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1. Recap

Let G be a reductive group over Q (with no split torus in its center), and X a locally
symmetric space attached to G. Let π be a cohomological (tempered at ∞) automorphic
representation. We consider the cohomology H∗(X,Q)π. Now, π is associated to a coadjoint
motive M/Q with dimM = dimG, and we set

Λmot := H1
mot(Q,Q(1))int.

This is a Q-vector space related to L(Ad, π, 1).
The conjecture predicts that there is an action of ∧∗Λ∨mot on H∗(X,Q)π.
We construct this action at the level of Betti/étale realizations. Namely, we have regulator

maps
Λmot,C

Λmot

Λmot,Qp

Last time we constructed an action of ∧∗Λmot,C on H∗(X,C)π and gave evidence that it
preserves the Q-structures. This time we want to construct an action of ∧∗(Λ∨mot,Qp

) on
H∗(X,Qp)π and give evidence that it preserves the Q-structures.

2. Derived Hecke algebra

2.1. Summary. Let S = Z/pnZ. Pick another prime q 6= p. Let Gq = G(Qq) and
Kq = G(Zq). The derived Hecke algebra is

DHAq,S := Ext∗SGq
(S[Gq/Kq], S[Gq/Kq])
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where the Ext is taken in the category of smooth Gq-modules. In degree 0 this is the
usual Hecke algebra. This acts on H∗(X,S). Last time we explained concretely what the
operators look like. We have

Ext∗SGq
(S[Gq/Kq], S[Gq/Kq]) ∼=

⊕
gi∈Kq\Gq/Kq

H∗(Kq ∩ giKqg
−1
i , S).

An element (gi, α ∈ H∗(Kq ∩ giKqg
−1
i , S)) acts on H∗(X,S) by sending x ∈ H∗(X,S) to

π2∗(α̃ ^ π∗1(x)), where α̃ is the pullback of α to X(Kq ∩ giKqg
−1
i ):

X(Kq ∩ giKqg
−1
i ) X(Kq ∩ giKqg

−1
i )

X X

^α̃

π1 π2

Finally, there is a Satake isomorphism for q ≡ 1 (mod pn),

DHAq,Z/pn(G) ∼= DHAq,Z/pn(T )W .

2.2. Key idea. We want to summarize the key idea for analyzing derived Hecke operators.
To be explicit, we consider the example G = ResL/Q PGL2. (Then δ is the number of
complex places of L.)

Let q be a prime of L and
α : F×q → Z/pn

a homomorphism.
Then Tq,α comes from the diagram

X0(q) X0(q)

X X

^α̃

π1

π2

Here α̃ comes from the composite homomorphism

Γ0(q)→ F×q
α−→ Z/pn

sending (
a b
c d

)
7→ a (mod q).

Then we obtain a derived Hecke operator

Tq,α : Hj(X,S) 7→ Hj+1(X,S).

How do you know that it is non-zero? (The issue is the step where you cup with α̃.) Note
that after passing to a characteristic 0 field, the derived Hecke operators must vanish for
weight reasons, since they are Galois-equivariant.

2.2.1. Abstract situation. Suppose you have a topological space Y with a free action of a
p-group G (imagine G = Z/pn). You can consider the action of S[G] on H∗(Y, S). Also,
there is a map H∗(G,S)→ H∗(Y/G, S), so H∗(G,S) acts on H∗(Y/G, S). The two actions
are sort of dual. If Y is contractible, then the first action is trivial while the second is free.
If Y is G, then the first action is free and the second is trivial. Roughly, if one action is
“large” then the other one is “small”.
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Example 2.1. In our example G = Z/pn and T is an intermediate covering of X1(q) so
that Y/G = X0(q).

X1(q)→ Y
Z/pn−−−→ X0(q).

Call Y = X1(q)∗. By the principle above, to show that^ α̃ (which is like the second action)
is non-zero, you need to know that the action of S[Z/pn] on H∗(X1(q)∗, S) is far from free.

This issue comes up in another context, namely the Taylor-Wiles method. This works by
adding the same auxiliary level structure. In the original incarnation you want to prove that
the same action is free; those settings all involve δ = 0. Calegari-Geraghty found a way to
adapt this method when δ > 0, and it involves understanding exactly how the action fails to
be free. You need a way to “certify” that the action is not free, and a way to get that is to
factor the action through a Galois deformation ring. In concrete terms, this means that if
you have a Galois representation with nebentypus, then you can determine the nebentypus
locally. You can understand the Galois deformation ring using Galois cohomology, and
choose q so that the action is not very free. This is the key point that lets you show that the
operators are non-zero, and the input is existence of Galois representations with expected
local properties.

2.3. Statement of main theorem. We now give a precise statement of our main theorem.
We make the following assumptions:

• We assume that G is simply-connected and split. Let T be a maximal split torus
for G and T∨ be a maximal split torus for G∨.

• Assume that H∗(X,Zp) is torsion-free. (Later we want to say something about
torsion. When δ > 0 there is torsion that doesn’t lift to characteristic 0.)

