
MODULAR SYMBOLS AND ARITHMETIC, I

ROMYAR SHARIFI,
NOTES BY TONY FENG

1. Introduction

The story I want to describe in these talks goes (very roughly) as follows. Let F be a
global field and n ≥ 2. The philosophy is that

“The geometry of GLn /F (near a boundary component) is related to the
arithmetic of GLn−1 /F .”

Today I’m going to say a little bit about the direction geometry  arithmetic for F = Q
and n = 2. More precisely, I want to discuss a map

H1(X1(N),Z)→ K2(Z[µN ]).

2. Modular curves

The cusps are denoted

C1(N) := X1(N)− Y1(N) = Γ1(N)\P1(Q).

We consider the group
M ′ := H1(X1(N), C1(N);Z),

which is generated by modular symbols {α→ β} for (representatives of cusps) α, β ∈ P1(Q).
This is the class of the geodesic between α and β in the upper half plane.

Manin gave a presentation of M ′:

Theorem 2.1 (Manin). M ′ is presented by symbols [u : v]′, for u, v ∈ Z/nZ with gcd(u, v) =
1, defined by

[u : v]′ = γ{0→∞} = { b
d
→ a

c
}

for

γ =

(
a b
c d

)
∈ SL2(Z).

Thus (u, v) = (c, d) mod NZ2.
The relations are

[u : v]′ = [−u : −v]′ = −[−v : u]′ = [u : u+ v]′ + [u+ v : v]′

for all u, v as above.

I want to modify this for our purposes, because I want to consider only some cusps. Let

C0
1 (N) := {x ∈ C1(N) | x 67→ 0 ∈ X0(N)}

be the set of “non-zero cusps”. We want to consider relative cohomology with respect to
these cusps. The presentation is actually basically the same; we just have to restrict to u, v
non-zero.
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I want to further restrict to the + part for complex conjugation, so define

S0 := H1(X1(N), C0
1 (N);Z′)+

where Z′ = Z[1/2]. Write

[u : v] := wN

(
[u : v]′ + [−u : v]′

2

)

where wN ↔
(

−1
N

)
is the Atkin-Lehner involution. In the notation from before,

wN [u : v]′ = {− d

bN
7→ − c

aN
}.

Then S0 has a presentation by [u : v] for u, v 6= 0, with relations

[u : v] = [−u : v] = −[v : u] = [u : u+ v] + [u+ v : v].

Now S0 ⊃ S := H1(X1(N);Z′)+. In fact S is the object that we’re really interested
in, but it’s easier to work with S0 because S doesn’t have such a nice presentation. The
quotient S/S0 has to do with the cusps: we have a short exact sequence

0→ S → S0 → H̃0(C0
1 (N);Z′)→ 0. (2.1)

These homology groups have the action of Hecke algebras. Call h0 the Hecke algebra
acting on S0, and h the quotient acting on S. These consist of Hecke operators and diamond
operators j ∈ (Z/NZ)×, where −1 acts trivially by definition.

3. The Eisenstein ideal

Given a Dirichlet character χ of modulus N , we can define an Eisenstein series of weight
2 by

E2,χ =
L(χ,−1)

2
+

∞∑
n=1

∑
d|n

dχ(d)qn.

We form an ideal out of (the coefficients of) this Eisenstein series. Note that

〈j〉E2,χ = χ(j)E2,χ.

Definition 3.1. The Eisenstein ideal I ⊂ h0 is generated by T` − 1− `〈`〉 for ` prime - N ,
and U` − 1 for ` prime dividing N .

Let M = (M ′ ⊗ Z′)+. It might be better to think of I as an ideal in the Hecke algebra
H acting on M . Then H/I

∼−→ Z[∆] where ∆ = (Z/NZ)×/ ± 1, by the map T` 7→ 1 + `〈`〉
and U` 7→ 1.

We’re interested in congruences between cusp forms and Eisenstein series, and for that
it is useful to look at I as being in h. The component of h/I corresponding to a character
χ has order essentially given by the constant coefficient of E2,χ.

Theorem 3.2. The group h/I is finite, with order divisible by the odd part of |
∏
χ L(χ,−1)|.

Remark 3.3. In fact this divisibility is an equality.
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4. Cyclotomic fields

Let’s define objects corresponding to S and S0. Let

Y = (K2(Z[µN ])⊗Z Z′)+.

This sits inside
Y 0 = (K2(Z[µN ], 1/N)⊗Z Z′)+.

Comparing to (2.1), we have a short exact sequencec

0→ Y → Y 0 →
⊕
p|N

(Z[µN ]+/p)× ⊗ Z′ → 0.

