TRANSFER OPERATORS FOR RELATIVE FUNCTORIALITY

LECTURES BY YIANNIS SAKELLARIDIS, NOTES BY TONY FENG

Contents

1. Notation and basic setup 1
2. Langlands functoriality and "beyond endoscopy" 2
3. The spectrum of a spherical variety 3
4. Relative functorality 7
5. Examples 9
6. Global applications 9
References 9

I will talk about Langlands' "Beyond Endoscopy" proposal, in a broader scope that also encompasses the relative Langlands program. It aims to compare stable trace formulas in a new way. However, the nature of these comparisons is completely unclear. Even the case where the L-groups are equal (classically this is the setting for the Jacquet-Langlands correspondence) the comparison is very interesting, and encompasses for instance the Gan-Gross-Prasad Conjecture. I am trying to enlarge the program to have more tractable cases available.

1. Notation and basic setup

Let k be a global field, \mathbb{A}_{k} the adeles. Let F be a local field and $[G]:=G(k) \backslash G\left(\mathbb{A}_{k}\right)$.
For a smooth variety X, we let $\mathcal{S}(X)=\mathcal{S}(X(F))$ be the space of C-valued Schwartz measures. This means that there is rapid decay towards all boundaries; for example on \mathbf{G}_{m} you have rapid decay near 0 and ∞. Roughly you can think of a Schwartz measure as a Schwartz function times a polynomial volume form. Since in the global case you have canonical Tamagawa measures, you can confuse Schwartz measures with Schwartz functions.

When we have a group G acting on (quasi-affine) variety X, we denote by $X / / G:=$ Spec $k[X]^{G}$ the coarse quotient. We want to discuss the notion of "Schwartz measures on the quotient". There are three versions of this notion:
(1) A sophisticated and correct one: Schwartz measures on the quotient stack $[X / G]$.
(2) An intermediate notion: the coinvariants $\mathcal{S}(X)_{G}$.
(3) A coarse notion: the pushforward of a measure from X to $X / / G$. You should think of this as stable orbital integrals: the pushforward measure is given by the integral along the fiber, which is typically a stable conjugacy class, so this is a stable orbital integral. We will denote this by $\mathcal{S}^{\text {st }}(X / G)$.

Let $\psi: F \rightarrow \mathbf{C}^{\times}$or $\mathbb{A}_{k} \rightarrow \mathbf{C}^{\times}$be an additive character. We let $N \subset B$ be a maximal unipotent subgroup of a Borel. If $X=(N \backslash G, \psi)$ then we can take a Whittaker model $\mathcal{S}(X):=\mathcal{S}(N, \psi)$ for the definition of $\mathcal{S}(X)$.

Notation: the quotient H / H means H modulo H-conjugacy.
Remark 1.1. This is an elementary but useful remark. When X is a group H (the "group case"), we think of X as a symmetric space for $G:=H \times H$, with G acting via $\left(h_{1}, h_{2}\right) \cdot h=$ $h_{1}^{-1} h h_{2}$. Then we can view $H / H=(X \times X) / G$ where G acts diagonally on $X \times X$, as we can use the G action to trivialize the first component of X, leaving the conjugation action on the second factor.

2. LANGLANDS FUNCTORIALITY AND "BEYOND ENDOSCOPY"

2.1. The idea of "Beyond Endoscopy". The Langlands functoriality conjecture says that a map ${ }^{L} H_{1} \rightarrow{ }^{L} H_{2}$ induces a map

$$
\left\{\text { packets of irreps for } H_{1}\right\} \mapsto\left\{\text { packets of irreps of } H_{2}\right\} .
$$

One way to think of this as follows: you have a stable character for a packet Π, given by

$$
\Theta_{\Pi}:=\sum_{\pi \in \Pi} \Theta_{\pi} .
$$

(This is all local right now.)
So functoriality gives a map from stable characters of H_{1} to stable characters for H_{2}.
Remark 2.1. This is not quite what one does in endoscopy - there one takes a different linear combination of the characters within the L-packet.

Langlands suggested considering the dual map of stable test measures:

$$
\mathcal{S}^{\text {st }}\left(H_{1} / H_{1}\right) \stackrel{\mathcal{T}}{\leftarrow} \mathcal{S}^{\text {st }}\left(H_{2} / H_{2}\right)
$$

We want to describe this map - it should satisfy the condition that $\mathcal{T}^{*}\left(\Theta_{\Pi_{1}}\right)=\Theta_{\Pi_{2}}$ is a stable character for all tempered Π_{1}.

