ALGEBRA QUAL PREP: COMMUTATIVE RINGS
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1. SPRING 2010 MORNING 3

Since Q is maximal, B/Q is a field which is finitely generated over k as a ring (since
B is). By the Nullstellensatz, this implies that B is a finite field extension of k.

Since A/¢~1(Q) — B/Q, we deduce that A/¢1(Q) is an integral domain which is
finitely over a field k. This implies that A/¢~1(Q) is itself a field. To see this we just
need to show that non-zero elements have inverses; multiplication by any non-zero
a € A/¢~1(Q) induces an injection of finite-dimensional k-vector spaces, which must
then be a bijection.
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2. SPRING 2010 AFTERNOON 3

Run the usual argument for the Hilbert basis theorem, but look at the leading
terms. Let Is C A[[x]] be an ideal. The leading terms of elements of I generate
an ideal £ in A; pick generators ay, ..., a,.

Run the following algorithm to find a finite set of generators for I: adjoin an

element in / of minimal leading order, whose leading coefficient is not in the ideal
generated by existing elements. If this terminates, then we are done. Otherwise,
this leads to a set fi,..., fi,,... where the leading orders of fi,..., f;,, generate Z.
Then an appropriate A[[x]]—combination of fi,..., f;,, equals the leading term of
fm+1, contradiction.
Pick x ¢ P. By the DCC, we have (x") = (x""1) for some n. Hence x" = y x"*! for
some y € A, i.e. x"(xy —1)=0. Since x ¢ P, the definition of prime ideal implies
xy—1e€ P,ie. x isinvertible mod P. This shows that A/P is a field, so P was
maximal.

Let P, P, P, ... be distinct prime ideals of A. Consider descending chains

P OPP,DOPPRPD...

By the descending chain condition, this stabilizes, so (P, ... P,)P, 1 =(P, ... P,). By
Nakayama’s Lemma this implies that P, ... P,, is0in Ap, . Butin fact we must have
P, ... P, generates the unitideal in Ap_, so this is impossible.

3. FALL 2011 MORNING 3

Let x be a non-unit. If x = x; x, with neither x;, x, being units, then we have a
strict inclusion of ideals

(%) & (x2)
1
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Applying the same reasoning to x,, etc. we get a chain of ideals, which must ter-
minate.

(ii) Geometric translation: V(I) is contained in the union of finitely many irreducible
components. First, we claim that if R is Noetherian then Spec R is a Noetherian
topological space (DCC for closed subspaces).

We claim that a Noetherian space can only have finitely many irreducible com-
ponents. First, it is easy to check that a closed subspace of a Noetherian space is
Noetherian. We consider the set of closed subsets X which do not have this prop-
erty. Suppose there is more than the empty set. By the DCC we can find a minimal
element. Since it is not irreducible, it can be written as a union of two smaller
closed subsets; by the minimality, these each have finitely many irreducible com-
ponents, which is a contradiction.

4. SPRING 2012 MORNING 1

(i) Addressed in earlier question.
(ii) The assumption implies rsr =r, hence r(sr —1)=0. Now note that rs is surjec-
tive, so r is surjective, hence invertible. So r(sr —1) =0 implies sr = 1.

5. FALL 2013 MORNING 3

(a) We may check this locally. Locally, A is a DVR and this is obvious.

(b) We must produce something in the kernel of the map I®, J — I J. Write I =(x, y),
I'’=(x",y’). Then x® y'—x’® y is sent to 0. It is not 0 in I ®, J because we can
define an A-bilinear form on I x J which does not vanish on it.

To do this, we define an A-linear form from I x J to k = A/(x, y) which sends
B(x,y’)=1, B(x,x") =0, B(y,x’) =0, B(y, y’) = 0 (with all other values forced by
linearity).

6. SPRING 2015 AFTERNOON 5

(@) Thereare f,, |...| f>| fi such that

M= A/(f).
(b) Suppose
M=PA/H=PA/S).

Since f; annihilates M, we have f; annihilates each A/(f;), hence f; | f/. Similarly
1| fi, and then we win by induction.

7. FALL 2015 MORNING 4

(a) Wesay b € B is integral over A if it satisfies a monic polynomial with coefficients in
A. We say B is integral over A if every b € B is integral over A.

(b) We need T to satisfy a monic polynomial over A. Since its minimal polynomial is
agT" +...+ a,, the polynomials satisfied by T are all multiples of agT" +...+ a,,.
Such can only have leading coefficient 1 if a; is a unit.
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We can view B = k[U][T]/(f) where
fU,T)=agU—-T""NT"+a,(U—-T"NT" .. . +a,(U—-T"".

The leading power of T d;(n + 1)+ i where i is such that a;(X) had the maximal
degree, and i is maximal with this property. Furthermore, it will be a scalar.

8. FALL 2015 AFTERNOON 3

Write x = a + bv/—31 € K. Then we must have Tr(x) = 2a € Z, and Nm(x) = a? +
3102 € Z. Soa€ 3Z. IfacZ thenb €Z Ifa € 3Z—Z, then b € $Z—Z. This
describes Z[a]; finally we check that « is in fact integral over Z: a? =—2 + @
then a? —a =-8.
Evidently m and m’ contain (2).

Note that mm’ =(4,2a,2a + 2, a(a+1))=(2).

Next we find the units. From the formula N(x + ya) = x? + xy +4y?, any unit
has y =0 and x ==1. Itis evident that m is not principal.

, and

9. SPRING 2015 MORNING 5

Any such extension is the composite of two quadratic extensions, and quadratic
extensions are all obtained by adjoining the square roots of non-squares.

We need to know if every embedding E < K lands in E, or in other words if every
automorphism of L takes 4/¢ to an element of E. Now, o(c) is a non-square since
c¢ is anon-square, hence L(+/o(c))=E ifand only if o(c)/c is a square in L.

The norm of ¢ to Q(+2) is 6(2 — +/2). Since 6 is not a square in Q(+2), ¢ is not a
square in Q(+v/2, v/3).

We need to examine various o(c)/c. For o generating Gal(L/Q(+/3)), we find
o(c) 2+v2 6+4v2

c zz—ﬁ: 2
For o generating Gal(L/Q(+v/2)), we find
o(c) 3++3 12+6¥3 1++/3)

=3+2v2=(1+V2)%.

10. SPRING 2016 AFTERNOON 4

We have A, /pA, = A/p®, A, is the localization of A/p at the image of A—p, which
is (A/p)—0, which is the same as Frac(A/p).

The correspondence comes from m > f(p) and is disjoint from f(A—p). We have
B’/m’ = B/m®, (A/p), is the localization at a set of units, hence is isomorphic to
B/m. Since B/m s a finitely generated field over K, itis actually finite over K, hence
also a finitely generated A,-module.

Take a finite set of generators {b;} of B/m as an A-algebra. Since B/m is finite over
A,, they satisfy monic polynomials of degree d; with coefficients over A,. By local-
izing at some ¢, we can assume that that these coefficients all lie in A;. Then the



(d)
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finitely many monomials in the {b;}, of degree at most d; in b;, generate B/m as a
module over A;.

Since B/m is a field which is a finitely generated module over the domain A; /pA;,
the latter must also be a field. To see this, we must explain why any a € A, /pA, has
an inverse. It has an inverse in B/m, which satisfies a minimal monic polynomial
over A; /pA;. Multiplying by a produces a monic polynomial of lower degree, unless
already a—' € A, /pA;.
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