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DISCLAIMER

This document originated from a set of lectures that I “live-TEXed” during a course
offered by Ravi Vakil at Stanford University in the winter of 2015. The format of the course
was somewhat unusual in that the first two weeks’ worth of lectures were presented by
Dan Edidin, as an overview of his theorem on “Riemann-Roch theorem for stacks” via
equivariant algebraic geometry. Some background lectures were given outside of class
as well, by both Dan and Ravi. Afterwards, Ravi took over the lectures and fleshed out
the argument and examples (with a couple of guest lectures by Arnav Tripathy and Dan
Litt sprinkled in).

While these unusual features of the course worked in the classroom, I felt upon look-
ing back at my notes that I had failed to capture an account that would make any sense
to an outside reader. Therefore, I have heavily modified the organization and content of
the notes. The major addition has been of background material, which was mostly as-
sumed (or black-boxed) during the course. My goal was to make everything accessible to
a student familiar with algebraic geometry to the extent of a first year of scheme theory -
in particular, the guiding principle has been to include background material that I wish
I knew at the start of the class. Indeed, a major reason for my revamping of these notes
was to solidify my comfort with that background.

Aside from that, the organization and presentation have also been significantly re-
vised. This inevitably means that there will be many mistakes and typos, which of course
should be blamed on me. On the other hand, the mathematical insights should be at-
tributed elsewhere - mostly probably to Ravi, but various snippets are drawn from other
sources or personal notes. I also apologize for inadequacies in the references.
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1. EXAMPLES AND MOTIVATION

The official objective of these notes is to give a proof of a “Riemann-Roch theorem for
stacks” via equivariant algebraic geometry, following [Edi13]. However, our real agenda is
to use this result as an excuse to meet some of the main characters of modern algebraic
geometry - such as Chow groups, intersection theory, and stacks - which lie beyond a
first course in algebraic geometry, and to see how they can be marshalled to answer very
concrete questions.

The goal of this first section is to carefully study some simple examples, to see what
such a Riemann-Roch theorem for stacks might say. In particular, we will examine the
spaces P(a ,b ) =: Proj k [x , y ] with x in degree a and y in degree b . As schemes, these
are of course all isomorphic to P1, but we will already see that for these simple examples
something more subtle is going on.

1.1. Setup. On P(a ,b ) we have an action of the group Gm (which we think of as just
being C∗) as follows: Gm acts on C[x , y ] sending

x 7→λ−a x

y 7→λ−b y .

(There is no need to restrict our attention toC, but on the other hand we’ll see that there
is not much to be gained in aiming for maximum generality.) We’ll write down some
explicit line bundles, count the dimension of the space of sections, and compare what
we get with what Riemann-Roch tells us.

To construct a line bundle, we simply take a free module over C[x , y ] with generator
T , and extend the action of C∗ to this bundle, say by by the action λ · T = λ`T . Let us
call this bundle ξ`. The question that we are interested in, for this and the upcoming
examples, is the following.

Question. What is the dimension of the space of Gm -invariant sections of ξ` on
P(a ,b )?

This dimension is denoted, as usual, by h0(P(a ,b ),ξ`). Note that the Gm -invariant
sections will be precisely theGm -invariant elements of the module C[x , y , T ].

1.2. Examples. Let’s consider first the simplest case: P(1, 1).

• When `= 0, the only invariant sections are the constants, so we see that h0(P(1, 1),ξ0) =
1.
• When ` = 1, the invariant sections are spanned by x T and y T , so we see that

h0(P(1, 1),ξ1) = 2.
• When ` = 2, the invariant sections are spanned by x 2T,x y T, y 2T (now you see

why we chose negative weights in defining the original action!).
• It is now easy to see that ξ`↔O (`), so in particular h0(P(1, 1),ξ`) = `+1.
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` h0(P(1, 1),ξ`)
0 1
1 2
2 3
` `+1

Let’s move on to the next simplest example: P(1, 2).

• When `= 0, the only invariant sections are again the constants, so h0(P(1, 2),ξ0) =
1.
• When `= 1, the invariant sections are spanned by x T this time, so h0(P(1, 2),ξ1) =

1.
• When `= 2, the invariant sections are spanned by x 2T, y 2T , so h0(P(1, 2),ξ2) = 2.
• When `= 3, the invariant sections are spanned by x 3T,x y T so h0(P(1, 2),ξ3) = 2.
• In general, the dimension we seek is the number of non-negative integral solu-

tions to i +2j = `, which is easily seen to be b`/2c+1.

` h0(P(1, 1),ξ`) h0(P(1, 2),ξ`)
0 1 1
1 2 1
2 3 2
3 4 2
4 5 3
5 6 3

We see that for P(1, 2) the dimension of the space of sections grows about half as fast
as it did for P(1, 1). What’s going on?

Exercise 1.1. Compute the formula for h0(P(a ,b ),ξ`) for some other values of a ,b . Do
you have a guess for the general formula?

The Riemann-Roch theorem is precisely a statement about the dimension of the global
sections of a line bundle. According to Riemann-Roch,

χ(L ) = h0(L )−h1(L ) = d +1− g

= d +
1

2
χtop.

With d = `, this agrees well with the column describing the global sections of ξ` on
h0(P1(1, 1)), as we even noted in that calculation. However, it seems to disagree with the
calculation for P(1, 2), which grows at about half the rate. In fact, we can easily compute
that

h0(P(1, 2),ξ`) =
`

2
+

3

4
+(−1)`

1

4
. (1.1)

In general, we predict something like

h0(P(a ,b ),ξ`) =
`

ab
+(something depending only on `modulo ab ).
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Let’s see if we can at least heuristically figure out why this might be. What is the Euler
characteristic of P(1, 2)? Since this is isomorphic to P1 the first guess would be that it
should be 2.

However, we can think about this another way. The point [s : t ] ∈ P(a ,b ) corresponds
to the Gm -orbit of (s , t ) in A2 = Spec k [x , y ]. Most of the orbits are acted on freely by
Gm , but one is not: the point (0, 1) has stabilizer {−1, 1} ∼= Z/2 because −1 acts on the
t coordinate by its square, which is 1. Therefore, this orbit is only “half” as large as the
others, and we might imagine it as being only “half” a point in P(a ,b ). If we count in
this way, then P(1, 2) only has Euler characteristic 3/2 (we traded a full point for “half a
point”).

Assuming for simplicity that gcd(a ,b ) = 1, the same reasoning “shows” that P(a ,b )
should have Euler characteristic 1+ 1

a +
1
b . Plugging this refined Euler characteristic into

Riemann-Roch, we guess that

h0(P(a ,b ),ξ`) =
`

ab
+

1/a +1/b

2
.

For a =b = 1, we recover `+1 on the right hand side as before. For a = 1,b = 2 we obtain
`
2 +

3
4 . This is obviously not correct, since we must obtain an integer, but it captures

everything in (1.1) except for the term (−1)` 1
4 . This is clearly a sign that something is

interesting going on! We refine our prediction to

h0(P(a ,b ),ξ`) =
`

ab
+

1/a +1/b

2
+ (oscillation term).

Exercise 1.2. Work out more examples, and identify the oscillation term.

What is this oscillation term? One might be tempted to guess at first that it has some-
thing to do with a higher cohomology group, but this doesn’t seem consistent with the
fact that the error term even oscillates in sign. Clearly what we need is a version of the
Riemann-Roch theorem which plays well with group actions. We now embark on a jour-
ney that will clarify the existence and nature of the examples we’ve encountered here.
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Part 1. Some non-equivariant ingredients

2. CHOW GROUPS

2.1. The definition. You can think of Chow groups as being something like a “homology
theory” for algebraic varieties. In particular, you can think of elements of C H∗(X ) as
representing subvarieties of X , just as a map of closed, oriented, connected manifolds
Y →X induces an element of H∗(X ;Z), namely the image of the fundamental class of Y .

