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1. Transfer operators

The goal of the talk is to study transfer operators. Later we’ll recall what they are, but
let’s first mention the motivation.

1.1. Motivation. There are two main motivations.
(1) Relate periods of automorphic L-functions to special values of L-functions.
(2) To realize Langlands’ “Beyond Endoscopy” proposal for realizing functoriality in

terms of a comparison of stable trace formulas
We will focus on the first goal today, since it’s easier to explain.

1.2. Notation. Let k be a global field, F a local field, A the ring of adeles over k, and
[G] = G(k)/G(A). We will usually abbreviate X =X(F ).

2. Periods of L-functions

2.1. Hecke periods. The simplest example of a period of an automorphic form is the
following. Let ϕ be a cusp form, and consider the integral

∫

∞

0
ϕ(y)ysd∗y.

Adelically, this can be interpreted as follows. Consider H ∶= Gm ⊂ PGL2 and view ϕ as
an element of an automorphic representation π ⊂ C∞([G]). We consider the period integral

PH(ϕ) = ∫
[π]
ϕ(h)dh.

In this special case, Hecke proved that if ϕ is a normalized newform then

PH(ϕ) = L(π,1/2).
1
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Here “normalized” means that the first Fourier coefficient is 1. Really this coefficient is
another period, namely a Whittaker period: if

N = (
1 ∗

0 1
)
ψ
Ð→C∗

then the first Fourier coefficient is

∫
[N]

ϕ(n)ψ(n)dn.

So we can reformulate Hecke’s computation by saying that the quantity L(π,1/2) comes
from comparing two different periods:

∫
[N]

ϕ(n)ψ(n)dn and ∫
[Gm]

ϕ.

2.2. Gross-Prasad periods. More generally, let G = SOn ×SOn+1 and H = SOdiag
n ↪ G.

For π = π1 ⊗ π2 = ⊗′vπv, and the corresponding factorization ϕ = ⊗′vϕv, the Ichino-Ikeda
conjecture predicts that, fixing a normalized H ×H-invariant form

π ⊗ π
H×H
ÐÐÐ→C

we have

∣∫
[H]

ϕ∣
2

= 2−β
°

explicit

∏
v
∫
H(kv)

⟨πv(h)ϕv, ϕv⟩dh.

For a.e. v, ϕv is unramified and our normalization is such that ⟨ϕv, ϕv⟩ = 1 and the local
factor is

∫
H(kv)

⟨πv(h)ϕv, ϕv⟩dh =
L(π1,v × π2,v,1/2)

L(πv,Ad,1)
.

In the special case n = 2, H = SO2 = Gm and this follows from Hecke’s formula (if we
allow a character), except for issues of normalization. In Hecke’s setup we normalized by the
first Fourier coefficient, and here we are normalizing by local pairings. The compatibility
between the two normalizations is expressed by a formula for the Petersson inner product,
which is known for GLn but conjectural in general:

∣∫
[N]

ϕ(n)ψ(n)dn∣
2

=∏
v
∫
N(kv)

⟨π(n)ϕv, ϕv⟩ψ(n)dn

where for a.e. v, the local factor is 1
L(πv,Ad,1)

. This should be difficult in general. For S̃p2n

it is known by very difficult results of Lapid-Mao.
For n = 2, if we replace SO(2) = T by the non-split torus, then the formula is essentially

equivalent to Waldspurger’s formula.

2.3. Spherical varieties. More generally, given a (homogeneous) spherical variety X =

H/G with some multiplicity one property, one expects “the same” factorization of

∣∫
[H]

∣
2

as an Euler product with local factors almost everywhere of the form
LX

L(π,Ad,1)

where LX is an L-value determined by a recipe that will be discussed later, which involves
a local Plancherel formula.



