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We will treat only the case of cocompact arithmetic groups, where the theory was discov-
ered by Matsushima. (A sequel lecture series by Joachim Schwermer will cover more general
situations.)

1. The basic description

1.1. The data. Let G be a semisimple, noncompact real Lie group. Suppose for simplicity
that G is connected.

• Let g0 be the real Lie algebra of G, and g := g0 ⊗C.
• Choose a maximal compact subgroup K ⊂ G. (This choice is necessary to talk

about automorphic forms.)
• Let Γ ⊂ G be a discrete subgroup. We assume that Γ\G is compact. We also assume

for simplicity that Γ is torsion-free, or equivalently that Γ acts without fixed points
on X.

1.2. Locally symmetric spaces. Let X = G/K (a symmetric space). We won’t recall the
theory of symmetric spaces, but we remind you that X is simply-connected, and even con-
tractible. Then Γ\X is a compact manifold, and Γ = π1(Γ\X). Moreover the contractibility
of X implies:

Fact 1.1. The quotient Γ\X is a K(Γ, 1)-space.

This implies that we can compute the group cohomology of Γ in terms of cohomology on
the space Γ\X. More precisely, if M is any Γ-module we denote by M the corresponding
local system on Γ\X (explicitly,M = X ×Γ M).

Corollary 1.2. We have Hk
group(Γ,M) = Hk(Γ\X,M).
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(For a reference, see [Br94].)
Here we are interested in very specific M . We will take M to be a finite-dimensional

representation of Γ over R or C. (In fact, M will even be the restriction to Γ of a G-
representation.)

Remark 1.3. There are other examples which are quite natural and interesting, e.g.

SL2(Z[i])︸ ︷︷ ︸
Γ

⊂ SL(2,C)︸ ︷︷ ︸
G

.

In this case the quotient is noncompact. Even though we will focus on the cocompact
theory, the most interesting and natural examples are not cocompact, and we will discuss
them anyway.

For M , we can take Γ acting on (Z[i]/p)2 for p a prime ideal of Z[i], or Γ acting on
Z[i]2 ⊂ C2.

In fact for our purposes we can restrict to M = C, the trivial representation. The
interesting features of the general theory are already present in this situation.

2. The C∞-description

We are now going to discuss Lie algebra cohomology. I want to emphasize at the outset
that this is easy; it’s just a reformulation of the de Rham complex.

We want to compute H∗(Γ\X,C). We will use the de Rham complex. The game is to
rephrase it in group-theoretic terms.

2.1. Lie algebra cohomology of symmetric spaces. Write X = G/K. We want to
describe the space of differential forms on X.

Proposition 2.1. We have a canonical isomorphism

Ωi(X) ∼= HomK(Λip, C∞(G)).

Here the action of K on C∞(G) is by right translation.

We need some more notation. Recall that we have a Cartan decomposition g0 = k0 ⊕ p0.
Therefore we have at the level of complexifications p ∼= g/k. Note that k acts on p via the
adjoint representation.

Proof of Proposition 2.1. Assume we are given

c : Λip→ C∞(G).

We need to construct from c a (smooth) differential form ω ∈ Ωi(X). If you think about it,
there is only one way to do this. Let x ∈ X; we can write x = g · o for some g ∈ G, where
o ∈ X is the basepoint corresponding to the choice of K. We want to define

ω(v1, . . . , vi) ∈ C, v1, . . . , vi ∈ Tx(X).

We can write vα = gwα for wα ∈ To(X) ∼= p. The only reasonable thing is to set

ω(v1, . . . , vi) = c(w1, . . . , wi)(g).

One has to check certain properties:
• This is a smooth form.
• This is well-defined (independent of the choice of g). This ultimately comes from

the K-equivariance of c.
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The inverse map is given by restriction to To(X) ∼= p, showing that this is an isomorphism.
�

Given Γ ⊂ G, the same argument yields

Ωi(Γ\X) ∼= HomK(Λip, C∞(Γ\G)).

To describe the de Rham complex, we still need to describe the differential

d : Ωi(Γ\X)→ Ωi+1(Γ\X).

We have

dω(v0, . . . , vi) =

i∑
α=0

(−1)αvα · ω(v0, . . . , v̂α, . . . vi) (2.1.1)

+
∑
α<β

(−1)|α|+|β|ω([vα, vβ ], v0, . . . , v̂α, . . . , v̂β , . . . , vi) (2.1.2)

Here vα · ω(v0, . . . , v̂α, . . . vi) is the differentiation of a function.
We will now make a specific choice that simplifies the differential. For the vi we use

vectors in g · To(X), i.e. a left-invariant vector field. With this choice we have

[vα, vβ ] ∈ g · k

by the following basic fact about the Cartan decomposition: [g, g] ⊂ k. But ω kills k because
it is dual to g/k. Therefore, the second line in (2.1.1) disappears.

dω(v0, . . . , vi) =

i∑
α=0

(−1)αvα · ω(v0, . . . , v̂α, . . . vi) (2.1.3)

We have to understand the remaining term within the dictionary furnished by Proposition
2.1. This comes down to understanding the action of vα, which is the derivative by a left-
invariant vector field. Under the identification Ωi(Γ\X) = Hom(Λip, C∞(Γ\G)) we see that
vα acts on h : Λi → C∞ through its action on C∞(Γ\G), which is

vα · f =
d

dt
|t=0f(getvα).