Definition 2.1. Formally, we define the group of cycles Zk (X ) to be the free abelian group
on k -dimensional subvarieties (which we take by definition to be closed, irreducible,
reduced). Then Z∗(X ) =

⊕

k Zk (X ).
We say that two cycles in Zk (X ) are rationally equivalent if there exists a cycle onP1×X

whose restrictions to the fibers {t0}×X and {t1}×X are A0 and A1.
The subgroup Bk (X ) is generated by differences of rationally equivalent varieties. (Warn-

ing: this is non-standard notation!) We set B∗(X ) :=
⊕

k Bk (X ).
The (graded) Chow group C H∗(X ) is the quotient Z∗(X )/B∗(X ), and we have the natural

quotient grading

C H∗(X ) =
⊕

k

C Hk (X ) :=Zk (X )/Bk (X ).

One can think of rational equivalence as stating that there is a “family” parametrized
by a segment in P1 whose boundary is A0−A1. This is reminiscent of cobordism.

Example 2.2. Let’s play around with a couple of special cases.
Any two points in An are rationally equivalent, because we can pick a line between

them and “move” one point to the other. In fact, any point is rationally equivalent to the
empty set because we can “push it off” to∞, so C H0(An ) = 0.

Any hypersurface { f = 0} in An is also rationally equivalent to the empty set, as the
graph of f : An →P1 is a cycle in An ×P1 whose fiber over∞ is empty.

In fact, we claim that

C H ∗(An )∼=

(

Z ∗= n ,

0 ∗ 6= 0

It suffices to show that any proper subvariety W ⊂ An is rationally equivalent to the
empty set. We will try the same pushing off trick. As W is a proper subvariety, we may
assume that O /∈ Y . Consider the subvariety fW ⊂An × (A1−{O}) defined by

fW = {(z , t ) |
z

t
∈W }.

Geometrically, fW is the family whose fiber over t is the dilation of W by t . The fiber over
∞ should morally be ;, as we have “pushed away” all the points. However, let’s see this
explicitly.

In terms of equations, fW is cut cut out by the ideal { f (z/t ): f (z ) ∈ I (Y )}. Thus the
closure of fW is a family in An ×P1 whose fiber over t = 1 is precisely Y . As O /∈W , there
exists a polynomial g (z ) vanishing on Y and having non-zero constant term: g (z ) =
c + . . .. Then g (z/t ) = c + t −1 . . . has the value c on the fiber An ×{∞}, so the ideal of fW
restricts to the unit ideal over∞.
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Example 2.3. Any two points on a genus g > 0 projective curve are not rationally equiv-
alent - if they were, then the corresponding cycle in X ×P1 would give a birational map
X →P1.

Here is another characterization of B (X ). For any rational function f on a subvariety
Y ⊂X , we can associate a divisor

Div( f ) =
∑

W⊂Y
codim 1

ordW ( f )[W ].

Proposition 2.4. The group of boundaries B (X ) is coincides with the group generated by
Div( f ) as f and Y vary.

Proof sketch. One inclusion is quite easy: given a rational function f , we get a rational
map f : Y → P1. The graph of f (the closure of the usual graph on an open subset) is a
cycle in Y ×P1 ⊂ X ×P1, the difference of whose fibers over 0 and∞ is precisely Div( f ).
This shows that Div( f )⊂ B (X ).

The other direction is a bit more subtle. Given a cycle eV ⊂X ×P1 with boundary cycle
A0 −A∞, the projection map determines a rational function ef on V such that Div( ef ) =
[A0]− [A∞]. The map V → X is generically finite over its image (unless eV = X ×P1), and
we want to present [A0−A∞] as the divisor of some function on X . This is a very general
situation, and it turns out that the function NmV /X ( ef ) does the trick. �

Example 2.5. C Hn (X ) = Zn (X ) is the free abelian group on the irreducible (connected)
components of X . Zn−1(X ) is just the group of divisors of X . Bn−1(X )

If X has pure dimension n , then C Hn−1(X ) ∼= Cl(X ), i.e. divisors modulo principal
divisors.

There is a map C H∗(X ) → H∗(X ), essentially by inclusion of the fundamental class
(as we discussed previously). This gets a little messy because you have to define the
fundamental class of a singular variety, but it works out. The map is actually more like
a cobordism theory than a homology theory, and Totaro showed that it factors through
the complex cobordism ring MU ∗.

Remark 2.6. A very naïve conjecture would be that if X/C is a smooth projective variety,
then the map C H∗(X )→H∗(X ;Z) is surjective, i.e. any element of H∗(X ;Z) is obtained as
the fundamental class of some algebraic subvariety. This fails for at least two reasons:
first, one cannot expect this to be true integrally, but only rationally. Second, there are
some constraints from Hodge theory. If one refines the conjecture appropriately to ac-
count for these obstructions, then one arrives at the Hodge conjecture.

Definition 2.7. If X is a compact complex manifold of dimension n , then Poincaré duality
“identifies” H i (X ) and Hn−i (X ). Motivated by this, we define C H i (X ) :=C Hn−i (X ).

2.2. Functoriality. As the homology and cohomology are functorial, one might expect
functoriality properties for Chow groups. These are a little subtle, but they do exist.

Proper pushforward. If f : Y → X is a proper map, then we can “push forward” sub-
varieties to subvarieties. However, one has to take care that this map preserve rational
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equivalences. We define f ∗ : C H∗Y →C H∗X by

f ∗([A]) =

(

0 dim f (A)< dim A,

n[ f (A)] [K (A) : K ( f (A))] = n .

We will mostly just be thinking of the case where f is a closed embedding, in which case
f ∗([A]) = [ f (A)] on the nose.

Flat pullback. If f : X → Z is flat, then we may define a pullback map f ∗ : C H ∗Y →
C H ∗X which is determined by

f ∗([A]) = [ f −1(A)]

when f −1(A) is reduced.

2.3. Properties. We now discuss some features of the Chow groups that will be useful
for computations.

Excision. If Y ⊂ X is a closed subscheme and U = Y \X is its complement, then the
inclusion and restriction maps of cycles give a right exact sequence

C H∗(Y )
j∗−→C H∗(X )

ι∗−→C H∗(U )→ 0. (2.1)

This is analogous to the excision axiom in algebraic topology.

Homotopy invariance. If π: V →X is an affine space bundle (i.e. a fiber bundle whose
fibers are affine space), then the induced map π∗ : C H ∗(X )→C H ∗(V ) is a surjection. If V
is actually a vector bundle (i.e. there exists a section), then π∗ is an isomorphism. This is
analogous to the fact that a vector bundle is homotopy equivalent to its base.

Mayer-Vietoris. If Y1 and Y2 are two subvarieties of X , then we have a right exact se-
quence

C H∗(Y1 ∩Y2)→C H∗(Y1)⊕C H∗(Y2)→C H∗(Y1 ∪Y2)→ 0

induced by the usual maps.

2.4. Ring structure. In fact, C H∗(X ) has a ring structure. This might seem weird at first,
if we’re thinking of C H∗ as some algebraic analogue of homology, but recall that compact
complex manifolds also have a ring structure coming from the intersection product (dual
to the cup product via Poincaré duality), which has the property that the intersection
of the homology classes represented by two transversely intersecting, complementary-
dimensional submanifolds is precisely the number of intersection points.

