ALGEBRA QUAL PREP: FIELDS AND GALOIS THEORY

TONY FENG

These are hints/solutions/commentary on the problems. They are not a model for what to actually write on the quals.

1. Spring 2010 M4

(a) This is equivalent to $x^{7}-12$ being irreducible. (Which can be checked using Eisenstein's criterion - look this up if you don't know it.)
(b) Write $\beta=\sum a_{j} \alpha^{j}$. This gives two expressions for $\sigma(\beta)$; comparing them using linear independence gives the result.
(c) The Galois conjugates of a root of $x^{7}-11$ are translates by ζ^{i}; then use (b) to see that it must be a 7th root of 12 .

2. Spring 2011 M2

(a) If such a root α existed, then we would have $\mathbf{Q}(\alpha) \subset \mathbf{Q}\left(\zeta_{25}\right)$. Since $\mathbf{Q}\left(\zeta_{25}\right) / \mathbf{Q}$ is cyclic, it has only one degree- 5 subextension over \mathbf{Q}. Since $-1 \in(\mathbf{Z} / 25)^{*}$ becomes trivial in the $\mathbf{Z} / 5$-quotient of $(\mathbf{Z} / 25)^{*}$, this subextension is totally real and cannot agree with $\mathbf{Q}(\alpha)$.
(b) As $\left[\mathbf{Q}\left(\zeta_{25}, \alpha\right): \mathbf{Q}\left(\zeta_{25}\right)\right]=5$, the polynomial $x^{5}-5$ must still be irreducible over $\mathbf{Q}\left(\zeta_{25}\right)$. So $\mathrm{Nm}_{\mathbf{Q}\left(\zeta_{25}, \alpha\right) / \mathbf{Q}\left(\zeta_{25}\right)}(\alpha)=5$. Therefore $\alpha=\beta^{5}$ in $\mathbf{Q}\left(\zeta_{25}, \alpha\right)$, taking norms gives a 5th root of 5 in $\mathbf{Q}\left(\zeta_{25}, \alpha\right)$.

3. Fall 2015 M3

(a) You can take $f(X)=X^{p^{n}-1}-1$. The splitting field for f contains K because every non-zero element of K is a root of f, and is contained in K because f has $p^{n}-1$ roots over K.

We claim that the Galois group is generated by the automorphism $\alpha \mapsto \alpha^{p}$. It is easily checked that this is an automorphism of K with order n, hence generates all of $\operatorname{Gal}\left(K / \mathbf{F}_{p}\right)$ since $\left[K: \mathbf{F}_{p}\right]=n$.
(b) This matrix consists of the elements of $\operatorname{Gal}\left(K / \mathbf{F}_{p}\right)$ applied to the column $v:=\left(x_{1}, \ldots, x_{n}\right)$. The non-vanishing of the determinant amounts to linear independence of characters. Explicitly, suppose that there is a non-trivial linear combination

$$
\sum a_{i} \sigma^{i}(\nu)=0
$$

with $a_{i} \in K$.
We may assume $a_{1} \neq 0$. Applying this with $v \mapsto \alpha v$ gives

$$
\sum a_{i} \sigma^{i}(\alpha) \sigma(v)=0
$$

On the other hand, multiplying by α gives

$$
\sum a_{i} \alpha \sigma^{i}(v)=0 .
$$

Subtracting these two expressions eliminates the $i=0$ coefficient, creating a shorter expression unless a_{i} is only non-zero for $i=0$, which however is also impossible.
(c) Since $\mathbf{F}_{3}[x] /\left(x^{4}-x-1\right) \cong \mathbf{F}_{81}$, every element $\alpha \in \mathbf{F}_{3}[x] /\left(x^{4}-x-1\right) \cong \mathbf{F}_{81}$ satisfies $\alpha^{80}=1$. In particular we have $x^{40}= \pm 1$. Which is it? Well, $x^{40}=1$ if and only if x is a square in $\mathbf{F}_{3}[x] /\left(x^{4}-x-1\right)$, since $\mathbf{F}_{81}^{\times} \cong \mathbf{Z} / 80$ is cyclic. If this were the case, then the norm of x (down to \mathbf{F}_{3}) would be a square, but it is -1 . So $x^{40}=-1$, and then we know that x^{20} is a square root of -1 .

