FINITE GROUP THEORY: SOLUTIONS

TONY FENG

These are hints/solutions/commentary on the problems. They are not a model for what to actually write on the quals.

1. 2010 Fall Morning 5

(i) Note that *G* acts transitively on the set of ℓ . Picking $\ell = [1 : 0]$, we see that the stabilizer of ℓ is the upper-triangular Borel

$$\operatorname{Stab}_{G}(\ell) = \begin{pmatrix} * & * \\ & * \end{pmatrix}$$

Since the stabilizer groups of all the ℓ are conjugate (by transitivity), it suffices to prove that this particular one has a unique *p*-sylow. By counting its size, the *p*-Sylow has order $q = p^n$. By inspection, the 'unipotent radical"

$$N = \begin{pmatrix} 1 & * \\ & 1 \end{pmatrix}$$

is a *p*-Sylow in $\text{Stab}_G(\ell)$. Since all *p*-Sylows are conjugate, the statement that it is unique is equivalent to it being normal, which we check explicitly.

You should know how to do the computation

$$#G(\mathbf{F}_q) = (q^2 - 1)(q^2 - q).$$

In particular, the biggest power of p dividing this is $q = p^n$, so N is also a p-Sylow of G. Since all p-Sylows are conjugate, to count the total number of p-Sylows we just have to count the number of N. Alternatively, show that they are in bijection with ℓ . To recover ℓ from N, take the span of the fixed vector of N.

(ii) First assume $\ell_1 = [0, 1]$ and $\ell_3 = [1, 0]$. Then we are asking for g fixing ℓ_1, ℓ_3 and taking any ℓ_2 to [1, 1]. Note that we can express $\ell_2 = [a, 1]$ with $a \neq 0$. Then take

$$g = \begin{pmatrix} a \\ 1 \end{pmatrix}$$

Now for the general case. Argue that we can find any *g* taking ℓ_1 to [0, 1] and ℓ_3 to [1, 0]. Then *g* might not send ℓ_2 to [1, 1], but by the first special case there is an *h* sending $g(\ell_2)$ to [1, 1] and fixing the other lines, so $h \circ g$ does the trick.

(iii) We proved in (i) that P_i is the unique p-Sylow subgroup of $\operatorname{Stab}_G(\ell_i)$ for some ℓ_i , and Q_i is the unique p-Sylow subgroup of $\operatorname{Stab}_G(\ell'_i)$. By (b) there exists g such that $g(\ell_i) = \ell'_i$. Therefore $g \operatorname{Stab}_G(\ell_i)g^{-1} = \operatorname{Stab}_G(g\ell_i)$, and so the unique p-Sylow subgroups match.

2. 2011 Spring Morning 1

(a) Proceed by contradiction. We assume that

1

$$G = \bigcup_{g \in G} gHg^{-1}.$$
 (2.0.1)

Let's count how many distinct gHg^{-1} appear above. By orbit-stabilizer, it is $G/N_G(H)$. Now note that $H \subset N_G(H)$, so $|G/N_G(H)| \leq |G/H|$.

Each conjugate of *H* has |H| elements, and each contains the identity of *G*. So the total number of elements of *G* accounted for by the right side of (2.0.1) is

$$+|G/N_G(H)| \cdot (|H|-1) \le 1 + |G/H| \cdot (|H|-1) < |G|$$

if |H| < |G|.

(b) The stabilizers are all all conjugate. By (a), there is some $g \in G$ not in any stabilizer.

3. 2013 FALL AFTERNOON 1

- (a) In this case $gHg^{-1} \cap H$ are elements in *G* fixing both *x* and *gx*. If *G* is Frobenius then this has only the identity. Conversely, if *G* is not Frobenius then some $g \in G$ lies in $\operatorname{Stab}_G(kx)$ and $\operatorname{Stab}_G(k'x)$. Then $kHk^{-1} \cap (k')H(k')^{-1}$ is non-trivial, so $(k')^{-1}kHk^{-1}(k') \cap H$ is non-trivial.
- (b) Take $S = \mathbf{F}_q$, with *G* by affine transformations. Then *H* is the stabilizer of 0.