Definition 2.8. We say that subvarieties A, B ⊂ X intersect generically transversely if they
intersect transversely at a generic point of each component of A ∩ B .

Theorem 2.9. There exists a unique product structure on C H ∗(X ) satisfying the condition
that if A, B are generically transverse then [A] · [B ] = [A ∩B ]. This product structure makes
C H ∗(X ) a commutative graded ring.
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Projection formula. The compatibility with the ring structure and the push/pull oper-
ations is described by the projection formula

f ∗(α · f ∗β ) = f ∗α ·β .

Example 2.10. If X is a quasiprojective surface and D is an ample line bundle on X , then
A +nD and B +nD will be very ample for n� 0. By Bertini’s Theorem, we can find rep-
resentatives in the class of [A +nD] and [B +nD] that intersect generically transversely.
Then linearity forces the value of [A] ·[B ]. (This is the approach to intersection theory on
surfaces taken by Hartshorne.)

Example 2.11. We saw earlier that

C H ∗(An )∼=

(

Z ∗= 0,

0 ∗> 0.

We claim that the same holds for any open subset U ⊂An . Indeed, Y :=An \U is a closed
subset of dimension at most n − 1, so the excision exact sequence gives a surjection
C H∗(An )→C H∗(U ).

Example 2.12. Let’s compute C H ∗(Pn ). We have an inclusion of Pn−1 as a closed sub-
scheme, with the complement being An . Therefore, the excision exact sequence is

C H∗(Pn−1)→C H∗(Pn )→C H∗(An )→ 0

but we know that C H ∗(An ) = Z (generated by the fundamental class) if ∗ = 0 and 0 oth-
erwise. Therefore, C H ∗(Pn ) is generated by the fundamental class and C H∗(Pn−1).

We claim that C H ∗(Pn ) =Z[h]/hn+1, where h represents the class of a hyperplane, i.e.
the image of the fundamental class ofPn−1. Let h ′ be the hyperplane class ofPn−1, which
maps to h2 in Pn . Then if a (h ′)k = 0, we would have a h2k = 0. Since the intersection
product is well-defined, we could intersect with an n − 2k -plane to find that a = 0 by
Bezout’s theorem.

In fact, an easy generalization of this argument shows that whenever X has an affine
stratification, i.e. a partition into affine spaces {Ui } such that if Ui intersects Uj , then
Ui ⊃Uj , then C H ∗X is generated by the closed strata, i.e. the classes of the Ui .

Corollary 2.13. If X has a stratification by open subsets of affine spaces, then C H∗(X ) is
generated by the classes of its closed strata.
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3. K-THEORY

3.1. Ordinary K -theory. Let X be a scheme. There are two possible definitions of a
Grothendieck K -group associated to X , using vector bundles or coherent sheaves

Definition 3.1. We define the Grothendieck group of vector bundles K0(X ) to be the free
abelian group generated by {E = vector bundle/X } modulo the equivalence relation
[E ] = [E ′]+ [E ′′] if there exists a short exact sequence

0→E ′→E →E ′′→ 0.

We define the Grothendieck group of coherent sheaves G0(X ) to be the free abelian group
generated by {F = coherent sheaf/X } modulo the equivalence relation [F ] = [F ′] +
[F ′′] if there exists a short exact sequence

0→F ′→F →F ′′→ 0.

Remark 3.2. If j : Z ,→X is a closed embedding and i : U =X \Z ,→X is open embedding
of the complement, then there is a short exact sequence

G0(Z )
j∗−→G0(X )

i ∗−→G0(U )→ 0.

We will not discuss higher K -theory, but we remark that it completes this short exact
sequence to a long exact sequence.

There is a forgetful map K0(X )→G0(X ), since a vector bundle is a coherent sheaf.

Theorem 3.3. If X is smooth and projective, then this map is in fact an isomorphism (for
instance, there is a finite resolution of any coherent sheaf by locally free sheaves).

Proof. The key point is that every coherent sheaf has a finite resolution by locally free
sheaves.

The easy direction is to show that this is a surjection: there is a map K0(X )→G0(X ). If
F is coherent, thenF has a finite resolution by locally free sheaves:

0→ Pn → . . .→ P0→F → 0.

Therefore, [F ] is the image of
∑

(−1)i [Pi ].
The harder direction is to define the inverse G0(X )→ K0(X ). It is not clear that the map

[F ] 7→
∑

(−1)i [Pi ] is well-defined, i.e. this is independent of the resolution and additive,
in that if 0→F ′→F →F ′′→ 0 then χ(P0) =χ(P ′′0 )+χ(P

′).
This is totally categorical. IfA is an abelian category (in our case, coherent sheaves)

and P ⊂A is an exact subcategory (in our case, locally free sheaves) satisfying the ax-
ioms:

(1) If P1� P0 is an epimorphism, then its kernel is inP ,
(2) Every object A ∈A has a finite resolution

0→ Pn → Pn−1→ . . .→ P0→ A→ 0 Pi ∈P

then K0(P)∼= K0(G ).
In Fulton’s Intersection Theory, Appendix B.8.3 (440) the proof is outlined. There is a

reference to a paper of Borel-Serre (1958).
Let’s give the proof. There are two key facts concerning a surjectionF ′�F :
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(1) If P• is a finite resolution, then there exists a finite resolution P ′• →F ′ with epi-
morphism P ′•� P (whose kernel is then inP by the first axiom).

(2) If P•→F and P ′• →F are two resolutions, then there exists a resolution P ′′→F
with P ′′• � P ′• and P ′′• � P•.

Lemma 3.4 ((Lemma 14 in Borel-Serre, but less general)). If F ∈ A and we have two
short exact sequence

0→ K → P→F → 0

and
0→ K ′→ P ′→F → 0

then there exists a short exact sequence

0→ K ′′→ P ′′→F → 0

surjecting onto the previous two.

Proof. Given P and P ′, we take the “fibered product”

P ×F P ′ //

��

P ′

��
P // F

The fibered product surjects to P and P ′, as the original maps were. Now it may not lie in
P , but we let P2 be any object ofP surjecting to P ×F P ′. Let P3 surject to K , P ′3 surject
to K ′, then P ′′ = P2+P3+P ′3. Then define the correct map P ′′→F . �

Another trick? Given F ′ → F , and a resolution P• → F , we can find a resolution
P ′•→F ′ such that

P ′•
//

��

P•

��
F ′ // F .

Then, if P• and P ′• are two resolutions ofF , then we form

P ′′0
//

��

P ′0⊕P ′1

��
F ∆ // F ⊕F // F

�

3.2. Properties of K -theory. The group K0(X ) is in some sense the more natural object
- it was first defined by topologists, in a topological setting. However, for various pur-
poses G0(X ) is actually easier to work with (even though they are the same in many of
settings). This is exhibited in the functoriality properties discussed below: many of them
are defined on one of the K -groups but not clearl on the other.
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Product structure. The groups K0(X ) has a product structure induced by the tensor
product of vector bundles or coherent sheaves. The tensor product also defines an ac-
tion of K0(X ) on G0(X ), giving the latter the structure of a K0(X )-module.

Pullback. If f : X → Y is any morphism, then there is a map induced by pullback

f ∗ : K0(Y )→ K0(X )

taking [E ] 7→ [ f ∗E ]. This is well-defined because pullback is exact on vector bundles.

Proper pushforward. If f : X → Y is proper, then there is a pushforward G0(X )→G0(Y )
related to the Euler characteristic:

f ∗[F ] =
∑

i

(−1)i [R i f ∗F ].

The properness is needed, of course, to ensure that the pushforward is still coherent, and
also to ensure that the pushforward is exact.

