# MODULAR SYMBOLS AND ARITHMETIC, II 

ROMYAR SHARIFI, NOTES BY TONY FENG

## 1. RECAP

Let $p \geq 5$ be a prime dividing a positive integer $N$. In the previous talk, we constructed a map

$$
\varpi: H_{1}\left(X_{1}(N) ; \mathbf{Z}_{p}\right)^{+} / I \rightarrow H^{2}\left(\mathbf{Z}\left[1 / p, \mu_{N}\right] ; \mathbf{Z}_{p}(2)\right)^{+}
$$

Here $I$ is the Eisenstein ideal, generated by $T_{\ell}-1-\ell\langle\ell\rangle$ for $\ell \nmid N$ and $U_{\ell}-1$ for $\ell \mid N$. This map sent the Manin symbol $[u: v]$ to the Steinberg symbol $\left\{1-\zeta_{N}^{u}, 1-\zeta_{N}^{v}\right\}$.

This map was part of the general philosophy
"The geometry of $\mathrm{GL}_{n} / F$ (near a boundary component) is related to the arithmetic of $\mathrm{GL}_{n-1} / F$."
In this talk we will construct a map in the opposite direction:

$$
\Upsilon: H^{2}\left(\mathbf{Z}\left[1 / p, \mu_{N}\right] ; \mathbf{Z}_{p}(2)\right)^{+} \rightarrow H_{1}\left(X_{1}(N) ; \mathbf{Z}_{p}\right)^{+} / I
$$

We recall the notation from last time:

$$
\begin{aligned}
Y & =H^{2}\left(\mathbf{Z}\left[1 / p, \mu_{N}\right] ; \mathbf{Z}_{p}(2)\right)^{+} \\
S & =H_{1}\left(X_{1}(N) ; \mathbf{Z}_{p}\right)^{+}
\end{aligned}
$$

This map will not be explicit. It will be constructed out of the Galois action on $H_{\text {ett }}^{1}\left(X_{1}(N){ }_{\overline{\mathbf{Q}}} ; \mathbf{Z}_{p}(1)\right)$.

## 2. Galois representations

We recall how to construct the Galois representation attached to a newform of weight 2. Let $f$ be a weight 2 newform of level $N$, with $q$-expansion

$$
f=\sum_{n=1}^{\infty} a_{n} q^{n}
$$

To $f$ we can attach a Galois representation $\rho_{f}: G_{\mathbf{Q}} \rightarrow \mathrm{GL}_{2}\left(\mathcal{O}_{f}\right)$, where $\mathcal{O}_{f}:=\mathbf{Z}_{p}\left(\left\{a_{n}\right\}\right)$, as follows.

The eigenform $f$ defines a homomorphism $\mathfrak{h}_{2}\left(N, \mathbf{Z}_{p}\right) \rightarrow \mathcal{O}_{f}$, sending $T_{n} \mapsto a_{n}$, and we let $I_{f}$ be the kernel. Let $T_{f}=H_{\text {et }}^{1}\left(X_{1}(N)_{\overline{\mathbf{Q}}} ; \mathbf{Z}_{p}(1)\right) / I_{f}$. This turns out to have rank 2 over $\mathcal{O}_{f}$, and has a Galois action which furnishes the representation $\rho_{f}$.

We say $f$ is ordinary if $a_{p} \in \mathcal{O}_{f}^{\times}$. Then $T_{f}$ is ordinary, meaning there is an exact sequence

$$
0 \rightarrow T_{f, \text { sub }} \rightarrow T_{f} \rightarrow T_{f, \text { quo }} \rightarrow 0
$$

of $\mathcal{O}_{f}\left[G_{\mathbf{Q}_{p}}\right]$-modules where $T_{f, \text { sub }}$ and $T_{f, \text { quo }}$ are both rank 1 over $\mathcal{O}_{f}$. With respect to the corresponding basis, our representation $\rho_{f}$ restricted to the inertia group $I_{p}$ looks like