We also consider K1, which is identified with “N -units”:

K1(Z[µN , 1/N ]) ∼= Z[µN , 1/N ]×.

There is a “Steinberg symbol”

{, } : Z[µN , 1/N ]× × Z[µN , 1/N ]× → (K2(Z[µN ], 1/N)⊗Z Z′)+.

Inside the N -units we have the cyclotomic N -units

CN := 〈{1− ζiN | 1 ≤ i ≤ N − 1}, {ζN ,−1}〉.

Then CN ⊂ Z[µN , 1/N ]×, with index having odd part equal to the plus part h+Q(µN ) of the
class number (which by definition is the class number of the maximal totally real subfield
Q(µN )+).

Remark 4.1. Let me say a bit about how these K-groups (specifically K2) relates to class
groups. For p |M , there is an isomorphism (due to Tate)

K2(Z[1/M, µN ])⊗ Zp
∼−→ H2(Z[1/M, µN ];Zp(2)).

This second expression is the same as Galois cohomology of the maximal extension unram-
ified outside M and infinite places. If pr | N , for r ≥ 1, then Z[1/M, µN ] has cohomological
dimension 2 and we have

H2
ét(Z[1/M, µN ];Zp(2))/pr ∼= H2

ét(Z[1/M, µN ];Z/pr(2)).

This is quite close to the class group, more precisely “M -class group”

ClQ(µN ),M := ClQ(µN ) /{[p] : p |M}.

There is a short exact sequence

0→ ClQ(µN ),M ⊗ZZp → H2
ét(Z[1/M, µN ];Zp(1))→

⊕
p|M

Zp → Zp︸ ︷︷ ︸
Brauer group

→ 0.

Note that while K2 is a finite group, the Galois cohomology is not finite if there are at least
2 places dividing M .

The Steinberg symbol in K-theory maps to the cup product in Galois cohomology:
{α, β} 7→ α ^ β. The Steinberg symbol is bilinear, antisymmetric, and satisfies the defining
property of Milnor K-theory:

{x, 1− x} = 0 if x, 1− x ∈ Z[µN , 1/N ]×.
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We can look for these relations in cyclotomic units. For instance,

ζaN + (1− ζaN ) = 1,

1− ζaN
1− ζa+bN

+ ζaN
1− ζbN

1− ζa+bN

= 1,

1 + ζaN
1− ζa+bN

− ζaN
1 + ζbN

1− ζa+bN

= 1.

5. The conjecture

Theorem 5.1 (Busuioc, S). There exists a map

Π0 ⊗ Zp : S0 → Y 0

sending
[u : v] 7→ {1− ζuN , 1− ζvN}.

Moreover, Π0((T` − 1− `〈`〉)x) = 0 for all x ∈ S0, if ` ∈ {2, 3}.

We comment on the proof. We used the relations on the Steinberg symbol to try to
cut down the size of Milnor K2. We projected onto an eigenspace for the (Z/pZ)×-action,
and we found that each non-zero eigenspace (is nontrivial if p divides a certain Bernoulli
number) is one-dimensional.

Conjecture 5.2 (S). The map
$ : S/IS → Y

is an isomorphism.

6. Argument of Fukaya-Kato

We will present a proof by Fukaya-Kato that $ ⊗ Zp is Eisenstein, i.e. that it factors
through the Eisenstein quotient. We assume that N ≥ 4.

We can extend X1(N) to a scheme over Z[1/N ]. This carries a universal family E . For
a point (E,C) ∈ X1(N) consisting of an elliptic curve E and C ∈ E[N ], the fiber in E is
E. The unit group of E contains theta functions: if (c, 6) = 1 then there exists cθ ∈ O(E)×

with divisor c2[0]− E[c]. It is preserved under the norm map induced by multiplication by
a, if (a, c) = 1.

We also have sections ιa : X1(N)→ E sending (E,C) 7→ aC for (a, 6N) = 1. For (a, c) = 1
we can pull back the theta function to get what is called a Siegel unit on X1(N):

cga := ι∗a(cθ).

We can also define a Siegel unit ga ∈ O(Y1(N))× ⊗Z Q which is independent of c, if we
allow denominators. These satisfy

cga =
gc

2

a

gac
.

In fact, g12Na ∈ O(Y1(N))×/torsion. There is a map

O(Y1(N))× → K1(Y1(N)).

Then we can take the Steinberg symbols to get elements of K2(Y1(N)). The elements
{gu, gv} ∈ K2(Y1(N))⊗Z Q are called “Beilinson-Kato elements”.
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Theorem 6.1 (Goncharov, Brunault). There is a well-defined map

H1(X1(N), C0
1 (N);Z)→ K2(Y1(N))⊗Z Q

defined by
[u : v] 7→ {gu, gv}.