TRANSFER OPERATORS BETWEEN RELATIVE TRACE FORMULAS IN RANK ONE, I 3

What is stunning is that there is a uniform conjectural relationship between periods and
L-functions, but no general proof for these sorts of results. The general method of proof at
this point goes under the name “good luck”, which means that in some cases we are lucky
enough to prove the relationships in a direct way. For example,

(1) The simplest case is the method of “unfolding” (which works for Gm ⊂ PGL2). This
originates with Hecke, who directly compared the q-expansion with the periods.

∫
[Gm]

ϕ(
a

1
) d∗a = ∫

Gm(A)
∫
[N]

ϕ(
a

1
)(

1 x
1
)ψ(x)dxd∗a

The unfolding method directly compares the two integrals.

C∞(Gm/G(A))

π

C∞(N,ψ/G(A))

∫[Gm]

∫[N] ψ

∫A∗

(2) Unfolding doesn’t work for the nonsplit torus. An alternative strategy is to use
the Theta correspondence / Howe duality, which relates (G,H)-periods to (G′,H ′)-
periods. You want to apply this to (G′,H ′) that you understand better. One way
to (G′,H ′) is to use a dual pair.

(3) The third method of proof is via the relative trace formula, developed by Jacquet
and collaborators. For example, H = Udiag

n ⊂ G = Un × Un+1. We will review the
relative trace formula shortly, but let me just say for now that it gives an expression
of

∑
π∈ĜAut

∣∫
[H]

∣
2

in terms of orbital integrals for H/G/H.
You can naturally identify “most” of the orbits in H/G/H with orbits for a differ-

ent quotient H ′/G′/H ′′, where G′ = GLn,E ×GLn+1,E for some quadratic E/k, and
H ′ = GLn(E)diag and H ′′ = GLn,F ×GLn+1,F . The benefit of this is that we under-
stand these periods better. For example, the period for H ′/G′ is the Rankin-Selberg
period. There has been a lot of progress using this strategy by Jacquet-Rallis, W.
Zhang, and Zydor-Chardouard. This is what we call the “traditional/endoscopic-
type comparison of RTFs”. We will explain a “non-traditional” use of RTF.

3. The relative trace formula

The RTF is a global/automorphic analogue of the Plancherel formula for a space of
the form X = H/G. What is the Plancherel formula? Recall X = X(F ) for a local field
F . The Plancherel formula studies the decomposition of an inner product spectrally: for
Φ1 ⊗Φ2 ∈ S(X ×X), where S is a space of test functions (soon to be taken to be Schwartz
measures instead), consider the functional

Φ1 ⊗Φ2 ∈ S(X ×X)
Gdiag

ÐÐÐ→ ∫
X

Φ1Φ2dx ∈C.

The Plancherel formula is the spectral decomposition of this inner product:

⟨Φ1,Φ2⟩ = ∫
Ĝ
J

Pl
π (Φ1 ⊗Φ2)µX(π).
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Here J Pl
π is a local “relative character”, i.e. a bilinear form that factors through the repre-

sentation π:
S(X ×X)→ π ⊗ π̃

⟨,⟩
Ð→C.

The RTF is a global analogue. We take Φ1 ∈ S(X1(A)) and Φ2 ∈ S(X2(A)). We will
restrict out attention to X1 = X2 = X which is quasi-affine, of the form G/H. Then we
“make them automorphic” by forming Θ series:

∑Φ1(g) ∶= ∑
γ∈X(k)

Φ1(γg) ∈ C
∞
([G]).

Similarly for Φ2. Now we can take the inner product

∫
[G]

(∑Φ1(g))(∑Φ1(g)) ∈C.

This is the distribution
RTFX×X/G(Φ1 ⊗Φ2).

This notation is because this is a diagonally G-invariant distribution on X ×X(A). The
RTF is an identity between two ways to write this distribution.

3.1. Spectral side. The RTF has a spectral side, which is an integral over the space of
automorphic representations:

∫
ĜAut

µ(π)

of the period integrals

∣∫
[H]

∣
2

on π.

I don’t want to say much more about the spectral side, since it’s not a focus of this talk.

