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1. Setup
1

Let k be a number field with ring of integers Ok. Let V = V∞ ∪ Vf be the set of places,
where V∞ consists of the subset of archimedean places. For each v ∈ V∞, we denote by σv
the corresponding embedding

k ↪→ kv = C or R.
Let G be a connected reductive/semisimple algebraic group over k. Choose an embedding

ρ : G ↪→ GLn. Then we can define

G(Ok) := G(k) ∩GLn(Ok).

Let
G∞ = Resk/QG(R) =

∏
v∈V∞

G(kv)

which is a real Lie group. There is a diagonal embedding

G(k) ↪→ G∞.

For Γ ⊂ G(Ok) a finite index subgroup, we can view Γ as a discrete subgroup in G∞. It
is an arithmetic group.

For v ∈ V∞, let Kv ⊂ Gv be a maximal compact subgroup. Let Xv = Kv\Gv for v ∈ V∞.
Then we have Xv

∼= Rd(Gv) where d(Gv) = dimGv − dimKv.
Let X =

∏
v∈V∞ Xv, which has dimension d(G) =

∑
d(Gv).

The arithmetic subgroup Γ acts properly discontinuously on X. If Γ is torsion-free then
it moreover acts freely, and X/Γ is a manifold. (For this statement it is necessary to assume
that G is semisimple, although it is not hard to salvage for reductive G.)

Let me remind you of the following important compactness criterion.
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Theorem 1.1. (1) The quotient G∞/G(Ok) has finite Haar measure if and only if X∗k(G) =
1. (Here X∗k(G) is the group of characters of G defined over k.) Note that the condition is
the same for any Γ.

(2) Furthermore, X is compact if and only if X∗k(G) = 1 and every unipotent element in
G(k) belongs to the radical RG.

Corollary 1.2. Suppose k has at least one place v ∈ V∞ such that Gv is compact, and
|V∞| ≥ 2. Then G∞/G(Ok) is compact if and only if Xk(G) = 1.

Example 1.3. If G is the isometry group of a quadratic form which is definite at some
v ∈ V∞, then the compactness assumption of Corollary 1.2 is satisfied.

2. Cohomology at infinity of locally symmetric spaces

We want to consider H∗(X/Γ, E) where (η,E) is a rational representation of G. This
coincides withH∗dR(X/Γ, E), and as was explained in Laurent’s talks, this can be interpreted
in terms of (g,K)-cohomology:

H∗dR(X/Γ, E) ∼= H∗(g,K;C∞(G∞/Γ)⊗ E).

If Γ is a congruence subgroup, then by a very deep result of Franke, we may further
identify

H∗(g,K;C∞(G∞/Γ)⊗ E) ∼= H∗(g,K;A(G∞/Γ)⊗ E)

where A(G∞/Γ) is the space of automorphic forms.
Suppose rankkG > 0. Then we are in the situation where X/Γ is not compact, but it is

of finite volume. We have various compactifications of X/Γ, and we are interested in the
cohomology that relates to the boundary of these compactifications.

2.1. Example: modular curves. Think of the fundamental domain of SL2(Z) acting on
H = SO(2)\ SL2(R). It has an infinite direction y → ∞, which looks like a cusp because
the metric decays like dxdy

y2 . One way to compactify is to add a point at ∞. Another option
is to instead add a circle at ∞.

What are the relative advantages of these compactifications? In the first case you get a
Riemann surface. On the other hand, the compactification in the second case is homotopy
equivalent to the space obtained by cutting off the cusp at some finite length. More precisely,
you can define a distance function to the cusp, and this is is a Morse function with no critical
points far out.

We’ll denote by H/Γ the second compactification. Then as we have discussed, the inclu-
sion H/Γ ↪→ H/Γ induces an isomorphism:

H∗(H/Γ,C)
∼−→ H∗(H/Γ,C).

On the other hand, we have a map

H∗(H/Γ,C)→ H∗(∂(H/Γ),C). (2.1.1)

Now, ∂(H/Γ) is a disjoint union of S1, so we know its cohomology.
Consider the map (2.1.1) in degree 0. The left hand side is C, and the right side is

C#cusps. The map is injective. (The kernel comes from H0
c (H/Γ,C) = 0.)

