
terms cancel, and in fact the smoothing is “reverse-engineered” to make
this true.

The Fourier expansion is obtained by “Laumon’s constant term formula”
♠♠♠ TONY: [?] plus induction. Anything, with all this done, we define
an integral sort of analogous to the one from before:

I = (. . .)
∫ ∣∣∣∣
∫

Ê∗A(z, f ;1+ it)g(A/β )
dA
A

∣∣∣∣
2

. . .

Unfolding exhibits this as a standard Rankin-Selberg type integral.
Now we have to mimic Sarnak’s strategy as described earlier. For the

upper bound, one shifts the line of integration and uses the pole “moved
through.”

The lower bound is trickier. Because there are many degenerate terms in
the Fourier expansion of the truncated Eisenstein series, it is not orthogonal.
A key ingredient is an “orthogonalitiy condition” stating that the degenerate
part of the Fourier expansion is orthogonal to the non-degenerate part. That
kills off “cross-terms.”

Also, one needs to prove an analogous result that “many” of the Hecke
eigenvalues are not small. We know that they are “not small on average,”
so that follows as long as no value is exceptionally large. That is where the
tempered hypothesis comes in.
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QUANTUM ERGODICITY ON LARGE GRAPHS

NALINI ANANTHARAMAN

1. MOTIVATION

The motivation is understand quantum chaos. It is believed that the spec-
trum of a quantum chaotic system should look like the spectrum of random
matrices. There are many conjectures, the most famous of which is the
“Quantum Unique Ergodicity” conjecture.

Since the 90s there has been the idea of using graphs as a testing ground
or toy model for quantum chaos. Here we focus on the case of large regular
(discrete) graphs. Let Gn = (VN ,EN) be a (q+ 1)-regular graph of size N,
and label VN = {1, . . . ,N}.

2. STATEMENT OF RESULTS

We study the eigenvalues of the discrete Laplacian: for a function f : V→
C, we set

∆ f (x) = ∑
y∼x

f (y)− f (x) = ∑
y∼x

f (y)− (q+1) f (x).

So we can write ∆ = A− (q+1)I, and the interesting part is A.
We will examine the behavior in the limit N→∞, and we assume a tech-

nical condition that GN has “few short loops.” More precisely, if the λi
denote the eigenvalues of the adjacency matrix (so |λi| ≤ q+1), then

1
N

N

∑
i=1

δλi

N→∞−−−→ ρ(s)ds (Plancherel measure)

is supported on on [−2
√

q,2
√

q]. ♠♠♠ TONY: [!]

Theorem 2.1 (Brooks-Lindenstrauss 2011). Assume that GN has “few”
loops of length ≤ c logN. For any ε > 0, there exists δ > 0 such that for
every eigenfunction φ , if B⊂VN is such that

∑
x∈B
|φ(x)|2 ≥ ε

then |B| ≥ Nδ .
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Theorem 2.2 (Anantharaman-Le Masson, 2013). Assume that GN has “few”
short loops and that it forms an expander family. Let (φ (N)

i )N
i=1 be an

orthonormal basis of eigenfunctions of the Laplacian on GN . Let a =
aN : VN → C be such that |a(x)| ≤ 1 for all x ∈ VN and ∑x∈VN a(x) = 0.
Then

lim
N→∞

1
N

N

∑
i=1

∣∣∣∣∣ ∑
x∈VN

a(x)|φ (N)
i (x)|2

∣∣∣∣∣

2

= 0.

What we are doing here is viewing each φi as defining a probability dis-
tribution on VN whose mass at x is φ (N)

i (x)2. The content of the Brooks-
Lindenstrauss result is that this is not concentrated on a small set. The
content of our theorem is to compare it to the uniform distribution on VN .
We do this by evaluating the expectation of a mean-zero function. What we
obtain above is only the average over the orthonormal basis, but note that
the quantity we are averaging is non-negative, so that means most of the
terms are small.

The result can be boosted so that a does not have mean 0 in the expected
way.

Now we want to consider a slightly different issue.

Theorem 2.3 (Anantharaman-Le Masson, 2013). Assume that GN has “few”
short loops and that it forms an expander family. Let (φ (N)

i )N
i=1 be an

orthonormal basis of eigenfunctions of hte Laplacian on GN . Let K =
KN : VN×VN → C be a kernel satisfying some technical conditions. Then

lim
N→∞

1
N

N

∑
i=1

∣∣∣∣∣ ∑
x∈VN

|〈φN ,KφN〉
∣∣∣∣∣

2

= 0.

This recovers the previous theorem in the special case where K is an
appropriate multiplication operator.

3. IDEA OF PROOFS

There are two proofs.

3.1. Long proof. The first one is modeled on the proof of quantum ergod-
icity on a manifold. At each point, the graph looks “locally like a tree.”
There is a notion of “Fourier-Helgason transform” on the (q+ 1)-regular
tree, which tells us how to define “phase space” for a regular tree or graph.
This suggests the right definition of “pseudo-differential” operators on the
tree and on a finite regular graph. That turns the “PDE question” into a
dynamical systems question.
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(1) For f : X → C, the Fourier transform is

f̂ (ω,s) = ∑
x∈X

f (x)es,ω(x)

where s ∈ Tq = R/(2π/ logq), ω ∈ ∂X , and

es,ω(x) = q(1/2+is)hω (x)

is an eigenfunction of the adjacency matrix. They play the role of
“plane waves” on the tree.

There is an inversion formula and an analogue of the Plancherel
identity. By a result of Cowling-Setti, the Fourier transform is an
isomorphism between “rapidly decreasing” functions f and “smooth”
functions f̂ satisfying an appropriate symmetry condition with re-
spect to s 7→ −s.

(2) We define the phase space to be

X ×∂X ×Tq = X ×∂X ×R/(2π/ logq).

(3) For a function a(x,ω,s) on X × ∂X ×Tq, we define an operator
Op(a) on L2(X ) by

Op(a)es,ω(x) = a(x,ω,s)es,ω(x).

According to the “Paley-Wiener” theorem, we get a correspondence
between kernels and “smooth” a(x,ω,s) with appropriate symmetry
condition.