This is nice, but there are two issues.
(1) The proof doesn’t show that the map is Hecke-equivariant.
(2) The theorem requires tensoring with Q. Since we want to end up with K2 of a

ring of integers, which is finite, tensoring with Q is really bad. One can show that
denominators don’t show up in a certain “primitive part” that we’re interested in.

Roughly, Fukaya-Kato showed that there exists a Hecke-equivariant map

z# : H1(X1(N), C0
1 (N);Z)→ K2(Y1(N))⊗Z Zp

sending [u : v] 7→ {gu, gv} by a computation of a p-adic regulator. This statement is not
really true, and we’ll explain the correction later.

Now we want to focus on ∞. There is a map

Spec Z[µN , 1/N ]+((q))→ Y1(N)

so we can pull back

K2(Y1(N))→ K2(Z[µN , 1/N ]((q)))
∼←− K2(Z[µN , 1/N ][[q]])⊕K1(Z[µN , 1/N ]).

Then we can project to the first component, and specialize q = 0:

K2(Z[µN , 1/N ][[q]])⊕K1(Z[µN , 1/N ])
(q 7→0,0)−−−−−→ K2(Z(µN , 1/N ]).

The composition is a map∞ : K2(Y1(N))→ K2(Z(µN , 1/N ]) which is called “specialization
at ∞”.

Now you can ask: what happens to a Siegel unit when you specialize to ∞?

gu ∼ q1/12N
∞∏
n=0

(1− qnζuN )

∞∏
n=1

(1− qnζ−uN )

The process of forgetting K1 kills factor q1/12N . The processing of taking q → 0 leaves us
with 1− ζuN . So we conclude that

∞({gu, gv}) = {1− ζuN , 1− ζvN}.
The upshot is that we have found

Π0 =∞◦ z#.
Now, z# is Hecke-equivariant. What happens at ∞? We compute that

∞((T ∗` − 1− `〈`〉∗)x) = 0, x ∈ K2, ` - N
and

∞((U∗` − 1){gu, gv}) = 0 ∀u, v, ` | N.
This shows that Π0 factors through S0/IS0.

Now we have to go back and clear up some of the lies we told earlier. First of all, they
do not quite construct a map z# like we stated. Assume that p | N . To explain what they
really do, let

T̃ = lim←−H
1
ét(Y1(Npr)Q;Zp(1))ord
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where the transition maps are corestriction (i.e. trace). Consider also

H0 := lim←−H1(X1(Npr)Q, C
0
1 (Npr);Zp)

ord

They show that there is a map

z# : H0 → H1
ét(Z[1/N ], T̃ (1))⊗ Λ−1µ (6.1)

where Λ is an Iwasawa algebra of diamond operators, and µ is an explicit quantity which I
don’t want to describe.

There is a map

K2(Y1(N))⊗ Zp → H2
ét(Y1(N)/Z[1/N ];Zp(2))→ H1(Z[1/N ];H1

ét(Y1(N)Q;Zp(2))).

Now take ordinary parts, the kernel disappears and we get

K2(Y1(N))⊗ Zp → H2
ét(Y1(N)/Z[1/N ];Zp(2))ord

∼−→ H1(Z[1/N ];H1
ét(Y1(N)Q;Zp(2)))ord.

We think of H2 as a substitute for K2.
Now you might ask: how do you show that there exists the map (6.1)? They realize

(1− Up)z# as the corestriction of a map

z : Λ⊗̂Zp
H0 → lim←−H

1
ét(Z[1/N, µNpr ], T̃ (1))ord ⊗ (Λ⊗̂Λ)λ−1.

There are two Λ’s, one coming from the level (diamond operators) and one coming from the
Iwasawa tower. This map is given explicitly by Siegel units. To check that it is well-defined,
they compose with a p-adic regulator map to Λ⊗̂Zp

H0. The composition is multiplication
by a non zero-divisor (a p-adic L-function): it sends

[u : v] 7→ x[u : v].

The punchline is that the composite is clearly Hecke-equivariant, and the regulator is injec-
tive and Hecke-equivariant.

After taking the corestriction back down to the original level, you see that the map is
divisible by 1 − Up. After specializing at ∞ the inverse limit of H2 is closely related to a
characteristic ideal, and the denominator µ introduced misses it.

Remark 6.2. If p - N then it is not clear that the map is Hecke-equivariant, because we
cannot project to the ordinary part.