Remark 2.2. Langlands studied this for $H_{1}=T, H_{2}=\mathrm{GL}_{2}$. Daniel Johnstone studied this for $H_{1}=T$ and $H_{2}=\mathrm{GL}_{n}$.

We would like to use this to prove a comparison of stable trace formulas.

$$
\operatorname{STF}_{H_{2}}(f) \rightsquigarrow \operatorname{STF}_{H_{1}}(\mathcal{T} f) .
$$

Here STF stands for the stable trace formula, viewed as a functional on measures. Why have we written \rightsquigarrow instead of equality? There should not be equality on the nose: we need to extract a part of the trace formula for H_{2} corresponding to the contribution from the spectrum of H_{1} to the spectrum of H_{2}, which Langlands proposed doing using L-functions.
2.2. A baby case. Let T_{H} be the universal Cartan of H (the quotient B / N for any Borel B, which is well-defined because all Borels are conjugate). We assume that T_{H} is split for simplicity.

We have a map ${ }^{L} T_{H}=\widehat{T}_{H} \rightarrow{ }^{L} H$, which should induce a transfer from representations of H to representations of T. We want to understand the dual map

$$
\mathcal{T}: \mathcal{S}(H) \rightarrow \mathcal{S}(H / H) \rightarrow \mathcal{S}\left(T_{H}\right)
$$

In terms of representations, it is easy to say what is going on. Let $H_{1}=T_{H}$ and $H_{2}=H$. For $\chi \in \widehat{T}_{H}$ the local Langlands correspondence assigns

$$
\Pi_{\chi}=\left\{I(\chi):=\operatorname{Ind}_{B}^{H}\left(\chi \cdot \delta^{1 / 2}\right)\right\}
$$

The character of this representation is known:

$$
\Theta_{\Pi_{\chi}}(t)=D_{H}^{-1 / 2}(t) \sum_{w \in W}{ }^{w} \chi(t)
$$

where D_{H} is the Weyl denominator (the thing that comes up in the Weyl character formula). The condition we need is that

$$
\int_{T_{H}}(\mathcal{T} f)(t) \chi(t) d t=\int_{H} f(h) \Theta_{\chi}(h) d h .
$$

Using this we can compute $\mathcal{T} f$ explicitly.
This is opposite to what we want to do, which is to start with the transfer \mathcal{T} and use it to pull back representations.

To globalize this, we want a map

$$
\mathcal{S}(H / H(\mathbb{A})) \rightarrow \mathcal{S}\left(T_{H}(\mathbb{A})\right)
$$

The trace formula for H gives a distribution on the left side. Similarly the trace formula for T_{H} gives a distribution on the right side. This fits into a diagram

This diagram does not commute using the usual (non-invariant) trace formula. We can view the trace formula as a "Laurent series"

$$
\mathrm{TF}_{H}(f)=\frac{1}{s^{r}} \mathrm{TF}_{H,-r}(f)+\ldots+\mathrm{TF}_{H, 0}(f)
$$

Here $\mathrm{TF}_{H, 0}(f)$ is the usual trace formula, and it is not invariant. The leading term is invariant, and is what will be compared.

3. The spectrum of a spherical variety

3.1. Spherical varieties. We said earlier that one can think of a group $X=H$ as being a symmetric space for $G=H \times H$. There is a broader context for this, mamely that of spherical varieties. This means (in characteristic 0) that X is an affine normal variety with G-action, such that $\bar{k}[X]$ is a multiplicity-free direct sum of highest weight modules. This is equivalent to saying that the Borel B has an open orbit.

This is a convenient class that gives Euler products for L-functions.
Example 3.1. Symmetric spaces are spherical varieties: $X=O_{n} \backslash \mathrm{GL}_{n}$ (with $G=\mathrm{GL}_{n}$), or $X=\mathrm{Sp}_{2 n} \backslash \mathrm{GL}_{2 n}$ (with $G=\mathrm{GL}_{2 n}$).

Example 3.2. $X=\mathrm{GL}_{n} \backslash \mathrm{GL}_{n} \times \mathrm{GL}_{n+1}$ (with $G=\mathrm{GL}_{n} \times \mathrm{GL}_{n+1}$), or the Gan-GrossPrasad settings with GL_{n} replaced by SO_{n} or U_{n}.