There is a problem that the class of smooth a(x,ω,s) is not closed under
multiplication nor “shifts,” but Le Masson constructed a suitable subset
closed under these operations.

Now we pass from the tree to a finite regular graph. If G = Γ\X and
a(x,ω,s) is invariant under Γ, then it descends to G, and the corresponding
kernel is also Γ-invariant. There’s a problem here that operator Op(a) is not
bounded (the kernel doesn’t decay fast enough) on L2.

Anyway, the variance

V (a) = ∑〈φi,Op(a)φi〉
turns out to be “almost invariant” under shift. Iterating, one gets a Birkhoff
sum, whose Hilbert-Schmid norm you can control by known results.

3.2. Sketch of (short) proof. Now we give a proof that doesn’t rely on the
Fourier transform. We consider, as before, the Hilbert space of operators
K(x,y) on X ×X which is Γ-invariant, with a certain norm. On H you
can define the self-adjoint operator K 7→ [∆X ,K]. This is not the same as
K 7→ [∆G,K] on HS(L2(G)), but it is not very different provided certain
assumptions on K.
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Then there are a couple of lemmas. The first characterizing the kernel of
this operator as the closure of the span of powers of the Laplacian. The sec-
ond estimates the “convergence” of operators, and the result follows from
some short calculations afterwards.

I feel that this proof should be generalizable to not necessarily regular
graphs, but I’ve encountered technical difficulties in doing so. The “easy
part” should be proving analogues of the two lemmas, but even those have
proven difficult.
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FROM RAMANUJAN GRAPHS TO RAMANUJAN COMPLEXES

ALEX LUBOTZKY

1. RAMANUJUAN GRAPHS

Let X be a connected k-regular graph and A its adjacency matrix, so Av,u
is the number of edges between u and v. The eigenvalues of A lie in [−k,k].

Definition 1.1. X is called a Ramanujan graph if for every eigenvalue λ of
A, either |λ |= k or |λ | ≤ 2

√
k−1.

The point is that all the eigenvalues of magnitude less than k come from
the (infinite) simply-connected cover, which is a tree. The eigenvalues con-
trol the rate of convergence of the random walk to uniform distribution.
Ramanujan graphs have the fastest rate of convergence, and are the “best
expanders” by a result of Alon-Boppana.

Do Ramanujan graphs actually exist?

2. EXPLICIT CONSTRUCTION OF RAMANUJAN GRAPHS

Somewhat surprisingly, explicit constructions were found before indirect
proofs (by randomness methods) in this case. Let p 6= q be primes congruent
to 1 (mod 4). Jacobi proved that

r4(n) = #{(x0,x1,x2,x3) ∈ Z4 |∑x2
i = n}= 8∑

d|n
4-d

d.

Thus r4(p) = 8(p+1).
For our primes (congruent to 1 (mod 4)), one xi is odd and the other three

are even. Let S be the subset of such tuples where x0 > 0 is odd (essentially
a normalization). Then |S|= p+1. We can think of α = (x0,x1,x2,x3) ∈ S
as an integral quaternion x0 + x1i+ x2 j+ x3k. Note that α ∈ S =⇒ S ∈ S
and ||α||= αα = p.

If q≡ 1 (mod 4), then there exists ε ∈ Fq with ε2 =−1. For α ∈ S, we
define

α̃ =

(
x0 + εx1 x2 + εx3
−x2 + εx3 x0− εx1

)
∈ PGL2(Fq).

This is essentially an explicit way of splitting the quaternion algebra.
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Theorem 2.1 (Lubotsky-Phillips-Sarnak 1986). Let H = 〈α̃ | α ∈ S〉 and
X p,q =Cay(H,{α̃}). Then

(1) X p,q is a (p+1)-regular Ramanujan graph,
(2) If

(
p
q

)
= −1 then H = PGL2(Fq) and X p,q is bipartite, and other-

wise H = PSL2(Fq) and X p,q is not.

Where do X p,q actually come from? Let F = Qp or Fp((t)). Let O =
Zp or Fp[[t]] (i.e. the ring of integers in F). Let G = PGL2(F) and K =
PGL2(O) (the maximal compact subgroup of G).

In the archimedean world, if you take a Lie group and mod out by a
maximal compact then you get a symmetric space, e.g. GL2(R)/SO2(R)
is the usual upper half-plane. But in the non-archimedean world, G/K is a
p+ 1-regular tree, the Bruhat-Tits tree. If Γ ≤ G is a discrete cocompact
subgroup (i.e. lattice) then

Γ\G/K = Γ\T
is a compact, hence finite, (p+1)-regular graph

Theorem 2.2. Γ\G/K = Γ\T is Ramanujan if and only if every infinite
dimensional irreducible spherical subrepresentation of L2(Γ\G) (as a G-
representation) is tempered.

Spherical means that there is a non-zero K-fixed point. Tempered means
that the matrix coefficients are in L2+ε , i.e. “weakly contained in L2(G).”

So the combinatorial property of being Ramanujan is equivalent to a
representation-theoretic statement. By the Satake isomorphism, the latter
can actually be viewed as being number-theoretic.

Theorem 2.3 (Deligne). If Γ is an arithmetic lattice of PGL2(Qp) and Γ(I)
is a congruence subgroup then every irreducible infinite-dimensional spher-
ical subrepresentation of L2(Γ(I)\G) is tempered.

Corollary 2.4. Γ\G/K is a Ramanujan graph.

The explicit expanders above are obtained from an especially nice Γ
(namely, Hamiltonian quaternions). There are similar results by Drinfeld
in positive characteristic, and similar constructions by Morganstern for all
k = pα +1.

3. RAMANUJAN COMPLEXES

The generalization of T = PGL2(F)/K is the Bruhat-Tits building

Bd(F) = G/K = PGLd(F)/PGLd(O).

This is a (d−1)-dimensional contractible simplicial complex.
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FROM RAMANUJAN GRAPHS TO RAMANUJAN COMPLEXES

The vertices of the building BD(F) come with “colors” ν(gK) ∈ Z/dZ
defined by

ν(gK) = valp(detg) (mod d).
There are “colored adjacency operators” (basically Hecke operators)

Ai : L2(Bd(F))→ L2(Bd(F))

by
(Ai f )(x) = ∑

y∼x
ν(y)−ν(x)=i

f (y).

