
FINITE GROUP THEORY: SOLUTIONS

TONY FENG

These are hints/solutions/commentary on the problems. They are not a model for
what to actually write on the quals.

1. 2010 FALL MORNING 5

(i) Note that G acts transitively on the set of `. Picking ` = [1 : 0], we see that the
stabilizer of ` is the upper-triangular Borel

StabG (`) =
�

∗ ∗
∗

�

.

Since the stabilizer groups of all the ` are conjugate (by transitivity), it suffices to
prove that this particular one has a unique p -sylow. By counting its size, the p -
Sylow has order q = p n . By inspection, the ‘unipotent radical”

N =
�

1 ∗
1

�

is a p -Sylow in StabG (`). Since all p -Sylows are conjugate, the statement that it is
unique is equivalent to it being normal, which we check explicitly.

You should know how to do the computation

#G (Fq ) = (q
2−1)(q 2−q ).

In particular, the biggest power of p dividing this is q = p n , so N is also a p -Sylow
of G . Since all p -Sylows are conjugate, to count the total number of p -Sylows we
just have to count the number of N . Alternatively, show that they are in bijection
with `. To recover ` from N , take the span of the fixed vector of N .

(ii) First assume `1 = [0, 1] and `3 = [1, 0]. Then we are asking for g fixing `1,`3 and
taking any `2 to [1, 1]. Note that we can express `2 = [a , 1]with a 6= 0. Then take

g =
�

a
1

�

.

Now for the general case. Argue that we can find any g taking `1 to [0, 1] and `3 to
[1, 0]. Then g might not send `2 to [1, 1], but by the first special case there is an h
sending g (`2) to [1, 1] and fixing the other lines, so h ◦ g does the trick.

(iii) We proved in (i) that Pi is the unique p -Sylow subgroup of StabG (`i ) for some `i ,
and Qi is the unique p -Sylow subgroup of StabG (`′i ). By (b) there exists g such
that g (`i ) = `′i . Therefore g StabG (`i )g −1 = StabG (g `i ), and so the unique p -Sylow
subgroups match.
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2. 2011 SPRING MORNING 1

(a) Proceed by contradiction. We assume that

G =
⋃

g∈G

g H g −1. (2.0.1)

Let’s count how many distinct g H g −1 appear above. By orbit-stabilizer, it is G /NG (H ).
Now note that H ⊂NG (H ), so |G /NG (H )| ≤ |G /H |.

Each conjugate of H has |H | elements, and each contains the identity of G . So
the total number of elements of G accounted for by the right side of (2.0.1) is

1+ |G /NG (H )| · (|H | −1)≤ 1+ |G /H | · (|H | −1)< |G |

if |H |< |G |.

(b) The stabilizers are all all conjugate. By (a), there is some g ∈G not in any stabilizer.

3. 2013 FALL AFTERNOON 1

(a) In this case g H g −1 ∩H are elements in G fixing both x and g x . If G is Frobe-
nius then this has only the identity. Conversely, if G is not Frobenius then some
g ∈G lies in StabG (k x ) and StabG (k ′x ). Then k H k−1∩ (k ′)H (k ′)−1 is non-trivial, so
(k ′)−1k H k−1(k ′)∩H is non-trivial.

(b) Take S = Fq , with G by affine transformations. Then H is the stabilizer of 0.

4. 2012 FALL AFTERNOON 5

Note that Fp 3 as a 3-dimensional vector space over Fp = Z/p . Picking a basis for
it, we can identify GL3(Z/p ) with the group of Fp -linear automorphisms on Fp 3 . The
subgroup of Fp 3 -linear automorphisms gives an inclusion

F×p 3 ,→GL3(Fp ).

(i) First compute the size of SL3(Fp ):

# SL3(Fp ) =
(p 3−1)(p 3−p )(p 3−p 2)

(p −1)
= (p 2+p +1)2(p −1)2(p +1).

Check that if ` | p 2 +p + 1 then ` - p (p − 1)(p + 1). The `-Sylow then comes from
(F×p 3 )Nm=1 ,→ SL3(Fp ).

(ii) In this case the 3-Sylow is the semidirect product of the 3-Sylow in (F×p 3 )Nm=1 with
Gal(Fp 3/Fp ), which is not even commutative.

5. 2014 SPRING MORNING 3

(i) Note that x y x−1 y −1 lies in P2, since it can be written as

x · (y x−1 y −1)

with both factors in P2 by normality. Similarly, it lies in P7. But any element in the
intersection of P2 and P7 has order simultaneously a power of 2 and of 7, so the
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order must be 1.

(ii) Let n2 denote the number of 2-Sylows and n7 denote the number of 7-sylows. By
the Sylow theorems, we know:
• n2 ≡ 1 (mod 2) and n2 | 7.
• n7 ≡ 1 (mod 7) and n7 | 8.

We want to show that n2 = 1 or n7 = 1. If not, then by inspection we must have
n2 = 7 and n7 = 8. We’ll show that there are not enough elements in the group to
allow this to happen.