Example 3.3. The Whittaker situation: $X=N \backslash G$ (with $G=G$).
3.2. The local spectrum. We will define the spectrum of a spherical variety X. We can decompose

$$
L^{2}(X)=\int_{\widehat{G}} \pi \mu(\pi)
$$

where $\mu(\pi)$ is the Plancherel measure. The π appearing above form the support of the local spectrum of X.

Example 3.4. For $X=N \backslash G$, we have

$$
L^{2}(X)=\int_{\chi \in \widehat{T}_{G}} I(\chi) d \chi
$$

3.3. Relative characters. Let $\Phi_{1}, \Phi_{2} \in L^{2}(X)$. Then the Plancherel formula gives

$$
\int_{X} \Phi_{1} \Phi_{2} d x=\int_{\widehat{G}} J_{\pi}\left(\Phi_{1} \otimes \Phi_{2}\right) \mu(\pi)
$$

Here J_{π} is a "relative character" (terminology by analogy to the relative trace formula). A relative character (for irreducible π) is a composition

$$
J_{\pi}: \mathcal{S}(X \times X) \xrightarrow{G \times G \text { equiv }} \pi \otimes \widetilde{\pi} \xrightarrow{\langle,\rangle} \mathbf{C}
$$

where $\tilde{\pi}$ is the contragredient of π, and \langle,$\rangle is the canonical pairing. We will assume that$ the map $\mathcal{S}(X \times X) \xrightarrow{G \times G \text { equiv }} \pi \otimes \widetilde{\pi}$ is unique up to scalar, so J_{π} is unique to scalar.

Example 3.5. In the group case $X=H$,

$$
J_{\pi}\left(\Phi_{1} \otimes \Phi_{2}\right) \propto \operatorname{Tr}\left(\tau\left(\Phi_{1}^{\vee} * \Phi_{2}\right)\right)
$$

where the representation π of $H \times H$ necessarily factors as $\pi=\tau \otimes \widetilde{\tau}$, with τ a representation of H and $\widetilde{\tau}$ its contragredient. We can take the right side as a canonical normalization of J_{π}. This means that the Plancherel measure μ is canonical, in this case.

For general X, once we fix $\psi=\psi_{X}$ we should normalize J_{π} in some way (there is no intrinsically canonical choice).
3.4. The relative trace formula. We need a $G(\mathbb{A})^{\text {diag_equivariant map }}$

$$
\mathcal{S}(X \times X(\mathbb{A})) \xrightarrow{\mathrm{RTF}_{X \times X / G}} \mathbf{C} .
$$

We specify this on functions of the form $\Phi_{1} \otimes \Phi_{2}$ for $\Phi_{1}, \Phi_{2} \in \mathcal{S}(X(\mathbb{A}))$. The recipe is as follow. For $\Phi_{1}, \Phi_{2} \in \mathcal{S}(X(\mathbb{A}))$ we set

$$
\begin{aligned}
\Sigma \Phi_{1}(g) & :=\sum_{\gamma \in X(k)} \Phi_{1}(\gamma g) \\
\Sigma \Phi_{2}(g) & :=\sum_{\gamma \in X(k)} \Phi_{2}(\gamma g) .
\end{aligned}
$$

These are smooth functions on $[G]$, and then we take their inner product to get something in \mathbf{C}.

Example 3.6. In the group case $X=H, G=H \times H$,

$$
\Sigma \Phi\left(h_{1}, h_{2}\right)=K_{\Phi}\left(h_{1}, h_{2}\right)
$$

is the usual kernel function, so

$$
\operatorname{RTF}\left(\Phi_{1} \otimes \Phi_{2}\right)=\left\langle K_{\Phi_{1}}, K_{\Phi_{2}}\right\rangle_{[H \times H]}=\left\langle R\left(\Phi_{1}\right), R\left(\Phi_{2}\right)\right\rangle_{H S}=\operatorname{Tr}\left(R\left(\Phi_{1}^{\vee} * \Phi_{2}\right)\right)
$$

Example 3.7. If $X=(N, \psi) \backslash G$ then $\Sigma \Phi$ is a Poincaré series, and $\operatorname{RTF}_{(N, \psi) \backslash G /(N, \psi)}$ is the Kuznetsov trace formula for G.