In particular, the adjacency matrix is ∑d−1
i=1 Ai.

It turns out that the Ai are normal commuting operators (but not self-
adjoint, as A∗i = Ad−i) hence can be diagonalized simultaneously. Then we
can view the spectrum of these operators, denoted Σd = Spec A1, . . .Ad−1,
as a subset of Cd−1.

Definition 3.1. A finite quotient Γ\Bd(F), for Γ a co-compact discrete sub-
group, is a Ramanujan complex if every tuple of nontrivial simultaneous
eigenvalues (λ ) = (λ1, . . . ,λd−1) of (A1, . . . ,Ad−1) acting on L2(Γ\Bd(F))
is in Σd .

Theorem 3.2 (Li). If a sequence of quotients Xi = Γi\Bd(F) has injective
radius going to ∞, then

Σd ⊂
⋃

Spec Xi
(A1, . . . ,Ad−1).

Remark 3.3. For d = 2, we saw that there were two “trivial” eigenvalues. In
general, there are d “trivial” eigenvalues, but there is the additional subtlety
that they need not have the same magnitude.

Theorem 3.4 (Lubotsky-Samels-Vishne, 2005). Γ\Bd(F) is Ramanujan if
and only if every ∞-dimensional irreducible spherical subrepresentation of
L2(Γ\PGLd(F)) is tempered.

Theorem 3.5 (Lafforgue, 2002). If ch F > 0 and Γ is an arithmetic sub-
group of PGLd(F) and Γ(I) is a congruence subgroup, then (under some
restrictions) every subrepresentation of L2(Γ(I)\PGLd(F)) is tempered.

Corollary 3.6. In the situation above, Γ(I)\Bd(F) are Ramanujan com-
plexes.

4. OVERLAPPING PROPERTIES

Theorem 4.1 (Boros-Füredi ’84). Given a set P⊂R2 of size n, there exists
a point z ∈ R2 covered by (2

9 −o(1))
(n

3

)
of the

(n
3

)
triangles determined by

P.
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This constant 2
9 is optimal. Barany proved a higher-dimensional gener-

alization: in Rd , there is a constant cd such that some point is covered by
cd
( n

d+21

)
of the d-simplices.

Incredibly, Gromov proved that if you allow “curvy” triangles, i.e. any
curves as sides, then assertion still holds with this same constant 2/9! He
also proved a higher-dimensional version. This changed the point of view,
that the property has to do with the combinatorics of simplicial complexes
rather than the geometry of Euclidean space.

Definition 4.2. A simplicial complex X of dimension d has the ε-geometric
(resp. topological) overlapping property if for every f : X(0)→ Rd and
every affine (resp. continuous) extension f : X → Rd , there exists a point
z ∈ Rd covered by ε|X(d)| of the d-cells of X .

A family of simplicial complexes of dimension d are geometric (resp.
topological) expanders if all members have the overlapping property with
the same ε .

The Boros-Füredi theorem can be re-interpreted as saying that the com-
plete simplicial complex on n vertices is geometrically expanding, and Gro-
mov’s result can be re-interpreted as saying that they are even topologically
expanding.

Gromov asked: can this hold for simplicial complexes of bounded degree
(dimension)?

Theorem 4.3 (Fox-Gromov-Lafforgue-Naor-Pach 2013). The Ramanujan
complexes of dimension d, when q� 0, are geometric expanders.

OK then, what about topological expansion?

Theorem 4.4 (Kaufman-Kazhdan-Lubotsky 2015). Fix q� 0, the 2-skeletons
of the 3-dimensional Ramanujan graph are topological expanders.

There is basically only one proof of topological expansion, and that is
Gromov’s notion of “E -coboundary expansion.” So we have to prove that
the complexes in question are coboundary-expansive, which requires some
“isoperimetric inequalities.” Unfortunately these are false for the Ramanu-
jan graphs.

After some work, we realized that we could prove some results for cochains
of “small support.”
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ARITHMETIC ASPECTS OF DIAGONALIZABLE ACTIONS

ELON LINDENSTRAUSS

1. SETUP

Let G be a semisimple linear algebraic group defined over Q. Let A =
R×∏′pQp be the ring of adeles (a locally compact topological ring). As is
well known, Q ↪→ A embeds discretely, and we may consider the quotient
X = G(A)/G(Q). This has a finite G(A)-invariant measure, which we can
normalize to have total mass 1.

A less “fancy” way to set this up is as follows. We chose a finite set S′

and let S = S′ ∪{∞}. Then we consider GS = G(R)×∏p∈S′G(Qp). We
have a discrete subgroup (lattice) Γ < GS and we consider GS/Γ. This is
basically the previous “fancy” setup after forgetting some information.

2. HOMOGENEOUS DYNAMICS

Definition 2.1. An H-orbit H · [g] for H < GS is periodic if StabH [g] has
finite covolume in H. Equivalently, there exists an H-invariant probability
measure mH·[g] supported on H · [g].

We ask the following basic question:

Suppose Hi→H and [gi]∈Gs/Γ is Hi-periodic. Assume [gi]→ [g∞].
Does mHi.[gi] converge to a “nice” measure (say in the weak* topology)?

Remark 2.2. If these measures to converge to some µ , then it will be invari-
ant with respect to H.

2.1. Invariant measure I.

Definition 2.3. A probability measure µ is H-invariant if h∗µ = µ for all
h ∈ H. It is ergodic if it is an extreme point in the compact convex set of
H-invariant measures.

A result of Choquet (the “Ergodic Decomposition Theorem”) is that any
invariant measure can be expressed as an integral of (invariant) ergodic mea-
sures over some probability distribution on these.
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Theorem 2.4 (Ratner, Ratner/Margulis-Tomanov). Suppose H < G is gen-
erated by one parameter of unipotents, µ is H-invariant and ergodic. Then
there is a group L ≥ H such that µ is an L-invariant measure on a single
periodic L orbit.