4. Fall 2010 A3

(i) By the Primitive Element Theorem, we may write $L=K[t] /(f)$. Then $L \otimes_{K} L^{\prime} \cong$ $L[t] /(f)$. Factoring $f=\prod f_{i}$ into irreducibles over L, the f_{i} are coprime because f is separable, hence we get

$$
L[t] /(f)=\prod L[t] /\left(f_{i}\right)
$$

which is a product of field extension.
(ii) Take $K=\mathbf{F}_{p}(x)$ and $L=\mathbf{F}_{p}\left(x^{1 / p}\right)=K(t) /\left(t^{p}-x\right)$. Then $L \otimes_{K} L=L[t] /\left(t-x^{1 / p}\right)^{p}$ is non-reduced, hence certainly not a product of fields.
5. Spring 2012 M3
(a) If E / k is separable, then by the primitive element theorem we may write $E=k(\alpha)$ for some $\alpha \in k$ satisfying a polynomial of degree [$E: k$]. Any automorphism of E over k is completely determined by its effect on α, and must take α to another root of this polynomial, so there are at most $[E: k]$ choices.

In general, there is a maximal separable subextension $k \subset E^{s} \subset E$. As separable elements go to separable elements, any automorphism of E over k takes E^{s} to itself, so we may reduce to the case where $k=E^{s}$, i.e. E / k is totally inseparable. But then there are no non-trivial automorphisms.
(b) In this case, the norm map for $\mathbf{F}_{p^{r}} / \mathbf{F}_{p}$ is given by

$$
x \mapsto x \cdot x^{p} \cdot x^{p^{2}} \cdot \ldots \cdot x^{p^{r-1}}=x^{1+p+\ldots+p^{r-1}}=\frac{x^{p^{r}}-1}{x-1}
$$

Hence, for any $\alpha \in \mathbf{F}_{p}$ we want to solve $x^{1+p+\ldots+p^{r-1}}=\alpha$ in $\mathbf{F}_{p^{r}}$. The map $x \mapsto$ $x^{1+p+\ldots+p^{r-1}}$ sends $\left(\mathbf{F}_{p^{r}}\right)^{\times} \rightarrow\left(\mathbf{F}_{p}\right)^{\times}$with kernel of size at most p^{r-1}, hence is surjective by looking at the orders of the groups.
(c) \mathbf{C} / \mathbf{R}.

6. FALL 2012 A7

(i) If $X^{q}-b$ is reducible, then a is a root of some factor $f(X)$ that properly divides $X^{q}-b$, hence $\left[E^{\prime}: E\right]<q$. Conversely, if $\left[E^{\prime}: E\right]<q$ then $1, a, \ldots, a^{\left[E^{\prime}: E\right]}$ satisfy a linear dependence, hence a is the root of a polynomial $f(X)$ properly dividing $X^{q}-b$.

Suppose $\left[E^{\prime}: E\right]=d<q$, applying $\mathrm{Nm}_{E^{\prime} / E}$ to the equation $a^{q}=b$ gives

$$
\operatorname{Nm}(a)^{q}=\operatorname{Nm}(b)=b^{d}
$$

Since $(d, q)=1$, we may pick e such that $e d \equiv 1(\bmod q)$, so that

$$
\operatorname{Nm}\left(a^{e}\right)^{q}=b^{d e}=b \cdot\left(b^{q}\right)^{n} .
$$

Hence b has a q th root in E, say a^{\prime}. Then $\left(a / a^{\prime}\right)^{q}=1$ with $a / a^{\prime} \in E^{\prime}-E$, so it is a primitive q th roof of 1 .
(ii) Since K is Galois over E, every E-embedding $K \hookrightarrow \bar{E}$ lands in K. Hence every E^{\prime}-embedding $K E^{\prime} \hookrightarrow \bar{E}$ lands in $K E^{\prime}$, therefore $K E^{\prime} / E^{\prime}$ is Galois. It is obviously non-trivial of degree at most p, so it has degree exactly p. The restriction map $\operatorname{Gal}\left(K E^{\prime} / E^{\prime}\right) \rightarrow \operatorname{Gal}(K / E)$ is evidently injective, but since both sides have size p it must be an isomorphism.
(iii) Supposing such an embedding exist, with the radical extension being

$$
E \hookrightarrow E_{1} \hookrightarrow E_{2} \hookrightarrow \ldots \hookrightarrow E_{n} .
$$

We may assume that $\left[E_{i}: E_{i-1}\right]$ is prime, by the structure of radical extensions. If i is maximal such that K cannot be embedded into E_{i}, then after replacing K / E by $K E_{i} / E_{i}$, we may assume that [$\left.K: E\right]$ is the q th root of $b \in E_{i}$, for q a prime. Then we can apply (i), which tells us that since E_{i+1} cannot contain odd order roots of unity (since it's a subfield of \mathbf{R}), we must have $\left[E_{i+1}: E_{i}\right]=q$. But then there are no proper subextensions between E_{i} and E_{i+1}, which forces the embedding $K \hookrightarrow$ E_{i+1} to be an isomorphism, contradicting the fact that the extension $E_{i}(\sqrt[q]{b}) / E_{i}$ is visibly not Galois.

