
ALGEBRA QUAL PREP: FIELDS AND GALOIS THEORY

TONY FENG

These are hints/solutions/commentary on the problems. They are not a model for
what to actually write on the quals.

1. SPRING 2010 M4

(a) This is equivalent to x 7−12 being irreducible. (Which can be checked using Eisen-
stein’s criterion – look this up if you don’t know it.)

(b) Write β =
∑

a jα
j . This gives two expressions for σ(β ); comparing them using lin-

ear independence gives the result.
(c) The Galois conjugates of a root of x 7 − 11 are translates by ζi ; then use (b) to see

that it must be a 7th root of 12.

2. SPRING 2011 M2

(a) If such a root α existed, then we would have Q(α)⊂Q(ζ25). Since Q(ζ25)/Q is cyclic,
it has only one degree-5 subextension over Q. Since −1 ∈ (Z/25)∗ becomes trivial in
the Z/5-quotient of (Z/25)∗, this subextension is totally real and cannot agree with
Q(α).

(b) As [Q(ζ25,α) : Q(ζ25)] = 5, the polynomial x 5−5 must still be irreducible over Q(ζ25).
So NmQ(ζ25,α)/Q(ζ25)(α) = 5. Therefore α = β5 in Q(ζ25,α), taking norms gives a 5th
root of 5 in Q(ζ25,α).

3. FALL 2015 M3

(a) You can take f (X ) = X p n−1 − 1. The splitting field for f contains K because every
non-zero element of K is a root of f , and is contained in K because f has p n − 1
roots over K .

We claim that the Galois group is generated by the automorphism α 7→ αp . It is
easily checked that this is an automorphism of K with order n , hence generates all
of Gal(K /Fp ) since [K : Fp ] = n .

(b) This matrix consists of the elements of Gal(K /Fp )applied to the column v := (x1, . . . , xn ).
The non-vanishing of the determinant amounts to linear independence of charac-
ters. Explicitly, suppose that there is a non-trivial linear combination

∑

aiσ
i (v ) = 0

with ai ∈ K .
We may assume a1 6= 0. Applying this with v 7→αv gives

∑

aiσ
i (α)σ(v ) = 0.
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On the other hand, multiplying by α gives
∑

aiασ
i (v ) = 0.

Subtracting these two expressions eliminates the i = 0 coefficient, creating a shorter
expression unless ai is only non-zero for i = 0, which however is also impossible.

(c) Since F3[x ]/(x 4 − x − 1) ∼= F81, every element α ∈ F3[x ]/(x 4 − x − 1) ∼= F81 satisfies
α80 = 1. In particular we have x 40 =±1. Which is it? Well, x 40 = 1 if and only if x is
a square in F3[x ]/(x 4 − x − 1), since F×81

∼= Z/80 is cyclic. If this were the case, then
the norm of x (down to F3) would be a square, but it is −1. So x 40 = −1, and then
we know that x 20 is a square root of −1.

4. FALL 2010 A3

(i) By the Primitive Element Theorem, we may write L = K [t ]/( f ). Then L ⊗K L ′ ∼=
L [t ]/( f ). Factoring f =

∏

fi into irreducibles over L , the fi are coprime because
f is separable, hence we get

L [t ]/( f ) =
∏

L [t ]/( fi )

which is a product of field extension.
(ii) Take K = Fp (x ) and L = Fp (x 1/p ) = K (t )/(t p − x ). Then L ⊗K L = L [t ]/(t − x 1/p )p

is non-reduced, hence certainly not a product of fields.

5. SPRING 2012 M3

(a) If E /k is separable, then by the primitive element theorem we may write E = k (α)
for some α ∈ k satisfying a polynomial of degree [E : k ]. Any automorphism of E
over k is completely determined by its effect on α, and must take α to another root
of this polynomial, so there are at most [E : k ] choices.

In general, there is a maximal separable subextension k ⊂ E s ⊂ E . As separable
elements go to separable elements, any automorphism of E over k takes E s to itself,
so we may reduce to the case where k = E s , i.e. E /k is totally inseparable. But then
there are no non-trivial automorphisms.

(b) In this case, the norm map for Fp r /Fp is given by

x 7→ x · x p · x p 2
· . . . · x p r−1

= x 1+p+...+p r−1
=

x p r −1

x −1
.

Hence, for any α ∈ Fp we want to solve x 1+p+...+p r−1
= α in Fp r . The map x 7→

x 1+p+...+p r−1
sends (Fp r )× → (Fp )× with kernel of size at most p r−1, hence is sur-

jective by looking at the orders of the groups.
(c) C/R.

6. FALL 2012 A7

(i) If X q − b is reducible, then a is a root of some factor f (X ) that properly divides
X q − b , hence [E ′ : E ] < q . Conversely, if [E ′ : E ] < q then 1, a , . . . , a [E

′:E ] satisfy
a linear dependence, hence a is the root of a polynomial f (X ) properly dividing
X q − b .
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Suppose [E ′ : E ] = d < q , applying NmE ′/E to the equation a q = b gives

Nm(a )q =Nm(b ) = b d .

