ALGEBRA QUAL PREP: COMMUTATIVE RINGS

TONY FENG

1. Spring 2010 Morning 3

Since Q is maximal, B/Q is a field which is finitely generated over k as a ring (since *B* is). By the Nullstellensatz, this implies that *B* is a finite field extension of *k*.

Since $A/\phi^{-1}(Q) \hookrightarrow B/Q$, we deduce that $A/\phi^{-1}(Q)$ is an integral domain which is finitely over a field k. This implies that $A/\phi^{-1}(Q)$ is itself a field. To see this we just need to show that non-zero elements have inverses; multiplication by any non-zero $a \in A/\phi^{-1}(Q)$ induces an injection of finite-dimensional k-vector spaces, which must then be a bijection.

2. Spring 2010 Afternoon 3

(i) Run the usual argument for the Hilbert basis theorem, but look at the leading terms. Let $Is \subset A[[x]]$ be an ideal. The leading terms of elements of I generate an ideal \mathscr{L} in *A*; pick generators a_1, \ldots, a_n .

Run the following algorithm to find a finite set of generators for I: adjoin an element in I of minimal leading order, whose leading coefficient is not in the ideal generated by existing elements. If this terminates, then we are done. Otherwise, this leads to a set f_1, \ldots, f_m, \ldots where the leading orders of f_1, \ldots, f_m generate \mathcal{L} . Then an appropriate A[[x]]—combination of f_1, \ldots, f_m equals the leading term of f_{m+1} , contradiction.

(ii) Pick $x \notin P$. By the DCC, we have $(x^n) = (x^{n+1})$ for some *n*. Hence $x^n = y x^{n+1}$ for some $y \in A$, i.e. $x^n(xy-1) = 0$. Since $x \notin P$, the definition of prime ideal implies $xy - 1 \in P$, i.e. x is invertible mod P. This shows that A/P is a field, so P was maximal.

Let P_1, P_2, P_3, \dots be distinct prime ideals of A. Consider descending chains

$$P_1 \supset P_1 P_2 \supset P_1 P_2 P_3 \supset \dots$$

By the descending chain condition, this stabilizes, so $(P_1 \dots P_n)P_{n+1} = (P_1 \dots P_n)$. By Nakayama's Lemma this implies that $P_1 \dots P_n$ is 0 in $A_{P_{n+1}}$. But in fact we must have $P_1 \dots P_n$ generates the unit ideal in $A_{P_{n+1}}$, so this is impossible.

3. FALL 2011 MORNING 3

(i) Let x be a non-unit. If $x = x_1 x_2$ with neither x_1, x_2 being units, then we have a strict inclusion of ideals

 $(x) \subsetneq (x_2)$

TONY FENG

Applying the same reasoning to x_2 , etc. we get a chain of ideals, which must terminate.

(ii) Geometric translation: V(I) is contained in the union of finitely many irreducible components. First, we claim that if *R* is Noetherian then Spec *R* is a Noetherian topological space (DCC for closed subspaces).

We claim that a Noetherian space can only have finitely many irreducible components. First, it is easy to check that a closed subspace of a Noetherian space is Noetherian. We consider the set of closed subsets *X* which do not have this property. Suppose there is more than the empty set. By the DCC we can find a minimal element. Since it is not irreducible, it can be written as a union of two smaller closed subsets; by the minimality, these each have finitely many irreducible components, which is a contradiction.

4. Spring 2012 Morning 1

- (i) Addressed in earlier question.
- (ii) The assumption implies rsr = r, hence r(sr-1) = 0. Now note that rs is surjective, so r is surjective, hence invertible. So r(sr-1) = 0 implies sr = 1.

5. Fall 2013 Morning 3

- (a) We may check this locally. Locally, A is a DVR and this is obvious.
- (b) We must produce something in the kernel of the map $I \otimes_A J \to IJ$. Write I = (x, y), I' = (x', y'). Then $x \otimes y' x' \otimes y$ is sent to 0. It is not 0 in $I \otimes_A J$ because we can define an *A*-bilinear form on $I \times J$ which does not vanish on it.

To do this, we define an A-linear form from $I \times J$ to k = A/(x, y) which sends B(x, y') = 1, B(x, x') = 0, B(y, x') = 0, B(y, y') = 0 (with all other values forced by linearity).

6. Spring 2015 Afternoon 5

(a) There are $f_n | \dots | f_2 | f_1$ such that

$$M = \bigoplus A/(f_i).$$

(b) Suppose

$$M \cong \bigoplus A/(f_i) \cong \bigoplus A/(f'_i).$$

Since f_1 annihilates M, we have f_1 annihilates each $A/(f'_i)$, hence $f_1 | f'_1$. Similarly $f'_1 | f_1$, and then we win by induction.

7. Fall 2015 Morning 4

- (a) We say $b \in B$ is integral over A if it satisfies a monic polynomial with coefficients in A. We say B is integral over A if every $b \in B$ is integral over A.
- (b) We need *T* to satisfy a monic polynomial over *A*. Since its minimal polynomial is $a_0T^n + \ldots + a_n$, the polynomials satisfied by *T* are all multiples of $a_0T^n + \ldots + a_n$. Such can only have leading coefficient 1 if a_0 is a unit.