$$
\left.\rho_{f}\right|_{I_{p}}=\left(\begin{array}{cc}
\chi_{p} \epsilon & * \\
0 & 1
\end{array}\right)
$$

where $\chi_{p}$ is the $p$-adic cyclotomic character and $\epsilon$ is the Nebentypus.
The Eisenstein ideal $I \subset \mathfrak{H}=\mathfrak{H}_{2}\left(N, \mathbf{Z}_{p}\right)$ acts on the space of weight 2 modular forms, $\mathcal{M}:=M_{2}\left(N, \mathbf{Z}_{p}\right)$. We have an isomorphism

$$
\mathfrak{H} / I \xrightarrow{\sim} \mathbf{Z}_{p}[\Delta]
$$

where $\Delta=(\mathbf{Z} / N \mathbf{Z})^{*} / \pm 1$, via $T_{\ell} \mapsto 1+\ell\langle\ell\rangle$ and $U_{\ell} \mapsto 1$. There is a surjection $\mathfrak{H} \rightarrow \mathfrak{h}$, and $\mathfrak{h} / I$ is actually finite: it measures congruences between the Eisenstein series $E_{2, \chi}$ and newforms.

I am going to explain the idea behind the construction of the map $\Upsilon$, which goes back to Ribet in his proof of the converse to Herbrand.

Consider $\rho_{f} \bmod I$. With respect to the basis we've already chosen we can write it as

$$
\rho_{f} \quad(\bmod I)=\left(\begin{array}{ll}
\bar{a} & \bar{b} \\
\bar{c} & \bar{d}
\end{array}\right)
$$

It's reducible. We also know that $\left.\bar{c}\right|_{G_{\mathbf{Q}_{p}}}=0$. It turns out that $\left(\operatorname{det} \bar{\rho}_{f}^{-1}\right) \bar{c}$ is a 1-cocycle on $G_{\mathbf{Q}}$, with the property that its restriction to $G_{\mathbf{Q}\left(\mu_{N p} \infty\right)}$ is a homomorphism that is unramified everywhere. The idea is that you can descend this extension back down to $\mathbf{Q}\left(\mu_{N}\right)$, which has an odd action of $\Delta$, which gives a quotient of the $p$-part of $\mathrm{Cl}_{\mathbf{Q}\left(\mu_{N}\right)}$.

## 3. The Main Conjecture

Let $\Delta^{\prime}$ be the prime-to- $p$ part of $\Delta$. Let $A$ be a $\mathbf{Z}_{p}[\Delta]$-module. For any $\theta: \Delta^{\prime} \rightarrow \overline{\mathbf{Q}}_{p}^{*}$ which is an even, prime-to- $p$ order character of $(\mathbf{Z} / N \mathbf{Z})^{\times}$, we define

$$
A_{\theta}:=A \otimes_{\mathbf{Z}_{p}\left[\Delta^{\prime}\right]} \mathbf{Z}_{p}(\theta)
$$

We have

$$
A \cong \bigoplus_{[\theta]} A_{\theta}
$$

Let $A^{\prime}=\bigoplus_{[\theta]} A_{\theta}$ where [ $\left.\theta\right]$ runs over classes such that $\theta$ has conductor $M p$, and $\theta \omega^{-1}(p) \neq 1$. Here $\omega$ is the obvious composition $(\mathbf{Z} / N \mathbf{Z})^{\times} \rightarrow(\mathbf{Z} / p \mathbf{Z})^{\times} \hookrightarrow \mu_{p}\left(\mathbf{Z}_{p}\right)$, and we view $\theta \omega^{-1}$ as a primitive Dirichlet character. If $M=1$, we also ask that $\theta \neq 1, \omega^{2}$.

