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I will talk about Langlands’ “Beyond Endoscopy” proposal, in a broader scope that also
encompasses the relative Langlands program. It aims to compare stable trace formulas in
a new way. However, the nature of these comparisons is completely unclear. Even the
case where the L-groups are equal (classically this is the setting for the Jacquet-Langlands
correspondence) the comparison is very interesting, and encompasses for instance the Gan-
Gross-Prasad Conjecture. I am trying to enlarge the program to have more tractable cases
available.

1. Notation and basic setup

Let k be a global field, Ak the adeles. Let F be a local field and [G] := G(k)\G(Ak).
For a smooth variety X, we let S(X) = S(X(F )) be the space of C-valued Schwartz

measures. This means that there is rapid decay towards all boundaries; for example on
Gm you have rapid decay near 0 and ∞. Roughly you can think of a Schwartz measure
as a Schwartz function times a polynomial volume form. Since in the global case you have
canonical Tamagawa measures, you can confuse Schwartz measures with Schwartz functions.

When we have a group G acting on (quasi-affine) variety X, we denote by X//G :=
Spec k[X]G the coarse quotient. We want to discuss the notion of “Schwartz measures on
the quotient”. There are three versions of this notion:

(1) A sophisticated and correct one: Schwartz measures on the quotient stack [X/G].
(2) An intermediate notion: the coinvariants S(X)G.
(3) A coarse notion: the pushforward of a measure from X to X//G. You should think

of this as stable orbital integrals: the pushforward measure is given by the integral
along the fiber, which is typically a stable conjugacy class, so this is a stable orbital
integral. We will denote this by Sst(X/G).
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Let ψ : F → C× or Ak → C× be an additive character. We let N ⊂ B be a maximal
unipotent subgroup of a Borel. If X = (N\G,ψ) then we can take a Whittaker model
S(X) := S(N,ψ) for the definition of S(X).

Notation: the quotient H/H means H modulo H-conjugacy.

Remark 1.1. This is an elementary but useful remark. When X is a group H (the “group
case”), we think of X as a symmetric space for G := H ×H, with G acting via (h1, h2) ·h =
h−1

1 hh2. Then we can view H/H = (X ×X)/G where G acts diagonally on X ×X, as we
can use the G action to trivialize the first component of X, leaving the conjugation action
on the second factor.

2. Langlands functoriality and “beyond endoscopy”

2.1. The idea of “Beyond Endoscopy”. The Langlands functoriality conjecture says
that a map LH1 → LH2 induces a map

{packets of irreps for H1} 7→ {packets of irreps of H2}.

One way to think of this as follows: you have a stable character for a packet Π, given by

ΘΠ :=
∑
π∈Π

Θπ.

(This is all local right now.)
So functoriality gives a map from stable characters of H1 to stable characters for H2.

Remark 2.1. This is not quite what one does in endoscopy - there one takes a different
linear combination of the characters within the L-packet.

Langlands suggested considering the dual map of stable test measures:

Sst(H1/H1)
T←− Sst(H2/H2).

We want to describe this map - it should satisfy the condition that T ∗(ΘΠ1
) = ΘΠ2

is a
stable character for all tempered Π1.

Remark 2.2. Langlands studied this for H1 = T , H2 = GL2. Daniel Johnstone studied
this for H1 = T and H2 = GLn.

We would like to use this to prove a comparison of stable trace formulas.

STFH2
(f) STFH1

(T f).

Here STF stands for the stable trace formula, viewed as a functional on measures. Why
have we written  instead of equality? There should not be equality on the nose: we need
to extract a part of the trace formula for H2 corresponding to the contribution from the
spectrum of H1 to the spectrum of H2, which Langlands proposed doing using L-functions.

2.2. A baby case. Let TH be the universal Cartan of H (the quotient B/N for any Borel
B, which is well-defined because all Borels are conjugate). We assume that TH is split for
simplicity.