The relative trace formula says that a geometric expansion of RTF equals a spectral expansion of RTF.
3.4.1. The geometric side. The geometric expansion is a sum of orbital integrals for $X \times$ $X(k) / G(k)$. Formally, if $\mathcal{X}=[X \times X / G]$ then

$$
\operatorname{RTF}(f)=\sum_{\xi \in \mathcal{X}(k)} f(\xi)
$$

(Globally we have canonical Tamagawa measures which we use to identify measures with functions.)
3.4.2. The spectral side. On the spectral side, $\operatorname{RTF}\left(\Phi_{1}, \Phi_{2}\right)$ is a sum over automorphic representations π of a trace,

$$
\operatorname{RTF}\left(\Phi_{1}, \Phi_{2}\right)=\sum_{\pi \in \widehat{G}_{\mathrm{Aut}}} J_{\pi}^{\mathrm{Aut}}\left(\Phi_{1} \otimes \Phi_{2}\right)
$$

where

$$
J_{\pi}^{\mathrm{Aut}}\left(\Phi_{1} \otimes \Phi_{2}\right)=\left\langle\left(\Sigma \Phi_{1}\right)_{\pi},\left(\Sigma \Phi_{2}\right)_{\pi}\right\rangle
$$

where we are naively pretending that π embeds in $L^{2}([G])$. This $J_{\pi}^{\text {Aut }}\left(\Phi_{1} \otimes \Phi_{2}\right)$ is called a period relative character. The π for which $J_{\pi}^{\text {Aut }} \neq 0$ are called X-distinguished representations.

Remark 3.8. If $X=H \backslash G$, you can write $J_{\pi}^{\text {Aut }}$ as

$$
J_{\pi}^{\mathrm{Aut}}=\sum_{(\varphi, \widetilde{\varphi})}(\ldots) \int_{[H]} \varphi \int_{[H]} \widetilde{\varphi}
$$

where the sum is over a dual basis $(\varphi, \widetilde{\varphi})$ of $(\pi, \widetilde{\pi})$. The mysterious factors are powers of 2 that measure the size of an Arthur packet, but they are present because we normalize our conventions for orbital integrals rather than stable orbital integrals.
3.5. The generalized Ichino-Ikeda Conjecture. In [SV] we formulate:

Conjecture 3.9 (Generalized Ichino-Ikeda conjecture). Under certain assumptions on X, we have

$$
J_{\pi}^{\text {Aut }}=\prod_{v} J_{\pi_{v}}^{\text {Planch }}
$$

where $J_{\pi_{v}}^{\text {Planch }}$ is a local relative character normalized with a distinguished Plancherel measure.

We emphasize that we have not explained how to define $J_{\pi_{v}}^{\text {Planch }}$ here, but that there is a reasonable way to normalize it in general.

Let's try to say something to demystify the global periods. If $X=H \backslash G$ then we can think of $X \times X / G^{\text {diag }}=H \backslash G / H$. Thus we can think of $f \in \mathcal{S}((X \times X) / G)$ as the pushforward of $F \in \mathcal{S}(G)$. Then

$$
J_{\pi}(f)=\sum_{(\varphi, \widetilde{\varphi}) \text { of }(\pi, \widetilde{\pi})} \int_{[H]} \varphi(h) d h \int \pi(F) \widetilde{\varphi} d h
$$

Example 3.10. The original Ichino-Ikeda Conjecture concerned $X=\mathrm{SO}_{n} \backslash \mathrm{SO}_{n} \times \mathrm{SO}_{n+1}$. The conjecture predict that

$$
J_{\pi}=\prod_{v} J_{\pi_{v}}^{\text {Planch }}
$$

but instead of phrasing things in terms of $J_{\pi_{v}}^{\text {Planch }}$, they use an explicit expression which is related via

$$
J_{\pi_{v}}^{\mathrm{Planch}}(f)=\sum_{(v, \widetilde{v}) \text { of }\left(\pi_{v}, \widetilde{\pi}_{v}\right)} \int_{H\left(k_{v}\right)}\left\langle\pi_{v}(h), \widetilde{\pi}_{v}(F) \widetilde{v}\right\rangle d h=\int_{H\left(k_{v}\right)} \Theta_{\pi_{v}}(h \cdot F) d h .
$$