Example 3.1. When X =H and G =H ×H, this is the trace formula. In this case ∑Φi is
the kernel function KΦi , so

⟨KΦ1 ,KΦ2⟩[H×H] = ⟨Φ1∗,Φ2∗⟩HS(L2([H])) = Tr(Φ∨
1 ∗Φ2∗)L2([H]).

3.2. Geometric side. We discuss the geometric side of the stable RTF. The “stable” refers
to orbits that coincide with their stable orbits; it could be everything.

We recall some of our standard notation.
● S(X(F )) denotes Schwartz measures. This is a Schwartz function times a smooth
measure of polynomial growth. Here Schwartz function means C∞

c if F is non-
archimedean, and rapidly decreasing smooth functions if F is archimedean.

● X//G = Spec k[X]G. If X is affine and G is reductive, then X//G(k) is in bijection
with closed G(k)-orbits on X(k).

● Given a map p∶X →X//G, we have a pushforward measure

p!∶S(X)→Meas(X//G)

with p!S(X) = S(X/G). Think of these as “stable orbital integrals”.
● The notation G/G means G modulo the conjugation action.

Example 3.2. For G = SL2, consider G/G. Then G//G = A1, and the map G → A1 is the
trace map. This is smooth away from ±2. So elements of S(G/G) are smooth away from
±2, and in neighborhoods of ±2 look like

c1 + c2
√

∣D∣
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where D = tr2 −4, c1 is a smooth measure (meaning a smooth function times d(tr)) and c2 is
complicated: when restricted to any [D] ∈ F ×/(F ×)2 is a smooth measure. So we could say
that c2(t) is some function times dt, where the function depends on whether D is a square,
F (

√
D) is unramified, or F (

√
D) is ramified, and is smooth within each case.

The next example is simpler.

Example 3.3. Consider Gm/PGL2 /Gm. (Remark: if X = H/G then X × X/Gdiag =

H/G/H. The RTF is a distribution on X ×X/Gdiag =H/G/H.)
In this case one again has (Gm/PGL2)//Gm

∼
Ð→ A1 via the map

(
a b
c d

)↦ ξ =
ad

det
.

Then S(Gm/PGL2 /Gm) consists of measures on A1 which are smooth away from 0,1 and
are c1 + c2 log ∣ξ∣ at 0 and c1 + c2 log ∣ξ − 1∣ at 1, where c1 and c2 are smooth measures.

Example 3.4. Consider
(N,ψ)/(SL2 or PGL2)/(N,ψ).

How can we think of these as measures? First consider the case of SL2. Then (N/SL2)//N =

A1 via

(
a b
c d

)↦ c.

We are taking a twisted integral, so we need to choose a basepoint on each orbit. So we
need to choose a section of the quotient map over A1 − {0}. We take the section

(
−ζ−1

ζ
)← ζ

We have
S(N,ψ/G∗

/N,ψ) ⊂ Meas(A1
).

The things look like smooth measures away from 0, but near 0 they look like “Kloosterman
integrals”. (For non-archimedean places they really involve Kloosterman sums.)

3.3. The “traditional/endoscopic comparison of RTFs”. Consider X = X1 × X2/G
and Y = Y1 × Y2/G

′. For example, we could take X = Un/Un ×Un+1/Un and
Y = GLn,E /GLn,E ×GLn+1,E //GLn ×GLn+1.

In the traditional comparison we can identify the coarse quotient spaces, in this case
canonically. Therefore the spaces S(X )) and S(Y)) are viewed of spaces of measures on
the same space. The endoscopic paradigm is to show that these are the same spaces of
measures, up to scalar transfer factors. This is what we call “matching”, but we need more
than just this “matching” statement. We need a fundamental lemma, which says that

p!(h ∗ IX×X(O)) ∼ p
′
!(h ∗ IY ×Y (O))

Example 3.5. For SL2 /SL2, we need to take “κ-orbital integrals” instead. These live on
A1, and we can compare this S(T ), using the identification A1 ∼

←Ð T //W .