4. 2012 Fall Afternoon 5

Note that \mathbf{F}_{p^3} as a 3-dimensional vector space over $\mathbf{F}_p = \mathbf{Z}/p$. Picking a basis for it, we can identify $GL_3(\mathbf{Z}/p)$ with the group of \mathbf{F}_p -linear automorphisms on \mathbf{F}_{p^3} . The subgroup of \mathbf{F}_{p^3} -linear automorphisms gives an inclusion

$$\mathbf{F}_{p^3}^{\times} \hookrightarrow \mathrm{GL}_3(\mathbf{F}_p).$$

(i) First compute the size of $SL_3(\mathbf{F}_p)$:

$$\#SL_3(\mathbf{F}_p) = \frac{(p^3 - 1)(p^3 - p)(p^3 - p^2)}{(p-1)} = (p^2 + p + 1)^2(p-1)^2(p+1).$$

Check that if $\ell \mid p^2 + p + 1$ then $\ell \nmid p(p-1)(p+1)$. The ℓ -Sylow then comes from $(\mathbf{F}_{p^3}^{\times})_{\mathrm{Nm}=1} \hookrightarrow \mathrm{SL}_3(\mathbf{F}_p)$.

(ii) In this case the 3-Sylow is the semidirect product of the 3-Sylow in $(\mathbf{F}_{p^3}^{\times})_{\mathrm{Nm}=1}$ with $\mathrm{Gal}(\mathbf{F}_{p^3}/\mathbf{F}_p)$, which is not even commutative.

5. 2014 Spring Morning 3

(i) Note that $x y x^{-1} y^{-1}$ lies in P_2 , since it can be written as

$$x \cdot (y x^{-1} y^{-1})$$

with both factors in P_2 by normality. Similarly, it lies in P_7 . But any element in the intersection of P_2 and P_7 has order simultaneously a power of 2 and of 7, so the

order must be 1.

- (ii) Let n_2 denote the number of 2-Sylows and n_7 denote the number of 7-sylows. By the Sylow theorems, we know:
 - $n_2 \equiv 1 \pmod{2}$ and $n_2 \mid 7$.
 - $n_7 \equiv 1 \pmod{7}$ and $n_7 \mid 8$.

We want to show that $n_2 = 1$ or $n_7 = 1$. If not, then by inspection we must have $n_2 = 7$ and $n_7 = 8$. We'll show that there are not enough elements in the group to allow this to happen.

Any two Sylow 7-subgroups can intersect in only the identity element, since they are cyclic. So each Sylow 7-subgroup contributes 6 new elements of order 7, for a total of $8 \times 6 = 48$ distinct non-identity elements in *G* of order 7.

Any two Sylow 2-subgroups can intersect in a group of size at most 4. Therefore, two distinct 2-Sylow subgroups contribute at least 8+4=12 elements not already accounted for by the above count of elements of order 7. But 12+48=60 already exceeds the size of *G*.

(iii) Make a non-split semi-direct product $\mathbb{Z}/7 \rtimes \mathbb{Z}/8$ by having $\mathbb{Z}/8$ act through the non-trivial homomorphism $\mathbb{Z}/8 \to (\mathbb{Z}/7)^* \cong \operatorname{Aut}(\mathbb{Z}/7)$. (The non-normality follows from the fact that the two subgroups don't commute.)

Make a non-split semi-direct product $(\mathbb{Z}/2)^3 \rtimes \mathbb{Z}/7$ by having $\mathbb{Z}/7$ act through $\mathbb{Z}/7 \xrightarrow{\sim} \mathbf{F}_8^{\times} \hookrightarrow \mathrm{GL}_3(\mathbb{Z}/2)$.

6. 2015 Spring A2

(i) By assumption, we can find $g \in G$ such that $g x g^{-1} = y$. We want to try to get $g \in N$, the normalizer of *P*. In other words, we want to choose *g* so that

$$gPg^{-1} = P.$$

We are free to translate *g* on the left by C(y) and on the right by C(x). If we can get gPg^{-1} to be in C(y), then by the Sylow theorems applied to C(y) we can left-translate by something in C(y) so that $gPg^{-1} = P$.

Is it the case that $gPg^{-1} \subset C(y)$? This is asking if conjugation by y induces the identity on gPg^{-1} . In other words, does conjugation by $g^{-1}yg$ induce the identity on P? But $g^{-1}yg = x$, which lies in C(P) by assumption!

(ii) The normalizer of N is the group of upper-triangular matrices. The matrices

$$\begin{pmatrix} a \\ b \end{pmatrix}$$
 and $\begin{pmatrix} b \\ a \end{pmatrix}$

and conjugate [why?] in G, but not in N.