Example 3.5. If X is proper over Spec k (e.g. X is projective), then

f ∗[F ] =
∑

i

(−1)i [H i (X ,F )] =χ(F )∈G0(pt)∼=Z.

Flat pullback. If f : X → Y is flat, then there is a pullback map

f ∗ : G0(Y )→G0(X )

sending [F ] 7→ [ f ∗F ]. The flatness is needed to ensure that the relations are preserved
(i.e. pulling back preserves exactness).

Projection formula. If f : X → Y is proper, then the projection formula says that for
α∈ K0(Y ) and β ∈G0(X ) ,

f ∗( f ∗α ·β ) =α · f ∗β .

In other words, f ∗ is a K0(Y )-module homomorphism. This is a very important fact!s
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4. INTERSECTION THEORY AND CHERN CLASSES

4.1. Chern classes. The reader may be familiar with the construction of Chern classes
from algebraic topology. In our algebraic setting, the Chern classes of K -theory classes
on X will be valued in the Chow ring of X . The usual “topological Chern class” is then
obtained by the cycle class map from the Chow ring to cohomology.

Let’s first discuss the case of vector bundles. The Chern class of a vector bundle is a
class in the Chow ring, satisfying some properties. First, it is specified in the elemental
case of line bundles. Next, for a vector bundle built out of smaller vector bundles, there
is an expression for its Chern class in terms of the Chern classes of the smaller bundles.
Finally, the Chern class is required to satisfy a certain functoriality property.

Definition 4.1. The Chern class is an assigment from vector bundles on smooth varieties
X to elements of C H ∗(X ), sending a rank r vector bundle E to

E   c (E ) = 1+ c1(E )+ c2(E )+ . . .+ cr (E )∈C H ∗(X ),

with the following properties.

(1) IfL is a line bundle on X , andL ∼=O (D) for a Weil divisor D, then c1(L ) = [D]∈
C H 1(X ).

(2) If we have a short exact sequence of vector bundles

0→ E ′→ E → E ′′→ 0

then we demand that
c (E ) = c (E ′)c (E ′′).

(3) If f : X → Y is a morphism of smooth varieties and E is a vector bundle on Y ,
then

c ( f ∗E ) = f ∗c (E ).

Although this definition is not constructive, it is robust in practice for computing
Chern classes.

Example 4.2. If L 1 and L 2 are two line bundles, then

c (L 1⊗ L 2) = 1+ c1(L 1)+ c2(L 2)

because tensor product corresponds to addition of Weil divisors.

Example 4.3. Let’s compute c (TPn ). First, we have an embedding of the tautological
bundle on Pn into Pn ×Cn+1:

0→O (−1)→O n+1→Q→ 0.

The fiber of the quotient Q at [L] is canonically Cn+1/L. Tensoring with O (1), we obtain

0→O →O (1)n+1→Q(1)→ 0. (4.1)

Thinking of O (1) as the dual of the tautological bundle, its fiber at [L] is canonically
Hom([L],C). Therefore, the fiber of Q(1) at [L] is canonically Hom([L],Cn+1/[L]), which
is the tangent space at [L]. Thus (4.1) becomes

0→O →O (1)n+1→ TPn → 0. (4.2)
13
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Exercise 4.4. Prove (4.2) rigorously to your satisfaction.

We conclude that

c (TPn ) = c (TPn )c (O ) = c (O (1)n+1) = (1+h)n+1.

Grothendieck proved that every vector bundle on P1 is a direct sum of line bundles. For
P2, we see that c (TP2) = 1+ 3h + 3h2. This doesn’t factor into a product of two linear
polynomials, so TP2 cannot be an extension of two line bundles.

Extensions. Now we can extend the definition of the Chern class to K0(X ) by demanding
it to be a group homomorphism from K0(X ) to the multiplicative group of C H ∗(X ). Con-
cretely, this is determined by c (−[E ]) = c (E )−1 ∈C H ∗(X ) - this makes sense because the
form c (E ) = 1+ . . . implies that c (E ) is invertible in C H ∗(X ).

Since K0(X ) ∼=G0(X ) if X is a smooth variety, this also defines a notion of Chern class
on coherent sheaves. Concretely, if F is a coherent sheaf on X then we have a finite
resolution

0→En →En−1→ . . .→E1→F → 0

so that [F ] =−
∑n

i=1(−1)i [Ei ], and

c (F ) =
∏

i odd c (Ei )
∏

i even c (Ei )
.

4.2. The splitting principle. The splitting principle says that

For the purpose of proving identities between Chern classes of vector bundles,
one can assume that the vector bundles are sums of line bundles.

This makes computations easier because we know very explicitly the Chern classes of
line bundles. If E = L 1⊕ . . .⊕ L r , then

c (E ) =
r
∏

i=1

(1+ c1(L i )).

Thus, cd (E ) is the d th elementary symmetric polynomial in the c1(L i ).
Let’s illustrate with some examples, and then revisit the question of why this works.

Example 4.5. Let E and E ′ be two vector bundles. Then what is the Chern classes of E ⊗
E ′? The splitting principle tells us to pretend that E = L 1⊕ . . .⊕L m and E ′ = L′1⊕ . . .⊕L′n .
Then

E ⊗E ′ =
⊕

i ,j

L i ⊗ L′j

so

c (E ⊗E ′) =
∏

i ,j

(1+ c1(L i ))(1+ c1(L′j )).

14
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For instance, we find that

c1(E ⊗E ′) =
∑

i ,j

(c1(L i )+ c1(L′j ))

= n
∑

i

c1(L i )+m
∑

j

c1(L′j )

= nc1(E )+m c1(E ′).

Although we started the calculation under the assumption that E and E ′ split, the final
answer c1(E ⊗ E ′) = nc1(E )+m c1(E ′) does not reference this assumption. The splitting
principle tells us that this is true even if the bundles do not split.

Example 4.6. If E ∼=
⊕

L i , then det E =
⊗

L i . Therefore,

c1(E ) = c1(det E ).

The splitting principle tells us that this is true for general E .

The justification for the splitting principle is that for any vector bundle E on X , one
can find a map f : X ′→X such f ∗E has a filtration by line bundles, and also the induced
map on Chow rings f ∗ : C H ∗(X ) → C H ∗(X ′) is injective. The existence of the filtration
implies that c ( f ∗E ) is the product of the Chern classes of its line bundle factors. The
injectivity implies that to prove an identity for c (E ) on X , it suffices to prove the pulled-
back identity on X ′, when one has c (E ) splits.

Let V → X be a vector bundle. We “wish” that V = L 1⊕ L 2⊕ . . .⊕ L n . One can always
“achieve” this in topology by an appropriate pullback, but it is too ambitious to demand
in algebraic geometry. Instead, we “wish” that there were a filtration

V ⊃Vn−1 ⊃Vn−2 ⊃ . . .⊃ 0

with each successive quotient Vi /Vi−1
∼= L i a line bundle.

The space X ′ can be constructed as follows. For a vector bundle V → X , we create a
flag bundle Fl(V ) equipped with a map π: Fl(V )→X . The fiber of Fl(V )→X over x ∈X is
the (full) flag variety the fiber Vx , which is a projective variety. Tautologically the pullback
of V to Fl(V ) has a filtration by line bundles.

So why is the pullback C H ∗(X ) → C H ∗(Fl(V )) injective? The map Fl(V ) → X can be
realized as a sequence of projective bundles (choosing one step of the filtration at a time).
Now the result follows from a general property of projective bundles, as you can create
a rational section by pulling back a class and intersecting with an appropriate power of
the hyperplane class coming from the tautological bundle.