Now, $\mathfrak{h}$ is a $\mathbf{Z}_{p}[\Delta]$-module. In our convention, $j \in \Delta$ acts as $\langle j\rangle^{-1}$.
For an $\mathfrak{h}$-module $A$, we define

$$
A_{\mathfrak{m}}=\bigoplus_{[\theta]} A_{\mathfrak{m}_{\theta}}^{\prime}
$$

where $\mathfrak{m}_{\theta}$ is the unique maximal ideal of $\mathfrak{h}_{\theta}$ containing $I$. This is the "Eisenstein part" of $A$.
Theorem 3.1 (Mazur-Wiles, Wiles). We have $\mathfrak{h}_{\mathfrak{m}} / I \cong \Lambda /(\xi)$ where $\Lambda=\mathbf{Z}_{p}[\Delta]^{\prime}$ and $\xi \in \Lambda$ has the property that for all $\chi: \Delta \rightarrow \overline{\mathbf{Q}}_{p}^{\times}$which are even with prime-to-p order,

$$
\widetilde{\chi}(\xi)=L_{p}\left(\omega^{2} \chi^{-1},-1\right)
$$

We want to sketch the proof. The Eisenstein series induces an isomorphism $\mathfrak{H}_{\mathfrak{m}} / I \xrightarrow{\sim} \Lambda$. Since $\widetilde{\chi}(\xi) / 2$ is the constant coefficient of $E_{2, \chi^{-1}}$, modding out by this should make the Eisenstein series "look like a cusp form", i.e. induce a map

$$
\mathfrak{h}_{\mathfrak{m}} / I \rightarrow \Lambda / \xi
$$

The hard part is injectivity.

Mazur-Wiles proved injectivity as a consequence of the proof of the Iwasawa main conjecture, but this seems a little backward. Emerton observed that there is a direct proof, which now present.

Let $\mathfrak{S}:=S_{2}\left(N, \mathbf{Z}_{p}\right) \hookrightarrow M$. There is a perfect pairing

$$
\mathfrak{h} \times \mathfrak{S} \rightarrow \mathbf{Z}_{p}
$$

given by $(T, f) \mapsto a_{1}(T f)$. This extends to a perfect pairing

$$
\mathfrak{H} \times \mathfrak{M}^{0} \rightarrow \mathbf{Z}_{p}
$$

where $\mathfrak{M}^{0}$ consists of modular forms with $q^{n}$-coefficient in $\mathbf{Z}_{p}$ for $n \geq 1$ and constant coefficient in $\mathbf{Q}_{p}$.

If $\theta \neq \omega^{2}$ then $\mathfrak{M}_{\theta}=\mathfrak{M}_{\theta}^{0}$. We have an exact sequence

$$
0 \rightarrow \mathfrak{S}_{\mathfrak{m}} \rightarrow \mathfrak{M}_{\mathfrak{m}} \xrightarrow{T_{*}} \Lambda \rightarrow 0
$$

Think of $\Lambda$ as being generated by Eisenstein series and $T_{*}$ as the constant term. This sequence splits over $\mathbf{Q}_{p}$, but not over $\mathbf{Z}_{p}$. The rational splitting

$$
\mathfrak{M} \otimes_{\mathbf{z}_{p}} \mathbf{Q}_{p} \leftarrow \Lambda \otimes_{\mathbf{Z}} \mathbf{Q}_{p}
$$

is an equivariant version of $1 \mapsto \frac{2}{\tilde{\chi}(\xi)} E_{2, \chi^{-1}}$. It induces a splitting $s: \mathfrak{M}_{\mathfrak{m}} \otimes \mathbf{Q}_{p} \rightarrow \mathfrak{S}_{\mathfrak{m}} \otimes \mathbf{Q}_{p}$. The congruence module is $s\left(\mathfrak{M}_{\mathfrak{m}}\right) / \mathfrak{S}_{\mathfrak{m}}$ which by what we said is $\Lambda /(\xi)$. But we want the statement for $\mathfrak{h}_{\mathfrak{m}} / I$, so we take the dual sequence.


