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1. SPRING 2010 MORNING 3

Since Q is maximal, B/Q is a field which is finitely generated over k as a ring (since
B is). By the Nullstellensatz, this implies that B is a finite field extension of k .

Since A/φ−1(Q ) ,→ B/Q , we deduce that A/φ−1(Q ) is an integral domain which is
finitely over a field k . This implies that A/φ−1(Q ) is itself a field. To see this we just
need to show that non-zero elements have inverses; multiplication by any non-zero
a ∈ A/φ−1(Q ) induces an injection of finite-dimensional k -vector spaces, which must
then be a bijection.

2. SPRING 2010 AFTERNOON 3

(i) Run the usual argument for the Hilbert basis theorem, but look at the leading
terms. Let I s ⊂ A[[x ]] be an ideal. The leading terms of elements of I generate
an idealL in A; pick generators a1, . . . , an .

Run the following algorithm to find a finite set of generators for I : adjoin an
element in I of minimal leading order, whose leading coefficient is not in the ideal
generated by existing elements. If this terminates, then we are done. Otherwise,
this leads to a set f1, . . . , fm , . . . where the leading orders of f1, . . . , fm generate L .
Then an appropriate A[[x ]]−combination of f1, . . . , fm equals the leading term of
fm+1, contradiction.

(ii) Pick x /∈ P . By the DCC, we have (x n ) = (x n+1) for some n . Hence x n = y x n+1 for
some y ∈ A, i.e. x n (x y −1) = 0. Since x /∈ P , the definition of prime ideal implies
x y − 1 ∈ P , i.e. x is invertible mod P . This shows that A/P is a field, so P was
maximal.

Let P1, P2, P3, . . . be distinct prime ideals of A. Consider descending chains

P1 ⊃ P1P2 ⊃ P1P2P3 ⊃ . . .

By the descending chain condition, this stabilizes, so (P1 . . . Pn )Pn+1 = (P1 . . . Pn ). By
Nakayama’s Lemma this implies that P1 . . . Pn is 0 in APn+1

. But in fact we must have
P1 . . . Pn generates the unit ideal in APn+1

, so this is impossible.

3. FALL 2011 MORNING 3

(i) Let x be a non-unit. If x = x1 x2 with neither x1, x2 being units, then we have a
strict inclusion of ideals

(x )( (x2)
1
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Applying the same reasoning to x2, etc. we get a chain of ideals, which must ter-
minate.

(ii) Geometric translation: V (I ) is contained in the union of finitely many irreducible
components. First, we claim that if R is Noetherian then Spec R is a Noetherian
topological space (DCC for closed subspaces).

We claim that a Noetherian space can only have finitely many irreducible com-
ponents. First, it is easy to check that a closed subspace of a Noetherian space is
Noetherian. We consider the set of closed subsets X which do not have this prop-
erty. Suppose there is more than the empty set. By the DCC we can find a minimal
element. Since it is not irreducible, it can be written as a union of two smaller
closed subsets; by the minimality, these each have finitely many irreducible com-
ponents, which is a contradiction.

4. SPRING 2012 MORNING 1

(i) Addressed in earlier question.
(ii) The assumption implies r s r = r , hence r (s r −1) = 0. Now note that r s is surjec-

tive, so r is surjective, hence invertible. So r (s r −1) = 0 implies s r = 1.

5. FALL 2013 MORNING 3

(a) We may check this locally. Locally, A is a DVR and this is obvious.
(b) We must produce something in the kernel of the map I ⊗A J → I J . Write I = (x , y ),

I ′ = (x ′, y ′). Then x ⊗ y ′ − x ′ ⊗ y is sent to 0. It is not 0 in I ⊗A J because we can
define an A-bilinear form on I × J which does not vanish on it.

To do this, we define an A-linear form from I × J to k = A/(x , y ) which sends
B (x , y ′) = 1, B (x , x ′) = 0, B (y , x ′) = 0, B (y , y ′) = 0 (with all other values forced by
linearity).

6. SPRING 2015 AFTERNOON 5

(a) There are fn | . . . | f2 | f1 such that

M =
⊕

A/( fi ).

