ALGEBRA QUAL PREP: REPRESENTATION THEORY

TONY FENG

These are hints/solution sketches; they are not a model for what to write on the quals.

1. FALL 2010 M2

Omitted.

2. FAll 2010 A2

(i) For each $g \in G$, we have operators T_{g} on V and T_{g}^{\prime} on V^{\prime} giving the action of g. The condition for a linear transformation $S: V \rightarrow V^{\prime}$ to be G-equivariant is that

$$
T_{g}^{\prime} S=S T_{g} \text { for all } g \in G
$$

In coordinates, this is a system of linear equations for the coordinates of S, indexed by $g \in G$. The result then follows from the fact that a linear system defined over K has a solution in L if and only if it has a solution in K. In fact more is true: the solution space over L is (solution space over K) $\otimes_{K} L$.
(ii) The statement about polynomials is proved by induction. The case $N=1$ is clear, and for the inductive step we write such a polynomial f as a polynomial in x_{1}, \ldots, x_{N-1} with coefficients in $K\left[x_{N}\right]$. For any specialization of x_{N}, we get the 0 polynomial by induction, hence all of these coefficients vanish individually for every value of x_{N}, and we conclude by induction.
(iii) We pick bases for V and V^{\prime}, and consider the determinant function on $\operatorname{Hom}_{k[G]}\left(V, V^{\prime}\right)$. It is not the zero polynomial since it has a non-zero specialization in L^{N}, therefore it has a non-zero specialization in K^{N}.

3. Spring 2011 A5

(a) Omitted.
(b) We omit the first statement. The character of V^{*} is the complex-conjugate of the character of V, since the trace of ${ }^{t} g^{-1}$ is the complex conjugate of the trace of g (using that the eigenvalues are sums of roots of unity). Therefore, $V \cong V^{*}$ is equivalent to the character being real-valued.

4. Fall 2013 M1

(a) It is a direct sum of $\mathrm{GL}_{d_{i}}$, since by Schur's Lemma there are no non-zero maps between V_{i} and V_{j} if $i \neq j<$ and only the constant map between V_{i} and V_{i}.
(b) If we can write $V=V_{1} \oplus V_{2}$ in a non-trivial way, then $V_{1} \otimes V_{2}$ and $V_{2} \otimes V_{1}$ both contribute to $V \otimes V$, showing that it has at least one irreducible constituent with multiplicity greater than 1 .

5. Fall 2011 A2

(i) Omitted.
(ii) Recall that A_{4} has 4 irreducible representations, namely 3 characters of order 3 coming from $A_{4} \rightarrow Z / 3$ (he 3-dimensional permutation representation. These inflate to irreducible representations of $\mathrm{SL}_{2}\left(\mathbf{F}_{3}\right)$. There are 3 more representations, of dimensions d_{1}, d_{2}, d_{3}, such that $d_{1}^{2}+d_{2}^{2}+d_{3}^{2}=12$. So we must have all $d_{i}=2$.

6. Spring 2013 A3

(i) One of the earliest examples is A_{5}, but we'll omit the proof of simplicity.
(ii) The character $\operatorname{det} \rho$ has to be trivial, since otherwise it would inject G into \mathbf{C}^{\times}, forcing G to be abelian. An element of order 2 in G must be sent to a matrix of order 2 of positive determinant, which can only be \pm Id. Since ρ is injective it must be - Id, but since this is central it implies G has a nontrivial center.

7. FALL 2011 M4

(1) Consider characters:

$$
\langle\chi, \chi\rangle_{H}=\frac{1}{|H|} \sum_{h \in H}|\chi(h)|^{2} \leq \frac{2}{|G|} \sum_{g \in G}|\chi(g)|^{2}=2 .
$$

Each irreducible summand of $\left.V\right|_{H}$ contributes 1, and the summands must be non-isomorphic or else there would be additional contribution from a "crossterm".
(2) Suppose V is an irreducible representation of G such that $\left.V\right|_{H}=V_{1} \oplus V_{2}$. Let $g \in G-H$. Note that $g V_{1}$ is an H-representation, since $h g V_{1}=g\left(g^{-1} h g\right) V_{1}$. So we must have $g V_{1} \cong V_{1}$ or $g V_{1} \cong V_{2}$. In the first case, V_{1} would be a G subrepresentation of V, which contradicts V being irreducible. In the second case, the previous formula shows that the character of V_{1} agrees with the character of $g V_{1}$, which contradicts V_{1} and V_{2} not being isomorphic.

8. Spring 2010 A3

Let $W \subset V$ be a G-invariant subspace. We have a section $\pi: V \rightarrow W$ which is H equivariant. Then

$$
\frac{|H|}{|G|} \sum_{g \in G / H} g \circ \pi \circ g^{-1}: V \rightarrow W
$$

is a G-equivariant projection.

9. FALL 2011 A3

We proceed by induction. Since p-groups have non-trivial centers, it suffices to show that the center has a fixed subspace. (The fixed subspace of the center is preserved by all of G.) Take an element g of the center. Since it has p-power order, it satisfies $0=g^{p^{n}}-1=(g-1)^{p^{n}}$. Since g is unipotent, it has a fixed subspace.
10. Spring 2012 M4
(a) Example: $k[\mathbf{Z} / p]$ for $k=\mathbf{F}_{p}$. This is an extension of trivial representations, as one finds by using the filtration by the augmentation ideal, but it is obviously not the trivial representation.
(b) This follows from a previous problem.

11. Spring 2016 M3

(a) One definition is $\mathbf{C}[H] \otimes_{\mathbf{C}[G]} \rho$.
(b) Use that the trace of a tensor product is the product of the traces, and the criterion for irreducibility in terms of characters.
(c) By Frobenius reciprocity

$$
\operatorname{Hom}\left(V \boxtimes W, \operatorname{Ind}_{G}^{G \times G} 1_{G}\right)=\operatorname{Hom}_{G}\left(V \otimes W, 1_{G}\right)=\operatorname{Hom}_{G}\left(V, W^{*}\right)
$$

So this Hom space has dimension 0 or 1 , and 1 if and only if $V \cong W^{*}$ as G-representations.

12. FALL 2016

(i) We use Mackey theory to analyze

$$
\operatorname{Hom}_{G}\left(\operatorname{Ind}_{Q}^{G} \psi, \operatorname{Ind}_{Q}^{G} \psi\right)=\operatorname{Hom}_{Q}\left(\psi, \operatorname{Res}_{Q}^{G} \operatorname{Ind}_{Q}^{G} \psi\right)
$$

Now, $\operatorname{Res}_{Q}^{G} \operatorname{Ind}_{Q}^{G} \psi$ is a direct sum of ψ^{g} for $g \in G / Q$, where $\psi^{g}(q)=\psi\left(g q g^{-1}\right)$. Thus the induced representation is reducible if and only if $\psi^{g}=\psi$ for some $g \in$ $G-Q$. Since Q has index p, this implies the result for all g.
(ii) Let V be an irreducible representation of G. Restrict to Q and take an irreducible summand, say ψ. We have a non-zero $\operatorname{map}_{\operatorname{Ind}}^{Q} \psi \rightarrow V$ by Frobenius reciprocity, which is surjective by irreducibility of V. If $\operatorname{Ind}_{Q}^{G} \psi$ is irreducible, this is an isomorphism. Otherwise ψ extends to G, so $\operatorname{Ind}_{Q}^{G} \psi=\psi \otimes \mathbf{C}[G / Q]$, which is a direct sum of characters.