## 4. Construction of $\Upsilon$

The map $\Upsilon$ will be a canonical version of the cocycles which appear in the proof of Mazur-Wiles.

First we recall some facts about ordinary Hecke algebras. Let $\mathcal{T}=H_{\text {ett }}^{1}\left(X_{1}(N)_{\overline{\mathbf{Q}}}, \mathbf{Z}_{p}(1)\right)^{\text {ord }}$. We have $U_{p} \in\left(\mathfrak{h}^{\text {ord }}\right)^{*}$. What properties does $\mathcal{T}$ have?
(1) It is ordinary, so we have an exact sequence

$$
0 \rightarrow \mathcal{T}_{\text {sub }} \rightarrow \mathcal{T} \rightarrow \mathcal{T}_{\text {quo }} \rightarrow 0
$$

where $\mathcal{T}_{\text {sub }}, \mathcal{T}_{\text {quo }}$ have rank 1 over $\mathfrak{h}^{\text {ord }}$. In fact $\mathcal{T}_{\text {sub }}$ is free, and $\mathcal{T}_{\text {quo }}$ is unramified as a $G_{\mathbf{Q}}$-module.

We have a similar story for the open modular curve. Let $\widetilde{\mathcal{T}}=H_{\text {ett }}^{1}\left(Y_{1}(N)_{\overline{\mathbf{Q}}}, \mathbf{Z}_{p}(1)\right)^{\text {ord }}$. Then there is an exact sequence

$$
0 \rightarrow \widetilde{\mathcal{T}}_{\text {sub }} \rightarrow \widetilde{\mathcal{T}} \rightarrow \widetilde{\mathcal{T}}_{\text {quo }} \rightarrow 0
$$

The natural map induces an equality on the subs.
(2) There is a $p$-adic Eichler-Shimura Theorem (due to Ohta). There is a functor $D$ from unramified $\mathfrak{H}\left[G_{\mathbf{Q}_{p}}\right]$-modules to compact $\mathfrak{H}$-modules, given by

$$
D(M)=\left(M \widehat{\otimes}_{\mathbf{Z}_{p}} W\left(\overline{\mathbf{F}_{p}}\right)\right)^{\varphi_{p} \otimes \varphi_{p}=1} .
$$

The functor $D$ is naturally but not canonically isomorphic to the forgetul functor. However it is canonical if we restrict to trivial $G_{\mathbf{Q}_{p}}$-modules.

The upshot is that $D\left(\mathcal{T}_{\text {quo }}\right) \cong \mathfrak{S}^{\text {ord }}$ and $D\left(\widetilde{\mathcal{T}}_{\text {quo }}\right) \cong \mathfrak{M}^{\text {ord }}$.
(3) There is a twisted Poincaré duality

$$
\mathcal{T} \times \mathcal{T} \rightarrow \mathbf{Z}_{p}[\Delta]^{l}(1)
$$

The twisting $\iota$ means that if $\sigma \in G_{\mathbf{Q}}$ has $\sigma\left(\zeta_{N}\right)=\zeta_{N}^{j}$, then it acts as $[j]^{-1}$ on $\mathbf{Z}_{p}[\Delta]$. The pairing is

$$
(x, y)=\sum_{j \in(\mathbf{Z} / N \mathbf{Z})^{\times}}\left(x \smile\langle j\rangle^{-1} w_{N} y\right)[j] .
$$

With this definition, we have

$$
(T x, y)=(x, T y) \text { for } T \in \mathfrak{h}
$$

and the pairing is $G_{\mathbf{Q}}$-equivariant.
Theorem 4.1 (S, Fukaya-Kato). Let $T=\mathcal{T}_{\mathfrak{m}} / I \mathcal{T}_{\mathfrak{m}}$. There is an exact sequence

$$
0 \rightarrow T^{+} \rightarrow T \rightarrow T^{-} \rightarrow 0
$$

of $\mathfrak{h}\left[G_{\mathbf{Q}}\right]$-modules such that $T^{+} \cong S_{\mathfrak{m}} / I S_{\mathfrak{m}}$ has trivial $G_{\mathbf{Q}^{-}}$action, and $T^{-} \cong(\Lambda / \xi)^{\iota}(1)$ canonically (i.e. has a canonical generator). Moreover, the sequence is locally split at all $\ell \mid N$.