2.2. (g,K)-cohomology. We give a brief reminder on representation theory. Let H be
an irreducible Hilbert space representation for G. Then we can take the space of K-finite
vectors in H, call it V . Then V is an irreducible representation of g. Furthermore, the
restriction of V to K has finite multiplicities for its irreducibles. Then V is a (g,K)-module.
This means that V is a complex g-module, with a locally finite (continuous) K-action that
is compatible with the g-action in a way that is left as an exercise to write out.

Definition 2.2. Let V be a (g,K)-module. Then we define H∗(g,K;V ) to be the coho-
mology of the complex C∗(g,K;V ) given by

• Ci(g,K;V ) = HomK(Λip, V ),
• with the differential

dω(v0, . . . , vi) =

i∑
α=0

(−1)|α|vαω(v0, . . . , v̂α, . . . , vi).

We can summarize the preceding discussion with the following formula of Matsushima:
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Theorem 2.3 (Matsushima). We have

H∗(Γ\X,C) = H∗(g,K;C∞(Γ\G))

Remark 2.4. One should perhaps write H∗(g,K;C∞(Γ\G)K), the K-finite part. But the
complex HomK(Λip, V ) automatically lands in the K-finite part of C∞(Γ\X), so it doesn’t
really make a difference.

3. Hodge theory and representation theory

3.1. Input from Hodge theory. Let Ωi = Ωi(Γ\X). By Proposition 2.1 we can view this
as the space of global sections of a bundle on Γ\X, which is obtained by descending the
vector bundle G×K Λip∗ from X = G/K.

We have a natural scalar product on the Lie algebra, namely on g we have the Killing
form, which is positive definite on p. We use it to get Hermitian structures on all the Ωi.
Then Hodge theory applies. In particular we get adjoint operators

d : Ωi → Ωi+1

d∗ : Ωi+1 → Ωi

We can consider the corresponding Laplacian

∆i := dd∗ + d∗d : Ωi(Γ\X)→ Ωi(Γ\X).

Theorem 3.1. By Hodge theory, we have:

(1) The space of harmonic forms Hi(Γ\X) ⊂ Ωi(Γ\X) is finite-dimensional.
(2) There is a canonical isomorphism Hi(Γ\X) ∼= Hi(Γ\X).
(3) ∆i has positive eigenvalues λn, tending to ∞ and each with finite multiplicity.

3.2. Input from representation theory. Remember that we assume Γ\X is compact. If
ϕ ∈ C∞c (G), then ϕ acts on L2(Γ\G) by convolution on the right. It is easy to check that
this operator is given by a smooth kernel on (Γ\G)2.

Thus R(ϕ) is a compact operator for all ϕ, implying that

L2(Γ\G) =
⊕̂

π
Hπ,

a discrete sum of irreducibles. Moreover, if π0 is an irreducible unitary representation of G,
then the mutiplicity m(π0) of π0 in this decomposition is finite.

We make some obvious remarks about smooth vectors. Recall that if H is a Hilbert space
representation of G, irreducible or not, then there is a notion of smooth vectors H∞ ⊂ H.

Example 3.2. In particular we have L2(Γ\G)∞ = C∞(Γ\G).

Then C∞(Γ\G) ⊂
∏
πH

∞
π . Taking K-types, we get

HomK(Λip, C∞(Γ\G)) ⊂
∏
π

HomK(Λip, Vπ)

where Vπ is the space of K-finite vectors in H∞π .
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3.3. The Casimir element. Recall the decomposition

g0 = k0 ⊕ p0.

Pick an orthonormal basis (zβ) for k0 and (xα) for p0. Consider the element

C =
∑

x2
α −

∑
z2
β ∈ Ug.

This is called the Casimir element. This is an element of z := Z(Ug). So by Schur’s Lemma,
it must act on any irreducible Ug-module by scalars.

Lemma 3.3 (Kuga). Let (π, V ) be a unitary (g,K)-module, so in particular we can define
(Ck(g,K;V ), d, d∗). If ω ∈ Ck(g,K;V ) then we have

∆kω = −Cω.
Remark 3.4. To clarify, a unitary (g,K)-module is one such that for X ∈ g0 we have

〈Xu, v〉+ 〈u,Xv〉 = 0.

Proof. For ω ∈ Ck, write
ω =

∑
I

ωIβ
I

where I ⊂ {1, . . . , q} where q = dim p with |I| = k. Then βI = x∗i1 ∧ . . . ∧ x
∗
ik

where x∗i is
the dual basis to xi, and ωI ∈ V . We can extend the hermitian structure to Λ∗p so that the
βI are an orthonormal basis.

