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1. Review

We begin by reviewing the discussion from the previous talk.

1.1. Setup. We recall some notation from last time.
Let G be a connected semisimple algebraic group over a number field k. Let Ok be the

ring of integers of k. Choose an embedding ρ : G ↪→ GLn. Then we can define

G(Ok) := G(k) ∩GLn(Ok).

Denote by V∞ the set of archimedean places of k. Let Γ ⊂ G(k) be a torsion-free
arithmetic subgroup, and

G∞ := (Resk/QG)(R) =
∏
v∈V∞

Gv

inside which we pick a maximal compact K∞ :=
∏
v∈V∞

Kv.
Let X =

∏
v∈V∞

K∞\G∞. Then Γ acts on X, giving the quotient X/Γ the structure of
a non-compact Riemannian manifold with finite volume.

For (η,E) a finite-dimensional representation of G, we have a corresponding local system
on X/Γ, and we denote by Hi

dR(X/Γ, E) the de Rham cohomology. As we saw in Clozel’s
lectures, this admits an interpretation in terms of (g,K)-cohomology:

Hi
dR(X/Γ, E) = H∗(g,K∞;C∞(G∞/Γ)⊗ E).
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1.2. Boundary cohomology. We introduced the Borel-Serre compactification

X/Γ =
∐

P∈P/Γ

e′(P ).

Here P is the set of rational parabolics. Note that the term e′(G) is X/Γ.
The key aspect of the Borel-Serre compactification is that the map X/Γ→ X/Γ is a ho-

motopy equivalence. In particular, the map H∗(X/Γ, E)→ H∗(X/Γ, E) is an isomorphism.
Consider the restriction maps (for P a Q-parabolic of G)

γ∗P : H∗(X/Γ, E)→ H∗(e′(P ), E).

We explained last time that this restriction map can be realized in the space X/Γ. Namely,
by reduction theory there is an neighborhood VP,t of e′(P ) such that (X/Γ)∩ VP,t is diffeo-
morphic to AP,t × e′(P ). Here P (R) = AP · 0P ·NP and

AP,t = {a ∈ AP | α(a) ≥ t for all α ∈ ∆(P,AP )}.

An important point is that there exists t0 > 0 such that Γ-equivalence and Γ∩P -equivalence
coincide in VP,t, for t > t0. As a consequence of this picture, γ∗P ([ϕ]) is represented by the
restriction [ϕ]|e′(P ).

Next we discussed the cohomology of H∗(e′(P ), E). We explained how topological argu-
ments can be used to show that the image of γ∗P is “large”. The question is which classes
lift to X/Γ. We have a fibration e′(P )→ ZM/ΓM where ZM is the symmetric space of the
Levi MP of P . This yields an E2-degenerate spectral sequence, hence a decomposition

H∗(e′(P ), E) =
⊕

w∈WP

H∗(ZM/ΓM ,Fµw
)

where WP is the set of minimal coset representatives of WP \W , and Fµw
is the representa-

tion of M with highest weight

µw = w(Λ + ρ)− ρ|bC

if (η,E) has highest weight Λ, where h = b ⊕ aP is a splitting of a Cartan subalgebra of g
into a Cartan of 0mP and the Lie algebra of AP .

Inside H∗(e′(P ), E) we have the cuspidal cohomology H∗cusp(e′(P ), E).

Definition 1.1. We say that ϕ ∈ H∗cusp(e′(P ), E) is a class of type (π,w), with w ∈ WP ,
if [ϕ] comes from H∗(0m,KM , Vπ ⊗ Fµw

) with Vπ ⊂ L2(0M/ΓM ). This already imposes a
condition on the central character. (We are implicitly using here that the weights µw are
distinct, so that the type is well-defined)

2. Lifting differential forms from the boundary

Recall the isomorphism induced by the geodesic action:

X/P ∩ Γ
∼−→ e′(P )×AP .

Let
ϕ ∈ Ω∗(e′(P ), E) = Ω∗(e(P ), E)Γ∩P .

We can pull back ϕ to e′(P )× AP via the projection, and thus identify it with an element
of Ω∗(X/P ∩ Γ, E) = Ω∗(X,E)Γ∩P .

Definition 2.1. For λ ∈ a∗C, let ϕλ := ϕ · aλ+ρ ∈ Ω∗(X,E)Γ∩P .
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Since we want to produce cohomology classes, we want to know if the differential forms
produced by this construction are closed.

Fact 2.2. Let [ϕ] ∈ H∗cusp(e′(P ), E) be of type (π,W ) where W has highest weight Λ. Then
ϕλ is a closed form if and only if

λ = −w(Λ + ρ)|a.

For ω ∈ Ω∗(X/Γ, E), we denote by ω0 the form in Ω∗(X,E)Γ obtained by pullback. We
can write ω0 in terms of Maurer-Cartan forms.