How does this give what we want? When we have an exact sequence like this, we get a 1-cocycle $G_{\mathbf{Q}} \rightarrow \operatorname{Hom}\left(T^{-}, T^{+}\right)$. Composing this with the map $\operatorname{Hom}\left(T^{-}, T^{+}\right) \rightarrow T^{+}$given by evaluation on the canonical generator, we get a cocycle $G_{\mathbf{Q}} \rightarrow T^{+}$. Now restrict this cocycle to $G_{\mathbf{Q}\left(\mu_{N p} \infty\right)}$. It factors through $X_{\infty}$, the Galois group of the maximal unramified abelian pro- $p$ extension (by local splitness).

The map is not $\Lambda$-equivariant, but becomes equivariant after twisting by 1 . That is, we get a map

$$
\Upsilon^{\prime}: X_{\infty}(1) \rightarrow T^{+}
$$

with the equivariance property $\sigma_{j} x \mapsto\langle j\rangle^{-1} \Upsilon^{\prime}(x)$ (this was the reason for the twist) where $\sigma_{j}\left(\zeta_{N p^{r}}\right)=\zeta_{N p^{r}}^{j}$. Then we make a choice of of compatible sequence of roots of unity to identify $X_{\infty}$ with $X_{\infty}(1)$, transferring the map to $X_{\infty} \rightarrow T^{+}$.

Now we have to descend back down to $Y$. The key point is that we have an isomorphism

$$
X_{\infty}(1)^{\prime} \cong \lim _{\rightleftarrows} H^{2}\left(\mathbf{Z}\left[1 / p, \mu_{N p^{r}}\right] ; \mathbf{Z}_{p}(2)\right)^{\prime}
$$

the transition maps being corestrictions. This can be rephrased as $H_{\mathrm{Iw}}^{2}\left(\mathbf{Z}\left[1 / p, \mu_{N p^{\infty}}\right] ; \mathbf{Z}_{p}(2)\right)$. These are cohomological dimension 2 , so corestriction gives an isomorphism on coinvariants.

So taking coinvariants for $\operatorname{Gal}\left(\mathbf{Q}\left(\mu_{N p^{\infty}}\right) / \mathbf{Q}\left(\mu_{N}\right)\right)$ we get


The map $\Upsilon^{\prime}$ factors through the $\operatorname{Gal}\left(\mathbf{Q}\left(\mu_{N p^{\infty}}\right) / \mathbf{Q}\left(\mu_{N}\right)\right)$-coinvariants by inspection of the equivariance condition.

## 5. Sharifi's Conjecture

Conjecture 5.1 (Sharifi). The maps $\Upsilon$ and $\varpi$ are inverse isomorphisms

$$
\Upsilon: Y^{\prime} \rightarrow S^{\prime} / I S^{\prime}
$$

and

$$
\varpi: S^{\prime} / I S^{\prime} \rightarrow Y^{\prime}
$$

There's an issue of choosing lattices. Wiles chooses the smallest possible $T_{\text {sub }}$. He shows it is surjective, hence the characteristic ideal of the image divides the characteristic ideal of the domain. Here we are choosing a "natural" lattice. But for all we know the map could be 0 . The conjecture implies that the lattice must be extremal.

Theorem 5.2 (Fukaya-Kato, FKS). We have $\xi^{\prime} \Upsilon \circ \varpi=\xi^{\prime}: S / I S \rightarrow S / I S$ where $\widetilde{\chi}\left(\xi^{\prime}\right)=$ $L_{p}^{\prime}\left(\omega^{2} \chi^{-1},-1\right)$ for all $\chi$.