(b) Suppose

M ∼=
⊕

A/( fi )∼=
⊕

A/( f ′i ).

Since f1 annihilates M , we have f1 annihilates each A/( f ′i ), hence f1 | f ′1 . Similarly
f ′1 | f1, and then we win by induction.

7. FALL 2015 MORNING 4

(a) We say b ∈ B is integral over A if it satisfies a monic polynomial with coefficients in
A. We say B is integral over A if every b ∈ B is integral over A.

(b) We need T to satisfy a monic polynomial over A. Since its minimal polynomial is
a0T n + . . .+ an , the polynomials satisfied by T are all multiples of a0T n + . . .+ an .
Such can only have leading coefficient 1 if a0 is a unit.
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(c) We can view B = k [U ][T ]/( f )where

f (U , T ) = a0(U −T n+1)T n +a1(U −T n+1)T n−1+ . . .+an (U −T n+1).

The leading power of T di (n + 1) + i where i is such that ai (X ) had the maximal
degree, and i is maximal with this property. Furthermore, it will be a scalar.

8. FALL 2015 AFTERNOON 3

(a) Write x = a + b
p
−31 ∈ K . Then we must have Tr(x ) = 2a ∈ Z, and Nm(x ) = a 2 +

31b 2 ∈ Z. So a ∈ 1
2 Z. If a ∈ Z, then b ∈ Z. If a ∈ 1

2 Z− Z, then b ∈ 1
2 Z− Z. This

describes Z[α]; finally we check thatα is in fact integral over Z: α2 =− 15
2 +

p
−31
2 , and

then α2−α=−8.
(b) Evidently m and m′ contain (2).

Note that mm′ = (4, 2α, 2α+2,α(α+1)) = (2).
Next we find the units. From the formula N (x + yα) = x 2 + x y + 4y 2, any unit

has y = 0 and x =±1. It is evident that m is not principal.

9. SPRING 2015 MORNING 5

(a) Any such extension is the composite of two quadratic extensions, and quadratic
extensions are all obtained by adjoining the square roots of non-squares.

(b) We need to know if every embedding E ,→ K lands in E , or in other words if every
automorphism of L takes

p
c to an element of E . Now, σ(c ) is a non-square since

c is a non-square, hence L (
p

σ(c )) = E if and only ifσ(c )/c is a square in L .
(c) The norm of c to Q(

p
2) is 6(2−

p
2)2. Since 6 is not a square in Q(

p
2), c is not a

square in Q(
p

2,
p

3).
We need to examine variousσ(c )/c . Forσ generating Gal(L/Q(

p
3)), we find

σ(c )
c
=

2+
p

2

2−
p

2
=

6+4
p

2

2
= 3+2

p
2= (1+

p
2)2.

Forσ generating Gal(L/Q(
p

2)), we find

σ(c )
c
=

3+
p

3

3−
p

3
=

12+6
p

3

6
= 2+

p
3=
(1+
p

3)2

(
p

2)2
.

10. SPRING 2016 AFTERNOON 4

(a) We have Ap/pAp = A/p⊗A Ap is the localization of A/p at the image of A − p, which
is (A/p)−0, which is the same as Frac(A/p).

(b) The correspondence comes from m ⊃ f (p) and is disjoint from f (A − p). We have
B ′/m′ = B/m⊗A (A/p)p is the localization at a set of units, hence is isomorphic to
B/m. Since B/m is a finitely generated field over K , it is actually finite over K , hence
also a finitely generated Ap-module.

(c) Take a finite set of generators {bi } of B/m as an A-algebra. Since B/m is finite over
Ap, they satisfy monic polynomials of degree di with coefficients over Ap. By local-
izing at some t , we can assume that that these coefficients all lie in At . Then the
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finitely many monomials in the {bi }, of degree at most di in bi , generate B/m as a
module over At .

(d) Since B/m is a field which is a finitely generated module over the domain At /pAt ,
the latter must also be a field. To see this, we must explain why any a ∈ At /pAt has
an inverse. It has an inverse in B/m, which satisfies a minimal monic polynomial
over At /pAt . Multiplying by a produces a monic polynomial of lower degree, unless
already a−1 ∈ At /pAt .
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