7. 2011 Fall Morning 1

(i) Arbitrary (entry-wise) choices of lift will lie in $GL_3(\mathbb{Z}/p^5)$, because the determinant commutes with reduction. The kernel is in bijection with 3×3 matrices with entries modulo p^4 , hence has size p^{36} .

TONY FENG

(ii) $#G = p^{36}(p^3-1)(p^3-p)(p^3-p^2)$. An explicit *p*-Sylow is the pre-image of the unipotent radical.

8. 2012 FALL MORNING 2

(i) We claim that the "unipotent group"

$$\begin{pmatrix} 1 & * & * & \cdots \\ & 1 & * & \cdots \\ & & \ddots & * \\ & & & & 1 \end{pmatrix}$$

is a Sylow subgroup. This has size $p^{n(n-1)/2}$. To check that it works, we compute the size of $SL_n(\mathbf{F}_p)$:

$$\frac{(p^n-1)(p^n-p)\dots(p^n-p^{n-1})}{p-1}.$$

The power of *p* is $1 + 2 + ... + n - 1 = \frac{n(n-1)}{2}$.

(ii) Lots of possibilities here, e.g. let P_i be the subgroup of matrices supported above the "*i*th superdiagonal." Alternatively, you could take matrices supported "after the *i*th column".

9. 2013 Spring Morning 3

(i) Use the exact sequence

$$0 \to K \to \operatorname{GL}_2(\mathbb{Z}/9) \to \operatorname{GL}_2(\mathbb{Z}/3) \to 0.$$

You should be know how to compute $\#GL_2(\mathbb{Z}/p)$ for any prime p; for p = 3 it's $(3^2 - 1)(3^2 - 3)$. It remains to compute #K. This kernel is the group of matrices with entries in $\mathbb{Z}/9$, congruent to 1 modulo 3. Show that any such matrix is of the form Id+3M. Note that this only depends on the entries of M modulo 3, and any M is possible. Therefore, K is in bijection with $Mat_{3\times 3}(\mathbb{Z}/3)$, which has size 3^4 .

- (ii) If *g* has 3-power order in *G*, then its image in $GL_2(\mathbb{Z}/3)$ does as well. If the converse is true, then some 3-power exponent of *g* lies in *K*. Argue that the bijection $K \simeq Mat_{3\times 3}(\mathbb{Z}/3)$ is in fact a group homomorphism, so that *K* has 3-power order. (Alternatively, this can be seen by pure counting.)
- (iii) Any Sylow 2-subgroup of *G* maps isomorphically onto its image in $GL_2(\mathbb{Z}/3)$, because the kernel has to have a power of 3, since it lies in *K*. Therefore, it suffices to show the same result for *G* replaced by $GL_2(\mathbb{Z}/3)$. By counting sizes, check that a Sylow 2-subgroup has size 16. We can view $GL_2(\mathbb{Z}/3) = GL_2(\mathbb{F}_3)$ as the group of linear automorphisms of \mathbb{F}_9 viewed as a 2-dimensional \mathbb{F}_3 -vector space (picking a basis for \mathbb{F}_9 over \mathbb{F}_3). Then the inclusion of the subgroup of automorphisms which are moreover \mathbb{F}_9 -linear corresponds to an embedding

$$\mathbf{F}_{\mathbf{q}}^{\times} \hookrightarrow \mathrm{GL}_2(\mathbf{Z}/3).$$

4

Additionally, the Galois action of $\text{Gal}(\mathbf{F}_9/\mathbf{F}_3)$ is \mathbf{F}_3 -linear and gives an embedding $\mathbf{Z}/2 \hookrightarrow \text{GL}_2(\mathbf{Z}/3)$, which preserves the subgroup \mathbf{F}_9^{\times} , with the generator acting as $x \mapsto x^3$ by the Galois theory of finite fields.

10. 2010 Fall Afternoon 1

- (i) Applying the inductive hypothesis to $G/G \cap N \hookrightarrow H/N$, we find that $G/G \cap N = H/N$. This implies that $G \cdot N = H$.
- (ii) First, use the usual argument that $Z \neq 0$ (orbit-stabilizer for the conjugation action of *H* on itself). If $G \cdot Z = H$ and $G \cap Z = 0$, then $H = G \times Z$, but then *G* would not surject onto H/[H, H].