♠♠♠ TONY: [i.e. H-invariant, ergodic orbits come from periodic orbits]

Theorem 2.5. Suppose, in the notation above, that the groups Hi are non-
compact with [gi] ∈ G/Γ being Hi-periodic. If mHi·[gi]→ µ , gi→ g then

(1) There exists L such that L.[g] is periodic and µ = mL·[g], and
(2) ... ♠♠♠ TONY: [more stuff, hard to state - morally a positive

answer to the earlier question]

2.2. Invariant measures II - diagonalizable case. Let G be a semisimple
group defined over Q and G = G(QS). Let Γ < G be an arithmetic lattice
and T0 = G a maximal split QS-torus.

Theorem 2.6. Suppose A = T0 ∩G1 with G1 /G, dimA ≥ 2, and µ is A-
invariant and ergodic with support not contained in periodic orbits of re-
ductive proper subgroups. Then either µ = mG/Γ or µ is “small.”

Remark 2.7. (1) Conjecturally, under the above assumptions the only
option should be µ = mG/Γ.

(2) If dimA = 1, there exists a big zoo of invariant measures.
(3) This implies that if µ is A-invariant and ergodic on G/Γ (with no

restriction on the support), then µ is essentially a product of periodic
measures, measures invariant under rank 1 groups, and zero-entropy
measures.

(4) The first measure classification theorem in this context is by Katok-
Spatzier.

Unfortunately, things go horribly wrong for periodic orbits in this con-
text.
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ASYMPTOTICS OF AUTOMORPHIC SPECTRA AND THE
TRACE FORMULA

WERNER MÜLLER

1. AUTOMORPHIC FORMS AND L-FUNCTIONS

Maass and Selberg introduced spectral theory into the study of automor-
phic forms. If Γ ⊂ SL(2,R) is a lattice acting on H, they considered the
hyperbolic surface Γ\H and studied eigenfunctions of the Laplace opera-
tor. The Laplace operator ∆ : C∞

c (X)→ L2(X) turns out to be essentially
self-adjoint, so one wants to study the spectral resolution and properties of
L2-eigenfuntions. Interesting questions in this theory concern:

• Existence of Maass cusp form, e.g. Weyl law, Phillips-Sarnak con-
jecture.
• Location of the spectrum, e.g. Selberg’s conjecture λ1(Γ(N))≥ 1

4 .
The main difficulty is that X is non-compact, which implies that there is a
continuous spectrum (conjecturally [1/4,∞)). This is problematic because
the intuition from mathematical physics is that embedded eigenvalues are
highly unstable. The basic tool available is Selberg’s trace formula.

The modern framework is the adelic one. If G/Q is a (connected) re-
ductive algebraic group and ω : Z → C× is a central character, then one
considers the representation L2(Z(A)G(Q)\G(A),ω) by the right regular
representation. There are distinguished subspaces here such as the space of
cusp forms, cut out by the vanishing of certain “Fourier-like” coefficients.

Given an automorphic representation π of G, to each local unramified πv
there corresponds a natural conjugacy class φp(π) ∈ LG. Given a represen-
tation r of LG, one obtains a Langlands L-function LS(s,π,r).

2. FAMILIES OF AUTOMORPHIC FORMS

Sarnak introduced the important idea of families of automorphic forms.
A family F is a subset of A (G) cut out by “natural constaints.” One is
interested in the statistics of these families, e.g.

For a suitable notion of conductor c, what are the asymptotics of

F (x) := { f ∈F : c( f )< x}?
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For instance, one might wonder if it is O(xa). A precise conjecture of
Sarnak is that an asymptotic is given in terms of an associated L-function.

3. WEYL’S LAW

Let (X ,g) be a compact Riemannian manifold of dimension n and let
∆ = d∗d : C∞(X)→C∞(X) be the Laplace operator. The spectrum of ∆ will
be discrete. Weyl’s law predicts the asymptotics of eigenvalues: if N(x)
denotes the number of magnitude at most x, then

lim
x→∞

N(x)
xd/2 = (2π)−dωdVol(Ω).

There are two methods, based on the heat equation and wave equation.
These both break down in the non-compact case, as there is a continuous
spectrum (described by the Eisenstein series). Each cusp has a “dual” Eisen-
stein series, and if you take the Eisenstein series for one cusp and expand
it around another cusp, the constant term can be interpreted as a “scattering
matrix” which contributes the main part of the continuous spectrum.

Lindenstrauss and Venkatesh proved a Weyl law for G a split adjoint
semisimple group over Q, using Hecke operators (again, only available for
arithmetic groups). Miller and Müller also established results in other cases.

What about estimating the remainder term? Lapid and Müller proved a
bound for SL(n,R). ♠♠♠ TONY: [complicated to state...]
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SOME APPLICATIONS OF TRACE FUNCTIONS IN NUMBER
THEORY

PHILLIPE MICHEL

1. MOTIVATION

We start with the following classical result (q and p are always primes).

Theorem 1.1 (Equidistribution of Hecke points). As q→ ∞, the integral
points of the closed horocycle of height 1/q

{
n+ i

q
| n = 1,2, . . . ,q−1

}

become equidistributed with respect to the hyperbolic measure.

A very special case of Sarnak’s general “Möbius Disjointness conjec-
ture” is that prime Hecke points become equidistributed with respect to the
hyperbolic measure

{
p+ i

q
| p prime < q

}
⊂ SL2(Z)\H.

Sarnak and Ubis proved that the weak* limit of the probability measure
supported at the prime Hecke points is bounded by 1

5dµ and 9
5dµ .

Fouvry, Kowalski, and Michel studied this problem and “reduced” it to
the problem of obtaining bounds on Kloosterman sums:

∑
n�q

λ f (n)Kl2(n;q)� q1−δ , δ > 0

where the λ f (n) are the Hecke eigenvalues of some weight 0 Hecke eigen-
form. They eventually proved the desired bound, but later found that there
was an error in the calculation for the reductions and it was not so useful
for the original problem. However, bounds did yield some corollaries:

Theorem 1.2 (Fouvry-Kowalski-Michel). For any modular form f ,

1
q−1

q−1

∑
n=1

f (
n+ i

q
)eq(−n−1)→ 0

Notes from Sarnak’s 60th Birthday Conference

Proc-51



PHILLIPE MICHEL

In other words, a certain signed measure supported on the integral points
of the height 1/q horocycle flow and weighted by eq(−n−1) converges to 0
(in the weak* topology).

