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1. Recap

We begin by reviewing the discussion from last time. Let G be a reductive group over
Q, whose center has no split torus. Let X be the locally symmetric space for G.

Let π be a cohomological, cuspidal automorphic representation which is tempered at ∞.
We assume that at almost all places its Hecke eigenvalues are in Q. This allows us to define
H∗(X;Q)π.

Remark 1.1. By “cohomological” we mean for the trivial local system. I believe the story
extends for arbitrary local systems, but I have not thought about this.

The starting point was the following numerology:

dimHq+j(X,Q)π =

(
δ

j

)
dimHq(X,Q)π

where δ = rankGR − rankK∞ and 2q + δ = dimX. The point is that the betti numbers
are binomial coefficients centered around the middle cohomology of X.

We proposed the following explanation of this numerology. Let Λmot be a certain motivic
cohomology group; it is a Q-vector space. Under Beilinson’s conjecture rank Λmot = δ.

Conjecture 1.2. There is a free action of Λ∨mot on H∗(X,Q)π.

There are complex and p-adic regulators

Λ∨mot,C

Λ∨mot

Λ∨mot,Qp
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Here Λ∨mot,C is a C-vector space and Λ∨mot,Qp
is a Qp-vector space.

Our goal is as follows:
(1) Make an action of Λ∨mot,C on H∗(X,C)π, and give evidence that it preserves the

Q-structure.
(2) Make an action of Λ∨mot,Qp

on H∗(X,Qp)π, and give evidence that it preserves the
Q-structure.

What does it mean to “give evidence? The difficulty is that the motivic cohomology is
hard to access. However, Beilinson’s Conjecture makes a prediction about it, namely that
its volume is related to special values of L-functions. Thus, our Conjecture plus Beilinson’s
Conjecture makes a concrete (unconditional) numerical prediction relating periods to special
values of L-functions. This is what we will check; it turns out to be sort of interesting
independent of its source.

From π we can make a coadjoint motive M/Q with Q-coefficients, which has the fea-
ture that the Galois action on the étale cohomology of M should be equal to the Galois
representation for π composed with the Ad∗ of the dual group (or some slight modification
thereof). In particular dimM = dimG. Then Λmot = H1

mot(M,Q(1)). This is the motivic
cohomology group that shows up in Beilinson’s conjecture for L(Ad, π, 1).

Example 1.3. For GLn: if Y is the n-dimensional motive attached to π, thenM = Y ⊗Y ∨
and Λmot = Ext1(Y, Y (1)).

2. The Betti realization

2.1. Numerical consequences of the conjecture. Since we want to extract numerics,
put a metric on everything: fix an invariant, non-degenerate symmetric bilinear form

LieG× LieG→ Q.

(If G is semisimple we could take the Killing form. In general, we want the same sort of
definiteness properties that the Killing form enjoys.)

This gives a Riemannian metric on X. This induces an inner product on the cohomology
groups H∗(X,R)π, by identifying them with spaces of harmonic forms. (Recall that π is
cuspidal.) This gives a hermitian inner product on aG. (To remind you, aG is the Lie algebra
of the split part of a fundamental Cartan, tensored with C.)

Assume that Hq(X,C)π = 1 for simplicity.

Remark 2.1. We use A ∼ B to mean that two numbers are equal up to (usually) powers
of π and algebraic numbers.

The action of Λmot,C, which we constructed last time, came from an identification
Λmot,C

∼−→ aG and an action of ∧∗a∨G on (g,K)-cohomology.

Fact 2.2. If h ∈ Hq(X,C)π is in minimal degree, and ν ∈ ∧ja∨G, then we have ν ·h ∈ Hq+1

with
||ν · h|| = ||ν|| · ||h||.