Choose an orthonormal basis Xi for g, compatible with the decomposition g = h ⊕ p,
and view the Xi as right-invariant vector fields on G (hence also for G/Γ). Let ωi be the
dual basis of 1-forms on G. For J = {i1, . . . , iq} ⊂ {1, . . . ,dim g} an increasing sequence,
we write

ωJ := ωi1 ∧ . . . ∧ ωiq .
Let ω ∈ Ωi(X,E)Γ. We can write

ω =
∑

fJω
J , fJ ∈ C∞(G/Γ)⊗ E.

Proposition 2.3. Let ω ∈ Ω∗(X,E)Γ be closed. Write

ω0 =
∑

fJω
J .

Suppose that the functions fJ are automorphic forms. Then

[ω]|e′(P ) = [ωP ]|e′(P )

where ωP is the constant Fourier coefficient of ω, defined by taking the constant terms of
the functions:

ωP =
∑

(fJ)P · ωJ |e′(P ).

Thus we have the description
γ∗P ([ω]) = [ωP ]|e′(P ).

3. Eisenstein series

3.1. Construction of Eisenstein series. We now present a construction that attempts
to lift forms from boundary cohomology.

Let P ( G be a parabolic Q-subgroup. We let a := aP be the Lie algebra of AP , and a∗

be its the dual. We define

(a∗)+ = {λ ∈ a∗ | (λ, α) > 0 for all α ∈ ∆(P,A)}
and

(a∗C)+ = {λ ∈ a∗C | Re λ ∈ ρ+ (a∗)+}.
The subset (a∗C)+ corresponds to “real part > 1” under the right normalizations.

Let f ∈ C∞(G/APNP )ΓP be K-finite, such that for each g ∈ G, the function

m 7→ f(gm)

is a square-integrable automorphic form on 0MP with respect to ΓM . To f and λ ∈ a∗C, we
can attach a function fλ on G defined by: for x ∈ G,

fλ(x) = f(x)a(x)λ+ρ.

Here a(x) is the part of the Cartan decomposition

G = AP
0MPNPK.
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Then we can form the Eisenstein series

E(f, λ)(x) =
∑

γ∈Γ/Γ∩P

fλ(xγ), x ∈ G.

This is C∞ and uniformly convergent on compact subsets in G × (a∗C)+. As a function of
x, it is K-finite, and even an automorphic form with respect to Γ.

There is an analytic continuation as a meromorphic function to all of a∗C. It is holomorphic
on the imaginary plane ia∗.

3.2. Representation-theoretic interpretation. The preceding construction has the fol-
lowing representation-theoretic interpretation. For a representation of the Levi

(σ,Hσ) ↪→ L0
disc(0MP /ΓM )

we have a map
IndGP [(σ,Hσ)⊗ λ]→ A(G,Γ) ⊂ C∞(G/Γ).

4. Eisenstein differential forms

We can play the same game with differential forms. Given [ϕ] ∈ H∗(e′(P ), E), we can
lift it to ϕλ ∈ Ω∗(X/Γ ∩ P,E) as discussed in §2, and then form the Eisenstein series

E(ϕ, λ) =
∑

γ∈Γ/Γ∩P

ϕλ ◦ γ ∈ Ω∗(X,E)Γ

for a fixed λ ∈ a∗C, if E(ϕ, λ) is holomorphic there.
The region of absolute convergence for E(ϕ, λ), viewed as a function of λ with ϕ fixed, is

Re λ ∈ ρP ∈ (a∗)+. Of course there is an analytic continuation. Since we want to construct
cohomology classes, we are interested in:

(1) Determining for which λ0, the form E(ϕ, λ) evaluated at λ = λ0 (subject to the
condition that E(ϕ, λ) is holomorphic at λ = λ0) gives rise to a closed form on X/Γ
(and hence a cohomology class).

(2) Determining when the cohomology class [E(ϕ, λ0)] is non-trivial.

Theorem 4.1. Let (η,E) have highest weight Λ. Let [ϕ] ∈ H∗cusp(e′(P ), E) be of type (π,w),
where π is cuspidal and w ∈WP . We can represent [ϕ] by a harmonic differential form (this
is a theorem, not an assumption). Suppose that E(ϕ, λ), viewed as a function of λ ∈ a∗C, is
holomorphic at λ0.

Then E(ϕ, λ0) ∈ Ω∗(X/Γ, E) is a closed, harmonic form and [E(ϕ, λ)] 6= 0.

A cohomology that arises from this theorem is called a regular Eisenstein class. (What if
it’s not holomorphic? Then we have a residue. This happens if E is the trivial representation,
for instance.)

Theorem 4.2. Let G be a connected semisimple Q-group, which is Q-split. Let P0 be a
minimal Q-parabolic subgroup of G.