For the case $\mathrm{SO}_{n} \backslash \mathrm{SO}_{n} \times \mathrm{SO}_{n+1}$, when $F=\mathbb{I}_{G\left(\mathcal{O}_{v}\right)}$ and π_{v} is unramified, then

$$
J_{\pi_{v}}^{\text {Planch }}(f)=\frac{L\left(\pi_{v 1} \times \pi_{v 2}, 1 / 2\right)}{L\left(\pi_{v}, \operatorname{Ad}, 1\right)}
$$

where $\pi_{v}=\pi_{v 1} \otimes \pi_{v 2}$.
Example 3.11. Let $X=(N, \psi) \backslash G$. Then the conjecture predicts

$$
J_{\pi}=\prod_{v} J_{\pi_{v}}^{\text {Planch }}
$$

with almost every factor being

$$
J_{\pi_{v}}^{\text {Planch }}(f)=\frac{1}{L\left(\pi_{v}, \operatorname{Ad}, 1\right)}
$$

where f is the pushforward of $F=\mathbb{I}_{G\left(\mathcal{O}_{v}\right)}$. This is conjectural except for GL_{n} (Jacquet) and $\widetilde{\mathrm{Sp}}_{2 n}$ (Lapid-Mao).

Note that we are seeing a ratio of L-functions, with the denominator being the adjoint L-function. The numerator is called L_{X}.

Example 3.12 (Ichino-Ikeda case). For $X=\mathrm{SO}_{n} \backslash \mathrm{SO}_{n} \times \mathrm{SO}_{n+1}$ (with $G=\mathrm{SO}_{n} \times \mathrm{SO}_{n+1}$), we have

$$
L_{X}=L\left(\pi_{v 1} \times \pi_{v 2}, 1 / 2\right)
$$

Example 3.13 (Whittaker case). For $X=(N, \psi) \backslash G$ we have $L_{X}=1$.
Example 3.14 (Group case). For $X=H$ and $G=H \times H$, the representation π must be of the form $\pi=\tau \otimes \tau^{\vee}$. In this case $J_{\pi_{v}}^{\text {Planch }}=1$, as is tautological from our normalization, so we have $L_{X}=L(\tau, \operatorname{Ad}, 1)$.

Thus the spectral side of the RTF is a sum over automorphic representations of these (ratios of) L-values.
3.6. The L-group of a spherical variety. It turns out that "most" spherical varieties X have an L-group ${ }^{L} X \rightarrow{ }^{L} G$ which controls the spectrum. (We are sweeping an Arthur SL_{2} under the rug.)
Example 3.15. For $X=(N, \psi) \backslash G$, we should have ${ }^{L} X={ }^{L} G$ because every tempered L-packet is expected to have a generic (i.e. X-distinguished) element, so every automorphic representation of G should contribute to $L^{2}(X)$. Since we haven't explained the definition of ${ }^{L} X$, this is only a heuristic.

Example 3.16. For $X=\mathrm{SO}_{n} \backslash \mathrm{SO}_{n} \times \mathrm{SO}_{n+1}$, we should have ${ }^{L} X={ }^{L} G$ because every tempered L-packet is expected to have an X-distinguished element.

Example 3.17. For the group case $X=H \backslash H \times H$, we should have ${ }^{L} X={ }^{L} H \xrightarrow{\text { Id,c }}$ ${ }^{L}(H \times H)$, where c is the Chevalley involution, because the $G=H \times H$-representations appearing in $L^{2}(X)$ are only those of the form $\tau \otimes \widetilde{\tau}$.
3.7. The L-function of a spherical variety. We also have a global L-function L_{X} attached to a spherical variety X. This has the form (a product of) $L(\pi, r, s)$ where $r:{ }^{L} X \rightarrow \mathrm{GL}(V)$ and $s \in \mathbf{C}$.
Example 3.18. For $X=\mathrm{GL}_{n} \backslash \mathrm{PGL}_{n+1}$, we should have ${ }^{L} X=\mathrm{SL}_{2}$ because

$$
L^{2}(X)=\operatorname{Ind}_{P_{2, n-1}}^{\mathrm{PGL}_{n+1}}\left(L^{2}\left(N, \psi \backslash \mathrm{PGL}_{2}\right)\right)
$$

where $P_{2, n-1}$ is the standard parabolic subgroup of partition type $(2, n-1)$ and acts on $L^{2}\left(N, \psi \backslash \mathrm{PGL}_{2}\right)$ through projection to PGL_{2}.