Now consider the map (2.1.1) in degree 1, which is the more interesting case. We have
the long exact sequence

H1(H/Γ,C)
γ1

−→ H1(∂(H/Γ),C)→ H2(H/Γ, ∂(H/Γ),C) ∼= H0(H/Γ,C) ∼= C
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so we see that Im γ1 is of codimension 1. This raises the question: how we can describe this
codimension 1 defect?

2.2. Example: arithmetic hyperbolic 3-manifolds. Let k = Q(
√
d) be a quadratic

imaginary field. Then the locally symmetric space attached to SL2 /k is X = H3/Γ where
Γ ⊂ SL2(Ok). This is a 3-dimensional hyperbolic manifold.

Consider the restriction map

γ∗ : H∗(X/Γ,C)→ H∗(∂(X/Γ),C).

Now the boundary components are not circles but tori T 2, if d 6= −1,−3.
The map γ0 : H0(X/Γ,C)→ H0(∂X/Γ,C) is as before. What about γ1?

γ1 : H1(X/Γ,C)
γ1

−→ H1(∂(X/Γ),C)

It is a fact that dim Im γ1 = 1
2 dimH1(∂(X/Γ),C) = #cusps. This is a general phenomenon

of algebraic topology; in fact by using Poincaré duality one shows that the image of γ1 is
maximal isotropic under Poincaré duality.

3. Borel-Serre compactification

We will now discuss the Borel-Serre compactification in more detail. References are
[BS73], and [Har71] for a different approach. We are going to elide some technical subtleties.

If H is a connected algebraic group over k ⊂ R, we define
0H := ∩χ∈X∗k(H) ker(χ2)

This is evidently a normal subgroup of H, defined over k.
Let S be a maximal k-split torus in the center of H. Setting A = S(R)0, we have

H(R) = An 0H(R)

Fact 3.1. We have the following two facts:
(1) 0H(R) contains all maximal compact subgroups of H(R).
(2) If k = Q, 0H(R) contains all arithmetic subgroups of H.

From now on we assume that G is defined over Q; we can always arrange this by tak-
ing restriction of scalars. Let P ⊂ G be a parabolic Q-subgroup. Write the Langlands
decomposition

P (R) = APMPNP

with MP = 0LP (R), and LP = P/NP . (Implicitly we’ve chosen a good lifting of LP to P .
This must be done with some care, which is tied in to the notion of “θ-stable parabolic”,
but the lift might not be defined over Q. We ignore this point.)

Let AP be the closure of AP under the open embedding AP → R∆−J(P ), via the identi-
fication

AP ∼= (R×+)∆−J(P ).

(In our conventions, if P is a maximal parabolic then J(P ) has one element.) We have the
Cartan decomposition

X = K\G = K\K · P (R) = K ∩ P (R)\P (R).

Then we have a geodesic action
AP ×X → X

given by (writing KP = K ∩ P (R))

(a,KP g) 7→ aKP g



4 LECTURES BY JOACHIM SCHWERMER, NOTES BY TONY FENG

which is well-defined because AP commutes withKP ⊂MP , and is independent of the choice
of basepoint. Furthermore, each orbit under this action is a totally geodesic submanifold
with respect to any invariant Riemannian metric.

Example 3.2. If X = H, so G = SL2 /Q, then the action is

(t, x+ iy) 7→ x+ it2y.

Thus the orbits are vertical half-lines.

Let P be the set of Q-parabolic subgroups. For any P ∈ P, we define e(P ) := AP \X.
Then we set

X :=
∐
P∈P

e(P ).

For each P ∈ P, define
X(P ) =

∐
Q∈P
Q⊃P

e(Q).

If P,Q ∈ P then X(P )∩X(Q) = X(R) where R is the smallest parabolic over Q containing
P and Q.

Note that e(G) = AG\X, which is just X because AG is trivial. Thus X is included as
the open subset e(G).