Also:

Theorem 1.3 (Fouvry-Kowalski-Michel). As q→ ∞, the quadratic Hecke
points {

n2 + i
q

}

become equidistributed with respect to the hyperbolic measure.

2. TRACE FUNCTIONS

The equidistribution statement is true for a class of functions F : Fq→C
called trace functions, obtained as x ∈ Fq 7→ F(x) = tr(Frobq,Fq) where
F is a constructible middle-extension `-adic sheaf on A1

Fq
(i.e. a finite-

dimensional `-adic representation which is pure of weight 0 on the lisse
locus - hence Deligne applies - and geometrically irreducible).

To such F we can associate an integer, the “conductor,” measuring the
“complexity” of the Galois representation underlyinf F . This has con-
stituents the rank, swan conductor, and something else.

Example 2.1. Additive characters of Fq are associated to an Artin-Schreier
sheaf.

Example 2.2. Multiplicative characters are associated to a Kummer sheaf.

Example 2.3. Kloosterman sums are associated to a (Tate-twisted) Kloost-
erman sheaf,

x 7→ Klk(x) =
1

pk−1/2 ∑
x1+...+xk=x

eq(x1x2 . . .xk?)

One can construct new trace functions from existing ones by the usual
operations: pullback, dual, tensor product. The pushforward is in gen-
eral something worse (a complex), but there are two important examples
of “nice” pushforward for Y = A2

Fq
.

(1) The Fourier transform

F̂(x) = p−1/2 ∑
y∈Fq

F(y)eq(xy)

(2) Multiplicative convolution

F ∗G(x) = ∑
y+z=x

F(y)G(z).
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SOME APPLICATIONS OF TRACE FUNCTIONS IN NUMBER
THEORY

The main result making it possible to do analytic number theory with trace
functions is

Theorem 2.4 (Deligne, Weil II). For F and G as above,

∑
x∈Fq

F(x)G(x) = αF ,G q+O(C(F )C(G )q1/2)

with

|αF ,G |=
{

1 F ∼=geo G ,

0 otherwise.

The group PGL2(Fq) is the automorphism group of P1
Fq

, hence acts on
trace functions by pullback. It’s interesting to know when F is isomorphic
to γ∗F , so we want to study AutF (Fq), which is the subgroup of PGL2(Fq)
inducing geometric automorphisms of F . This group can be “classified” in
some sense: if F is not of a specific nice form, e.g. extension of Kummer
sheaf by Artin-Schreier sheaf, then its automorphism group is bounded by
60.

Example 2.5. When using the Cauchy-Schwarz or Hölder inequality, you
often get expressions of the form

∑
x∈Fq

F(γ1x)F(γ ′1x) . . .F(γpx)F(γ ′px)

and thus you want to know whether a certain sheaf contains the trivial rep-
resentation. This requires knowledge of the geometric monodromy groups,
which are usually computed by Katz.

Example 2.6. If you want to be able to estimate the sum of a trace function
over a short interval, there is a result that if F is not (geometrically) Artin-
Schreier (i.e. not an additive character) then

∑
1≤n≤X

F(n)�√q logq.

This is basically obtained by the Polya-Vinogradov method: use Plancherel’s
theorem, etc.

This is nontrivial if X � q1/2 logq, and improvements have been made
for smaller X , with a result of the form

∑
1≤n≤X

F(n)�√q log(X)/ logq.
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3. PROOF OF THE BOUND

We want to prove something like

∑
n≤X

F(n)λ f (n)� q1−1/16+o(1).

This is equivalent to a subconvex bound for L( f ⊗ χ,1/2). One considers
“amplifying” f in the family of modular forms of level q. In the end one
obtains matrices γ ∈ GL2(Q)∩M2(Z) and “correlation sums”

C(F̂ ,γ) = ∑
x∈Fq

F̂(x) f̂ (γ · x)

and the aim is to show that “often” these sums are bounded by� q1/2, or
equivalently that γ (mod q) does not fall into Aut

F̂
(Fq), which we do by

repulsion argument’s (basically Linnik’s Lemma).
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RAMANUJAN-SELBERG CONJECTURE

FREYDOON SHAHIDI

1. THE CONJECTURES

Let f be a normalized Maass form for Γ0(N) and ∆ the Laplace operator.
Assume that f is an eigenfunction for ∆ and all Hecke operators. Then we
may write

∆ f =
1
4
(1− s2) f .

The Fourier expansion of f involves Whitaker-Bessel functions and some
Hecke eigenavlues ap := 1

2(αp +α−1
p ).

Conjecture 1.1 (Ramanujan).

|ap| ≤ 2p−1/2 ⇐⇒ αp = 1.

In 2003, Kim-Sarnak showed that |ap| ≤ p−1/2(p7/64+ p−7/64), or equiv-
alently p−7/64≤ |αp| ≤ p7/64. Their method worked only over Q, since one
has to work with unit groups. In 2011 Blomer-Brumley extended this to any
number field.

Selberg conjectured that every eigenvalue λ ≥ 1
4 for Γ a congruence sub-

group. In that same paper, Kim-Sarnak showed that λ ≥ 1/4− (7/64)2 =
0.238 . . ..

Any general progress (Maass forms, arbitrary number fields) has used
functoriality and the existence of symmetric power lifts, i.e. functoriality for
Symm : GL2(C)→GLm+1(C). The Blomer-Brumley breakthrough follows
from

∧2(Sym3 π) being automorphic, hence Sym4 π is automorphic (it is
essentially a four-dimensional constituent).

The automorphic input is this theorem.

Theorem 1.2. Let π be a cuspidal automorphic representation of GL2(AF),
where F is a number field. Then L(s,Sym4 π,Sym2) is absolutely conver-
gent for Re(s)> 1.

These sorts of results are very deep. The strategy goes back to ideas of
Jacquet and Shalika. One considers Rankin-Selberg L-functions, e.g.

L(s,Sym4 π×Sym4 π) = L(s,Sym4 π,Sym2) ·L(s,Sym4 π,
2∧

π).
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And we have the identity

L(s,Sym4,
2∧
) = L(s,Sym3 π,Sym2⊗ω)

where ω is the central character of π . There is then a game of deducing
things using these “incidental equalities.”

