Qualifying Exam Practice Test

Generated on January 21, 2019

1: (Fall 2010 Algebra Qual, Morning #5)

- (5) Let $G = GL(2, \mathbb{F}_q)$, where $q = p^n$, p prime. Let Π be the set of one-dimensional subspaces in $V = \mathbb{F}_q^2$. Since G acts on V by matrix multiplication, it acts on Π .
 - (i) Show that if $\ell \in \Pi$ then the stabilizer of ℓ in G contains a unique p-Sylow subgroup of G. How many p-Sylow subgroups does G have, and what is their order?
 - (ii) Prove that if ℓ_1 , ℓ_2 and ℓ_3 are three distinct one-dimensional subspaces of V, then there is an element g of G such that $g\ell_1=\mathbb{F}_q\begin{pmatrix}0\\1\end{pmatrix}$, $g\ell_2=\mathbb{F}_q\begin{pmatrix}1\\1\end{pmatrix}$, $g\ell_3=\mathbb{F}_q\begin{pmatrix}0\\1\end{pmatrix}$.
 - (c) Show that if P_1 , P_2 and P_3 are three distinct p-Sylow subgroups of G, and if Q_1 , Q_2 and Q_3 are another three distinct p-Sylow subgroups of G, then there exists a $g \in G$ such that

$$gP_1g^{-1} = Q_1, \qquad gP_2g^{-1} = Q_2, \qquad gP_3g^{-1} = Q_3.$$

2: (Spring 2011 Algebra Qual, Morning #1)

- **1.** (a) Prove that if G is a finite group and H is a proper subgroup, then G is not a union of conjugates of H. (Hint: the conjugates all contain the identity.)
- (b) Suppose G is a (finite) transitive group of permutations of a finite set X of n objects, n > 1. Prove that there exists $g \in G$ with no fixed points in X. (Hint: use part (a).)

3: (Fall 2013 Algebra Qual, Afternoon #1)

1. Let us say that a subgroup H of a group G is a malnormal subgroup if $gHg^{-1}\cap H=\{1\}$ for all $g\in G-H$.

Let G be a finite group acting transitively on a set S. We call G a Frobenius group if no nontrivial element $g \neq 1$ of G fixes more than one element of S.

- (a) (5 points) Choose $x \in S$ and set $H = \operatorname{Stab}_G(x) = \{g \in G | gx = x\}$. Prove that G is a Frobenius group if and only if H is a malnormal subgroup of G.
- (b) (5 points) Let $G = \left\{ \begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix} \in GL_2(\mathbb{F}_q) \right\}$ and $H = \left\{ \begin{pmatrix} a & 0 \\ 0 & 1 \end{pmatrix} \in GL_2(\mathbb{F}_q) \right\}$. Prove that H is a malnormal subgroup of G. (**Hint:** Let $S = \mathbb{F}_q$.)

- 4: (Fall 2012 Algebra Qual, Afternoon #5)
 - (10) Let $G = SL_3(\mathbf{F}_p)$, where p is an odd prime. Let ℓ be a prime divisor of $p^2 + p + 1$.
 - (i) (5 pts) Suppose $\ell > 3$. Prove that the ℓ -Sylow subgroups of G are cyclic.
 - (ii) (5 pts) Suppose that $\ell = 3$. Prove that the ℓ -Sylow subgroups of G are *not* cyclic.
- **5:** (Spring 2014 Algebra Qual, Morning #3)

PROBLEM M3. Let G be a group of order $56 = 7 \cdot 8$. Let P₂ and P₇ be 2-Sylow and 7-Sylow subgroups, respectively.

- (i) (3 pts) Show that if P_2 and P_7 are both normal then xy = yx for $x \in P_2$ and $y \in P_7$.
- (ii) (3 pts) Show that either P_2 or P_7 is normal.
- (iii) (4 pts) Give an example with non-normal P_2 , and another with non-normal P_7 .
- **6:** (Spring 2015 Algebra Qual, Afternoon #2)

Question 2. Let p > 2 be an odd prime number.

- (i) (5 pts) Let G be a finite group and P a p-Sylow subgroup of G. Let N be the normalizer of P. Let x and y be elements of the centralizer C(P) of P. Show that if x and y are conjugate in G then they are conjugate in N. Hint: Apply the Sylow theorems in the centralizer C(y) of y.
- (ii) (5 pts) Let $G = GL_2(\mathbf{F}_p)$. Find a Sylow *p*-subgroup and let N be its normalizer. Show that there may be elements of N that are conjugate in G but not conjugate in N.
- 7: (Fall 2011 Algebra Qual, Morning #1)
 - (1) Let p be a prime, $G = GL_3(\mathbb{Z}/p^5\mathbb{Z})$.
 - (i) Show that the natural map $G \to GL_3(\mathbb{Z}/p\mathbb{Z})$ is surjective, and compute the order of the kernel.
 - (ii) Compute the size of G, and describe an explicit p-Sylow subgroup of G.
- 8: (Fall 2012 Algebra Qual, Morning #2)
 - (2) Let $G = SL_n(F_p)$ for a prime p and an integer n > 1.
 - (i) Find a Sylow p-subgroup P of G and compute its order.
 - (ii) Give an *explicit* sequence of subgroups $1 = P_0 \subset P_1 \subset P_2 \subset \cdots \subset P_m = P$ such that for all $0 \le i < m$, P_i is normal in P_{i+1} and the quotient P_{i+1}/P_i is abelian.
- 9: (Spring 2013 Algebra Qual, Morning #3)

PROBLEM M3. Let $G = GL_2(\mathbf{Z}/9\mathbf{Z})$.

- (i) (3 points) Compute the order of G.
- (ii) (3 points) Prove $g \in G$ has 3-power order if and only if its image in $GL_2(\mathbb{Z}/3\mathbb{Z})$ does.
- (iii) (4 points) Show that a Sylow 2-subgroup of G is isomorphic to $\mathbf{F}_9^{\times} \rtimes (\mathbf{Z}/2\mathbf{Z})$ where the nontrivial element $1 \in \mathbf{Z}/2\mathbf{Z}$ acts on \mathbf{F}_9^{\times} via $x \mapsto x^3$.

10: (Fall 2010 Algebra Qual, Afternoon #1)

- (1) Let G be a subgroup of a finite p-group H (p a prime) such that the natural homomorphism $G \to H/[H,H]$ is surjective. Prove that G = H by induction on |H| as follows:
 - (i) Suppose N is any nontrivial normal subgroup of H; show (using the inductive assumption) that $G \cdot N = H$.
 - (ii) Let Z be the center of H. Using (i) we have $G \cdot Z = H$; explain why $G \cap Z$ cannot be trivial. Now set $N = G \cap Z$ in (i).

Generated using "Make Me a Qual" © <u>Jonathan Love</u> 2018, <u>http://stanford.edu/~jonlove/qual/makeit.html</u>

Many screenshots courtesy of Mark Perlman. Originals available at

http://mathematics.stanford.edu/academics/graduate/phd-program/phd-qualifying-exams/past-qualifying-exams/