Since (d , q ) = 1, we may pick e such that e d ≡ 1 (mod q ), so that

Nm(a e )q = b d e = b · (b q )n .

Hence b has a q th root in E , say a ′. Then (a/a ′)q = 1 with a/a ′ ∈ E ′−E , so it is a
primitive q th roof of 1.

(ii) Since K is Galois over E , every E -embedding K ,→ E lands in K . Hence every
E ′-embedding K E ′ ,→ E lands in K E ′, therefore K E ′/E ′ is Galois. It is obviously
non-trivial of degree at most p , so it has degree exactly p . The restriction map
Gal(K E ′/E ′)→Gal(K /E ) is evidently injective, but since both sides have size p it
must be an isomorphism.

(iii) Supposing such an embedding exist, with the radical extension being

E ,→ E1 ,→ E2 ,→ . . . ,→ En .

We may assume that [Ei : Ei−1] is prime, by the structure of radical extensions. If i
is maximal such that K cannot be embedded into Ei , then after replacing K /E by
K Ei /Ei , we may assume that [K : E ] is the q th root of b ∈ Ei , for q a prime. Then
we can apply (i), which tells us that since Ei+1 cannot contain odd order roots of
unity (since it’s a subfield of R), we must have [Ei+1 : Ei ] = q . But then there are
no proper subextensions between Ei and Ei+1, which forces the embedding K ,→
Ei+1 to be an isomorphism, contradicting the fact that the extension Ei (

qp
b )/Ei is

visibly not Galois.

7. SPRING 2014 A3

(i) The identification is via Aut(µp )∼=Aut(Z/p )∼= (Z/p )∗.
For k = Q, we have to show that [Q(ζp ) : Q] = p − 1. This follows from the irre-

ducibility of the cyclotomic polynomial X p−1
X−1 = X p−1+X p−2+ . . .+1. [Why is this

true?]

8. SPRING 2010 A1

As a general fact about finding Galois extensions, recall that if E /F is Galois with
Galois group G , then for any normal subgroup H ⊂G , E H /F is Galois with Galois group
G /H .

Now, we want to find Z/3 as a quotient of Gal(Q(ζn )/Q)) ∼= (Z/n )∗. The first place to
look is at n = 7, and we want K = Q(ζn )Z/2Z. The nontrivial element of Z/2Z-action
takes ζn 7→ ζ−1

n , so K is generated by

ζ1
7+ζ

6
7,ζ2

7+ζ
5
7,ζ3

7+ζ
4
7.

The element ζ1
7 + ζ

6
7 generates [why?] so we have to find a minimal polynomial for

it. Expand out 1, (ζ1
7 + ζ

6
7), (ζ

1
7 + ζ

6
7)

2 and find a linear combination using the minimal
polynomial for ζ7.
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9. FALL 2010 M4

(i) For the irreducibility use Eisenstein’s criterion. The Galois group is a subgroup of
S3, so we just have to see that it is large enough. Adjoining the real cube root of
2 makes a cubic extension L/Q that can be embedded into R, hence it cannot be
the full splitting field (since that contains 3rd roots of unity, for example). So the
splitting field has degree at least 6, hence must be all of S3.

(ii) The non-trivial subgroups of S3 are the three copies of Z/2Z generated by the three
transpositions, and the copy of Z/3Z generated by a 3-cycle.

Let the three roots of f be called α,β ,β . The cubic extensions corresponding
to the three transpositions correspond to adjoining one of the these roots.

For the quadratic extension, adjoin the square root of the discriminant, i.e.

(α−β )(α−β )(β −β ).
(iii) Find the smallest power of Frobenius which is trivial on k [X ]/(X 3−2).

10. FALL 2011 A5

(1) Since f is an irreducible quartic, we have 4 | |G |. On the other hand, f is ev-
idently split by a degree 8 extension, obtained by adjoining the roots of Y 2 +
a Y + b , and then the square roots of each of those roots.

If |G | = 4, then any non-identity element fixing a root must be a transposi-
tion. So then G ∼= Z/2Z× Z/2Z. But one cannot add another transposition to
make a group of order 4 that acts transitively.

For future use, we note that the other possibilities for G are a cyclic group of
order 4, and the dihedral group of order 8.

(2) Label the rootsα,β ,γ,δ such that G is generated by transpositions (α−α)(β −β )
and (α β )(−α −β ). Then b = α2β2, and by inspection αβ is preserved by the
Galois group, hence lies in Q.

Conversely, since the other possibilities for G contain a 4-cycle, they do not
preserve αβ so b is not a square in Q.

(3) Note that a =α2+β2 and b =α2β2, so

a 2−4b

b
=
(α2−β2)2

α2β2
.

One can check that α−βαβ is preserved by 4-cycles, but not by the swap (αβ )(−α −
β )which exists in the other possibilities.
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