This comes down to a computation in (g,K)-cohomology; it is not global.
In the example from last time where the action was constructed by Hodge ∗, the claim

boils down to saying that the Hodge ∗’s preserve norms.
Now take h ∈ Hq(X,Q)π, which is in minimal degree. For ν ∈ ∧δΛ∨mot (→ ∧δa∨G), we

have h′ := ν · h ∈ Hq+δ(X,R)π. The Conjecture predicts that h′ ∈ Hq+δ(X,Q)π.
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We want to consider the (Poincaré duality) pairing 〈h, h′〉. Under the conjecture this is
in Q. Choose harmonic representatives ωh and ωh′ for h and h′. Since ωh and ∗ωh′ lie in
the same line, we have ∫

X

ωh ∧ ωh′ =

∫
〈ωh, ∗ωh′〉

= ||ωh|| · ||ωh′ ||
= ||h|| · ||ν · h||
= ||h||2 · ||ν||.

So we see that the Conjecture implies that for ν ∈ ∧δΛ∨mot and h ∈ Hq(X,Q)π,

||ν|| · ||h||2 ∈ Q. (2.1.1)

Let’s reformulate this a bit. Choose ω a harmonic representative of h in Hq(X,R)π.
Choose a γ ∈ Hq(X), with

∫
γ
ω 6= 0. Then

h =
[ω]∫
γ
ω
∈ Hq(X,Q)π =⇒ ||h||2 =

〈ω, ω〉
(
∫
γ
ω)2

which allows us to rearrange (2.1.1) as

(
∫
γ
ω)2

〈ω, ω〉
∈ Q||ν||.

In summary, the conjecture implies that for ω a harmonic representative for a class in
Hq(X,R)π we should have

(
∫
γ
ω)2

〈ω, ω〉
∈ Q · ||ν||.

Now, ||ν|| is vol(Λmot)
−1 where for Q-vector space L with metric 〈, 〉 on L⊗R we define

vol(L) =
√

det〈xi, xj〉 ∈ C∗/Q∗

where xi is a Q-basis. By Beilinson’s conjecture this is related to L(Ad, π, 1).
This is the most accessible invariant, but more generally the conjecture tells you about

the “period matrix” of H∗(X,Q)π.

2.2. Automorphic periods. The study of quantities like

(
∫
γ
ω)2

〈ω, ω〉

falls under the theory of automorphic periods. In many cases this theory tells you that it is
the value of an L-function.

For H ⊂ G a reductive subgroup, we get an inclusion of locally symmetric spaces XH ⊂
X. There are many examples of pairs (G,H) such that∫

XH

(automorphic form on G) ∼ L-function

where the particular L-function depends on the situation.
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Example 2.3. The original example was found by Hecke. For G = PGL2 /Q and H the
diagonal GL1, and XH is the geodesic from 0 to i∞. For f a weight 2 holomorphic form,
we can form

ω = f(z) dz

and the period integral is then ∣∣∫∞
0
ω
∣∣2

〈ω, ω〉
=

L(1/2, f)2

L(1,Ad, f)
.

If we can find a subgroup H such that dimXH = q, then we can take γ to be the
fundamental class of XH . In that case we get a formula from the theory of automorphic
periods, which looks like

(
∫
γ
ω)2

〈ω, ω〉
=

L?(π)

L(1,Ad, π)

The L?(π) depends on (G,H). The content of the conjecture is that it should essentially
equal to the ||ν|| which is prescribed by Beilinson’s conjecture.

There is a nice class of cases, i.e. pairs (G,H) where you have a period formula with
dimXH = q. These are the Gross-Prasad cases:

• G = SOn×SOn+1, H = SOn (diagonal)
• G = PGLn×PGLn+1, H = GLn (diagonal)
• Restriction of scalars of the above from an imaginary quadratic field.

Theorem 2.4 (Prasanna, V). The prediction is true in all cases, up to
√
Q:

1

vol(Λmot)
∼√Q

(
∫
γ
ω)2

〈ω, ω〉
assuming Beilinson’s conjecture, Ichino-Ikeda conjecture (known in GLn cases), and that
archimedean integrals are equal to the expected local L-factor at ∞.

I want to emphasize that the equality is somewhat miraculous: in each case there is a
cancellation that has to happen. In fact I didn’t believe it at first. The main point is that
when you explicate Beilinson’s conjecture for Λmot and for L?, various factors cancel.