To elabrorate, supposeπ: P→X is a projective bundle of relative dimension r (i.e. the
fibers are Pr ). If α∈C H d (X ), then π∗α lives in C H d+r (X ) and is represented fiberwise by
a dimension r variety. There is a tautological line bundle L on P , whose dual has first
Chern class represented by a hyperplane in each fiber Pr . Then π∗(π∗α ∩ c1(L ∗)r ) is a
multiple of α.

4.3. Some characteristic classes. Let E →X be a vector bundle of rank r . We define the
Chern roots α1, . . . ,αr of E to be the formal roots of

c (E ) = 1+ c1(E )t + c2(E )t 2+ . . .+ cr (E )t r ,
15
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i.e.
r
∏

i=1

(1+a i t ) = 1+ c1(E )t + c2(E )t 2+ . . .+ cr (E )t r

so cd (E ) is the d th elementary symmetric polynomial in the αi . If E =
⊕

L i then αi =
c1(L i ), but in general the αi i may not exist in C H ∗(X ). They play the role of hypothetical
Chern classes in the pretend world generated by the splitting principle. In computa-
tions, the roles of the L i are symmetric and so any expressions obtained in the a i can be
rephrased in terms of the honest Chern classes of E .

Definition 4.7. If E is a vector bundle on X , then the Chern character is

ch(E ) =
∑

exp(αi )

where the αi are the Chern roots of E .

By an application of the splitting principle,

ch(E ⊕E ′) = ch(E )⊕ ch(E ′)

and
ch(E ⊗E ′) = ch(E ) · ch(E ′).

Therefore, the Chern character defines a ring homomorphism K0(X )→C H ∗(X ).

Definition 4.8. The Todd class of E is

Td(E ) =
∏

i

αi

1−exp(−αi )
= 1+

1

12
c1+

1

12
(c 2

1 + c2)+ . . . .

Note that this is invertible.

Example 4.9. In Example 4.3 we computed that c (TPn ) = (1+ h)n+1. This is the same
as the Chern class of O (1)n+1, so the Todd class of TPn is the same as the Todd class of
O (1)n+1. But the latter bundle clearly has Chern roots h with multiplicity n + 1, so we
conclude that

Td(TX ) =
�

h

1− e−h

�n+1

4.4. Interpretation as degeneracy loci. ♠♠♠ TONY: [should I say anything?]

16
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5. THE RIEMANN-ROCH THEOREM

5.1. An overview. To motivate the equivariant Riemann-Roch Theorem and the objects
that need to be introduced, we will give a very brief overview of the classical Riemann-
Roch Theorem and its generalizations.

One perspective on the Riemann-Roch Theorem is that it is a tool to compute h0(X ,L )
for a line bundleL on a variety X . You can view this as a problem in analysis, since for
curves it boils down to a question about the existence of meromorphic functions with
prescribed zeros and poles.

It turns out that the quantity h0(X ,L ) is not so well-behaved, and a much more tractable
quantity is the Euler characteristic:

χ(L ) =
∑

i

(−1)i h i (X ,L ).

Theorem 5.1 (Riemann-Roch Theorem). If X be a smooth projective curve and D is a
divisor on X , then

χ(X , D) = deg D +1− g .

If X is a smooth projective curve, then Serre duality asserts that

h1(X ,L )∼= h0(X , KX ⊗L ∨).

This gives the usual reformulation left hand side as

h0(X , D)−h0(X , K −D).

The Riemann-Roch theorem may be re-interpreted in terms of intersection theory. If you
are familiar with Atiyah-Singer index theory, then you know the philosophy that “topo-
logical information gives analytic information.” The Riemann-Roch theorem is a result
in this spirit (in fact, over C it is a special case of the Atiyah-Singer index theorem). This
is the formulation generalized by Hirzebruch to higher dimensional varieties.

Theorem 5.2 (Hirzebruch-Riemann-Roch). Let X be a smooth projective variety and E a
vector bundle on X . Then

χ(E ) = deg(ch(E ) ·Td(TX ))

where ch(E ) is the Chern character of E and Td is the Todd class.

Grothendieck recognized that this should be an instance of a more general assertion
about a morphism of schemes, in the special case where the target is a point.

Theorem 5.3 (Grothendieck-Riemann-Roch). If f : X → Y is a proper morphism of smooth
projective varieties, then

ch( f ∗E ) = f ∗(ch(E ) ·Td(Tf )).

One can view this as relating two kinds of pushforwards in some sense: the left hand
side is a pushforward in K -theory, and the right hand side is an intersecton theoretic
poushforward.

17



Equivariant Algebraic Geometry Math 245B

5.2. Curves and surfaces. We review the easy versions of Riemann-Roch theorems in
the familiar example of curves, and the perhaps less-familiar example of surfaces.

Let X be a smooth projective curve. The key to the Riemann-Roch theorem is that the
Euler characteristic is additive in short exact sequences. Let D be a divisor on X , and
p ∈X . Then we have a short exact sequence

0→O (D −p )→O (D)→O (D)|p → 0.

Thus, by the additivity of χ ,

χ(O (D)) =χ(O (D −p ))+χ(Op ) = 1+χ(O (D −p )).

Now if we define the genus of X by

χ(OX ) = 1− g

it follows from an easy induction that

χ(OD ) = deg D +1− g .

This is the Riemann-Roch theorem for curves, without the “hard” input of Serre dualitly.
Next let’s turn our attention to surfaces. If X is a surface and D is a divisor on X , and

C is an irreducible closed curve in X , then by the same reasoning as before we have

0→O (D −C )→O (D)→O (D)|C → 0.

Thus,

χ(O (D)) =χ(O (D −C ))+χ(O (D)|C ).

Now we can apply the Riemann-Roch theorem for curves to deduce that

χ(O (D)|C ) = degO (D)|C +1− g (C ).

It follows easily from the definition of the intersection product that degO (D)|C = D ·C ,
and g (C ) is determined by the adjunction formula

2g (C )−2= (C +KX ) ·C =C ·C +KX ·C .

To summarize, we have found that

χ(O (D)) =χ(O (D −C ))+
1

2
(2D −C −KX ) ·C

and an easy induction proves:

Theorem 5.4 (Riemann-Roch for surfaces). Let X be a smooth projective surface and D a
divisor on X . Then

χ(O (D)) =χ(O )+
1

2
(D −KX ) ·D.

18
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5.3. Hirzebruch-Riemann-Roch. We recall the statement of the Hirzebruch-Riemann-
Roch theorem, stated in a slightly different way.♠♠♠ TONY: [I do not know if this is
how Hirzebruch thought about it... probably not] Let X be a smooth proper variety
over a field k and E a vector bundle on X . The Riemann-Roch theorem is concerned
with a formula for the Euler characteristic of E . Another way to think about this is that
E represents a K -theory class [E ], and the Euler characteristic is precisely the image of
[E ] under pushforward to K0(pt = Spec k ) ∼= Z, where the latter identification is by the
(virtual) dimension.

Now, one way to “access” K -theory is by mapping it to cohomology, or in our case the
Chow ring, via the Chern class. We just discussed that there is a ring homomorphism
ch: K0(X )→ C H ∗(X ) given by the Chern character, so it is natural to ask what the push-
forward on K -theory corresponds to at the level of Chow rings.

K0(X )
ch //

π∗
��

C H ∗(X )

��
K0(pt) ch // C H ∗(pt).

The obvious guess would be that the right hand side is also given the pushforward on
Chow groups. However, this is not quite right. It was Hirzebruch who realized that to get
commutativity, one has to “twist” by the Todd class. To make this well-defined, we must
pass to rational coefficients (i.e. tensor everything withQ).