We have a map LTH = T̂H → LH, which should induce a transfer from representations
of H to representations of T . We want to understand the dual map

T : S(H)→ S(H/H)→ S(TH).
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In terms of representations, it is easy to say what is going on. Let H1 = TH and H2 = H.
For χ ∈ T̂H the local Langlands correspondence assigns

Πχ = {I(χ) := IndHB (χ · δ1/2)}.

The character of this representation is known:

ΘΠχ(t) = D
−1/2
H (t)

∑
w∈W

wχ(t)

whereDH is the Weyl denominator (the thing that comes up in the Weyl character formula).
The condition we need is that∫

TH

(T f)(t)χ(t) dt =

∫
H

f(h)Θχ(h) dh.

Using this we can compute T f explicitly.
This is opposite to what we want to do, which is to start with the transfer T and use it

to pull back representations.
To globalize this, we want a map

S(H/H(A))→ S(TH(A)).

The trace formula for H gives a distribution on the left side. Similarly the trace formula for
TH gives a distribution on the right side. This fits into a diagram

S(H/H(A)) S(TH(A))

C C

TF TF

This diagram does not commute using the usual (non-invariant) trace formula. We can view
the trace formula as a “Laurent series”

TFH(f) =
1

sr
TFH,−r(f) + . . .+ TFH,0(f).

Here TFH,0(f) is the usual trace formula, and it is not invariant. The leading term is
invariant, and is what will be compared.

3. The spectrum of a spherical variety

3.1. Spherical varieties. We said earlier that one can think of a group X = H as being
a symmetric space for G = H × H. There is a broader context for this, mamely that of
spherical varieties. This means (in characteristic 0) that X is an affine normal variety with
G-action, such that k[X] is a multiplicity-free direct sum of highest weight modules. This
is equivalent to saying that the Borel B has an open orbit.

This is a convenient class that gives Euler products for L-functions.

Example 3.1. Symmetric spaces are spherical varieties: X = On\GLn (with G = GLn),
or X = Sp2n \GL2n (with G = GL2n).

Example 3.2. X = GLn \GLn×GLn+1 (with G = GLn×GLn+1), or the Gan-Gross-
Prasad settings with GLn replaced by SOn or Un.

Example 3.3. The Whittaker situation: X = N\G (with G = G).
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3.2. The local spectrum. We will define the spectrum of a spherical variety X. We can
decompose

L2(X) =

∫
Ĝ

πµ(π)

where µ(π) is the Plancherel measure. The π appearing above form the support of the local
spectrum of X.

Example 3.4. For X = N\G, we have

L2(X) =

∫
χ∈T̂G

I(χ) dχ.

3.3. Relative characters. Let Φ1,Φ2 ∈ L2(X). Then the Plancherel formula gives∫
X

Φ1Φ2 dx =

∫
Ĝ

Jπ(Φ1 ⊗ Φ2)µ(π).

Here Jπ is a “relative character” (terminology by analogy to the relative trace formula). A
relative character (for irreducible π) is a composition

Jπ : S(X ×X)
G×G equiv−−−−−−−→ π ⊗ π̃ 〈,〉−→ C

where π̃ is the contragredient of π, and 〈, 〉 is the canonical pairing. We will assume that
the map S(X ×X)

G×G equiv−−−−−−−→ π ⊗ π̃ is unique up to scalar, so Jπ is unique to scalar.

Example 3.5. In the group case X = H,

Jπ(Φ1 ⊗ Φ2) ∝ Tr(τ(Φ∨1 ∗ Φ2))

where the representation π of H×H necessarily factors as π = τ⊗ τ̃ , with τ a representation
of H and τ̃ its contragredient. We can take the right side as a canonical normalization of
Jπ. This means that the Plancherel measure µ is canonical, in this case.

For general X, once we fix ψ = ψX we should normalize Jπ in some way (there is no
intrinsically canonical choice).

3.4. The relative trace formula. We need a G(A)diag-equivariant map

S(X ×X(A))
RTFX×X/G−−−−−−−→ C.

