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1. Introduction

I am going to discuss a conjecture about a “hidden action” of motivic cohomology groups
on the cohomology of locally symmetric spaces.

1.1. Notation. Let G be a reductive algebraic group over Q. We have a locally symmetric
space

X = G(Q)\G(A)/K0
∞K.

1.2. Why is H∗(X;Z) interesting? In the theory of automorphic forms, the basic objects
are, informally speaking, modules attached to G which have a Hecke action.

The standard definition for automorphic forms are as spaces of functions on X with
moderate growth condition and fixed eigenvalues over C. However, there are other notions,
such as:

• The topological cohomology H∗(X,C).
• If X happens to be a Shimura variety, H∗(X, vector bundles). For example, classical

modular forms can be realized as sections of line bundles over modular curves.
We don’t understand all such things yet. For example, they should account for all Galois

representations. But at present we don’t have any construction of “automorphic forms”
which see even mod p Galois representations.

We’re going to focus on discussing H∗(X,C). There are a couple nice things about it:
first, it has a canonical integral structure; and second, it is defined uniformly for all groups
G.

Remark 1.1. One can ask about other kinds of cohomology theories, e.g. topological K-
theory. The rational structure is not so different, but the integral structure may be quite
different.
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1.3. Hecke eigensystems. The problem which we’d like to understand is the following.
The same Hecke eigensystem can occur in multiple cohomological degrees.

Example 1.2. The first case where one sees this is in the setting of modular forms of weight
1. On the modular curve X1(N), there is a line bundle ω whose sections are S1(Γ(N)). In
higher weights this has no higher cohomology, but in weight 1 there is a lot of higher
cohomology. Any Hecke eigensystem in H0(X1(N), ω) also occurs in H1(X1(N), ω). These
spaces are almost dual, up to issues of cusps, which justifies the statement up to twist, but
in fact it is true on the nose.

The issue highlighted in this example occurs in a lot of generality in the topological
cohomology.

Let π be a cuspidal cohomological automorphic representation for G, which is tempered
at ∞. (This means informally that its cohomology is as close to the middle as possible.)
We define

H∗(X,C)π := {h ∈ H∗(X,C) : T has same eigenvalue on h and π}.

When there is a packet, we demand everything is cuspidal and tempered at ∞. We’ll be
sloppy about the technicalities; they are treated precisely in [PV].

Assume for simplicity that the eigenvalues lie in Q. (Otherwise, just extend the field of
coefficients throughout.)

It is a fact that (we might have to assume that Z(G) has no split component)

dimHq+j(X,Q)π =

{
0 j /∈ [0, δ],

(dimHq
π) ·

(
δ
j

)
j ∈ [0, δ]

Here δ = rankG(R) − rankK∞ (not split rank) and q is such that [q, q + δ] is symmetric
with respect to Poincaré duality, i.e. 2q + δ = dimG− dimK∞.

This comes out of a computation of (g,K)-cohomology, but we’ll explain it in a special
case that is hopefully more enlightening.

In other words, the dimensions are binomial coefficients symmetric about the middle
dimension. We would like to explain this phenomenon by constructing a graded algebra A
acting on H∗(X,Q)π such that H∗(X,Q)π is free over A and generated in degree q. The
basic proposal is that A is the exterior algebra on (the dual of) a certain motivic cohomology
group:

A = ∧•HM(?)∨.

The goal is to formulate this in a more precise way, including describing which motivic
cohomology group.

Remark 1.3. Another instance of this sort of phenomenon is that you see cohomology in
several degrees in Shimura varieties because of Lefschetz operators. This only exists for
non-tempered representations. You might like to produce this by cup product, but there
are almost never classes in H1. So this is of a different nature.

2. An example

We are going to work out a specific example, which is subsumed by the general theory of
(g,K) cohomology but where you can see things play out concretely.

Suppose G(R) = (PGL2 C)3. (This is the minimal example where things get interesting.)
For example, G = ResE/Q PGL2 where E is a degree 6 totally complex extension.
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In general, X is a union of
Γ\H3 ×H3 ×H3.