The problem with this approach is that we need to find two quotient spaces that match.
It is clear that this sort of matching cannot hold for the examples in Example 3.2, 3.3,
3.4, since the singularities of the function spaces are different. In Example 3.3 there were
logarithmic singularities at 0 and 1, while in Example 3.4 there were Kloosterman integrals.

Our main theorem is the following, although for the sake of exposition we state it slightly
inaccurately at first.
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Theorem 3.6. There are (local) explicit “transfer operators”
(1) T ∶S(N,ψ/PGL2 /N,ψ)

∼
Ð→ S(Gm/PGL2 /Gm) and

(2) T ∶S(N,ψ/SL2 /N,ψ)
∼
Ð→ S(SL2 /SL2) and

which
● are linear isomorphisms,
● satisfy the fundamental lemma for the Hecke algebra.

By “explicit” we mean that we can give formulas. In case (2), let t be the trace coordinate
on RHS, and ζ, ζ−1 the coordinates on the LHS. Then the formula for (2) is

T f = ∫ f(ζa−1
)ψ(a)d∗a
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

D1

=D1 ∗ f

where Ds = ψ(a)∣a∣
s da on Gm. The formula for (1) is

T f =D1/2 ∗D1/2 ∗ f.

4. Nontraditional comparison of RTFs

Let X be a homogeneous, affine, rank one spherical variety. So X is of the form H/G
with H reductive. We assume that G,H are split. The “rank one” means that the spectrum
“looks like” the spectrum of SL2 or PGL2.

To explain what this means, we need to recall that to X we can attach an L-group LX,
which governs its local and global spectrum. The L-group comes with a map LX → LG.
Locally, we have a decomposition

L2
(X) = ∫

ϕ
Hϕ dϕ

where ϕ runs over tempered Langlands parameter into LX.

Example 4.1. We have
L2

(N,ψ/PGL2) = ∫
Ĝ
π ⋅ µ(π)

where µ(π) is the same Plancherel measure as for L2(G = PGL2).

Example 4.2. We have L2(Gm/PGL2) ≅ L
2(N,ψ/PGL2).

Similarly, globally one would expect only the “global Langlands parameters factoring
through LX” to appear, under

LX → LG

(although strictly speaking this is not quite right, because one has to account for an Arthur
SL2 as well). The relative trace formula should be the distribution

RTFX×X/G = ∫
Lk→

LX
(∣∫

[H]
∣
2

− periods)

Example 4.3. As an example of the above principle (spectral decomposition of RTF in
terms of periods), for Gm/PGL2 /Gm, f ∈ S(PGL2(A)) you have

RTF(f) = ∑
π∈ĜAut

∑
ϕ∈ON(π)

∫
[Gm]

(f ∗ ϕ)(h)dh ⋅ (∫
[Gm]

ϕ)

= ∑
π∈ĜAut

⟨∫
[Gm]

, f ∗ ∫
[Gm]

⟩π.
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For the examples in the main theorem, the spaces are different but the spectrum is the
same. In particular the L-groups LX coincide.

What are the periods? They look like
LX

L(AdLX ,1)
.

The adjoint representation is for the group LX. On the Whittaker (Kuznetsov) side, you
just get 1

L(Ad,1)
, i.e. LX = 1. Otherwise you get L(Ad,1)

L(Ad,1)
, i.e. LX = L(Ad), corresponding to

the fact that you don’t see L-functions in the classical formula.
So to compare the function spaces, we need to enlarge the test functions to something

that we call “S−LX
”.

Philosophically, we view RTF as a functional

S(X ×X/G(A))
RTF
ÐÐ→C.

This factors through

S(X ×X/G(A)) C

S(X ×X/G(A))Aut

RTF

The Langlands program can be viewed as saying that RTF is a sheaf on the space of
Langlands parameters in LX. However, it is actually something a little more complicated,
which one might call the sheaf on the space of Langlands parameters is also equipped with
trivializations away from the zeros and poles of the L-functions.

The usual KTF can be thought of as follows. For Φ,Φ′ ∈ S(N,ψ/G(A)) we form Poincaré
series

∑Φ,∑Φ′.