Theorem 5.5 (Hirzebruch-Riemann-Roch). Let X be a smooth projective variety and E a
vector bundle on X . Then the following diagram commutes:

K0(X )Q
ch ·Td(X ) //

π∗

��

C H ∗Q(X )

π∗

��
K0(pt)Q

ch ·Td(X ) // C H ∗Q(pt)

Example 5.6. Let’s apply the Hirzebruch-Riemann-Roch Theorem to a curve and see
what we get. Let X be a curve and E a vector bundle of rank r on X . Then the HRR
tells us that the following diagram commutes:

K0(X )Q
ch ·Td(X ) //

π∗

��

C H ∗Q(X )

π∗

��
K0(pt)Q

ch ·Td(X ) // C H ∗Q(pt)

As discussed above, under the identification K0(pt)Q ∼=C H ∗Q(pt)∼=Qwe have

π∗([E ]) =χ(E ) = h0(X ,E )−h1(X ,E ).
19
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To compute what happens on the other side, we have to figure out the Chern character
of E and the Todd class of X . If E has Chern roots αi , then

ch(E ) =
∑

i

exp(αi ) = r +
∑

i

αi = r + c1(E ).

(There are no higher terms because we are working on a curve.)
Next, if T X has Chern roots βj then the Todd class is

∏

j

βj

1− e−βj
=
∏

j

βj

βj − 1
2β

2
j

=
∏

j

1

1− 1
2βj

= 1+
1

2
c1(T X )

On the curve X we have T X = (KX )∗, so c1(T X ) =−c1(KX )∗.
When pushing forward to C H∗(pt), the classes in C H1(X ) die. Therefore, HRR tells us

that

χ(E ) = (r + c1(E ))(1−
1

2
c1(KX ))

= deg c1(E )+ r (1− g ).

This is Riemann-Roch for curves!

Example 5.7. Let’s apply HRR to surfaces. If E is a rank r vector bundle on X , then we
have as before

χ(E ) =π∗(c1(E ) ·Td(X )).

This time, if E has Chern roots αi then

c1(E ) =
∑

exp(αi )

= r +
∑

αi +
1

2
α2

i

= r + c1(E )+
1

2
(c1(E )2−2c2(E ))

If T X has Chern roots βj then

Td(T X ) =
∑

j

βj

βj − 1
2β

2
j +

1
6β

3
j

=
∑

j

1

1− 1
2βj + 1

6β
2
j

= r +
1

2

∑

βj −
1

6

∑

β2
j +

1

4

∑

β2
j .

20
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Again, when taking the pushforward only the degree two terms, corresponding to C H0(X ),
survive. Separating out the terms which are already present in the trivial bundle, we ob-
tain

χ(E )− rχ(O ) = c1(E ) ·
1

2
c1(T X )+

1

2
c1(E )2.

If E ∼=O (D) is a line bundle, then 1
2 c1(E )2 = 1

2 D ·D and c1(E ) · 1
2 c1(T X ) =D · 1

2 KX .

Remark 5.8. The formula χ(E ) = deg(ch(E ) ·Td(TX )) of Hirzebruch-Riemann-Roch can
be rephrased suggestively in terms of Chern-Weil theory as

χ(E ) =
∫

ch(E ) ·Td(TX ).

Example 5.9. Let Y be a smooth projective varieties with (étale) fundamental group finite
of order d , and π: X → Y the “universal cover” of Y . Intuitively, we should have

χ(OX ) = dχ(OY ).

Let’s prove this as an application of Hirzebruch-Riemann-Roch. HRR tells us that

χ(OX ) = deg(ch(OX ·Td(TX )).

Since X → Y is étale, we have T Y =π∗T X . Therefore,

χ(OX ) = deg(ch(OX ·Td(TX )) = deg(ch(π∗OY ) ·Td(π∗T Y )).

Now, taking the degree is the same as cupping with the fundamental class, so by the
projection formula

χ(OX ) = d deg(OY ·Td(T Y )).
The right hand side is χ(OY ) by another application of Hirzebruch-Riemann-Roch.

5.4. Grothendieck-Riemann-Roch. At least in the form in which we stated the Hirzebruch-
Riemann-Roch Theorem, Grothendieck’s generalization contains few surprises. Grothendieck
recognized that the HRR theorem was an instance of a more general relation on families
over some base, in the special case where the base is a point.

Let f : X → Y be a proper morphism, and think of X as a “family” over Y . Grothendieck
had the insight that given a vector bundle on X (i.e. a family of vector bundles over Y ) a
vector bundle on Y . The most naïve attempt would be to push forward, but one knows
that this doesn’t necessarily produce a vector bundle. However, at the level of K -theory
everything does make sense - the constant of the Euler characteristic reflects the fact that
the pushforward makese sense as a “virtual vector bundle.” In the spirit of Hirzebruch,
one can again ask what the picture looks like at the level of Chow rings.

Theorem 5.10 (Grothendieck-Riemann-Roch). Let f : X → Y be a proper morphism of
nonsingular varieties. Then the following diagram commutes:

K0(X )
ch ·Td(X ) //

f ∗

��

C H ∗Q(X )

f ∗
��

K0(Y )
ch ·Td(X ) // C H ∗Q(Y )
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We will now embark on a proof of the Grothendieck-Riemann-Roch Theorem in the
special case of projective morphisms. First we make some preliminary redictions. From
the form of the theorem, it is immediate that it is “compatible under composition.” In
other words, if g : Y → Z is another proper morphism of smooth schemes, then we can
concatenate the two commutative diagrams and deduce the result for the composite
map.

K0(X )
ch ·Td(X ) //

f ∗

��

C H ∗Q(X )

f ∗
��

K0(Y )
ch ·Td(Y ) //

g ∗

��

C H ∗Q(Y )

g ∗

��
K0(Z )

ch ·Td(Z ) // C H ∗Q(Z )

Therefore, to prove the theorem for projective morphisms it suffices to establish it in two
special cases:

(1) The projection map π: Pn ×X →X , and
(2) A regular embedding X ,→ Y .

5.5. GRR for projective spaces. Let’s first study the structure morphism over Y = Spec k
and X = Pn

k . Then for F ∈ K ∗(X ), the pushforward π∗F is just the Euler characteristic
under the natural identification K0(Y )∼=Z via the dimension.

Lemma 5.11. The group K (X ) is generated by the line bundles O (n ).

Proof. The Hilbert Syzygy Theorem shows that every coherent sheave can be resolved by
(direct sums of) line bundles, and every line bundle on Pn is O (n ) for some n . �

Alternative proof. Induct using the excision sequence for K -theory:

K0(Pm−1)→ K0(Pm )→ K0(An )→ 0.

By homotopy invariance, K0(Am )Q ∼= K0(point)Q = Q. By induction, G0(Pm−1) is gener-
ated by line bundles. The image in K0(Pm ) is then generated by the classes of line bun-
dles on hyperplanes, but those are just restrictions of line bundles on Pm via the exact
sequence

0→OPm (n −1)→OPm (n )→OPm−1 (n )→ 0.

�

Since the claimed commutative diagram of Theorem 5.10 is additive, it suffices to
show the result for O (n ). Now recall that for n ∈Z and m ∈Z≥0,

χPm (O (n )) =
�

n +m

n

�

=
(n +m ) . . . (n +1)

n !
.

We just have to check that this agrees with what we get from taking the Chern character,
twisting by the Todd class, and then taking the pushforward.
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• It is immediate from the definition that ch(O (n )) = e nh where h is the hyperplane
class.
• It was discussed in Example 4.9 that

Td(TPm ) =
�

h

1− e−h

�m+1

.