For $n=1$, we are looking at $X=\mathbf{G}_{m} \backslash \mathrm{PGL}_{2}$, so $L_{X}=L(\pi, 1 / 2)^{2}$ because you should have square of the period for $\mathbf{G}_{m} \backslash \mathrm{PGL}_{2}$ (the adjoint L-value is coming from our different normalization than the usual one), which would give $L(\pi, 1 / 2)$.

4. Relative functorality

4.1. "Beyond Endoscopy" for spherical varieties. Again we discuss the local setting. Suppose we have spherical varieties $\left(X_{1}, G_{1}\right)$ and $\left(X_{2}, G_{2}\right)$. A map

$$
{ }^{L} X_{1} \rightarrow{ }^{L} X_{2}
$$

should induce a map from X_{1}-distinguished packets to X_{2}-distinguished packets, hence a map from stable relative characters for X_{1} to stable relative characters for X_{2}, which can be interpreted dually as a transfer operator

$$
\mathcal{S}\left(X_{1} \times X_{1} / G_{1}\right) \stackrel{\mathcal{T}}{\leftarrow} \mathcal{S}\left(X_{2} \times X_{2} / G_{2}\right)
$$

so that there is some sort of comparison of stable relative trace formulas

$$
\operatorname{RTF}_{X_{2} \times X_{2} / G_{2}}(f) \rightsquigarrow \operatorname{RTF}_{X_{1} \times X_{1} / G_{1}}(\mathcal{T} f)
$$

The problem is nontrivial already when ${ }^{L} X_{1} \cong{ }^{L} X_{2}$. (This case was used to reprove Waldspurger's form. It would be enough by itself to give Gross-Prasad.) In this case you can formulate precise desiderata. We will begin by describing a more naïve version, which we will then correct.
(1) Locally, there should be a transfer operator which is a linear bijection

$$
\mathcal{S}\left(X_{1} \times X_{1} / G_{1}\right) \stackrel{\mathcal{T}}{\leftarrow} \mathcal{S}\left(X_{2} \times X_{2} / G_{2}\right)
$$

Secretly this should realize functoriality, so \mathcal{T}^{*} should take stable relative characters to stable relative characters for the same L-parameter. However this would be the outcome of having the theory of the transfer operator, so we cannot use it to construct \mathcal{T}.

The \mathcal{T} should satisfy a fundamental lemma for the Hecke algebra.
(2) Globally, this should fit into a commutative diagram

This would let you transfer questions about periods.

However, these two desiderata are already incompatible. Indeed, we have already seen that spherical varieties with the same L-group can have different L-functions. (For example, for any spherical variety we can find a Whittaker spherical variety with the same L-group, which automatically has L-function equal to 1 .) The L-functions arise as special cases of periods, so we cannot have this sort of RTF 4.1.1) as is.
4.2. Non-standard test measures. Since in the Whittaker case the L-function was trivial, we might as well take it for one side. From now on, we take X_{2} to be the Whittaker period for the quasisplit group G^{*} such that ${ }^{L} G^{*} \cong{ }^{L} X_{1}$. Then

$$
X_{2} \times X_{2} / G_{2} \cong(N, \psi) \backslash G^{*} /(N, \psi)
$$

We want to define a transfer operator

$$
\mathcal{T}: \mathcal{S}\left((N, \psi) \backslash G^{*} /(N, \psi)\right) \xrightarrow{\sim} \mathcal{S}(H \backslash G / H)
$$

with a RTF as in 4.1.1. However, we have already noted that RTF for a basic function in the Whittaker case (Example 3.11 is $\frac{1}{L(\operatorname{Ad}, 1)}$ on the left side and $\frac{L_{X}}{L(\mathrm{Ad}, 1)}$ on the right side. So we need to use a new basic function for this to map. Thus we consider a transfer operator

$$
\mathcal{T}: \mathcal{S}_{L_{X}}^{-}\left((N, \psi) \backslash G^{*} /(N, \psi)\right) \xrightarrow{\sim} \mathcal{S}(H \backslash G / H)
$$

where $\mathcal{S}_{L_{X}}^{-}\left((N, \psi) \backslash G^{*} /(N, \psi)\right)$ is a larger space of "nonstandard" test measures for the Kuznetsov formula. We'll explain how one can cook up a function in $\mathcal{S}_{L_{X}}^{-}\left((N, \psi) \backslash G^{*} /(N, \psi)\right)$ for which the RTF outputs $\frac{L_{X}}{L(\mathrm{Ad}, 1)}$.