Then you consider
⟨∑Φ,∑Φ′

⟩[G] =∑
π

⟨∑Φ,∑Φ′
⟩π

there are coefficients corresponding to the test functions. You can make a good choice
Φm,Φn where the sum becomes just

∑
π

am(π)an(π). (4.1)

We don’t want this, we want to “insert” an L-function. So we write the Dirichlet series for
the L-function

LX = ∑
n≥1

cnan(π)

Replace Φ by ∑n≥1 cnΦn. Take Φ′ = Φ1 for simplicity. Then (??) becomes

∑
π

a1(π)a1(π)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

∣ ∫[N] ψ∣2=1/L(Ad,1)

⋅LX

The point is that the test function ∑ cnΦn is not of compact support, so its orbital integrals
are no longer of rapid decay; they will have some asymptotic at ∞. Given LX , which is

LX =

⎧⎪⎪
⎨
⎪⎪⎩

L(Std, s1)L(Std, s2) G∗ = PGL2

L(Ad, s0) G∗ = SL2
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I can define S−LX
(N,ψ/G∗/N,ψ) by specifying a behavior at ∞. For G∗ = SL2, it looks like

C ⋅ ∣ζ ∣1−s0d∗ζ.
Representation theoretically, we are adding the trivial representation.

0→ S(N,ψ/G)(N,ψ) → S
−
LX

(N,ψ/G)(N,ψ) → I(δ1/2
)(N,ψ) → 0.

Theorem 4.4. Let X be a rank one spherical variety, with LX =

⎧⎪⎪
⎨
⎪⎪⎩

SL2

PGL2

, and let

G∗ =

⎧⎪⎪
⎨
⎪⎪⎩

PGL2

SL2

, so LX =

⎧⎪⎪
⎨
⎪⎪⎩

L(Std, s1)L(Std, s2)

L(Ad, s0)
. Then we have the enlarged KTF space

S−LX
(N,ψ/G∗/N,ψ). There is an explicit transfer operator T which affords a matching

T ∶S
−
LX

(N,ψ/G∗
/N,ψ)

∼
Ð→ S(X ×X/G).

The formula has the following shape. We have

X ×X → (X ×X)//G ≅ A1

which is smooth away from 2 points. Fix coordinates as in
⎧⎪⎪
⎨
⎪⎪⎩

Example refex ∶ 2
Example ex ∶ 1

for the

two cases. Then

T f =

⎧⎪⎪
⎨
⎪⎪⎩

∣ ⋅ ∣max(s1,s2)−1/2Ds1 ∗Ds2 ∗ f

∣ ⋅ ∣s−1Ds ∗ f

Here ∗ is convolution on F ∗, and have to be understood as Fourier transform of distributions.
The fundamental lemma is known for SL2 /SL2 and GLn /PGLn+1 /GLn. There is ongo-

ing work of D. Johnstone and R. Krishna to generalize this.
In higher rank we would like to have a comparison

S(X ×X/G)→ S
−
LX

(N,ψ/G∗
/N,ψ).

where LG∗ = LX.
We suspect that T should be a convolution dictated by the weights of LX . The quotient

N/G∗//N is a toric variety in the limit, and the shape of the convolution seems to be
dictated by the weights of LX , i.e. the coweights of TG∗ ↪ N/G∗//N . However, we also
know that we need to insert some correction factors that we don’t yet understand.

Remark 4.5. Friedrich Knop has shown that although the X’s are very different, their
cotangent bundles T ∗X are very similar. These have the structure of a multiplicity-free
Hamiltonian manifold T ∗X → g∗. The proof uses this structure.

Another situation where symplectic structure arises is for a symplectic vector space W ,
and G = G1×G2 ↪ Sp(W ) a dual pair. Then you have a moment mapW → g∗×g∗2 exhibiting
W as a multiplicity-free Hamiltonian manifold, and there is a similar Euler factorization of
periods

∫
[G]

ΘΦ(g1, g2)ϕ1(g1)ϕ2(g2).
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