
ALGEBRA QUAL PREP: PROBLEMS ON MODULES AND HOMOLOGICAL
ALGEBRA

TONY FENG

These are hints/solution sketches for the problems. They are not a model for what
to write on the quals.

1. FALL 2010 A4

(i) Take a presentation Am → An →M . Since Hom(−, N ) is left exact, we get a SES

0→HomA(M , N )→HomA(A
n , N )→HomA(A

m , N )

The presentation induces a presentation B ⊗A Am → B ⊗A An → B ⊗A M . This
induces a diagram

0 HomA(M , N )⊗A B HomA(An , N )⊗A B HomA(Am , N )⊗A B

0 HomB (M ⊗A B , N ⊗A B ) HomB (An ⊗A B , N ⊗B ) HomB (Am ⊗A B , N ⊗A B )

Using B ⊗A Am ∼= B m , we can identify the second and third vertical arrows as iso-
morphisms. Hence the first one is as well, by the 5 Lemma.

(ii) The splitness is equivalent to HomA(M ′′, M ) → HomA(M ′′, M ′′) being surjective
(consider a pre-image of Id ∈ HomA(M ′′, M ′′)). This surjectivity can be checked
locally, i.e. it is enough to know that HomA(M ′′, M )m → HomA(M ′′, M ′′)m for all
maximal ideals m. By (i), we have

HomA(M
′′, M )m ∼=HomAm

(M ′′
m, Mm)

and similarly for the other term, so this localized surjectivity is the assumption.

2. FALL 2012 M1

We have
0→ ker fA→ Zm → Im ( fA)→ 0.

Since fA is a submodule of Zn , it is free. Hence (really only using the projectivity) we
have Zm ∼= ker fA

︸ ︷︷ ︸

Za

⊕ Im ( fA)
︸ ︷︷ ︸

Zb

.

By the normal form for submodules of a module over a PID, the map Im ( fA) ,→ Zn

can be diagonalized, hence Zn ∼= Zb ⊕Zc with Im ( fA)∼= Zb mapping diagonally to Zb . It
is clear that the torsion of coker fA is the torsion of the cokernel of this map Zb → Zb ,
and also clear that the torsion of coker fAt is the torsion of the transposed map, which
is the same.

1



2 TONY FENG

3. FALL 2013 A3

(a) Let N be an A-module. If N ⊗A B = 0, then N ⊗A B/mB = 0. But we have N ⊗A A/m ,→
N ⊗A B/m since A/m ,→ B/m and N is flat, so then also N ⊗A A/m= 0.

If N were finitely generated, Nakayama’s lemma would imply that N = 0. If N
is not finitely generated, pick a finitely generated submodule N ′ ,→N . Then B ⊗A

N ′ ,→ B ⊗A N by flatness. Now the earlier argument implies that B ⊗A N ′ = 0 for all
such N ′. But every element of B ⊗A N is in the image of such a map, so B ⊗A N = 0.

(b) The fiber over p ∈ Spec A in Spec B is Spec (B⊗Ap/p). If this is empty then B⊗Ap/p=
0 while Ap/p 6= 0. That proves =⇒ .

For ⇐= , consider a module N over A. Pick m a maximal ideal of A such that
Nm 6= 0, and let n ∈ Spec B map to m. Since Bn → Am is local, it is faithfully flat by
(a), hence Nm⊗Am

Bn
∼=N ⊗A Bn 6= 0, hence N ⊗A B 6= 0.

(c) The condition M ⊂M ′ is equivalent to M ′ =M +M ′. Hence we reduce to checking
an equality of submodules of A holds if and only if it holds after tensoring up to B .
This follows from applying the definition of faithful flatness to the quotient.

4. SPRING 2015 Q2

(i) For (i), we use that flatness can be checked locally. Since Dedekind domains are
DVRs locally, the classification of finitely generated modules over a DVR shows
that the claim is true for finitely generated modules. A torsion-free R -module is
a filtered colimit of finitely generated torsion-free R -modules, and since filtered
colimits preserve exactness this shows that torsion-free R -modules are flat.

Consider I = (x , y )⊂R =C[x , y ]. We have I ,→R , but I ⊗R I → I ⊗R R = I is the
multiplication map, and we know it’s not injective (see the previous homework!).

(ii) Use the short exact sequence

0→ I →R →R/I → 0.

Tensoring with R/J , we get

0→ Tor1(R/I , R/J )→ I ⊗R R/J →R/J →R/I ⊗R/J → 0.

This shows that Tor1(R/I , R/J )∼= ker(I /I J →R/J ), which is I ∩ J /I J . If I ∩ J = I J ,
then, using that the local rings of a Dedekind domain are DVRs, we find that we
must have either I or J is the unit ideal at each localization. This implies I + J = 1.

For a counterexample with R = C[x , y ], we can take I = (x ) and J = (y ). Then
I ∩ J = (x y ) and I J = (x y ), yet I + J = (x , y ).

5. SPRING 2010 M5

(a) Any complex with a chain homotopy hd +d h = Id has vanishing homology, since
for any cycle x we have x = hd x +d h x = d (h x ).

Conversely, suppose (F∗, d ) is exact. Since F0 is free, we can find a section h0 : F0→
F1. We proceed by induction to define hi : Fi → Fi+1 with the desired property:

d hi (x ) = x −hi−1d .
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Since d (x −hi−1d x ) = 0, it is in the image of Fi by exactness. Hence we can find hi

with the desired property.
(b) For the complex Hom(F∗, M )we also have a chain homotopy h∗ with these proper-

ties.
(c) It suffices to to give a counterexample to (b). Consider

0→ Z
p
−→ Z→ Z/p → 0

as a short exact sequence of Z-modules. Applying Hom(−, Z/p ) gives

0→ Z/p → Z/p
0−→ Z/p

which is not exact.