Some progress has been made recently by Ohta:
Theorem 5.3 (Ohta). If $p \nmid \varphi(N)$ and $\left.\theta\right|_{(\mathbf{Z} / p \mathbf{Z})^{\times}}$has nontrivial kernel, then $\Upsilon_{\theta}$ is an isomorphism.

Fukaya and Kato additionally showed that if $\mathfrak{H}_{\mathfrak{m}}$ and $\mathfrak{h}_{\mathfrak{m}}$ are both Gorenstein and the $p$-adic power series interpolating $L$-functions $L_{p}\left(\omega^{2} \chi^{-1}, s-1\right)$ has no square factors, then the Conjecture holds.

Wake and Wang-Erickson prove that if $p \nmid h_{\mathbf{Q}\left(\mu_{N}\right)}^{+}$then $\mathfrak{H}_{\mathfrak{m}}$ and $\mathfrak{h}_{\mathfrak{m}}$ are Gorenstein.

## 6. ANOTHER CONSTRUCTION OF $\Upsilon$

Here's another construction of $\Upsilon$ which is sometimes useful. The sequence

$$
0 \rightarrow T^{+} \rightarrow T \rightarrow T^{-} \rightarrow 0
$$

is locally split, as we have discussed (Theorem 4.1). There is connecting homomorphism

$$
H^{2}\left(\mathbf{Z}[1 / N], T^{-}(1)\right) \xrightarrow{\partial} H_{c}^{3}\left(\mathbf{Z}[1 / N], T^{+}(1)\right)
$$

Now, we have

$$
H^{2}\left(\mathbf{Z}[1 / N], T^{-}(1)\right) \cong H^{2}\left(\mathbf{Z}[1 / N],(\Lambda / \xi)^{\iota}(2)\right) \cong H^{2}\left(\mathbf{Z}[1 / N], \Lambda^{\iota}(2)\right) / \xi
$$

where the last isomorphism follows from the vanishing of $H^{3}(\mathbf{Z}[1 / N],-)$. By Shapiro's Lemma, $H^{2}\left(\mathbf{Z}[1 / N], \Lambda^{\iota}(2)\right) / \xi \cong H^{2}\left(\mathbf{Z}\left[1 / N, \mu_{N}\right], \mathbf{Z}_{p}(2)\right)^{\prime} / \xi$. But $\xi$ kills $H^{2}\left(\mathbf{Z}\left[1 / N, \mu_{N}\right], \mathbf{Z}_{p}(2)\right)^{\prime}$ already by a Stickelberger-type theorem, so in the end we just get that the domain of this boundary map is $H^{2}\left(\mathbf{Z}[1 / N], \Lambda^{\iota}(2)\right) / \xi \cong Y^{\prime}$.

Now you might guess that the target is $S / I S$. Let's see: by Poitou-Tate duality we have

$$
H_{c}^{3}\left(\mathbf{Z}[1 / N], T^{+}(1)\right) \cong H^{0}\left(\mathbf{Z}[1 / N],\left(T^{+}\right)^{\vee}\right)^{\vee}
$$

where $\vee$ is the Pontrjagin dual, so this is just $\left(\left(\left(T^{+}\right)^{\vee}\right)^{\mathbf{G}_{\mathbf{Q}}}\right)^{\vee}=T^{+}$by the triviality of Galois action on $T^{+}$, which by Theorem 4.1 is $S^{\prime} / I S^{\prime}$.