2.3. Beilinson’s conjecture for L(Ad, π, 1). Let M be the coadjoint motive from before.
Beilinson’s conjecture is formulated as follows. Consider HB(M,R)F∞ (the subspace fixed
by complex conjugation). You consider the exact sequence

0→ F 1HdR(M)⊗Q R
Re−−→ HB(M,R)F∞ → HB(M,R)WR → 0.

Also note that HB(M,R)WR gives aG after tensoring with C.
These have rational structures. Denote by L,M,R the left, middle, and right terms in

the exact sequence. For L the rational structure comes from algebraic de Rham cohomology,
while forM it comes from taking Q-coefficients. For R, it comes from a regulator map from
motivic cohomology: Λmot → HB(M,R)WR . Thus we have an isomorphism of determinants,
but the Q-structures don’t match:

detM
∼−→ detL⊗ detR.

Beilinson’s conjecture predicts that

L(1,Ad, π) detM → detL⊗ detR
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preserves rational structure. We can use this to compute vol(Λmot). There is a natural way
to choose metrics, which we’ll omit. So taking inner products gives

L(1,Ad, π)2 ∼Q vol(Λmot)
2 vol(F 1HdR)2

(since M has a rational polarization) hence

L(1,Ad, π) ∼√Q vol(Λmot) · vol(F 1HdR)

so what we need is that L?(π) ∼ vol(F 1HdR).

Remark 2.5. Note that up to
√
Q∗, the quantity vol(F 1HdR) is an invariant of the Q

Hodge structure. The point is that complex conjugation gives an isomorphism

F 1HdR(M)⊗C ∼= HdR/F
0HdR ⊗C.

The volume measures the effect of complex conjugation on rational structures.

In all the Gross-Prasad cases, L? is critical and is predicted by Deligne to be a period C±
of some motive attached to π. In every case we checked that C± ∼Q∗ vol(F 1HdR). This is
done case-by-case as an exercise in Hodge linear algebra.

2.4. Refinements.

2.4.1. Integral structures. We’d like to have an integral version, accounting for integral struc-
tures. This concerns vol(Hq(X,Z)π). (We mean modulo torsion). I speculate that this is
closely related to the height of the motive corresponding to π. One reason comes from
Kato’s paper generalizing Faltings heights to motives, where you see a similarity with the
computations that we did.

2.4.2. Intermediate degrees. The conjecture makes prediction about things in intermediate
degrees. It’s hard to get things around the middle dimension, but there’s one example.
Let G be an inner form of ResF/Q PGL2 where [F : Q] = 6 and is totally complex. Here
δ = 3, q = 3, and X = Γ\H3 × H3 × H3 (compact), which is 9-dimensional. Assume
dimH3(X,C)π = 1, and that no other π contributes to H∗(X). We have a map

H3(X,Q)π ⊗ Λ∨mot → H4(X,Q)π

whose image is a 3-dimensional Q-vector space which is conjecturally equal to H4(X,Q)π.

Theorem 2.6. Assuming Beilinson’s conjecture, these two Q-structures have the same
volume, up to an algebraic number.

The key point of the proof is that you can compute the analytic torsion of X, and it’s
equal to 1. This implies that ∏

i

(volHi(X,Q))(−1)
i

∈ Q∗.

From this it is not so hard to prove the theorem.

Theorem 2.7 (Cheeger, Müller). For compact Riemannian X,

Reidemeister torsion of X = Analytic torsion of X.
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The analytic torsion is meant to be the alternating product of the determinants in the de
Rham complex. To make sense of this, one let ∆i be the Laplacian acting on i-forms and
defines

Analytic torsion :=

q∏
i=0

det(∆i)
i(−1)i

This is = 1 when δ ≥ 2.
The Reidemeister torsion is a topological invariant, which we won’t define.
This allows us to compute one more invariant of the cohomology, and it’s consistent with

the conjecture.

3. The p-adic realization

3.1. The conjecture over Qp and the derived Hecke algebra. We want to produce
maps

Hj(X,Qp)π → Hj+1(X,Qp).

A natural thing to try is to take a cup product with something in H1, but typically
H1(X,Qp) = 0. However, there are many classes with torsion coefficients, at least if you
raise the level.