Theorem 3.3 (Borel-Serre). We have the following facts.
(1) There exists a unique topology on X such that the action of G(k) on X extends

continuously to an action of homeomorphisms on X, and such that X(P ) is open
in X for P ∈ P. The normalizer of e(P ) is the parabolic P .

(2) The eP are permuted under this action.
(3) If Γ ⊂ G(k) is an arithmetic subgroup, then it acts properly on X and X/Γ is

compact. The map X/Γ→ X/Γ is a homotopy equivalence.

Let Γ ⊂ G(Q), and π : X → X/Γ. The action of Γ will identify some boundary compo-
nents in X. What about the “local picture” of X(P )?

There exists a neighborhood of e(P ) in X such that given x, y ∈ U we have x ∼Γ y if and
only if x ∼Γ∩P y. So we can define e′(P ) = π(e(P )).

Theorem 3.4. We have
X/Γ =

∐
P∈P/Γ

e′(P )

where P/Γ is the set of Γ-conjugacy classes of parabolic subgroups of G. (It is a finite set.)

Consider an open neighborhood of e′(P ) on X/Γ. We have e′(P ) at ∞. The AP “paves
the way” to e′(P ).

Remark 3.5. In Harder’s approach you cut off the cusp at a finite part rather than add
something at ∞. This idea will be useful to us later.

4. Eisenstein cohomology

4.1. Restriction to the boundary. We have the map

γ∗ : H∗(X/Γ, E)→ H∗(∂(X/Γ), E).
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We have just described the boundary as

∂(X/Γ) =
∐

P∈P/Γ
P 6=G

e′(P ).

For the maximal parabolic, codim e′(P ) = 1. In general, the parabolic rank is the dimension
of the maximal split torus, and is the codimension of the boundary component corresponding
to P .

For a fixed P consider in particular the map

γ∗ : H∗(X/Γ, E)→ H∗(e′(P ), E).

We can think of restricting a differential form to the subset by slicing off this cusp. We’re
going to explain this now. Let

AP,t = {a ∈ AP | α(a) ≥ t for all α ∈ ∆(P,AP )}.

Define
AP,t = {a ∈ AP | α(a) ≥ t for all α ∈ ∆(P,AP )}.

Recall the geodesic action furnishes an isomorphism

µ0 : AP × e(P )
∼−→ X

compatible with the action of Γ ∩ P on each side. Then there exists a t0 > 0 such that
Γ-equivalence and (Γ ∩ P )-equivalence on UP,t := µ0(AP,t × e(P )) coincide for any t > t0.

Hence we have
AP,t × e(P )/Γ ∩ P = AP,t × e′(P )

∼−→ π(UP,t).

Define UP,t = µ0(AP,t × e(P )), so this tells us that we have an isomorphism

AP,t × e′(P )
∼−→ π(UP,t).

such that
π(UP,t) ∩X/Γ

∼−→ AP,t × e′(P ).

So for t > t0 and a ∈ AP,t, any cohomology class [x] ∈ H∗(X/Γ, E) restricts to [x]a·e′(P )

in a way that is independent of a (this is a crucial point!). Therefore we have a well-defined
restriction γ∗P ([x]) = [x]|e′(P ).

4.2. Cohomology of the boundary faces. Next we have to analyze the cohomology of
the face e′(P ). Denote

κ : P → P/N = LP .

The restriction map uses the fibration of e′(P ):

N(R)/N(R) ∩ Γ︸ ︷︷ ︸
=:FN

→ e′(P )→ ZP /Γ(P )

where Γ(P ) = κ(Γ ∩ P ), and ZP = κ(K ∩ P (R))\0LP (R).

Proposition 4.1. The spectral sequence in cohomology associated to this fibration degener-
ates at E2, so we have

H∗(e′(P )) ∼= H∗(ZP /Γ(P ), H
∗(FN , E)). (4.2.1)



6 LECTURES BY JOACHIM SCHWERMER, NOTES BY TONY FENG

This reduces the question to one about groups of lower rank. So we need to understand
the cuspidal spectrum of ZP /Γ(P ). For example, if G = SLn then this could be the locally
symmetric space of SLn−1. There are a bunch of constraints on the cuspidal automorphic
forms here to lift to Eisenstein series. There are topological constraints having to do with
the coefficient system, but there are also global constraints coming from analysis.