Remark 6.1. What is compactly supported cohomology? We define the compactly supported cochains

$$
C_{c}(\mathbf{Z}[1 / N] ; A):=\text { Cone }\left(C(\mathbf{Z}[1 / N] ; A) \rightarrow \bigoplus_{\ell \mid N} C\left(\mathbf{Q}_{\ell}, A\right)\right)[-1]
$$

This gives a long exact sequence in cohomology by construction.
Next we define

$$
C_{f}(\mathbf{Z}[1 / N], T(1)):=\text { Cone }\left(C(\mathbf{Z}[1 / N], T(1)) \rightarrow \bigoplus_{\ell \mid N} C\left(\mathbf{Q}_{\ell}, T^{+}(1)\right)\right)[1]
$$

using the local splittings. By construction, there is an exact sequence of complexes

$$
0 \rightarrow C_{c}\left(\mathbf{Z}[1 / N], T^{+}(1)\right) \rightarrow C_{f}(\mathbf{Z}[1 / N], T(1)) \rightarrow C\left(\mathbf{Z}[1 / N], T^{-}(1)\right) \rightarrow 0
$$

The associated long exact sequence then induces the boundary map used above.

## 7. Proof of Theorem 4.1

Consider $\widetilde{\mathcal{T}} / \mathcal{T} \cong \widetilde{\mathcal{T}}^{+} / \mathcal{T}^{+} \cong M / S$, where $M=H_{1}\left(X_{1}(N), C_{1}(N) ; \mathbf{Z}_{p}\right)^{+}$. In turn, $M / S$ is isomorphic to $\Lambda$ via the generator $\{0 \mapsto \infty\}$, essentially by a result of Ohta.

On the other hand we have the Manin-Drinfeld style splitting

$$
s: \widetilde{\mathcal{T}} \otimes \mathbf{Q}_{p} \cong \mathcal{T} \otimes \mathbf{Q}_{p}
$$

We can again consider the congruence module $s(\tilde{\mathcal{T}}) / \mathcal{T}$, which again is $\Lambda /(\xi)$. Galois acts trivially on this quotient.

Recall Ohta's pairing

$$
\mathcal{T} \times \mathcal{T} \rightarrow \Lambda^{\iota}(1)
$$

We can extend this to a map

$$
\begin{equation*}
s(\widetilde{\mathcal{T}}) \times \mathcal{T} \rightarrow \frac{1}{\xi} \Lambda^{\iota}(1) \tag{7.1}
\end{equation*}
$$

Let $T=\mathcal{T} / I \mathcal{T}$. Then (7.1) descends to

$$
s(\widetilde{\mathcal{T}}) / \mathcal{T} \times T \rightarrow\left(\frac{1}{\xi} \Lambda / \Lambda\right)^{\iota}(1) \xrightarrow{\xi}(\Lambda / \xi)^{\iota}(1) .
$$

Pairing with the generator $\{0 \rightarrow \infty\}$ of $s(\widetilde{\mathcal{T}}) / \mathcal{T}$ gives a map $T \rightarrow(\Lambda / \xi)^{\iota}(1)=: Q$ of $\mathfrak{h} / I\left[G_{\mathbf{Q}}\right]$-modules. We have an extension of the form

$$
\begin{equation*}
0 \rightarrow P \rightarrow T \rightarrow Q \rightarrow 0 \tag{7.2}
\end{equation*}
$$

Consider the sequence

$$
0 \rightarrow \mathcal{T}_{\text {sub }} \rightarrow \mathcal{T} \rightarrow \mathcal{T}_{\text {quo }} \rightarrow 0
$$

The point is that this has a splitting when restricted to $G_{\mathbf{Q}_{p}}$. On $\theta$-parts, if $\left.\left(\theta \omega^{-1}\right)\right|_{(\mathbf{Z} / p \mathbf{Z}) \times} \neq$ 1 then we get a splitting by looking at the action of $I_{p}$. If it's $\left.\left(\theta \omega^{-1}\right)\right|_{(\mathbf{Z} / p \mathbf{Z}) \times}=1$ but $\left(\theta \omega^{-1}\right)(p) \neq 1$, we get a splitting by looking at Frobenius.