So tracing across the top and right in the GRR diagram gives

[O (n )] � // e nh
�

h
1−e−h

�m+1

_
π∗

��
?

The pushforward on C H ∗(X ) takes the degree of the component in C H0(X ), which is the
coefficient of hm . Therefore, the Grothendieck-Riemann-Roch theorem in this case boils
down to the fact that the coefficient of hm in e nh hm+1

(1−e−h )m+1 is
�n+m

m

�

.

This is the residue of e nh

(1−e−h )m+1 d h at h = 0. Setting z = e h , we are looking for the

residue of
z n

(1− z−1)m+1 d (log z ) at z = 1.

Now,

Resz=1
z n

(1− z−1)m+1 d (log z ) =Resz=1
z n z m+1

(z −1)m+1

d (z −1)
z

=Resz=1
z n+m

(z −1)m+1 d z

=Resz=1
(z −1+1)n+m

(z −1)m+1 d z .

Now the result is clearly the coefficient of (z − 1)m in (z − 1+ 1)n+m , which is precisely
�n+m

m

�

. That completes the proof of GRR for projective space over a field.
Now we tackle the more general case of projective space over an arbitrary base: X =
Pm ×Y

π−→ Y . We want to show that the diagram commutes:

K0(Pm ×Y )Q
ch ·Td(X ) //

π∗

��

C H ∗Q(Pm ×Y )

π∗

��
K0(Y )Q

ch ·Td(Y ) // C H ∗Q(Y )

The strategy will be to show that the diagram is “base changed” from Y = Spec k in an
appropriate sense.

Lemma 5.12. The natural maps

K0(Y )⊗K0(Pm )→ K0(Pm ×Y )
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induced by the exterior (tensor) product, and

C H ∗(Y )⊗C H ∗(Pm )→C H ∗(Pm ×Y )

induced by pullback and intersection product are both surjective.

Proof. We argue by induction. The base case m = 0 is obvious. We can cutting Y ×Pm

along Y ×Pm−1 (a fiberwise hyperplane section), and apply the excision exact sequence

C H∗(Y ×Pm−1)→C H∗(Y ×Pm )→C H∗(Y ×Am )→ 0.

By the homotopy axiom, we have K0(Y×Am )∼= K0(Y ). This, together with some account-
ing of the ring map C H ∗(Pm )→C H ∗(Pm−1), establishes the result. �

Now, the splitting TX = TPm ⊕ TY induces a factorization Td(X ) = Td(Y )Td(Pm ). The
exterior product induces a factorization of diagrams

K0(Y )Q×K0(Pm )Q
ch ·Td(Y ),ch ·Td(Pn ) //

����

C H ∗Q(Y )×C H ∗Q(Pm )

����
K0(Pm ×Y )Q

ch ·Td(X ) //

π∗

��

C H ∗Q(Pm ×Y )

π∗

��
K0(Y )Q

ch ·Td(Y ) // C H ∗Q(Y )

The outer diagram commmutes because it is the product of K0(Y )with the GRR theorem
for Spec k . Then surjectivity implies that the lower diagram commutes, which estab-
lishes the theorem.

5.6. Why the Todd class? Let’s think about reversing-engineering this formula. We seek
some power series f (x ) such that the coefficient of x−1 in e nx f (x )m+1 is

�n+m
m

�

.

5.7. GRR for regular embeddings. We now study the case of a regular embedding X ,→
Y . Topologically, we should be able to factor a regular embedding X ,→ Y through the
tubular neighborhood of Y . An algebro-geometric linearization of this situation is to
think of X as sitting in its normal bundle, so let’s tackle that case first.

Embedding in normal bundle. Let p : N → X be a vector bundle, with the zero section
σ : X → Y . Let’s replace V with its projective closure Y , but (abusing notation) retain the
notation p andσ.

N �
� // Y =P(N ⊕OX )

p

��
X

σ

ff

Now Y has a tautological line bundle O (−1), being a projective bundle, which sits in an
exact sequence

0→O (−1)→ p ∗(N ⊕OX )→Q→ 0.
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We claim that σ∗Q = N . Indeed, in terms of coordinates (~x , ~n , z ) on Y , the coordinates
on p ∗(N ⊕OX ) can also be thought of as ~n , z and the map O (−1) → p ∗(N ⊕OX ) is the
inclusion of “(~x , ~n , z , ~n , z ) ,→ (~x , ~n , z , ~n ′, z ′).” Now it is clear that when restricted to the
subsetσ(X )⊂ Y , which is defined by the coordinates ~n = 0, the mapO (−1)|σ(X )→ p ∗(N⊕
OX )|σ(X ) maps isomorphically to the summan p ∗OX , and the quotient is isomorphic to N .

There is a global section s of Q , obtained from the map p ∗OX
∼=OY →Q . This vanishes

precisely on the subset where the map O (−1)→ p ∗(N ⊕OX ) coincides with the inclusion
of the summan p ∗OX , which from the above discussion is preciselyσ(X ).

Exercise 5.13. Go through these calculations rigorously if you are not convinced.

We want to prove the commutativity of the diagram

K0(X )Q
ch ·Td(X ) //

π∗

��

C H ∗Q(X )

π∗

��
K0(Y )Q

ch ·Td(Y ) // C H ∗Q(Y )

It suffices to check it on vector bundles, since they generate K -theory. Let E be a vector
bundle on X , and consider [π∗E ] ∈ K (Y ) (here π∗E is an honest pushforward since the
morphism is affine, being a closed embedding). Unfortunately π∗E isn’t a vector bundle,
and we only really know how to compute Chern classes of vector bundles, so we have to
resolve this by vector bundles.

Example 5.14. (The Koszul complex) Let’s warm up on a special case, by resolving the
structure sheaf of the origin in An , which is k [x1, . . . ,xn ]/(x1, . . . ,xn ). This is done by the
Koszul complex. Let R = k [x1, . . . ,xn ]. We can start off our resolution with the surjection
R� k [x1, . . . ,xn ]/(x1, . . . ,xn ). The kernel is (x1, . . . ,xn ), and the natural next step is to take
the free module on these generators.

Rx1⊕ . . .⊕Rxn →R→ k [x1, . . . ,xn ]/(x1, . . . ,xn )→ 0.

But there are obvious relations here, as Rx1 ⊕ Rx2 contains (−x2)x1 − (x1)x2, which is
killed in the map to R . Let M be the free R-module on symbols X1, . . . , Xn . You can see
that each term is the next exterior power of M , so the final resolution we obtain is

0→∧n M →∧n−1M → . . .→∧2M →M →R→ k [x1, . . . ,xn ]/(x1, . . . ,xn )→ 0.

Now let’s globalize. The regular embedding X ,→ Y is locally cut out by r equations,
which can be thought of as the coordinates of the global section p ∗OX →Q . Therefore,
we have a Koszul resolution

. . .→
2
∧

Q∨→Q∨→OY →σ∗OX → 0.

(We dualize because because the equations cutting outσ(X ) are considered as functions
onQ.) We can then tensor this with p ∗E to get a resolution ofσ∗E .
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Let α1, . . . ,αr be the Chern roots of Q . Since the Chern character is multiplicative and
additive, we have

ch(σ∗E ) = ch(∧•Q∨⊗p ∗E ) = ch(∧•Q∨) · ch(p ∗E ).

The first factor is (by additivity)

ch(∧•Q∨) =
∑

p

(−1)p ch(
p
∧

Q∨).

