ALGEBRA QUAL PREP: COMMUTATIVE RINGS

TONY FENG

1. Spring 2010 Morning 3

Since Q is maximal, B / Q is a field which is finitely generated over k as a ring (since B is). By the Nullstellensatz, this implies that B is a finite field extension of k.

Since $A / \phi^{-1}(Q) \hookrightarrow B / Q$, we deduce that $A / \phi^{-1}(Q)$ is an integral domain which is finitely over a field k. This implies that $A / \phi^{-1}(Q)$ is itself a field. To see this we just need to show that non-zero elements have inverses; multiplication by any non-zero $a \in A / \phi^{-1}(Q)$ induces an injection of finite-dimensional k-vector spaces, which must then be a bijection.

2. Spring 2010 Afternoon 3

(i) Run the usual argument for the Hilbert basis theorem, but look at the leading terms. Let $I s \subset A[[x]]$ be an ideal. The leading terms of elements of I generate an ideal \mathscr{L} in A; pick generators a_{1}, \ldots, a_{n}.

Run the following algorithm to find a finite set of generators for I : adjoin an element in I of minimal leading order, whose leading coefficient is not in the ideal generated by existing elements. If this terminates, then we are done. Otherwise, this leads to a set $f_{1}, \ldots, f_{m}, \ldots$ where the leading orders of f_{1}, \ldots, f_{m} generate \mathscr{L}. Then an appropriate $A[[x]]$-combination of f_{1}, \ldots, f_{m} equals the leading term of f_{m+1}, contradiction.
(ii) Pick $x \notin P$. By the DCC, we have $\left(x^{n}\right)=\left(x^{n+1}\right)$ for some n. Hence $x^{n}=y x^{n+1}$ for some $y \in A$, i.e. $x^{n}(x y-1)=0$. Since $x \notin P$, the definition of prime ideal implies $x y-1 \in P$, i.e. x is invertible $\bmod P$. This shows that A / P is a field, so P was maximal.

Let $P_{1}, P_{2}, P_{3}, \ldots$ be distinct prime ideals of A. Consider descending chains

$$
P_{1} \supset P_{1} P_{2} \supset P_{1} P_{2} P_{3} \supset \ldots
$$

By the descending chain condition, this stabilizes, so $\left(P_{1} \ldots P_{n}\right) P_{n+1}=\left(P_{1} \ldots P_{n}\right)$. By Nakayama's Lemma this implies that $P_{1} \ldots P_{n}$ is 0 in $A_{P_{n+1}}$. But in fact we must have $P_{1} \ldots P_{n}$ generates the unit ideal in $A_{P_{n+1}}$, so this is impossible.

3. FALL 2011 Morning 3

(i) Let x be a non-unit. If $x=x_{1} x_{2}$ with neither x_{1}, x_{2} being units, then we have a strict inclusion of ideals

$$
\underset{1}{(x) \subsetneq\left(x_{2}\right)}
$$

Applying the same reasoning to x_{2}, etc. we get a chain of ideals, which must terminate.
(ii) Geometric translation: $V(I)$ is contained in the union of finitely many irreducible components. First, we claim that if R is Noetherian then Spec R is a Noetherian topological space (DCC for closed subspaces).

We claim that a Noetherian space can only have finitely many irreducible components. First, it is easy to check that a closed subspace of a Noetherian space is Noetherian. We consider the set of closed subsets X which do not have this property. Suppose there is more than the empty set. By the DCC we can find a minimal element. Since it is not irreducible, it can be written as a union of two smaller closed subsets; by the minimality, these each have finitely many irreducible components, which is a contradiction.

4. Spring 2012 Morning 1

(i) Addressed in earlier question.
(ii) The assumption implies $r s r=r$, hence $r(s r-1)=0$. Now note that $r s$ is surjective, so r is surjective, hence invertible. So $r(s r-1)=0$ implies $s r=1$.

5. Fall 2013 Morning 3

(a) We may check this locally. Locally, A is a DVR and this is obvious.
(b) We must produce something in the kernel of the map $I \otimes_{A} J \rightarrow I J$. Write $I=(x, y)$, $I^{\prime}=\left(x^{\prime}, y^{\prime}\right)$. Then $x \otimes y^{\prime}-x^{\prime} \otimes y$ is sent to 0 . It is not 0 in $I \otimes_{A} J$ because we can define an A-bilinear form on $I \times J$ which does not vanish on it.

To do this, we define an A-linear form from $I \times J$ to $k=A /(x, y)$ which sends $B\left(x, y^{\prime}\right)=1, B\left(x, x^{\prime}\right)=0, B\left(y, x^{\prime}\right)=0, B\left(y, y^{\prime}\right)=0$ (with all other values forced by linearity).
6. Spring 2015 Afternoon 5
(a) There are $f_{n}|\ldots| f_{2} \mid f_{1}$ such that

$$
M=\bigoplus A /\left(f_{i}\right)
$$

(b) Suppose

$$
M \cong \bigoplus A /\left(f_{i}\right) \cong \bigoplus A /\left(f_{i}^{\prime}\right) .
$$

Since f_{1} annihilates M, we have f_{1} annihilates each $A /\left(f_{i}^{\prime}\right)$, hence $f_{1} \mid f_{1}^{\prime}$. Similarly $f_{1}^{\prime} \mid f_{1}$, and then we win by induction.