7. Preview of next week

Next time we will essentially construct a map in the opposite direction:

Υ: Y ⊗ Zp → S/IS ⊗ Zp

which is inverse to $. This is close to a map that appears in the Mazur-Wiles proof of the
Main Conjecture of Iwasawa theory. It uses the Galois action on H1

ét(X1(Npr);Zp(1))/I.
You should think of Υ as being completely inexplicit, in contrast to $ which was very
explicit.

8. Generalizations

For the remainder of the talk we discuss some cases where one might be able to construct
generalizations of $.

A couple of things are required. We need a nice description of units / elements in H2.
On the other hand, we need an explicit description of homology.
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8.1. Imaginary quadratic fields. Let K be an imaginary quadratic field and n = 2, p
split. Let n ⊂ OK be an ideal with p | n. We have the hyperbolic upper-half space H3.
The congruence subgroup Γ1(n) ⊂ SL2(OK) acts on H3, and this actions extends to the
extended upper-half space H3∪P1(K). The quotient X1(η) = Γ1(η)\H3 is a Bianchi space.
We’d like to think of this as analogous to the quotient of the modular curve by complex
conjugation, although of course it has no algebraic structure. So the group in question is
H1(X1(n);Zp).

Similarly, we can consider H1(X1(n), C0;Zp). This has modular symbols γ{0 → ∞}. If
K is Euclidean, Cremona showed that this group has an explicit presentation on symbols
[u : v] for non-zero u, v ∈ OK with gcd(u, v) = 1.

On the other hand, inside K2(OK [1/n]) we have Steinberg symbols of elliptic units
{αu, αv}, where αu, αv are elliptic n-units in OK(n)[1/n]× where K(n) is the Ray class
field of conductor n over K. You can think of elliptic units as the specializations of Siegel
units at CM points.

We can speculate that there should exist a map

[u : v] 7→ {αu, αv}

which is Hecke-equivariant, and moreover Eisenstein. Goncharov first studied this idea.

8.2. n = 3 for Q. In this case the space in question is SL3(R)/ SO3(R). This has an action
of SL3(R). Let Γ

(3)
1 (N) be the group of matrices in SL3(Z) with bottom row congruent to

(1, 0, 0) mod N .
Let X(3)

1 (N) be an appropriate compactification of the quotient. This is a 5-manifold,
which again suffers from the problem of not being algebra. However, by work of Ash-
Rudolph and Ash, we know that H2(X

(3)
1 (N), ∂,Z) has a presentation on symbols [u : v : w]

for u, v, w ∈ Z/nZ with gcd(u, v, w) = 1.
What about a K-group? Recall the philosophy that the geometry of GLn /F (near a

boundary component) is related to the arithmetic of GLn−1 /F . So now we should be looking
at GL2, i.e. the modular curve, over Z[1/N ]. Now, K3(Y1(N)/Z[1/N ]) 3 {gu, gv, gw}.

Question 8.1. Does there exist a Hecke-equivariant map

H2(X
(3)
1 (N), ∂,Z)→ K3(Y1(N)/Z[1/N ])

sending [u : v : w] 7→ {gu, gv, gw}?

Remark 8.2. That there exists a map after tensoring with Q should be easy; the hard part
would be to show Hecke-equivariance.

There is a map

K3(X1(N))→ H3(X1(N)/Z[1/N ];Zp(3))→ H2(Z[1/N ];H1
ét(X1(N);Zp(3)).

So we see H2 of interesting Galois representations. The target is closely related to the dual
Selmer groups of cusp forms. So if we had the desired map, then we might be able to get
information here.

8.3. Function fields. Let K be a global function field of characteristic ` 6= p and n ≥ 2.
We will focus on the case n = 2, K = Fq(t).

In this case the symmetric space is the Bruhat-Tits tree BT . It has an action of
PGL2(OK), which extends to a compactification by “ends”. An end is an apartment in
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the tree, and the Bruhat-Tits tree has a partial compactification BT whose boundary is the
ends. Then we can consider

H1(Γ1(n)\BT ), ends;Zp).

By work of Teitelbaum, this has a nice presentation on symbols [u : v] for u, v ∈ OK/n for
(u, v) = 1 with essentially the same relations.

We also have an analogue of the notion of ray class field. There is an n-unit λu ∈ K(n)×

which is an n-torsion point for a Drinfeld module called the Carlitz module.
We have the action of a Hecke algebra h on H1(Γ1(n)\BT );Zp), which contains an Eisen-

stein ideal I.

Theorem 8.3 (Fukaya-Kato-S). There exists a map

$ : H1(X1(n);Zp)/I → K2(OK(n))⊗ Zp

sending
[u : v] 7→ {λu, λv}.
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