For simplicity let’s just assume it’s connected, i.e. there’s only one copy.
We have rankG(R) = 6, and rankK∞ = 3, so δ = 3.
We consider the de Rham complex Ωn(X). This is like a Kahler manifold in the sense

that there are extra structures on the tangent space that can be upgraded to cohomology. At
every point, we have TxX = T

(1)
x ⊕ T (2)

x ⊕ T (3)
x . Accordingly, we can decompose differential

forms as
Ωn =

⊕
p+q+r=n

Ωp,q,r.

Now, just as in the case of Kähler manifolds, a subtler fact is that this decomposition
preserves harmonic forms. Namely, if h ∈ Ωn(X) is harmonic then writing h =

∑
hp,q,r we

have that hp,q,r is harmonic as well. This means that we get a splitting

Hn(X,C) =
⊕

p+q+r=n

Hp,q,r(X,C).

We need one more fact. In usual Hodge theory you see Poincaré duality using the Hodge
∗. Here we have that for each component separately.

∗1 : Ωp,q,r → Ω3−p,q,r

∗2 : Ωp,q,r → Ωp,3−q,r

∗3 : Ωp,q,r → Ωp,q,3−r.

The ∗i induce an isomorphism on harmonic forms, e.g.

∗1 : H1,1,1 ∼−→ H2,1,1.

Writing hp,q,r = dimHp,q,r(X,C), this implies

h1,1,1

=h2,1,1 = h1,2,1 = h1,1,2

=h2,2,1 = h1,2,2 = h2,1,2

=h2,2,2.

Letting this common value be h, we see that this contributes 3h to H4, 3h to H5, and h to
H6. Thus the cohomology looks as if it’s a product, even though it is globally not.

Let’s switch to the cocompact case (which can be effected by replacing G by an inner
form). Then also

h0,0,0

=h3,0,0 = h0,3,0 = h0,0,3

=h0,3,3 = h3,3,0 = h3,0,3

=h3,3,3 = 1

which corresponds to the trivial Hecke eigensystem π.
Putting together the ∗, we get an isomorphism

(∗1, ∗2, ∗3) : H3(X,C)π ⊗C3 → H4(X,C)π.
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This doesn’t preserve the obvious rational structures. The conjecture says that it preserves
Q-structures if we put the Q-structure on C coming from the image of a motivic cohomology
group under a regulator map.

Remark 2.1. Where is the dependence on the metric? It is wound up in the regulator
map.

It’s easy to produce cycles in H3 (via sub locally symmetric spaces). It is hard to produce
things in the intermediate degrees. If you believe the conjecture then this must be the case,
because it’s equivalent to producing something in motivic cohomology, which should be
hard.

To summarize, the picture is that
There should be an action of ∧• of (dual of) a motivic cohomology group
acting on H∗(X,Q)π.

The next goal is to explain which motivic cohomology group we’re discussing. The whole
point of my lectures is to refine the conjecture to something which is testable.

3. Which motivic cohomology?

Beilinson has a conjecture relating special values of L-functions to volumes of motivic
cohomology. The motivic cohomology group in question is the one which appears in Beilin-
son’s conjecture for L(Ad, π, 1). (This is normalized so that 1 is at the edge of critical strip;
the center is 1/2).

Conjecturally π should be associated to a Galois representation

ρ : GQ → LG(Qp)

(or really a slight modification of the L-group LG).
This is proven for GLn over a CM field by Harris-Lan-Taylor-Thorne and Scholze.
We then compose this with the coadjoint representation

GQ
ρ−→ LG(Qp)

Ad∗

−−→ Aut(ĝ∗
Qp

).

(The composite is always well-behaved; no modification of the L-group is necessary.)
We’ll call the composite Ad∗ ρ. (The dualization is unnecessary for semisimple groups

but necessary for tori. You can safely ignore it.)
Moreover Ad∗ ρ should come from a weight 0 Chow motive M over Q, in the following

sense. This we don’t know in any cases. (We’ll assume the motive has coefficients in Q; this
is true most of the time.) Concretely, this means the following:

• We have HB(M,Q) ∼= inner form of ĝQ
∨. In particular dimM = dimG.