Using known results about automorphicity of specific representations,
one deduces an equalty of the thing in interest with a Jacquet-Godement
L-function. By the work of Jacquet-Shalika, we can deduce that this thing
is absolutely convergent for Re(s)> 1.

Now let k be a number field, G a quasi-split reductive group over k, and π
a cuspidal representation in L2(G(k)\G(A)) factoring as π = ⊗vπv. There
is a hypothetical global Langlands group Lk, which we do not know how to
define.

Ramanujan conjectured that each πv should be tempered. Unfortunately,
this is not true in general, but it is expected to be true for GLn.

Conjecture 1.3. Let π be a cusp form on G, quasi-split over k. Assume that
π is (globally) generic, i.e. has a non-zero Whittaker Fourier coefficient.
Then π is tempered.

To address the issue of temperedness, Arthur introduced the notion of
Arthur parameters. These are homomorphisms ψ : LK × SL2(C) → LG
where ψ(w,g) = φ(w)ρ(g), where ρ is a complex-analytic morphism. Ev-
ery automorphic representation is supposed to have an Athur parameter.
The tempered representations are parametrzied by ψ for which ρ = 1. To
each ψ one can attach a Langlands parameter by

w 7→ ψ(w,
(
|w|1/2 0

0 |w|−1/2

)
).

2. PROGRESS

The local conjectures are proved in many cases (work of Ban-Liu, Jian-
Soudry, Harris-Taylor, Henniart, Scholze, Arthur). They can be reduced to
certain questions concerning the Local Langlands Conjectures. There is a
quite a bit of evidence that the local conjecture is true, by demonstration for
many classical and exceptional groups.

Another application of the Local Langlands Conjectures is the equality
of root numbers. This is more difficult. For a Weil-Deligne representation
ρ : W ′F → GLn(C), we get an ε-factor and an L-function. According to
the LLC, we also get some other L-function and ε-factors, and Cogdell-
Shahidi-Tsai show agreement between the stuff for the Langlands-Shahidi
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L-functions and Artin L-functions:

ε(s,
2∧
◦ρ,ψ) = ε(s,π(ρ,

2∧
))

and also for the L-functions. Actually the agreement of L-functions was
proved by Henniart, but the root numbers are the hard part.

The trick is to induce from a supercuspidal and compare the γ functions.
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THE p-ADIC LANGLANDS PROGRAM: MOTIVATIONS AND
APPLICATIONS

MATTHEW EMERTON

1. INTRODUCTION

Algebraic number theorists are interested in an aspect of the Langlands
program called Langlands reciprocity. This is supposed to be a connection
between automorphic forms and Galois representations.

A famous instance of this is the following: if f is a Hecke eigenform of
weight k, level N, and character ε , then for a prime ` - N we have a Hecke
polynomial X2−a`X +ε(`)lk−1. There are different ways of thinking about
this, but one is that it is the characteristic polynomial of a semisimple conju-
gacy class in GL2(Q`). We want to think of that conjugacy class as coming
from a Frobenius element in the (absolute) Galois group. But which Galois
representation does this come from?

If E is an elliptic curve over Q of conductor N, and ` - N, then

#E(F`) = 1−a`+ `

which can be thought of the value at X = 1 of X2− a`X + `2−1. This is a
hint of the connection between the automorphic side and diophantine side.

Theorem 1.1 (Wiles, Taylor-Wiles, ... ). For each such E/Q, there is a
Hecke eigenform f of level N of weight 2 such that a`(E) = a`( f ).

The p-adic Langlands program grew out of an attempt to understand
more deeply the mathematics involved in this theorem. The proof proceeds
via Galois representtions. Deligne showed that for f defined over a num-
ber field (i.e. the coefficients a` lie in a number field) equipped with an
embedding into Qp, there is a representation

ρ f : GQ→ GL2(Qp)

unramified at ` - pN. The characteristic polynomial of ρ(Frob`) is then
precisely the Hecke polynomial X2−a`X + ε(`)lk−1.

On the other hand, an elliptic curve E/Q has a Tate module

Tp[E] = lim←−
n

E[pn]∼= Z2
p.
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We can extend scalars to Qp to obtain a two-dimensional representation

ρE : GQ→ GL2(Qp).

The modularity of E is proved by showing that ρE ∼= ρ f .

2. FAMILIES OF REPRESENTATIONS

Now there is a key point here: the representations ρ : GQ → GLn(Qp)
“live in families.” Think about it like this: suppose that GQ were finitely
presented. Then a representation would be a collection of matrices satis-
fying certain equations. Now suppose instead that GQ is the completion
of such a group: then the matrices also have to satisfy certain inequalities.
So the space of representations is a kind of space defined by inequalities,
and ρE is some point of the space (which turns out to be 3-dimensional).
We want to show that ρE is one of the countably many points coming from
eigenforms.

An idea introduced by Mazur, and developed by Taylor-Wiles, is that it
would be nice to enlarge the space of automorphic forms to a 3-dimensional
“box” as well. We could then worry about whether or not our particular
point comes from an appropriate “classical” point of this box.

Goal: extend the notion of automorphic forms to allow p-adic varia-
tions.

There are a lot of difficulties. The first one is that automorphic forms are
defined as complex functions on a symmetric space. However, it is difficult
to connect this to the p-adic world. It’s somewhat of a miracle that they
tend to admit algebraic descriptions; in fact this isn’t even known in the
generality we suspect, e.g. for certain Maass forms. So why is it true for
classical modular forms anyway?

There are many ways to see this, but one of them is from the perspective
of Eichler-Shimura: automorphic forms can be described as cohomology
classes. This is Hodge Theory, or what algebraic number theorists call
Eichler-Shimura theory.

3. COMPLETED COHOMOLOGY

Now the powerful thing about cohomology is that you can take Z-coefficients,
so you can immediately see that the Hecke eigenvalues will be algebraic
integers. So our first attempt could be to take Zp coefficients. This is
a crude first step, as it doesn’t really “enlarge” the space of automorphic
forms meaningfully.
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APPLICATIONS

Observe that ramification away from p is pretty rigid, because the wild
inertia at ` 6= p is pro-`, and can’t interact much with Qp which is nearly
pro-p. But at p things are less rigid, so we are motivated to consider varying
the level by powers of p.