Classically the KTF computes the inner product of two Poincaré series, i.e the Whittaker coefficients of Poincaré series. That is, if Φ_{n} is the nth Poincaré series then

$$
\operatorname{KTF}\left(\Phi_{n} \otimes \Phi_{1}\right)=\sum_{\Pi} \sum_{\varphi \in \pi} a_{n}(\varphi) \overline{a_{1}(\varphi)}
$$

We want to add in a new test function f^{0} such that $L_{X}=\operatorname{KTF}\left(f^{0}\right)$. To illustrate how this works, imagine expanding out a local factor of L_{X} :

$$
L_{X, v}=\frac{1}{\operatorname{det}\left(\operatorname{Id}-q^{-s} r(-)\right)}=\sum_{n \geq 0} q^{-n s} \operatorname{Tr}\left(\operatorname{Sym}^{n} r(-)\right)
$$

Let $\varphi \in \mathcal{S}\left((N, \psi) \backslash G^{*} /(N, \psi)\right)$ be the pushforward of the function $\mathbb{I}_{G\left(\mathcal{O}_{v}\right)}$ on G. We know that the local period of f is $\frac{1}{L(\operatorname{Ad}, 1)}$, so we replace

$$
\begin{equation*}
f \rightsquigarrow f^{0}:=\sum_{n} q^{-n s} h_{n} * f \tag{4.2.1}
\end{equation*}
$$

where h_{n} is the Hecke operator corresponding to $\operatorname{Tr}\left(\operatorname{Sym}^{n} r(-)\right)$.
Example 4.1. We'll give an example of how to write down f^{0}. For $G^{*}=\mathrm{SL}_{2}$, the usual space of test measures $\mathcal{S}\left((N, \psi) \backslash G^{*} /(N, \psi)\right)$ are certain measures on $N \backslash G^{*} / / N=\mathbf{G}_{a}$, where the identification of the quotient is via

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \mapsto c
$$

To make a measure on this quotient, we first choose a section, e.g.

$$
c \mapsto\left(\begin{array}{ll}
& c \\
-c^{-1} &
\end{array}\right)
$$

For $\phi \in \Phi(g) d g \in \mathcal{S}\left(\mathrm{SL}_{2}\right), \pi_{!} f$ is a measure on $\mathbf{G}_{a}(F)=F$ given by

$$
\pi_{!} \phi(t)=|c|^{1 / 2}\left(\int \Phi\left(\left(\begin{array}{ll}
1 & x \\
& 1
\end{array}\right)\left(\begin{array}{ll}
& c \\
-c^{-1} &
\end{array}\right)\left(\begin{array}{ll}
1 & y \\
& 1
\end{array}\right)\right) \psi^{-1}(x+y) d x d y\right) d^{*} c
$$

Then we form f^{0} as a formal combination of $\pi_{!} \phi_{n}$ for appropriate $\phi_{n}=h_{n} * \mathbb{I}_{G\left(\mathcal{O}_{v}\right)}$, as in 4.2.1.

5. Examples

Next time we'll start by explicitly describing

$$
\mathcal{T}: \mathcal{S}^{-}\left(N, \psi \backslash \mathrm{SL}_{2} / N, \psi\right) \rightarrow \mathcal{S}^{s t}\left(\mathrm{SL}_{2} / \mathrm{SL}_{2}\right)
$$

and

$$
\begin{gathered}
\mathcal{T}: \mathcal{S}_{L(\mathrm{Std}, 1 / 2)^{2}}^{-}\left(N, \psi \backslash \mathrm{PGL}_{2} / N, \psi\right) \rightarrow \mathcal{S}\left(\mathbf{G}_{m} \backslash \mathrm{PGL}_{2} / \mathbf{G}_{m}\right) \\
\text { 6. GLOBAL APPLICATIONS }
\end{gathered}
$$

References

[SV] Sakellaridis, Yiannis and Venkatesh, Akshay. Periods and harmonic analysis on spherical varieties.