Proposition 4.2 (van Est, Nomizu). The restriction maps

Ω∗(N(R), E)N(R) → Ω∗(N(R), E)Γ∩N(R)

induces an isomorphism in cohomology.

The cohomology of the left side is Lie algebra cohomology:

Ω∗(N(R), E)N(R) ∼= H∗(n, E).

Thus we obtain
H∗(n, E) ∼= Ω∗(N(R), E)Γ∩N(R).

Note that the Levi quotient acts on the unipotent radical, so H∗(n, E) is an Lp(R)-
module. We also have an action of Γ(P ) on the fiber FN , since this is a general fact about
any fibration, and these are compatible. In other words, the restriction of the first action
to Γ(P ) coincides with the second.

4.3. A result of Kostant. We now investigate how the cohomology of the fiber decomposes
into irreducibles under the Levi action. The description will come from a result of Kostant.

Let P0 ⊂ G be a minimal parabolic subgroup over Q. Let MP0
be a Levi component.

Take a standard parabolic P ⊃ P0 over Q. We have AP ⊂ A0 := AP0 , and we can also
arrange that MP ⊃MP0 .

Let h be a Cartan subalgebra of g, containing a0.
Let Φ = Φ(gC, hC) and Φ0 = Φ(gC, a0,C). Choose compatible orderings of positive roots,

i.e. Φ+ ∩ Φ0 = Φ+
0 .

Let b = h ∩ 0mP be a Cartan of 0mP , and choose a complement aP so that h = b⊕ aP .
Then we get dually h∨C = b∨C ⊕ a∨P,C. Write ΦP = Φ(0mP,C, bC) and ∆P = ∆ ∩ ΦP .

Write W = W (gC, hC) and WP = W (0mP,C, bC).

Lemma 4.3. In any right coset ofWP inW , there exists a unique element with the following
properties:

(1) w is the unique element of minimal length in the coset,
(2) w−1(α) > 0 for every α ∈ ∆P .

In fact each of these properties individually characterizes w. Hence the mapW →WP \W
has a canonical section, whose image WP is the set of minimal coset representatives, and
can also be expressed as

{w ∈W | w−1(∆P ) ⊂ Φ+}.

Theorem 4.4 (Kostant). Let (η,E) be a representation of G(C) with highest weight λ ∈ hC.
Then H∗(n, E) decomposes as Lp(C)-module in any degree q:

Hq(n, E) =
⊕

w∈WP

`(w)=q

Fµw

where Fµw is an irreducible Lp(C)-module with highest weight µw = w(λ+ ρ)− ρ. The µw
are all distinct as w varies through WP .
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Let’s apply this to (4.2.1):

H∗(e′(Γ), E) = H∗(ZΓ/Γ(p), H
∗(n, E)).

By Theorem 4.4, this can be written as

= H∗(0mP ,KMP
;C∞(0MP (R)/Γ(P ))⊗

⊕
w∈WP

Fµw).

Inside we have the cuspidal cohomology, which comes from the space of cuspidal automorphic
forms:

H∗cusp(0mP ,KMP
;
⊕

w∈WP

Fµw
).

Consider cuspidal automorphic representations (π,Hπ) in L2
0(0MP (R)/Γ(P )). The idea

is to take [ϕ] ∈ H∗cusp(0mP ,KMP
;
⊕

w∈WP Fµw
), and say that it’s of type (π,w) for w ∈WP

if 0 6= [ϕ] ∈ H∗(0mP ,KMP
;Hπ ⊗ Fµw

).
This is the starting point for the construction of Eisenstein series. It gets “easier” if

(η,E) has regular highest weight. Why? This forces the representation π to be tempered,
as we shall state in a proposition below. So the non-tempered stuff cannot contribute if the
regularity of E transfers to the regularity of Fµw .

Proposition 4.5. If the highest weight of (η,E) is regular, then the highest weight of Fµw

as an Lp(R)-module is regular.
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