We’re just going to do the computations by brute force. Let ω ∈ Ck and |I| = k + 1.
Then, as we found earlier (2.1.3)

(dω)I =

k+1∑
α=1

(−1)α−1xiαωI−{iα}. (3.3.1)

Next we need to compute d∗ω. Let θ ∈ Ck+1 and J ⊂ {1, . . . , q} with |J | = k. We have

(d∗θ)J =
∑
|I|=k+1
I=Jt{j}

(−1)ιI(j)xjθI =
∑
j /∈J

(−1)ιI(j)xjθI:=Jtj (3.3.2)

Here (−1)
ιI(j) is the order rank of j, i.e. if you write j = iα then it’s α.

A trivial observation, which ends up being how things come out, is that if J = {j1, . . . , jk}
and j ∈ J then

ιI(j) =
∑
jα≤1

1.

Next we compute (dd∗ω)J . By (3.3.1) and (3.3.2) it is

(d∗dω)J = −
∑
j /∈J

x2
jωJ +

∑
j /∈J

∑
iα 6=j

(−1)ιI(j)(−1)α−1xjxiαωJ+j−iα

Here |J | = k and α = 1, . . . , k.
Next we compute (d∗dω)J . Write |J | = k.

(d∗dω)J = s
∑
β

(−1)β−1xjβ
∑
|J|=k

(−1)ιJ′ (j)xjωJ′

where J ′ = J − jβ t j. The summand (−1)β−1xjβ
∑
|J|=k(−1)ιJ′ (j)xjωJ′ is

−
∑
j∈J

x2
jωJ , j = jβ
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and if j 6= jβ is
k∑

β=1

(−1)β−1
∑

J′=J−jβtj
(−1)ιJ′ (j)xjβxjωJ′ .

You can see that the two “main terms” are correct. You have to check that the “remainder
terms” cancel. Basically the point is that they concern the same J ′, and the coefficients are
opposite: the cancellation is

(−1)β−1(−1)ιJ′ (j) = −(−1)ιI(j)(−1)α−1 = 0.

This means that one gets terms like XjβXj −XjXjβ , which lie in k and hence vanish by the
k-equivariance.

�

3.4. Matsushima’s formula. Recall that we had written

L2(Γ\G) =
⊕̂

π
Hπ

with
Ck(g,K;V ) ⊂

∏
HomK(Λkp, Vπ).

By Kuga’s Lemma we have ∆ = −C on Ck(g,K;V ). Since the Casimir C ∈ z, it acts
by a scalar on each Vπ, and moreover there are only a finite number of representations Vπ
where C|Vπ =: Cπ = 0. This implies that the space of harmonic forms Hk is identified with⊕

Cπ=0 HomK(Λkp, Vπ), where Cπ is the constant by which C acts on Hπ. (The sum is
finite by general properties of elliptic operators.)

Theorem 3.5 (Matsushima). We have

Hk(Γ\X,C) =
⊕
Cπ=0

HomK(Λkp, Vπ).

This is basically the abstract part of Matsushima’ formula, without any representation
theory.

4. Complements and variants

4.1. Restrictions on Γ. We demanded that Γ have no torsion. However, this doesn’t
matter since we’re working over C, so we can take Γ to be any discrete cocompact subgroup.
The point here is a theorem of Selberg which says that there is a finite index subgroup Γ′ /Γ
such that Γ′ is torsion-free (no fixed points), so over C

Hk(Γ, V ) = H0(Γ/Γ′, Hk(Γ′, V )).

4.2. Coefficient systems. Let E be a representation of G. Then E induces a local system
E on Γ\X, and

Hk(Γ, E) =
⊕
π

Hk(g,K;Vπ ⊗ E).

There is again a Hodge theory, where you transform the Kuga Laplacian by one from the
local system. We need a K-invariant hermitian form on E.
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4.3. Action of z. Let z = Z(Ug). We go back to the trivial local system for simplicity.
This cuts out the π with Cπ = 0.

Assume V is an irreducible (g,K)-module (not necessarily unitary). Then it has an
infinitesimal ωV : z→ C by Schur’s Lemma.

Theorem 4.1 (Wigner). If ωV 6= ωC (the infinitesimal character of the trivial representa-
tion), then H∗(g,K;V ) = 0.

The point is that you can also define Extg,K(V,W ), and interpret (g,K)-cohomology
using it. Then you use Yoneda’s description of Ext in terms of extensions: in an exact
sequence with incompatible central characters, it must split.

Corollary 4.2. Let A(Γ\G,K) be the space of automorphic forms, which in our cocompact
case are just functions in C∞(Γ\G) which are K-finite and z-finite. Then

H∗(g,K;C∞(Γ\G)) = H∗(g,K;A(Γ\G,K)).

4.4. Restrictions on G. In general the groups G which come up in algebraic geometry
will be reductive, not merely semisimple. Any reductive G has a Langlands decomposition

G = 0GAG

where AG is a central split torus, connected for the real topology. Then we look at ΓAg\G,
and make the same construction. Here 0G is not necessarily connected, but there is a
maximal compact subgroup K meeting all connected components, and we note that it is
really crucial to consider HomK(Λip, V ) for the full group K, as we have been doing all
along. Then everything is true, as the key point was 0G/K being contractible, which is true
because it’s still a symmetric space.
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