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1. Hodge structures

The theme of this talk is about introducing algebraic structure to the theory of variations
of Hodge structure, beyond the case of Shimura varieties.

Definition 1.1. A polarized Hodge structure of weight n is the following data:
(1) A lattice L ≈ Zn,
(2) A bilinear form Q : L× L→ Z such that (−1)nQ(v, w) = Q(w, v),
(3) A decomposition

L⊗C ∼=
⊕
p+q=n

Hp,q

such that
(a) Hp,q = Hq,p, and
(b) ip−qQ(v, v) is positive on Hp,q, and Q(Hp,q, Hp′,q′) = 0 if p+ p′ 6= n.

Example 1.2. The prototypical example is the following. Let X be a smooth, projective,
complex variety and L = Hn(X,Z)prim/torsion. By Hodge theory, we have a decomposition

L⊗Z C ∼= Hn
prim(X;C) =

⊕
p+q=n

Hp,q
prim(X).

Finally, the bilinear form comes from the cup product.

Q(γ1, γ2) = γ1 ^ γ2 ^ [w]dim x−n ∈ H2 dimX(X;Z) ∼= Z.

It’s better to work with the structure of a filtration instead of a splitting. Define

Fp =
⊕
p′≥p

Hp′,q′ .

Then we have a filtration
L⊗Z C = F0 ⊃ F1 ⊃ . . .

and we can recover Hp,q = Fp ∩ Fq. The reason it’s better to work with filtrations is that
we want to consider variations of Hodge structures in families. The complex conjugation
shows that the direct sum decomposition cannot vary holomorphically in families - if Hp,q

varies holomorphically then Hq,p varies antiholomorphically - while the filtration can (and
does) vary holomorphically.

Definition 1.3. We say that v ∈ L is Hodge if v ∈ Hn/2,n/2.

Define Ω̂ = {(L ∼−→ Zn, Q,F)}. This is some sort of symplectic Grassmanian. There’s an
open subset Ω parametrizing polarized Hodge structures with a basis.
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Example 1.4. We have Ω = H ⊂ Ω̂ = P1.

Let G = Aut(L,Q). We have an action of G(C) on Ω̂, such that G(R) preserves Ω. Then
G(Z)\Ω is the moduli space of polarized Hodge structures. One issue with this space is that
it is not in general an algebraic variety (even though it is a complex manifold).

Remark 1.5. Shimura varieties can be placed in this context, if we allow a little more
generality. They fall under the context of “Mumford Tate domains”, which are obtained by
insisting that certain tensors are Hodge.

Definition 1.6. A variation of Hodge structures (VHS) on S is L → S be an integral local
system and F• ⊂ L ⊗ OS be a filtration satisfying Griffiths transversality, which means
that dFp ⊂ Fp−1,

In other words, VHS are maps φ : S → G(Z)\Ω satisfying Griffiths transversality.
The idea behind what we’ll do is to say that even though these period maps φ are not

algebraic, they can be described by a family of special functions. This is captured by the
language of o-minimality.

2. O-minimality

Definition 2.1. An o-minimal structure is a collection of sets S = (Sn)n∈N where each
Sn ⊂ 2R

n

satisfying the following properties:
(1) For all n, Sn is a boolean algebra (i.e. closed under intersection, complements, and

unions).
(2) We have Sm × Sn ⊂ Sm+n.
(3) For any coordinate projection π : Rn+1 → Rn, we have π(Sn+1) ⊂ Sn.
(4) {(x, x) : x ∈ Rn} ∈ S2.
(5) S1 consists of finite unions of points and intervals.1

Remark 2.2. In this theory the set Z ⊂ R is the“enemy” – one is trying to get sets with
finitely many connected components. Although it seems like we only enforced this kind of
structure on S1, the projection map enforces structure on higher-dimensional Sn.

Example 2.3 (Tarski-Seidenberg). Rsa is the o-minimal structure of semi-algebraic sets.
This is the o-minimal structure generated by the graphs of addition and multiplication.

Example 2.4. Rexp = Rsa ∪ {(x, ex), x ∈ R}.

Example 2.5. The example of interest to arithmetic is the following. Ran,exp is the o-
minimal structure generated by sub-analytic functions and Rexp. This means that for any
subanalytic f : Bm → R, i.e. converging on a bigger ball, you add the graph {(x, f(x)), x ∈
Bm}.

Why care about o-minimality? The point is that you get some of the same consequences
as for algebraic functions. For example, any set defined in an o-minimal structure has finitely
many components.

Theorem 2.6 (Definable Chow, Peterzil-Starchenko). Let V be a quasiprojective algebraic
variety. Take W ⊂ V to be a closed complex-analytic subvariety which is definable in an
o-minimal structure. Then W is algebraic.

1This last condition is the content of the adjective “o-minimal”; the previous conditions form the content
of the “structure”.
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Here “definable in an o-minimal structure” means that we allow definable transition func-
tions, and the o-minimal structure is always Ran,exp.

Consider π : Ω→ G(Z)\Ω. This isn’t definable because there is infinite monodromy. Let
F be a fundamental domain for π. By the isomorphism

π : F ∼−→ G(Z)\Ω
we can transport a definable structure on F to one on G(Z)\Ω.

Choose F to essentially be a Siegel set. Use reduction theory (KAN decomposition) and
Ran,exp to put an o-minimal structure on F .

Theorem 2.7 (B-T). Let S be an algebraic variety. Then the period map φ : S → G(Z)\Ω
is definable.

Remark 2.8. The theorem is really about (punctured) polydisks; it is extended to varieties
S by covering with polydisks.

Concretely, what does this say? Let v1, . . . , vm be the basis of L in the definition of Ω.
Then F can be described as the region where

(1)
∏m
i=1 |vi| � 1 (Hodge norm).

(2) |〈vi, vj〉| � |vi|.
The theorem is that under a period map, you can pick a basis to satisfy (1) and (2). This
means that there is a diagram

(∆×)Γ G(Z)\Ω

V r ⊂ Hr Ω

φ

with (1) and (2) satisfied on V r. These results had a lot of classical input. The part (1) is
essentially due to Kashiwara and Cattani-Kaplan-Schmid. The part (2) is due to Schmid in
the 1-dimensional case.

3. Applications

One piece of evidence for the Hodge conjecture is the following.
Let S be an algebraic variety. Let (F• ⊂ L )→ S be a variation of Hodge structure. Let

v be a local section of L . Consider the locus (∗) where v is Hodge. According to the Hodge
Conjecture this is the locus where some algebraic cycle exists, hence should be algebraic.

Theorem 3.1 (Cattani-Deligne-Kaplan). The locus

(∗) = {s ∈ S : ∃v ∈ Ls, Q(v, v) ≤ K, v Hodge}
is algebraic

Proof. You can show that the analogue of (∗) in Ω, which we’ll call W , is given by

W =
⋃

g∈G(Z)

gH(R) · p

where H = Stab(v) ⊂ G. By standard Siegel-set theory, G(Z)\W is definable (i.e. the
intersection with Siegel sets is reasonable).

Consider φ : S → G(Z)\Ω, the locus (∗) = φ−1(W ) is closed, complex analytic and
definable, hence algebraic by Theorem 2.6. �
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