(c) We can view B = k[U][T]/(f) where

$$f(U,T) = a_0(U - T^{n+1})T^n + a_1(U - T^{n+1})T^{n-1} + \ldots + a_n(U - T^{n+1}).$$

The leading power of $T d_i(n+1) + i$ where *i* is such that $a_i(X)$ had the maximal degree, and *i* is maximal with this property. Furthermore, it will be a scalar.

8. Fall 2015 Afternoon 3

- (a) Write $x = a + b\sqrt{-31} \in K$. Then we must have $\text{Tr}(x) = 2a \in \mathbb{Z}$, and $\text{Nm}(x) = a^2 + 31b^2 \in \mathbb{Z}$. So $a \in \frac{1}{2}\mathbb{Z}$. If $a \in \mathbb{Z}$, then $b \in \mathbb{Z}$. If $a \in \frac{1}{2}\mathbb{Z} \mathbb{Z}$, then $b \in \frac{1}{2}\mathbb{Z} \mathbb{Z}$. This describes $\mathbb{Z}[\alpha]$; finally we check that α is in fact integral over \mathbb{Z} : $\alpha^2 = -\frac{15}{2} + \frac{\sqrt{-31}}{2}$, and then $\alpha^2 \alpha = -8$.
- (b) Evidently m and m' contain (2). Note that mm' = (4, 2α, 2α + 2, α(α + 1)) = (2). Next we find the units. From the formula N(x + yα) = x² + xy + 4y², any unit has y = 0 and x = ±1. It is evident that m is not principal.

9. Spring 2015 Morning 5

- (a) Any such extension is the composite of two quadratic extensions, and quadratic extensions are all obtained by adjoining the square roots of non-squares.
- (b) We need to know if every embedding $E \hookrightarrow \overline{K}$ lands in *E*, or in other words if every automorphism of *L* takes \sqrt{c} to an element of *E*. Now, $\sigma(c)$ is a non-square since *c* is a non-square, hence $L(\sqrt{\sigma(c)}) = E$ if and only if $\sigma(c)/c$ is a square in *L*.
- (c) The norm of *c* to $\mathbf{Q}(\sqrt{2})$ is $6(2-\sqrt{2})^2$. Since 6 is not a square in $\mathbf{Q}(\sqrt{2})$, *c* is not a square in $\mathbf{Q}(\sqrt{2},\sqrt{3})$.

We need to examine various $\sigma(c)/c$. For σ generating Gal $(L/\mathbf{Q}(\sqrt{3}))$, we find

$$\frac{\sigma(c)}{c} = \frac{2+\sqrt{2}}{2-\sqrt{2}} = \frac{6+4\sqrt{2}}{2} = 3+2\sqrt{2} = (1+\sqrt{2})^2.$$

For σ generating Gal $(L/\mathbf{Q}(\sqrt{2}))$, we find

$$\frac{\sigma(c)}{c} = \frac{3+\sqrt{3}}{3-\sqrt{3}} = \frac{12+6\sqrt{3}}{6} = 2+\sqrt{3} = \frac{(1+\sqrt{3})^2}{(\sqrt{2})^2}$$

10. Spring 2016 Afternoon 4

- (a) We have A_p/pA_p = A/p⊗_A A_p is the localization of A/p at the image of A−p, which is (A/p)−0, which is the same as Frac(A/p).
- (b) The correspondence comes from $\mathfrak{m} \supset f(\mathfrak{p})$ and is disjoint from $f(A-\mathfrak{p})$. We have $B'/\mathfrak{m}' = B/\mathfrak{m} \otimes_A (A/\mathfrak{p})_\mathfrak{p}$ is the localization at a set of units, hence is isomorphic to B/\mathfrak{m} . Since B/\mathfrak{m} is a finitely generated field over K, it is actually finite over K, hence also a finitely generated $A_\mathfrak{p}$ -module.
- (c) Take a finite set of generators $\{b_i\}$ of B/\mathfrak{m} as an A-algebra. Since B/\mathfrak{m} is finite over $A_\mathfrak{p}$, they satisfy monic polynomials of degree d_i with coefficients over $A_\mathfrak{p}$. By localizing at some t, we can assume that that these coefficients all lie in A_t . Then the

TONY FENG

finitely many monomials in the $\{b_i\}$, of degree at most d_i in b_i , generate B/\mathfrak{m} as a module over A_t .

(d) Since B/\mathfrak{m} is a field which is a finitely generated module over the domain $A_t/\mathfrak{p}A_t$, the latter must also be a field. To see this, we must explain why any $a \in A_t/\mathfrak{p}A_t$ has an inverse. It has an inverse in B/\mathfrak{m} , which satisfies a minimal monic polynomial over $A_t/\mathfrak{p}A_t$. Multiplying by a produces a monic polynomial of lower degree, unless already $a^{-1} \in A_t/\mathfrak{p}A_t$.

4