7. Spring 2014 A3

(i) The identification is via $\operatorname{Aut}\left(\mu_{p}\right) \cong \operatorname{Aut}(\mathbf{Z} / p) \cong(\mathbf{Z} / p)^{*}$.

For $k=\mathbf{Q}$, we have to show that $\left[\mathbf{Q}\left(\zeta_{p}\right): \mathbf{Q}\right]=p-1$. This follows from the irreducibility of the cyclotomic polynomial $\frac{X^{p}-1}{X-1}=X^{p-1}+X^{p-2}+\ldots+1$. [Why is this true?]

8. Spring 2010 A1

As a general fact about finding Galois extensions, recall that if E / F is Galois with Galois group G, then for any normal subgroup $H \subset G, E^{H} / F$ is Galois with Galois group G/H.

Now, we want to find $\mathbf{Z} / 3$ as a quotient of $\left.\operatorname{Gal}\left(\mathbf{Q}\left(\zeta_{n}\right) / \mathbf{Q}\right)\right) \cong(\mathbf{Z} / n)^{*}$. The first place to look is at $n=7$, and we want $K=\mathbf{Q}\left(\zeta_{n}\right)^{\mathbf{Z} / 2 \mathbf{Z}}$. The nontrivial element of $\mathbf{Z} / 2 \mathbf{Z}$-action takes $\zeta_{n} \mapsto \zeta_{n}^{-1}$, so K is generated by

$$
\zeta_{7}^{1}+\zeta_{7}^{6}, \zeta_{7}^{2}+\zeta_{7}^{5}, \zeta_{7}^{3}+\zeta_{7}^{4}
$$

The element $\zeta_{7}^{1}+\zeta_{7}^{6}$ generates [why?] so we have to find a minimal polynomial for it. Expand out $1,\left(\zeta_{7}^{1}+\zeta_{7}^{6}\right),\left(\zeta_{7}^{1}+\zeta_{7}^{6}\right)^{2}$ and find a linear combination using the minimal polynomial for ζ_{7}.

9. Fall 2010 M4

(i) For the irreducibility use Eisenstein's criterion. The Galois group is a subgroup of S_{3}, so we just have to see that it is large enough. Adjoining the real cube root of 2 makes a cubic extension L / \mathbf{Q} that can be embedded into \mathbf{R}, hence it cannot be the full splitting field (since that contains 3rd roots of unity, for example). So the splitting field has degree at least 6 , hence must be all of S_{3}.
(ii) The non-trivial subgroups of S_{3} are the three copies of $\mathbf{Z} / 2 \mathbf{Z}$ generated by the three transpositions, and the copy of $\mathbf{Z} / 3 \mathbf{Z}$ generated by a 3 -cycle.

Let the three roots of f be called $\alpha, \beta, \bar{\beta}$. The cubic extensions corresponding to the three transpositions correspond to adjoining one of the these roots.

For the quadratic extension, adjoin the square root of the discriminant, i.e.

$$
(\alpha-\beta)(\alpha-\bar{\beta})(\beta-\bar{\beta}) .
$$

(iii) Find the smallest power of Frobenius which is trivial on $k[X] /\left(X^{3}-2\right)$.

10. Fall 2011 A5

(1) Since f is an irreducible quartic, we have $4||G|$. On the other hand, f is evidently split by a degree 8 extension, obtained by adjoining the roots of $Y^{2}+$ $a Y+b$, and then the square roots of each of those roots.

If $|G|=4$, then any non-identity element fixing a root must be a transposition. So then $G \cong \mathbf{Z} / 2 \mathbf{Z} \times \mathbf{Z} / 2 \mathbf{Z}$. But one cannot add another transposition to make a group of order 4 that acts transitively.

For future use, we note that the other possibilities for G are a cyclic group of order 4 , and the dihedral group of order 8.
(2) Label the roots $\alpha, \beta, \gamma, \delta$ such that G is generated by transpositions $(\alpha-\alpha)(\beta-\beta)$ and $(\alpha \beta)(-\alpha-\beta)$. Then $b=\alpha^{2} \beta^{2}$, and by inspection $\alpha \beta$ is preserved by the Galois group, hence lies in \mathbf{Q}.

Conversely, since the other possibilities for G contain a 4 -cycle, they do not preserve $\alpha \beta$ so b is not a square in \mathbf{Q}.
(3) Note that $a=\alpha^{2}+\beta^{2}$ and $b=\alpha^{2} \beta^{2}$, so

$$
\frac{a^{2}-4 b}{b}=\frac{\left(\alpha^{2}-\beta^{2}\right)^{2}}{\alpha^{2} \beta^{2}} .
$$

One can check that $\frac{\alpha-\beta}{\alpha \beta}$ is preserved by 4 -cycles, but not by the swap $(\alpha \beta)(-\alpha-$ β) which exists in the other possibilities.