• “There are no congruences between π and other forms of the same level”. More
precisely, letT be the Hecke algebra forX. TheT-action on π give a homomorphism
T→ Z. Let m = ker(T→ Zp). We assume that Tm

∼= Zp.
• There exist Galois representations for cohomology class for G with the expected

properties. For π, the representation is of the form

ρ : GQ → G∨(Zp).

• ρ should have large image (large enough for the Taylor-Wiles method).
• All local deformation rings for ρ at bad places are formally smooth.

The image of the p-adic regulator should be

Λmot,Zp = H1
f (Q,Ad∗ ρ(1)).

This is a Zp-module.

Definition 2.2. For a fixed n, we define a subspace

T̃Z/pn ⊂ End(H∗(X,Z/pn))

by taking the subgroup generated by Tq,α for all q and α. We then define

T̃ ⊂ End(H∗(X,Zp)π)

to be the subspace which at each n lands in T̃Z/pn .

The main theorem is then:

Theorem 2.3. Under all our assumptions, H∗(X,Zp)π is free over T̃, and there is an
identification T̃ ∼= ∧∗(Λ∨mot,Zp

), so both are free modules of rank δ over Zp.
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Actually a crucial part of the theorem is the following characterization of the isomorphism.
Let q ≡ 1 (mod pn) be a prime. Let Tq = T (Z/q). Suppose ρ(Frobq) is conjugate to a

regular element of T̂ (Zp). Choose such an element tq ∈ T̂ (Zp). From the data of q and tq,
we can define maps

(DHAq,Z/p
n)

(1)
m

Hom(Tq,Z/p
n)

Λ∨mot,Zp
/pn

H

G

The characterization is: for all n ≥ 1, there exists N � n such that for q ≡ 1 (mod pN ),
the isomorphism is given by explicit maps H and G in the above diagram. (We think that
we can take N = n.)

The map H comes from the Satake isomorphism. What is the map G? We can conjugate
ρ so that ρ(Frobq) = tq. This gives a class in

H1(Qq,Ad ρ/pn)

H1
unr(Qq,Ad ρ/pn)

∼= Hom(Tq,Z/p
n).

For α ∈ Hom(Tq,Z/p
n), we get G(α) ∈ Λ∨mot,Zp

/pn by restricting to Qq and then using
local duality: G(α) sends β ∈ H1(Qq,Ad∗ ρ(1)) to 〈β|Qq

, image of α〉.
The main point of the proof is as follows. Let’s consider G = PGL2, so we have the

diagram
X0(q) X0(q)

X X

We have X0(q) = X1(q)∗/∆q, where ∆q
∼= Z/pn. We need to understand the action of

H∗(∆q, S) on H∗(X0(q), S). We can view

H∗(X0(q), S) = HomS[∆q ](Chains(X1(q)∗), S).

In these terms, the action is the natural one of ExtS[∆q ](S, S) on HomS[∆q ](Chains(X1(q)∗), S).
The Taylor-Wiles-Calegari-Geraghty method shows how to choose q such that the action of
S[∆q] on Chains(X1(q)∗), S) “approaches a limit” (the acting thing becomes a polynomial
algebra, and the chains become concentrated in 1 degree).

3. Weight one forms

3.1. Numerics. We have constructed an action of Λ∨mot,Qp
on H∗(X,Qp)π. We want to

give evidence that it preserves the Q-structure.
Let X = X1(N), viewed as a scheme over Z[1/N ]. Let ω be the weight one line bundle,

so ω2(−cusps) ∼= KX . Let g =
∑
anq

n be a weight one cuspidal Hecke eigenform for
X. The derived Hecke algebra consists of operations as follows: if q ≡ 1 (mod pn), and
α : F∗q → Z/pn, then we get a derived Hecke operator

Tq,α : H0(XZ/pn , ω)→ H1(XZ/pn , ω)

as explained last time.
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Let g′ =
∑
anχ(n)−1qn where χ is the Nebentypus of g. There is a pairing

H0(XZ/pn , ω(cusps))×H1(XZ/pn , ω)→ Z/pn.

So I can form
〈Tq,αg, g′〉 ∈ Z/pn.

The conjecture makes a prediction for these numbers. Let E = Q(an). There is a Galois
representation

ρg : GQ → GL2(E)

attached to g. From this we get a p-adic representation

ρg,p : GQ → GL2(Ep).

Then Λmot,Qp
= H1

f (Q,Ad ρg,p(1)). The representation is trivialized by restricting to H/Q.
Then

H1
f (Q,Ad ρg,p(1)) = (O∗H ⊗Ad ρg,p)

Gal(H/Q).

The motivic rational structure is

Λmot = (O∗H ⊗Ad ρg)
Gal(H/Q)

which is a rank 1 E-vector space, say Eu. (The rank 1 is because this behaves like the
situation δ = 1.)

The conjecture (that ∧∨mot,Qp
preserves Q-structures) implies that (in a rough form)

〈Tq,αg, g′〉 ∼ α(reduction of u mod q).

We have a numerical verification joint with M. Harris [HV], and now a proof joint with
Darmon, Harris and Rotger.