7. Fall 2015 Morning 4

(a) We say $b \in B$ is integral over A if it satisfies a monic polynomial with coefficients in A. We say B is integral over A if every $b \in B$ is integral over A.
(b) We need T to satisfy a monic polynomial over A. Since its minimal polynomial is $a_{0} T^{n}+\ldots+a_{n}$, the polynomials satisfied by T are all multiples of $a_{0} T^{n}+\ldots+a_{n}$. Such can only have leading coefficient 1 if a_{0} is a unit.
(c) We can view $B=k[U][T] /(f)$ where

$$
f(U, T)=a_{0}\left(U-T^{n+1}\right) T^{n}+a_{1}\left(U-T^{n+1}\right) T^{n-1}+\ldots+a_{n}\left(U-T^{n+1}\right) .
$$

The leading power of $T d_{i}(n+1)+i$ where i is such that $a_{i}(X)$ had the maximal degree, and i is maximal with this property. Furthermore, it will be a scalar.

8. Fall 2015 Afternoon 3

(a) Write $x=a+b \sqrt{-31} \in K$. Then we must have $\operatorname{Tr}(x)=2 a \in \mathbf{Z}$, and $\operatorname{Nm}(x)=a^{2}+$ $31 b^{2} \in \mathbf{Z}$. So $a \in \frac{1}{2} \mathbf{Z}$. If $a \in \mathbf{Z}$, then $b \in \mathbf{Z}$. If $a \in \frac{1}{2} \mathbf{Z}-\mathbf{Z}$, then $b \in \frac{1}{2} \mathbf{Z}-\mathbf{Z}$. This describes $\mathbf{Z}[\alpha]$; finally we check that α is in fact integral over $\mathbf{Z}: \alpha^{2}=-\frac{15}{2}+\frac{\sqrt{-31}}{2}$, and then $\alpha^{2}-\alpha=-8$.
(b) Evidently \mathfrak{m} and \mathfrak{m}^{\prime} contain (2).

Note that $\mathfrak{m m}^{\prime}=(4,2 \alpha, 2 \alpha+2, \alpha(\alpha+1))=(2)$.
Next we find the units. From the formula $N(x+y \alpha)=x^{2}+x y+4 y^{2}$, any unit has $y=0$ and $x= \pm 1$. It is evident that \mathfrak{m} is not principal.

9. Spring 2015 Morning 5

(a) Any such extension is the composite of two quadratic extensions, and quadratic extensions are all obtained by adjoining the square roots of non-squares.
(b) We need to know if every embedding $E \hookrightarrow \bar{K}$ lands in E, or in other words if every automorphism of L takes \sqrt{c} to an element of E. Now, $\sigma(c)$ is a non-square since c is a non-square, hence $L(\sqrt{\sigma(c)})=E$ if and only if $\sigma(c) / c$ is a square in L.
(c) The norm of c to $\mathbf{Q}(\sqrt{2})$ is $6(2-\sqrt{2})^{2}$. Since 6 is not a square in $\mathbf{Q}(\sqrt{2}), c$ is not a square in $\mathbf{Q}(\sqrt{2}, \sqrt{3})$.

We need to examine various $\sigma(c) / c$. For σ generating $\operatorname{Gal}(L / \mathbf{Q}(\sqrt{3})$), we find

$$
\frac{\sigma(c)}{c}=\frac{2+\sqrt{2}}{2-\sqrt{2}}=\frac{6+4 \sqrt{2}}{2}=3+2 \sqrt{2}=(1+\sqrt{2})^{2} .
$$

For σ generating $\operatorname{Gal}(L / \mathbf{Q}(\sqrt{2}))$, we find

$$
\frac{\sigma(c)}{c}=\frac{3+\sqrt{3}}{3-\sqrt{3}}=\frac{12+6 \sqrt{3}}{6}=2+\sqrt{3}=\frac{(1+\sqrt{3})^{2}}{(\sqrt{2})^{2}} .
$$

10. Spring 2016 Afternoon 4

(a) We have $A_{\mathfrak{p}} / \mathfrak{p} A_{\mathfrak{p}}=A / \mathfrak{p} \otimes_{A} A_{\mathfrak{p}}$ is the localization of A / \mathfrak{p} at the image of $A-\mathfrak{p}$, which is $(A / \mathfrak{p})-0$, which is the same as $\operatorname{Frac}(A / \mathfrak{p})$.
(b) The correspondence comes from $\mathfrak{m} \supset f(\mathfrak{p})$ and is disjoint from $f(A-\mathfrak{p})$. We have $B^{\prime} / \mathfrak{m}^{\prime}=B / \mathfrak{m} \otimes_{A}(A / \mathfrak{p})_{\mathfrak{p}}$ is the localization at a set of units, hence is isomorphic to B / \mathfrak{m}. Since B / \mathfrak{m} is a finitely generated field over K, it is actually finite over K, hence also a finitely generated $A_{\mathfrak{p}}$-module.
(c) Take a finite set of generators $\left\{b_{i}\right\}$ of B / \mathfrak{m} as an A-algebra. Since B / \mathfrak{m} is finite over $A_{\mathfrak{p}}$, they satisfy monic polynomials of degree d_{i} with coefficients over $A_{\mathfrak{p}}$. By localizing at some t, we can assume that that these coefficients all lie in A_{t}. Then the
finitely many monomials in the $\left\{b_{i}\right\}$, of degree at most d_{i} in b_{i}, generate B / \mathfrak{m} as a module over A_{t}.
(d) Since B / \mathfrak{m} is a field which is a finitely generated module over the domain $A_{t} / \mathfrak{p} A_{t}$, the latter must also be a field. To see this, we must explain why any $a \in A_{t} / \mathfrak{p} A_{t}$ has an inverse. It has an inverse in B / \mathfrak{m}, which satisfies a minimal monic polynomial over $A_{t} / \mathfrak{p} A_{t}$. Multiplying by a produces a monic polynomial of lower degree, unless already $a^{-1} \in A_{t} / \mathfrak{p} A_{t}$.