• Under the identification HB(M,Qp)
∼= ĝ∨

Qp

, the Galois action is identified with

Ad∗ ρ.
• Under the identification HB(M,C) ∼= ĝ∗C, the action of WR comes from the L-

parameter of π∞, call it
ϕ : WR → LG.

Example 3.1. When G = GLn, ρ should come from an n-dimensional motive X, and
M = X∨ ⊗X.

We’ll use Λ for the basic motivic cohomology group of interest.

Λ = H1
mot(M,Q(1))int.
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What is the subscript “int”? If one has a Chow motive, this should signify motivic coho-
mology classes which “extend to an integral model”. Think of “int” as meaning “unramified”.
For Chow motives this notion is defined unconditionally by Scholl. This is meant to be

Λ = Ext1MM(Q,M(1))int.

For GLn, it is the same as Ext1MM(X,X(1))int.
There is a p-adic regulator map

Λ→ H1
f (GQ,Ad∗ ρ(1)).

The Λ is what arises in Beilinson’s conjecture for L(Ad, π, 1). Part of the conjecture predicts
the dimension, namely dim Λ = δ.

Right now Λ is a Q-vector space.

Conjecture 3.2. ∧•Λ∨ acts freely on H∗(X;Q)π (with generators in minimal degree).

There are regulator maps Λ → ΛC and ΛQp
, where ΛC and ΛQp

are the targets of the
regulators.

The plan is to give evidence for Conjecture 3.2 in the following form:
(1) To construct an action of ∧∗Λ∗C on H∗(X,C)π and give evidence that it preserves

a Q-structure.
(2) To construct an action of ∧∗ΛQp

(using the derived Hecke algebra) and give evidence
that it preserves the Q-structures.

This should work for all cohomological π, not just the tempered ones. For example, if
π is trivial and G = GLn then X = Q ⊕ Q(1) ⊕ . . . ⊕ Q(n − 1), and X ⊗ X is a direct
sum of various Q(i). Then Λ =

⊕
(KiZ)??. We know that H∗(X,Q)π contains the stable

cohomology of GLn Z, which is (dual of) an exterior algebraic on algebraic K-theory. This
conjecture should recover that relationship.

The conjecture should give a relationship between H∗stab(GLn(Z),Q) with K∗Z. The
problem is that the multiplicies are too high, but I know how to handle that in this case.

Remark 3.3. The exterior algebra ∧∗(Λ) arises naturally in another context. We mention
this because it is probably key to understanding integral structure. Under some assumptions,

∧∗ΛQp
∼= (π∗R)⊗Qp

where R is a derived version of the Galois deformation ring for ρπ (mod p), which I con-
structed in a paper with Soren Galatius [GV]. This is a pro-object in simplicial commutative
rings.

There is an essential difference between Galois deformation theory on a Shimura variety
and in these settings. When δ := rankG − rankK∞ > 0, the deformation theory is ob-
structed in an essential way. You can think of this as forcing the ring to live in different
degrees.

We construct an action of π∗R on H∗(X,Zp)π. (We assume that we are in a setting with
no congruences.)

4. The Betti realization

4.1. The invariant δ. We have to understand a bit better the invariant δ. Here is a list of
simple real groups with δ := rankG(R)− rankK∞ > 0.

• SLn for n ≥ 3.
• SOp,q for pq odd.
• The split form of E6. All complex groups (restricted to R).



6 LECTURES BY AKSHAY VENKATESH, NOTES BY TONY FENG

• Inner twists of the above.
Harish-Chandra showed that δ = 0 ⇐⇒ G(R) has discrete series. Equivalently, G(R)

has a compact maximal torus. So in general δ measures the extent to which these fail.
A general group has many conjugacy classes of maximal torus. There are two distin-

guished ones, the ones which are most and least split. The fundamental Cartan subgroup is
the one whose split part has the minimal dimension; these are all conjugate, and the split
part has dimension δ.

Example 4.1. In GL2n(R), the fundamental Cartan is
C×

C×

. . .

C×


Thus δ = n.