Using this we deduce that $0 \rightarrow P \rightarrow T \rightarrow Q \rightarrow 0$ is locally split. With respect to the splitting $T=T_{\text {sub }} \oplus T_{\text {quo }}$, we can write

$$
\bar{\rho}=\left(\begin{array}{ll}
\bar{a} & \bar{b} \\
\bar{c} & \bar{d}
\end{array}\right) .
$$

Since $\bar{b}=0$ and $\left.\bar{c}\right|_{G_{\mathbf{Q}_{p}}}=0$, and $\bar{a} \bar{d}=\operatorname{det} \bar{\rho}(\sigma)=\chi_{p}(\sigma)\langle\sigma\rangle$. On the other hand, $\bar{a}(\sigma)$ describes the action of $\sigma$ on $T_{\text {sub }} \cong(\Lambda / \xi)^{\iota}(1)$, which is $\chi_{p}(\sigma)\langle\sigma\rangle$. Hence we deduce $\bar{d}(\sigma)=1$.

Now, consider the diagram


Now, $T_{\text {sub }}$ and $Q$ are both abstractly isomorphic to $\Lambda / I$. Also, $Q$ can't map to $T_{\text {quo }}$ because the actions are incompatible. So this forces $T_{\text {sub }} \cong T^{-}$and then $T^{+} \cong T_{\text {quo }}$. This also gives the local splitting of 7.2 .

## 8. A Loose end

We showed earlier that $H^{2}\left(\mathbf{Z}[1 / N], T^{-}(1)\right) \cong Y$. We'd like to explain why we also have $H^{1}\left(\mathbf{Z}[1 / N], T^{-}(1)\right) \cong Y$. There is a long exact sequence associated to

$$
0 \rightarrow \Lambda \rightarrow \Lambda \rightarrow \Lambda /(\xi) \rightarrow 0
$$

which looks like

$$
0 \rightarrow H^{1}\left(\mathbf{Z}[1 / N], \Lambda^{\iota}(2)\right) /(\xi) \rightarrow H^{1}\left(\mathbf{Z}[1 / N], T^{-}(1)\right) \rightarrow H^{2}\left(\mathbf{Z}[1 / N], \Lambda^{\iota}(2)\right)[\xi] \rightarrow 0
$$

Now as we said earlier, $H^{2}\left(\mathbf{Z}[1 / N], \Lambda^{\iota}(2)\right) \cong Y$, and it's already killed by $\xi$. So we just need just that $H^{1}\left(\mathbf{Z}[1 / N], \Lambda^{\iota}(2)\right) /(\xi)=0$. This group comes from units. Going up to $\mathbf{Z}\left[1 / N, \mu_{N}\right]$ by Shapiro's lemma as before: $H^{1}\left(\mathbf{Z}[1 / N], \Lambda^{\iota}(2)\right) /(\xi)=0 \cong H^{1}\left(\mathbf{Z}\left[1 / N, \mu_{N}\right], \mathbf{Z}_{p}(2)\right) /(\xi)=$ 0 . Then thanks to the (2) twist, you get "odd" units instead of $N$-units (which would have been (1)). Anyway, the point is that, thanks to the assumption $\theta \neq \varpi^{2}$, we win because $\left(\mathbf{Z}_{p}(2)_{G_{\mathbf{Q}\left(\mu_{N}\right)}}\right)^{\prime}=0$.

The upshot is that $H^{1}\left(\mathbf{Z}[1 / N], T^{-}(1)\right)$ and $H^{2}\left(\mathbf{Z}[1 / N], T^{-}(1)\right)$ are both identified with $Y$. A natural map from $H^{1}$ to $H^{2}$ is cupping with the (logarithm of the) cyclotomic character $\chi_{p} \in H^{1}\left(\mathbf{Z}[1 / N], \mathbf{Z}_{p}\right)$. What does this correspond to on $Y$ ? It turns out to be multiplication by the derivative of the $p$-adic $L$-function, $\xi^{\prime}$.