We specify this on functions of the form Φ1 ⊗Φ2 for Φ1,Φ2 ∈ S(X(A)). The recipe is as
follow. For Φ1,Φ2 ∈ S(X(A)) we set

ΣΦ1(g) :=
∑

γ∈X(k)

Φ1(γg)

ΣΦ2(g) :=
∑

γ∈X(k)

Φ2(γg).

These are smooth functions on [G], and then we take their inner product to get something
in C.

Example 3.6. In the group case X = H, G = H ×H,

ΣΦ(h1, h2) = KΦ(h1, h2).

is the usual kernel function, so

RTF(Φ1 ⊗ Φ2) = 〈KΦ1
,KΦ2

〉[H×H] = 〈R(Φ1), R(Φ2)〉HS = Tr(R(Φ∨1 ∗ Φ2)).
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Example 3.7. If X = (N,ψ)\G then ΣΦ is a Poincaré series, and RTF(N,ψ)\G/(N,ψ) is the
Kuznetsov trace formula for G.

The relative trace formula says that a geometric expansion of RTF equals a spectral
expansion of RTF.

3.4.1. The geometric side. The geometric expansion is a sum of orbital integrals for X ×
X(k)/G(k). Formally, if X = [X ×X/G] then

RTF(f) =
∑

ξ∈X (k)

f(ξ).

(Globally we have canonical Tamagawa measures which we use to identify measures with
functions.)

3.4.2. The spectral side. On the spectral side, RTF(Φ1,Φ2) is a sum over automorphic rep-
resentations π of a trace,

RTF(Φ1,Φ2) =
∑

π∈ĜAut

JAut
π (Φ1 ⊗ Φ2)

where
JAut
π (Φ1 ⊗ Φ2) = 〈(ΣΦ1)π, (ΣΦ2)π̃〉

where we are naively pretending that π embeds in L2([G]). This JAut
π (Φ1 ⊗ Φ2) is called a

period relative character. The π for which JAut
π 6= 0 are called X-distinguished representa-

tions.

Remark 3.8. If X = H\G, you can write JAut
π as

JAut
π =

∑
(ϕ,ϕ̃)

(. . .)

∫
[H]

ϕ

∫
[H]

ϕ̃

where the sum is over a dual basis (ϕ, ϕ̃) of (π, π̃). The mysterious factors are powers of 2
that measure the size of an Arthur packet, but they are present because we normalize our
conventions for orbital integrals rather than stable orbital integrals.

3.5. The generalized Ichino-Ikeda Conjecture. In [SV] we formulate:

Conjecture 3.9 (Generalized Ichino-Ikeda conjecture). Under certain assumptions on X,
we have

JAut
π =

∏
v

JPlanch
πv

where JPlanch
πv is a local relative character normalized with a distinguished Plancherel mea-

sure.

We emphasize that we have not explained how to define JPlanch
πv here, but that there is a

reasonable way to normalize it in general.
Let’s try to say something to demystify the global periods. IfX = H\G then we can think

of X ×X/Gdiag = H\G/H. Thus we can think of f ∈ S((X ×X)/G) as the pushforward
of F ∈ S(G). Then

Jπ(f) =
∑

(ϕ,ϕ̃) of (π,π̃)

∫
[H]

ϕ(h) dh

∫
π(F )ϕ̃ dh
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Example 3.10. The original Ichino-Ikeda Conjecture concerned X = SOn \SOn× SOn+1.
The conjecture predict that

Jπ =
∏
v

JPlanch
πv

but instead of phrasing things in terms of JPlanch
πv , they use an explicit expression which is

related via

JPlanch
πv (f) =

∑
(v,ṽ) of (πv,π̃v)

∫
H(kv)

〈πv(h), π̃v(F )ṽ〉 dh =

∫
H(kv)

Θπv (h · F ) dh.