6. FALL 2011 M5

(i) Use

. . .→ Z/p 2 p
−→ Z/p 2 p

−→ Z/p 2→ 0.

Applying HomZ/p 2 (−, Z/p Z), we get

Z/p
0−→ Z/p

0−→ . . .

so we find Exti
Z/p 2 (Z/p Z, Z/p Z) = Z/p Z for all i .

(ii) Use Baer’s criterion. We want to show that for any I ⊂R , the induced map HomR (R , M )�
HomR (I , M ) is surjective. But this is obvious in our case, with M = Z/p 2Z.

Why is this enough? In general, we need to show that for any P ,→Q , any map
P →M can be extended to a map Q →M . Consider a maximal submodule Q ′ of
Q to which it can be extended, say to f : Q ′→M . If Q ′ 6=Q , take x ∈Q −Q ′. We
have an ideal I := {r ∈ R : r x ∈Q ′}, and a map g : I →M . We can extend this to a
eg : R →M , and use to define a map ef : (Q ′+R x )→M as follows:

ef (q + r x ) = f (q ) + eg (r ).

An injective resolution for Z/p over Z/p 2 is

Z/p 2 p
−→ Z/p 2 p

−→ Z/p 2→ 0.

Applying HomZ/p 2 (Zp ,−)we get

Z/p
0−→ Z/p

0−→ . . .

as before.

7. SPRING 2012 M5

(a) First we establish the result for finitely generated A. In that case we have a short
exact sequence

0→R → F → A→ 0

where R ∼= Zm , F ∼= Zn . Tensoring with C∗, we get a short exact sequence of com-
plexes (exactness because C∗ is free)

0→R ⊗C∗→ F ⊗C∗→ A⊗C∗→ 0.
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The LES in homology then reads

Hn (C∗⊗R )→Hn (C∗⊗ F )→Hn (C∗⊗A)→Hn−1(C∗⊗R )→Hn−1(C∗⊗ F )→ . . .

Since R and F are free, we have Hn (C∗⊗R )∼=Hn (C∗)⊗R and Hn (C∗⊗F )∼=Hn (C∗)⊗F .
By right exactness of tensor product,

Hn (C∗)⊗ F

Hn (C∗)⊗R
∼=Hn (C∗)⊗ (F /R )∼=Hn (C∗)⊗A.

Also, by the LES of tensoring 0→R → F → A→ 0 with Hn−1(C∗), we have

ker: Hn−1(C∗)→R →Hn−1(C∗)⊗ F = Tor1(Hn−1(C∗), A).

(b) Let A =Q/Z. By (a) we know Hn (C∗⊗A) = 0 unless n = 0, 1. For n = 0, it is H0(C∗)⊗Z

Q/Z∼=Q/Z. For n = 1, it is TorZ
1 (Z/5; Q/Z)∼= Z/5Z.

8. SPRING 2013 M2

(i) We start building the resolution. The kernel of Z[t ] → Z/2 is (2, t ). So we take
Z[t ]⊕2→ Z[t ] sending generators to 2, t . The kernel is then generated by the vector
�

t
−2

�

. Thus we build the resolution

0→ Z[t ]

 

t
−2

!

−−−→ Z[t ]⊕2

�

2 t
�

−−−−→ Z[t ]

(ii) Apply HomR (−, Z/4). The above becomes

Z/4

 

0
−2

!

−−−→ Z/4⊕2

�

2 0
�

−−−−→ Z/4

Then we find Ext0 = Z/2, Ext1 = Z/2⊕Z/2, and Ext2 = Z/2.

9. FALL 2015 M2

(a) We argue by induction on i . The result is obvious for i = 0. Take a surjection R n →
M , with kernel M ′ ⊂ R n . Since R is Noetherian, we also get that M ′ is finitely gen-
erated, hence Tori−1(M ′, N ) is finite. By the LES we get Tori−1(M ′, N )∼= Tori (M , N ),
so we win.

(b) We claim that TorR
i (M , N ) is killed by multiplication by #M and #N . This is clearly

sufficient. Multiplication by n ∈ Z on M induces a map [n ]i : TorR
i (M , N )→ TorR

i (M , N )
by functoriality, and we claim that this is multiplication by n . This follows by the
fact that Tori form a universal family of δ-functors (explicitly prove this by “dimen-
sion shifting”). The claim evidently implies what we want.

(c) Take the sequence
0→ I →R →R/I → 0.

Tensor with R/I :

0→ Tor1
R (R/I , R/I )→ I ⊗R (R/I )→R ⊗R (R/I )→ (R/I )⊗R (R/I )→ 0.
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Since the map R⊗R (R/I )→ (R/I )⊗R (R/I ) is an isomorphism, we find Tor1
R (R/I , R/I )∼=

I ⊗R (R/I )∼= I /I 2.
For any prime p ⊃ I , we have (I /I 2)p ⊃ Ip/pIp. By Nakayama’s Lemma (and the

noetherianity of R ), we deduce that Ip = 0 for all p ∈ V (I ). If p 6⊃ I then obviously
Ip = 0. So we find that {p ∈ Spec R : Ip = 0} = V (I ) is closed. On the other hand, the
condition that Iq = 0 is open. So V (I ) is an open and closed subset of Spec R . If I
is non-zero then it is a proper subset, hence Spec R is disconnected, and then R is
not a domain.
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