Let G(R) be a semisimple algebraic group and X =G(R)/(maximal compact).
Let Γ be a congruence subgroup, and consider Γ(pr) for all r ≥ 0. We have
towers

. . .→ X/Γ(pr)→ . . .→ X/Γ.

We can study the homology of this tower:

Ĥi := lim←−
r

Hi(X/Γ(pr),Zp)

which we call the completed cohomology of the tower. Note that this can be
quite large even though the constituents are countable. It has the structure
of a Zp-module, but even better, it has the action of Hecke operators T` for
all ` 6= p. Think of the completed cohomology as being like a Banach space
and T= Zp〈T`〉 as being like a von Neumann algebra.

G(Z/pr) acts as the deck transformations of X/Γ(pr) over X/Γ. In the
limit, Λ= lim←−Zp[G(Z/pr)] =:Zp[[G(Zp)]] acts on the completed cohomol-
ogy.

Example 3.1. If G were abelian, e.g. Ga, then

Zp[G] = Zp[[Zp]]∼= Zp[[T ]].

If G were abelian then this would be a power series ring. But G is
semisimple, so it’s more like a twisted power series ring, but it’s like a
universal enveloping algebra. (Lazard showed that Λ is Noetherian.)

Remark 3.2. Actually, even G(Qp) acts on Ĥi.

Example 3.3. If we take the tower of S1, then Ĥ0 = Zp (inverse limit of
Zp by identity) and Ĥ1 = 0 (intersection of prZp over all r). One might
worry that this limiting process kills off the interesting features, rather than
enlarge them. However, it turns out that this doesn’t happen, and you can in
fact recover the cohomology at any finite level. By some spectral sequence
argument,

Hi(Γ(pr),Zp)“ = ”Γ(pr)− coinvariants in Ĥi = Zp[G(Z/pr)]⊗Λ Ĥi.

This is only approximately correct; there are correction terms coming from
higher Tors. The reason in the above example is that Zp is actually a torsion
Λ-module.
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If W is a G-representation, W (Zp) is a Γ-representation, so it gives local
systems on each X/Γ(pr), and in particular on X/Γ. Roughly,

Hi(Γ,W )“ = ”W ⊗Λ Ĥi.

Again there are correction terms. The intuition is that if we fix r, then Γ(r)
eventually acts trivially on W (Z/pn) for n� 0, which suggests that one
should be able to pull out the W . The tensor product then corresponds to
“throwing back in” the low level data.

Example 3.4. Let G = SL2(Q) and X =H. Then X/Γ(pr) is an open mod-
ular curve. Then there is an exact sequence

0→ Ĥi→ Λn→ Λ→ Zp→ 0.

If there were no Zp, then this sequence would split, and we would obtain
Ĥi ∼= Λn−1. Now the Zp is not zero, but it’s “small” from the perspective of
Λ, as the latter is like a (twisted) power series ring over Zp in 3 variables
(since we are considering SL2). So let’s pretend that the Zp isn’t there.
Essentially, Ĥ1 = Λn, H1(Γ(pr)) = Zp[SL2(Z/pr)]n, H1(W ) = W n. One
thing grows like the volume, and the other grows like the covolume, which
are heuristics expected from the analytic theory. ♠♠♠ TONY: [??]

Theorem 3.5 (Calegari-Emerton). If G(R) does not admit discrete series,
then Ĥ1 is torsion over Λ.

Corollary 3.6. In this situation, for some ε > 0

dimHi(Γ(pr)) = (covolume)1−ε

The idea is to exploit the algebraic structure. If Ĥ1 is free, or at least has
a large free part, then the growth is like the covolume. On the other hand, if
everything is torsion then you actually get a power savings.

Theorem 3.7 (Marshall). If G = SL2(F) where F is not totally real, then
for some ε > 0

dimH1(W )≤ dim(W )1−ε .
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SOBOLEV TRACE INEEQUALITIES

ALICE CHANG

1. INTRODUCTION

Let (M,g) be a compact manifold with Riemannian metric g. Let ∆g
denote the Laplace Beltrami operator on M and 0 ≤ λ0 ≤ λ1 < .. .. The
determinant is

det∆g = ∏λ j.

One can define a zeta function by the Mellin transform:

ζ (s) =
1

Λ(s)

∫
tr(et∆g)ts dt

t
.

We define the height function to be log∆g(0) = ζ ′(0).

1.1. Polyakov-Alvarez formula. On compact (Mn,g) we have

tr(e−t∆g)∼
∞

∑
k=0

akt(k−n)/2 as t→ 0

where a0 is essentially the volume, a1 is essentially the area of the boundary,
and a2 is essentially the Euler characteristic.

Polyakov observed that the height function is a “conformal primitive” of
the Gaussian curvature.

There’s some crazy formula for small variation of the height function in
terms of the Gaussian curvature. The Polyakov-Alvarez formula turns out
to be another crazy formula for a ratio(?) of height functions in terms of
more integrals of Gaussian curvature, which I won’t reproduce.

1.2. Work of Osgood-Philips-Sarnak.

Theorem 1.1 (Osgood-Phillips-Sarnak).
(1) An isospectral set of closed 2-manifolds is compact in the C∞ topol-

ogy.
(2) An isospectral set of planar domains is compact in the C∞ topology.

Some key ideas:
• on manifolds, each heat coefficient ak controls the W k,2 norm of the

heat module. In the positive curvature case, one needs to study the
extremal metrics in the formula and establish a sharp inequality.
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• On (S2,g0), if vol(gw) = vol(g0) then there’s some lower bound on
the integral of stuff involving the Gaussian curvature. The point of
this is to establish that the canonical metric is extremal.
• On the plane disk, they stablish the classical Milin-Lebedev inequal-

ity (essentially a Sobolev trace inequality) in a new way.
How do you generalize this to n > 2? It seems nearly impossible. We used
n = 2 in two crucial ways:

• Any two metrics on S2 are conformal, i.e. g1 = e2wg2,
• The Laplace-Beltrami operator transforms in a very nice way with

respect to conformal transformations: ∆gw = e−2w∆g

Theorem 1.2 (Okikiolu). On (S3,g0), det(∆g0) is a local maximum among
all metrics g with the same volume as g0.