For the case SOn \ SOn×SOn+1, when F = IG(Ov) and πv is unramified, then

JPlanch
πv (f) =

L(πv1 × πv2, 1/2)

L(πv,Ad, 1)

where πv = πv1 ⊗ πv2.

Example 3.11. Let X = (N,ψ)\G. Then the conjecture predicts

Jπ =
∏
v

JPlanch
πv

with almost every factor being

JPlanch
πv (f) =

1

L(πv,Ad, 1)

where f is the pushforward of F = IG(Ov). This is conjectural except for GLn (Jacquet)
and S̃p2n (Lapid-Mao).

Note that we are seeing a ratio of L-functions, with the denominator being the adjoint
L-function. The numerator is called LX .

Example 3.12 (Ichino-Ikeda case). ForX = SOn \SOn×SOn+1 (withG = SOn×SOn+1),
we have

LX = L(πv1 × πv2, 1/2).

Example 3.13 (Whittaker case). For X = (N,ψ)\G we have LX = 1.

Example 3.14 (Group case). For X = H and G = H ×H, the representation π must be
of the form π = τ ⊗ τ∨. In this case JPlanch

πv = 1, as is tautological from our normalization,
so we have LX = L(τ,Ad, 1).

Thus the spectral side of the RTF is a sum over automorphic representations of these
(ratios of) L-values.

3.6. The L-group of a spherical variety. It turns out that “most” spherical varieties X
have an L-group LX → LG which controls the spectrum. (We are sweeping an Arthur SL2

under the rug.)

Example 3.15. For X = (N,ψ)\G, we should have LX = LG because every tempered
L-packet is expected to have a generic (i.e. X-distinguished) element, so every automorphic
representation of G should contribute to L2(X). Since we haven’t explained the definition
of LX, this is only a heuristic.

Example 3.16. For X = SOn \ SOn×SOn+1, we should have LX = LG because every
tempered L-packet is expected to have an X-distinguished element.
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Example 3.17. For the group case X = H\H × H, we should have LX = LH
Id,c−−→

L(H × H), where c is the Chevalley involution, because the G = H × H-representations
appearing in L2(X) are only those of the form τ ⊗ τ̃ .

3.7. The L-function of a spherical variety. We also have a global L-function LX
attached to a spherical variety X. This has the form (a product of) L(π, r, s) where
r : LX → GL(V ) and s ∈ C.

Example 3.18. For X = GLn \PGLn+1, we should have LX = SL2 because

L2(X) = Ind
PGLn+1

P2,n−1
(L2(N,ψ\PGL2))

where P2,n−1 is the standard parabolic subgroup of partition type (2, n − 1) and acts on
L2(N,ψ\PGL2) through projection to PGL2.

For n = 1, we are looking at X = Gm\PGL2, so LX = L(π, 1/2)2 because you should
have square of the period for Gm\PGL2 (the adjoint L-value is coming from our different
normalization than the usual one), which would give L(π, 1/2).

4. Relative functorality

4.1. “Beyond Endoscopy” for spherical varieties. Again we discuss the local setting.
Suppose we have spherical varieties (X1, G1) and (X2, G2). A map

LX1 → LX2

should induce a map from X1-distinguished packets to X2-distinguished packets, hence a
map from stable relative characters for X1 to stable relative characters for X2, which can
be interpreted dually as a transfer operator

S(X1 ×X1/G1)
T←− S(X2 ×X2/G2)

so that there is some sort of comparison of stable relative trace formulas

RTFX2×X2/G2
(f) RTFX1×X1/G1

(T f).

The problem is nontrivial already when LX1
∼= LX2. (This case was used to reprove

Waldspurger’s form. It would be enough by itself to give Gross-Prasad.) In this case you
can formulate precise desiderata. We will begin by describing a more naïve version, which
we will then correct.

(1) Locally, there should be a transfer operator which is a linear bijection

S(X1 ×X1/G1)
T←− S(X2 ×X2/G2)

Secretly this should realize functoriality, so T ∗ should take stable relative characters
to stable relative characters for the same L-parameter. However this would be
the outcome of having the theory of the transfer operator, so we cannot use it to
construct T .