We describe the statement more precisely, in a special case: suppose g arises from a
complex cubic field L. In this case ζL(s) = ζ(s)L(s, g), Λmot = O×L ⊗Q. Fix u ∈ O∗L. The
conjecture implies that for q ≡ 1 (mod pn) inert in Q(

√
discL), so there is a unique degree

1 prime of L above q, which we denote q,

〈Tq,αg, g′〉 = Q∗ · α(u mod q).

The rational number is independent of p and q.

3.2. Proof. We can prove the prediction for all g with dihedral Galois representation, as-
suming n = 1 and “the Merel constant for u is non-zero mod p.” In other words, under these
assumptions we exhibit a unit satisfying this condition.

The Merel constant is:

u :=

(q−1)/2∏
i=1

i−8i ∈ (Z/q)∗.

We want to produce some unit such that

〈Tq,αg, g′〉 ∼ α(unit mod q).

We consider the modular curve X1(N), and let X1(N, q) be the modular curve obtained
by adding Γ0(q) structure to X1(N). The homomorphism α : Γ0(q)→ Z/p induces a coho-
mology class in H1

ét(X0(q),Z/p) which we push forward to H1(X0(q)Z/p,O). We want to
compute the (Serre duality) pairing

〈π2∗(π
∗
1g ^ α)︸ ︷︷ ︸
∈H1(ω)

, g′〉X1(N) = 〈π∗1g ^ α, π∗2g
′〉X1(N,q).



6 LECTURES BY AKSHAY VENKATESH, NOTES BY TONY FENG

Now,

〈π∗1g ^ α︸ ︷︷ ︸
H1(ω)

, π∗2g
′︸︷︷︸

H0(ω(−cusps))

〉X1(N,q) = 〈 π∗1g ^ π∗2g
′︸ ︷︷ ︸

weight 2 cusp form for X1(N, q)

, α̃︸︷︷︸
H1(O)

〉 ∈ Fp.

Finally, since α̃ is pulled back from X0(q), the above is

〈projX1(N,q)
X0(q) (π∗1g ^ π∗2g

′), α̃︸︷︷︸
H1(O)

〉

Merel showed that if G is the reduction mod p of the weight 2 Eisenstein series on X0(q),
which becomes a cusp form, then

〈G, α̃〉 = α(v)

where v =
∏(q−1)/2
i=1 i−8i is the Merel constant.

In conclusion we want

〈projX1(N,q)
X0(q) (π∗1g ^ π∗2g

′), α̃︸︷︷︸
H1(O)

〉 ∼ α(unit mod q).

The proof is by a theta correspondence. It is an important aspect that Merel’s constant
shows up on the right hand side. (The proof was inspired by ideas in Lecouturier’s thesis,
although it doesn’t directly use any of the results.)

Remark 3.1. The α̃ is an Eisenstein class, meaning that it is killed by the Eisenstein ideal
(concretely, this means that every Hecke operator acts by its degree).

(Assume p ≥ 5.) Let SSq be the set of supersingular elliptic curves over Fq. Let X be
the set of functions SSq → Z. It has Hecke operators T`, and there is an inner product

〈·, ·〉 : X ⊗X → Z[1/6]

which is self-adjoint for this Hecke action:

〈T`f, g〉 = 〈f, T`g〉.
Let M2(q) and S2(q) be the spaces of weight 2, respectively weight 2 cuspidal, modular
forms for Γ0(q). These have q-expansions of the form∑

anq
n, a0 ∈

1

2
Z, ai ∈ Z.

The Hecke algebras for X and M2(q) are isomorphic. There is a map

Θ: X ⊗T X →M2(q)

sending

f ⊗ g 7→ 〈f, 1〉〈g, 1〉
2

+
∑
m≥1

〈Tmf, g〉qm.

This is a Hecke-equivariant isomorphism after inverting 2 and 3.
The basic point is that the class α̃ will become more comprehensible when transported

to X ⊗T X. There is a way of making a function on CM points, which becomes a function
in X ⊗T X supported on the reduction mod q of CM points, and makes the pairing into

〈Θ
(

explicit element supported
on reduction of CM points

)
, α̃〉 = 〈

(
explicit element supported
on reduction of CM points

)
,Θ∗α̃〉.

Here Θ∗ is the dual map
(S2(q)/p)∨ → [(X ⊗T X)0/p]∨.



AUTOMORPHIC FORMS AND MOTIVIC COHOMOLOGY III 7

The claim is that α̃ is sent to the element E ⊗ 1 + 1 ⊗ E where E is a specific element
of X (identified with its own dual via the canonical pairing), namely the function from
supersingular elliptic curves to F∗q2 given by

E =
∆q+1

E12
q+1

.

Morally this is “∆ evaluated on the supersingular points”. This relates the pairing to a pair-
ing between reduction of CM points mod q and something in ∆ (modular units), hence the
reduction of elliptic units mod q. The calculation involves the product over all supersingular
elliptic curves of ∆q+1

E12
q+1

, and this is the Merel constant v.
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