Recall that an operator A is “conformally covariant” of bidegree (a,b) if

Agw(φ) = e−bwAg(eawφ)
for all φ ∈C∞(M). We will study such operators.

Example 1.3. On M2, ∆g is conformal of bidegree (0,2). These operators
have been extensively studied in higher dimensions too.

♠♠♠ TONY: [overwhelmed...]
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PROBLEMS ON POINTS AND LINES

BEN GREEN

1. INTRODUCTION

We discuss a classic problem of Sylvester: Take a finite set P ⊂ R2, not
all on a line. Is there necessarily an ordinary lane: a line that passes through
exactly two points of P?

Example 1.1. Equilateral triangle, with midpoints and centroid. There is an
obvious example.

Theorem 1.2 (Sylvester-Gallai Theorem). The answer is yes.

Kelly’s Proof. There is at least one point lying off a line through two other
points. We may further assume that amongst all such pairs, the perpendicu-
lar distance of this arrangement is minimal. We claim that this line is ordi-
nary, since otherwise we would find a smaller perpendicular distance. �

Here is a refinement of the problem:

If |P|= n, how many ordinary lines must it have?

A random arrangement turns out to be bad, with O(n2) ordinary lines.
What if we want to make a set with few ordinary lines? A naïve example
is n− 1 collinear points and another point, so there are obviously n− 1
ordinary lines.

There is an example due to Böröczky that if n is even, we can make ex-
amples with n/2 ordinary lines. The more natural setting for these examples
is the projective plane. (The questions are evidently equivalent in affine and
projective plane.)

Example 1.3. We take n = 12: 6 points of a regular hexagon inscribed in
a circle, and 6 points on the line at infinity corresponding to the chordal
directions. The ordinary lines are the tangents to the circle at points on the
hexagon.

When n is odd, there are various ways of adding or deleting a point to get
3n
4 +o(1) ordinary lines.
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Theorem 1.4 (Green-Tao). Suppose n ≥ 101010
. Then any set of n non-

collinear points has at least
{

n/2 n even
3n/4+o(1) n odd

and the Böröczky examples, up to projective equivalence, are the only equal-
ity cases.

Example 1.5. Cubic curves also lead to examples of sets with few ordinary
lines. Indeed, if you take a small (torsion) subgroup, then a line through
two points will tend to pass through a third, unless there is a degeneracy
(tangent line).

What’s going on turns out to be that there is more algebraic structure
here. Notice that that all the “minimal” examples we have discussed lie on
cubic curves (Böröcity’s example is a degenerate cubic).

Theorem 1.6. Suppose k ≥ 1 is fixed. Let n≥ n0(k). Then any set P⊂ R2

of n points with at most kn ordinary lines lies on the union of ≤ k cubic
curves ... plus a few degenerate cases.

To deduce the preceding theorem, you apply this theorem with k = 1 to
deduce that any such configuration lies on a cubic curve, and then there is
some (difficult) accounting.

Remark 1.7. The “converse” is definitely not true. A random selection of
points on a cubic will have many ordinary lines.

2. IDEA OF THE PROOF

The basic idea is to study a proof of Sylvester’s theorem and see what
can be leveraged from it. Unfortunately we haven’t been able to make any
progress with Kelly’s proof, but we instead looked at Melchor’s proof. This
starts by looking at the projective dual P∗ of P. Euler’s formula says

V −E +F = 1

for the projective dual. Now we digest what these all mean.
(1) V = ∑k Nk, where Nk is the number of k-rich lines in P (lines with k

points on them; this is just counting each edge once)
(2) 2E =∑k 2kNk (this is the graph theoretic assertion that 2E is the sum

of the degrees, but the degree of `∗ is twice the number of points on
`)

(3) F = ∑s Ms (Ms is the number of faces with s edges)
(4) 2E = ∑s sMs.
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This gives
N2−3 = ∑

k≥3
(k−3)Nk + ∑

s≥3
(s−3)Ms.

We immediately see that N2 ≥ 3. But we get more information. If N2 is
small, then the right hand side is small too, so “most” faces are triangles,
and most vertices have degree 6.

The idea is that if P has few ordinary lines, then P∗ is “locally a triangular
lattice.” We then want to show that being a triangular lattice in the dual
means that the points lie on a cubic curve.

This relies on two classical facts.
(1) There exists a cubic curve through any 9 points in the plane.
(2) (Chales’ Theorem) Any cubic curve passing through 8 of the points

of intersection of two triples of lines, passes through the 9th.
The idea is basically that every hexagon on the dual side corresponds to a
Cayley-Bacharach configuration on the other side. So you keep picking 9
points and a cubic curve through 8 of them, and you automatically get that
the 9th is also on the curve.

Now we’ll hint at how additive combinatorics comes into deducing the
main theorem. So we have to analyze what happens on cubic curves. Sup-
pose, for instance, that the cubic curve is a union of a line and a parabola,
e.g.

P = {(0,b) : b ∈ B}∪{(a,a2) : a ∈ A}
where |A| = |B| = n/2. There is a “semblance” of a group law here: you
can take two points on the parabolic and get a point on the line. If P has
few arbitrary lines, almost all pairs a1,a2 ∈ A have −a1a2 ∈ B. We say that
A is an “approximate group.” There is a structure theory of approximate
groups, which in this case says that they are very close to actual groups.
Now R× has no interesting (finite) subgroups, so it turns out that there are
no approximate groups either.

3. FURTHER SPECULATIONS

I’ll describe at a few thing that I think are true, but don’t know how to
prove.

Suppose P⊂R2 and |P|= n, with no more than 100 points on a line.
Suppose there are ≥ δn2 collinear triples. Is it the case that there are
some δn points on a cubic?

Now I’ll make another speculation concerning where cubic structure arises
from combinatorial structure.
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Suppose P ⊂ F2
p is a set with no three points on a line. Is it the

case that P lies on a cubic apart from o(p) points? (This is false if the
cardinality is not prime!)
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