Suppose that (η,E) is a representation of G with regular highest weight. Then as R runs
over the Γ-conjugacy classes of minimal Q-parabolic subgroups of G, the classes [E(ϕ, λ0)] 6=
0 attached to nontrivial classes [ϕ] ∈ H∗(e′(R), E) of type (π,wG), where wG is the longest
element in the Weyl group of G, generate a subspace Eis{P0} ⊂ H∗(X/Γ, E) such that

Eis{P0}
∼−→ Im γ∗{P0}/Γ.
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Remark 4.3. Note that `(wG) = dimNP , which is the dimension of e′(P0). So the theorem
is constructing classes in the top dimension, which is the same the virtual cohomological
dimension of Γ, which is dimX − rankQG.

The point is to show that there are no residues. Due to the fact that the highest weight
of E is regular, the point of evaluation is moved away from the boundary of the region of
absolute convergence of the Eisenstein series.

We will explain some strategies to show that E(ϕ, λ) is a non-trivial cohomology class.
We say that P1 and P2 are “associated”, P1 ∼ P2, if LP1

and LP2
are G-conjugate. Let

W (A1, A2) be the set of isomorphisms induced by G-conjugation. This is a finite set. For
example,

W (A1) := W (A1, A1) = NG(A1)/ZG(A1)

is the usual Weyl group. The set W (A1, A2) is a torsor for W (A1): for s ∈ W (A1, A2) you
have W (A1, A2) = sW (A1).

Definition 4.4. Suppose ω = E(ϕ, λ) ∈ Ω∗(X/Γ, E). Write

ω =
∑

fJω
J , where fJ ∈ C∞(G/(Γ ∩ P )APNP )⊗ E.

Then we define the constant term along Q:

E(ϕ, λ)Q =
∑
J

E(fJ , λ)Qω
J .

Recall that the parabolic rank prk(P ) of P is the dimension of AP . We discuss the
behavior of the constant term, which depends qualitatively on the parabolic rank:

(1) If prk(Q) > prk(P ), then E(ϕ, λ)Q = 0.
(2) If prk(Q) = prk(P ) and P 6∼ Q, then E(ϕ, λ)Q = 0.
(3) If prk(Q) < prk(P ), then E(ϕ, λ)Q is negligible with respect to Q, meaning orthog-

onal to cusp forms. However, it can still be a residue of an Eisenstein series from a
subparabolic of MQ.

The most interesting case is prk(P ) = prk(Q) and Q ∼ P . Changing notation, suppose
we have two associated parabolics P1 ∼ P2. For an Eisenstein series E(f, λ) coming from
P1, we have

E(f, λ)P2(x) =
∑

s∈W (A1,A2)

c(s, f)sλ(x)︸ ︷︷ ︸
∈C∞(G/(Γ∩P2)N2)

where c(s, f)λ are certain intertwining operators.
In terms of representation theory, the intertwiner is an operator

IndGP1
(π1 ⊗ λ)→ IndGP2

(sπ ⊗ sλ).

The analytic behavior of E(f, λ) is closely related to the analytic behavior of c(s, λ)f , for
all s ∈W (A1, A2), because of the formula

E(ϕ, λ)P2 =
∑

s∈W (A1,A2)

(c(s, λ)(ϕ))sλ

where c(s, λ) can be viewed as operators between (g,K)-modules (for M) of induced repre-
sentations.

How do you show that Eisenstein classes are nontrivial? You consider E(ϕ, λ)P1 . There
is a term corresponding to s = Id, and it is nontrivial. There are other summands, and
the question is if there is cancellation. Looking at the weights with respect to the split
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component, one can often see that there is no cancellation. If there are two terms with the
same weight, then one can rule out cancellation by looking at the infinitesimal character.

There was a question about whether E(ϕ, λ) is holomorphic at −w(Λ + ρ)|a. Suppose
E = C, and P is a maximal parabolic. Then dimAP = 1, so a∗C

∼−→ C∗ and λs ↔ s. In the
region of absolute convergence for E(ϕ, λs), this is a point on the boundary, for the longest
Weyl element wP . As we know from the adelic context, the holomorphicity of c(s, λ) is
governed by normalizing factors. The evaluation points of E(ϕ, λ) you are interested in are
always integral or half-integral.

Example 4.5. Let P be the maximal parabolic, with |w(A)| = 2 corresponding to

GLv ×Spv′ ⊂ Spv+v′ .

The normalizing factor is
L(s, τ × σ)L(2s, τ,∧2)

L(s+ 1, ε× σ)L(2s+ 1,∧2)

Remark 4.6. One can also approach H∗(X/Γ,C) more geometrically. If H ⊂ G, then you
can arrange after passing to a finite index subgroup of Γ that XH/ΓH ↪→ XG/Γ is a totally
geodesic submanifold. You can show that [XH/ΓH ] 6= 0. You can try to relate this to
cohomology coming automorphic representations. Sometimes you are lucky, and by looking
at certain degrees you can relate this to the automorphic stuff; see [Sch].
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