The T should satisfy a fundamental lemma for the Hecke algebra.
(2) Globally, this should fit into a commutative diagram

S(X2 ×X2/G2(A)) S(X1 ×X1/G1(A))

C
RTFX2×X2/G2

T

RTFX1×X1/G1

(4.1.1)

This would let you transfer questions about periods.
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However, these two desiderata are already incompatible. Indeed, we have already seen
that spherical varieties with the same L-group can have different L-functions. (For example,
for any spherical variety we can find a Whittaker spherical variety with the same L-group,
which automatically has L-function equal to 1.) The L-functions arise as special cases of
periods, so we cannot have this sort of RTF (4.1.1) as is.

4.2. Non-standard test measures. Since in the Whittaker case the L-function was triv-
ial, we might as well take it for one side. From now on, we take X2 to be the Whittaker
period for the quasisplit group G∗ such that LG∗ ∼= LX1. Then

X2 ×X2/G2
∼= (N,ψ)\G∗/(N,ψ).

We want to define a transfer operator

T : S((N,ψ)\G∗/(N,ψ))
∼−→ S(H\G/H)

with a RTF as in (4.1.1). However, we have already noted that RTF for a basic function
in the Whittaker case (Example 3.11) is 1

L(Ad,1) on the left side and LX
L(Ad,1) on the right

side. So we need to use a new basic function for this to map. Thus we consider a transfer
operator

T : S−LX ((N,ψ)\G∗/(N,ψ))
∼−→ S(H\G/H).

where S−LX ((N,ψ)\G∗/(N,ψ)) is a larger space of “nonstandard” test measures for the
Kuznetsov formula. We’ll explain how one can cook up a function in S−LX ((N,ψ)\G∗/(N,ψ))

for which the RTF outputs LX
L(Ad,1) .

Classically the KTF computes the inner product of two Poincaré series, i.e the Whittaker
coefficients of Poincaré series. That is, if Φn is the nth Poincaré series then

KTF(Φn ⊗ Φ1) =
∑
Π

∑
ϕ∈π

an(ϕ)a1(ϕ).

We want to add in a new test function f0 such that LX = KTF(f0). To illustrate how this
works, imagine expanding out a local factor of LX :

LX,v =
1

det(Id−q−sr(−))
=
∑
n≥0

q−ns Tr(Symn r(−)).

Let ϕ ∈ S((N,ψ)\G∗/(N,ψ)) be the pushforward of the function IG(Ov) on G. We know
that the local period of f is 1

L(Ad,1) , so we replace

f  f0 :=
∑
n

q−nshn ∗ f (4.2.1)

where hn is the Hecke operator corresponding to Tr(Symn r(−)).

Example 4.1. We’ll give an example of how to write down f0. For G∗ = SL2, the usual
space of test measures S((N,ψ)\G∗/(N,ψ)) are certain measures onN\G∗//N = Ga, where
the identification of the quotient is via(

a b
c d

)
7→ c.

To make a measure on this quotient, we first choose a section, e.g.

c 7→
(

c
−c−1

)
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For φ ∈ Φ(g) dg ∈ S(SL2), π!f is a measure on Ga(F ) = F given by

π!φ(t) = |c|1/2
(∫

Φ

((
1 x

1

)(
c

−c−1

)(
1 y

1

))
ψ−1(x+ y) dxdy

)
d∗c

Then we form f0 as a formal combination of π!φn for appropriate φn = hn ∗ IG(Ov), as in
(4.2.1).

5. Examples

Next time we’ll start by explicitly describing

T : S−(N,ψ\SL2 /N,ψ)→ Sst(SL2 / SL2)

and
T : S−L(Std,1/2)2(N,ψ\PGL2 /N,ψ)→ S(Gm\PGL2 /Gm)

6. Global applications
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