Example 3.1. The subgroup Γ0(q) ⊂ SL2 Z has a map to (Z/q)∗ sending a matrix to a
(mod q). If q ≡ 1 (mod pn), we can compose this with α : (Z/q)∗ → Z/pnZ to get a class
α̃ ∈ H1(Γ0(q),Z/pnZ).

These are the same primes as appear in the Taylor-Wiles method, and in fact the whole
story is closely related to the Taylor-Wiles method.

We will construct derived Hecke operators by pulling back, cupping with these sorts of
classes, and then pushing back down.

Let S = Z/pn be the coefficient ring. (We’ll make operations here and then take an
inverse limit to get operations in characteristic 0.) Let q ≡ 1 (mod pn). Let K = G(Zq)
and U ≤ K, and denote by X(U)→ X the covering corresponding to level U structure.

A usual Hecke operator takes the form: for g ∈ G(Qq), we have a correspondence

X(K ∩ gKg−1)

X X

π1 π2

and we define Tg = π2∗ ◦ π∗1 .
A derived Hecke operator is obtained by the following construction: given g ∈ G(Qq), and

a cohomology class α ∈ H∗(K∩gKg−1, S), we can pull α back to α̃ ∈ H∗(X(K∩gKg−1), S),
and set Tg,α to be the composition

H∗(X(K ∩ gKg−1)) H∗(X(K ∩ gKg−1))

H∗(X) H∗(X)

^α̃

(π2)∗π∗1

It is easy to see that this commutes with Hecke operators away from q. It also commutes
with Hecke operators at q.
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There is a nicer presentation of this. Denoting Gq = G(Qq) and Kq = G(Zq), the usual
Hecke algebra with S coefficients is

HomGq
(S[Gq/Kq], S[Gq/Kq]).

This acts on H∗(X,S). The derived version should then be

Ext∗SGq
(S[Gq/Kq], S[Gq/Kq])

(The Ext is taking place in the category SGq of smooth Gq-representations.) This is a
graded algebra, under composition. You can also make this act on H∗(X,S) in such a way
that there’s an element corresponding to Tg,α.

You can view HomGq (S[Gq/Kq], S[Gq/Kq]) as a function on double cosets. There is a
corresponding description of Ext∗SGq

(S[Gq/Kq], S[Gq/Kq]) as functions from double cosets
to cohomology:

KqgKq 7→ H∗(Kq ∩ gKqg
−1, S).

This acts on H∗(X,S) as in the diagram on the right.
What you really want to understand is the algebra structure. For this we have a derived

version of the Satake isomorphism.

Fact 3.2 (Satake isomorphism). If q ≡ 1 (mod pn), then the derived Hecke algebra of G is
isomorphic to dHA(T )W , for q larger than |W |.

The dHA of T is the usual Hecke algebra of T tensored with H∗(T (Zq)). This is graded
commutative, so the derived Hecke algebra of G is graded commutative under the assump-
tions of the fact.

We want to remark that it is not clear from this definition that the dHA acts in a non-zero
manner. We’ll continue this story next time.

4. Variant: weight one forms

We want to end by discussing how to adjust this story for weight one forms. Let X1(N)
be the (compactified) modular curve, thought of as a scheme over Z[1/N ].

We have a line bundle ω corresponding to weight 1 modular forms. We want to make
operations

H0(X,ω)→ H1(X,ω).

We have the same diagram as before, with α : (Z/q)∗ → Z/pn:

X0(q) X0(q)

X X

π1

^α̃

π2

Then α gives a class α̃ ∈ H1(Γ0(q),Z/pn). It comes from the covering H/Γ1(q) →
H/Γ0(q); it’s an interesting fact that this remains étale over the cusp. So you can ex-
tend it to α̃ ∈ H1(X0(q)Z[1/Nq],Z/p

n). We want to push it into coherent cohomology.
We can first restrict it to H1

ét(X0(q)Z/pn ,Z/p
n), and then map it to H1

ét(X0(q)Z/pn ,O) =

H1
Zar(X0(q)Z/pn ,O). The image is what we’ll call α̃. The same construction using the

diagram gives
Tq,α : H0(XZ/pn , ω)→ H1(XZ/pn , ω).
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