Any two Sylow 7-subgroups can intersect in only the identity element, since
they are cyclic. So each Sylow 7-subgroup contributes 6 new elements of order 7,
for a total of 8×6= 48 distinct non-identity elements in G of order 7.

Any two Sylow 2-subgroups can intersect in a group of size at most 4. Therefore,
two distinct 2-Sylow subgroups contribute at least 8+4= 12 elements not already
accounted for by the above count of elements of order 7. But 12+48= 60 already
exceeds the size of G .

(iii) Make a non-split semi-direct product Z/7oZ/8 by having Z/8 act through the non-
trivial homomorphism Z/8→ (Z/7)∗ ∼=Aut(Z/7). (The non-normality follows from
the fact that the two subgroups don’t commute.)

Make a non-split semi-direct product (Z/2)3 o Z/7 by having Z/7 act through
Z/7

∼−→ F×8 ,→GL3(Z/2).

6. 2015 SPRING A2

(i) By assumption, we can find g ∈ G such that g x g −1 = y . We want to try to get
g ∈N , the normalizer of P . In other words, we want to choose g so that

g P g −1 = P.

We are free to translate g on the left by C (y ) and on the right by C (x ). If we
can get g P g −1 to be in C (y ), then by the Sylow theorems applied to C (y ) we can
left-translate by something in C (y ) so that g P g −1 = P .

Is it the case that g P g −1 ⊂C (y )? This is asking if conjugation by y induces the
identity on g P g −1. In other words, does conjugation by g −1 y g induce the identity
on P ? But g −1 y g = x , which lies in C (P ) by assumption!

(ii) The normalizer of N is the group of upper-triangular matrices. The matrices
�

a
b

�

and
�

b
a

�

and conjugate [why?] in G , but not in N .

7. 2011 FALL MORNING 1

(i) Arbitrary (entry-wise) choices of lift will lie in GL3(Z/p 5), because the determinant
commutes with reduction. The kernel is in bijection with 3× 3 matrices with en-
tries modulo p 4, hence has size p 36.
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(ii) #G = p 36(p 3−1)(p 3−p )(p 3−p 2). An explicit p -Sylow is the pre-image of the unipo-
tent radical.

8. 2012 FALL MORNING 2

(i) We claim that the “unipotent group”








1 ∗ ∗ . . .
1 ∗ . . .

... ∗
1









is a Sylow subgroup. This has size p n (n−1)/2. To check that it works, we compute
the size of SLn (Fp ):

(p n −1)(p n −p ) . . . (p n −p n−1)
p −1

.

The power of p is 1+2+ . . .+n −1= n (n−1)
2 .

(ii) Lots of possibilities here, e.g. let Pi be the subgroup of matrices supported above
the “i th superdiagonal.” Alternatively, you could take matrices supported “after
the i th column”.

9. 2013 SPRING MORNING 3

(i) Use the exact sequence

0→ K →GL2(Z/9)→GL2(Z/3)→ 0.

You should be know how to compute # GL2(Z/p ) for any prime p ; for p = 3 it’s
(32 − 1)(32 − 3). It remains to compute #K . This kernel is the group of matrices
with entries in Z/9, congruent to 1 modulo 3. Show that any such matrix is of
the form Id+3M . Note that this only depends on the entries of M modulo 3, and
any M is possible. Therefore, K is in bijection with Mat3×3(Z/3), which has size 34.

(ii) If g has 3-power order in G , then its image in GL2(Z/3) does as well. If the con-
verse is true, then some 3-power exponent of g lies in K . Argue that the bijection
K 'Mat3×3(Z/3) is in fact a group homomorphism, so that K has 3-power order.
(Alternatively, this can be seen by pure counting.)

(iii) Any Sylow 2-subgroup of G maps isomorphically onto its image in GL2(Z/3), be-
cause the kernel has to have a power of 3, since it lies in K . Therefore, it sufficesto
show the same result for G replaced by GL2(Z/3). By counting sizes, check that
a Sylow 2-subgroup has size 16. We can view GL2(Z/3) = GL2(F3) as the group of
linear automorphisms of F9 viewed as a 2-dimensional F3-vector space (picking a
basis for F9 over F3). Then the inclusion of the subgroup of automorphisms which
are moreover F9-linear corresponds to an embedding

F×9 ,→GL2(Z/3).
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Additionally, the Galois action of Gal(F9/F3) is F3-linear and gives an embedding
Z/2 ,→ GL2(Z/3), which preserves the subgroup F×9 , with the generator acting as
x 7→ x 3 by the Galois theory of finite fields.

10. 2010 FALL AFTERNOON 1

(i) Applying the inductive hypothesis to G /G ∩N ,→ H /N , we find that G /G ∩N =
H /N . This implies that G ·N =H .

(ii) First, use the usual argument that Z 6= 0 (orbit-stabilizer for the conjugation action
of H on itself). If G ·Z =H and G ∩Z = 0, then H =G ×Z , but then G would not
surject onto H /[H , H ].
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