Next we try to formulate the way in which δ measures the obstruction to having discrete
series: “δ is the smallest dimension of a family of tempered representations”. Thus when
δ = 0 you have discrete series, when δ = 1 the tempered representations are parametrized
by a vector space, the smallest of which has dimension δ. This is the “fundamental series”.
In Example 4.1, you can such a family is obtained by putting twists of a discrete series in
each factor.

4.2. The construction of the action. Choose a fundamental Cartan subgroup T , define

aG = Lie(split part of T ⊗C).

This is a C-vector space of dimension δ. (By the way, we can take T to be the centralizer
of a maximal torus K∞.)

Remark 4.2. This can be defined “canonically”. The split group of a maximal torus is not
unique, because two tori can be conjugate in different ways. However, the torus quotient of
a Borel is unique up to unique isomorphism.

We want to make an action of Λ∨C on H∗(X,C)π. (In fact, we will identify ΛC = aG).

Fact 4.3. If π is a cohomological tempered representation of GR, then there is a free action
of ∧∗a∨G on H∗(g,K;π).

The H∗(g,K;π) has the same numerology as before: dimHq+j =
(
δ
j

)
dimHq. (This is a

local analog of the earlier situation.)
In the paper with Kartik, we explicitly compute this using Vogan-Zuckerman theory. I

will outline a more conceptual method. Assume for simplicity that G is semisimple and
simply connected (we reduce to this case). Then

H∗(g,K;π) = Ext∗(1, π).

We have a canonical action of Ext∗(π, π) on Ext∗(1, π), so we are reduced to constructing a
map

∧∗a∨G → Ext∗(π, π).

This will come from deformating π in a way parametrized by a∨G. In fact, we can write

π = IndGP σ
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where P is a parabolic subgroup with Levi the centralizer of the split part of T . (Tempered
cohomological representations are always of this form.) You could twist σ by a character of
M . In other words, ∧∗a∨G = ExtaG

(1, 1) and parabolic induction gives a map

Ext∗aG
(1, 1)→ Ext∗(π, π).

Anyway, we have constructed an action of ∧∗a∨G on H∗(X,C)π. We will next identify aG
with ΛC

∼= ĝ∨C.
Recall that the Chow motive M corresponds to Ad∗ ρ in such a way that the WR-action

on H∗B(M,C) transports to the WR-action on ĝ∨ coming from the L-parameter of π∞.
There is a map from Λ to a real Deligne cohomology group, which we will use to make the
desired identification. We explain this map now.

Given a class in Λ, it defines an extension of real Hodge structures

0→ HB(M(1),R)→ Y → R→ 0.

Thus Y is a real mixed Hodge structure. Choose y ∈ F 0YC lifting 1 ∈ R. This is well-defined
up to F 0HB(M(1),R). This y determines the Hodge filtration, because

F iYC =

{
F iHB i ≥ 1

F iHB + Cy i ≤ 0

Now consider the map sending y to its imaginary part y − y ∈ HB(M(1), iR). We can
modify it by anything in F 0HB(M(1),R), so y − y really lives in

HB(M(1), iR)

Imaginary(F 0HB(M(1), iR))
=

HB(M,R)

Real(F 1HB(M))

∼←− HB(M,R)(0,0)

i.e. HB(M,R)(0,0) is the fixed space for the Hodge C∗. This is also fixed by the real
Frobenius if it came from an extension over R. We’re just going to explain the map after
tensoring up to C, so we don’t have to worry about real structures.

So this gives a map
Λ→ HB(M,R)WR .

This is Beilinson’s regulator. Next we need to explain why (ignoring real structures)

HB(M,C)WR ∼= aG.

Again it comes down to the fact that you can “twist” π∞ (a cohomological tempered repre-
sentation of G(R)) by characters of a∨G. We can see what happens to the L-parameter when
we do this. The effect is that the L-parameter ϕ : WR → LG gets multiplied by a character
WR → Z(ϕ) (this is a simple fact about parabolic induction).

This gives a map
a∨G

∼−→ (ĝ)ϕ(WR).

Dualizing, we get
aG

∼←− (ĝ∨)ϕ(WR)

and (ĝ∨) is the target of the Beilinson regulator, as desired.
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