The Chern roots of Q∨ are −α1, . . . ,−αr , so the Chern roots of
∧p Q∨ are p -fold products

of the Chern roots of Q∨, and in the end one gets

ch(∧•Q∨) =
∑

p

(−1)p
∑

e−αi 1 . . . e−αi p =
r
∏

i=1

(1− e−αi ).

We can rewrite this in a more convenient form, noting that cr (Q) =
∏

αi :

ch(∧•Q∨) =
r
∏

i=1

(1− e−αi )

=
r
∏

i=1

(1− e−αi )
αi

r
∏

i=1

αi

= Td(Q)−1 · cr (Q).

Therefore, tracing through the lower path of the commutative diagram gives

cr (Q)
Td(Q)

· ch(p ∗E )Td(Y )

We want to match this up with what we get by tracing though the other path.

[E ]_

��

� // Td(X ) · ch(E )_

��
σ∗[E ] � // cr (Q)

Td(Q) · ch(p ∗E )Td(Y ) ?
σ∗Td(X )ch(E ).

Lemma 5.15. If σ : X ,→ Y is a regular embedding with normal bundle N of rank r , then
σ∗σ∗β = cr (N ) ·β , which you can think of geometrically as “intersecting β with X .”

The proof is immediate from the definition of the pullback. For a sanity check, note
that if α ∈ C H k (Y ), then σ∗α ∈ C H k (X ) and σ∗σ∗α ∈ C H k+r (Y ). That is, the map α 7→
σ∗σ∗α increases the codimension by r .

Using this, we can complete our computation. By the Lemma,

cd (Q)
Td(Q)

ch(p ∗E ) ·Td(Y ) =σ∗σ∗(ch(p ∗E )) ·Td(Y )/Td(Q).

By the projection formula,

σ∗σ
∗(ch(p ∗E )) ·Td(Y )/Td(Q) =σ∗(σ∗(ch(p ∗E )) ·σ∗Td(Y )/Td(Q))
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But by the multiplicativity of the Todd class, the functoriality of Chern classes, and the
fact thatσ∗Q =NX/Y , we see that the right hand side isσ∗(E ·Td(X )), as desired.

The general case. Now we do the general case of closed embeddings. We use the algebro-
geometric analogue of the “tubular neighborhood,” which is a construction called defor-
mation to the normal cone. Let X be a closed subscheme of Y (in our case, even a regular
embedding). To “get at” the tubular neighborhood, we form Y ×P1, which has the sub-
scheme X ×P1. This maps to P1 by the obvious projection. We then blow up X ×{∞}.

What does this look like? Over ∞, we get two components: BlX Y and ProjX (NX/Y ⊕
O ), which is the projective closure of the normal cone to X in Y . These intersect along
ProjX (NX/Y ), which is the projectivization of the normal cone. Therefore, in the fiber
over∞we have X sitting inside ProjX (NX/Y ) as the zero section, which in turn sits inside
ProjX (NX/Y ⊕OX ). This all follows from the general fact is that the exceptional divisor is
always the projectivization of the normal bundle, and the normal bundle of X in Y ×P1

is N ⊕O .
You can visualize the inclusion X ,→NX/Y as “analytically zooming in” on X .

We claim that BlX×∞(Y × P1) is still flat over P1. As the base is a smooth proper curve,
we just have to see that blowing up introduces no associated points, but that is a general
property of blowups.
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So we have a diagram

X �
� //

σ

��

X ×P1

π
��

X? _oo

σ′

��
Y

��

i // BlX×∞(Y ×P1)

��

P(N ⊕O )∪BlX Y

��

joo

0 �
� // P1 ∞? _oo

Denote M =BlX×∞Y .
Let E be a vector bundle on X . We want to compute [σ∗E ] ∈ K0(Y ). We’ll take an

indirect route, by first pulling back to X ×P1 and then resolving the pushforward to M :

G•→π∗p ∗1E → 0.

Since everything is flat over P1, this sequence remains exact upon restricting to a fiber.
The idea is that since 0 and∞ are “homologous” in P1, we get the same class in K -theory
upon restriction to the fibers over 0 and∞.

Let’s now argue formally. When we restrict π∗p ∗1E to the fiber over 0, we recover σ∗E .
Therefore i ∗G• is a resolution ofσ∗E , so

ch(σ∗E ) = ch(i ∗G•) = i ∗ ch(G•).

This computation lives on Y , but since we want to transfer things along M we push it
forward via i . Letting M 0

∼= Y be the fiber over 0, we have

i ∗ ch(σ∗E ) = i ∗i
∗ ch(G•) = ch(G•) · [M 0].

Since 0 is linearly equivalent to∞ on P1, M 0 is linearly equivalent to M∞ ∼= P(N ⊕O )∪
BlX Y on M , so

i ∗ ch(σ∗E ) = ch(G•) · [M 0] = ch(G•) · [M∞]

= ch(G•) · [ProjX (N ⊕O )]+ ch(G•) · [BlX Y ].

But G• was a resolution for a sheaf supported on X ×P1, and in particular not on [BlX Y ].
Therefore, G• restricts to an exact resolution on [BlX Y ], so ch(G•) · [BlX Y ] = 0. Then by
the same argument applied to the inclusion of X in the fiber over infinity, we have

i ∗ ch(σ∗E ) = j∗ ch(σ′∗E ).

Sinceσ′ : X → ProjX (N⊕O ) factors through the zero section X ,→NX/Y , our computation
in that special case implies that

j∗ ch(σ′∗E ) = j∗σ
′
∗(ch(E ) ·Td(N ∨X/Y )).

In summary, we have shown that

i ∗ ch(σ∗E ) = j∗σ
′
∗(ch(E ) ·Td(N ∨X/Y )). (5.1)

To obtain an identity in the Chow ring of Y , we push down via the blowdown and projec-
tion p r : BlX×∞(Y ×P1)→ Y ×P1→ Y . Noting that p r : i = IdY and p r : j :σ′ =σ, applying
p r∗ to (5.1) gives

ch(σ∗E ) =σ∗(ch(E ) ·Td(N ∨X/Y )).
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It only remains to unwind the right hand side to obtain the desired form:

σ∗(ch(E ) ·Td(N ∨X/Y )) =σ∗(ch(E ) ·Td(X ) ·σ∗Td(Y )−1)

=σ∗(ch(E ) ·Td(X )) ·Td(Y )−1.

This (finally!) completes the proof of the Grothendieck-Riemann-Roch theorem.

5.8. Applications of GRR.

Theorem 5.16. Let X be smooth. Then τ: K (X )Q
ch ·Td(TX )−−−−−→C H (X )Q is an isomorphism.

We begin with a technical result.

Lemma 5.17. Let Y be smooth and f : X ,→ Y the inclusion of an irreducible subvariety.
Then ch([OX ])∈C H∗(Y ) is of the form [X ] plus lower dimension terms.

Proof. If X is smooth, then we have a regular embedding and we can directly apply
Grothendieck-Riemann-Roch:

K (X )

f ∗
��

ch ·Td(X ) // C H (X )

f ∗
��

K (Y )
ch ·Td(Y )

// C H (Y )

Then GRR tells us that ch([OX ]) = f ∗(Td(N ))−1[X ]. As the Todd class is invertible, of the
form 1 plus higher codimension terms, we get

ch([OX ] = f ∗[X ]+ (higher codimension terms).

If X is not smooth, then at least it has a dense open subset which is smooth. Suppose
that the complement is Z . We have a sequence

C H (Z )→C H (X )→C H (X \Z )→ 0.

The first (smooth) case covers the assertion for C H (X\Z ), and the rest is lower-dimensional
terms, so we are done. �

Proof Sketch of Theorem 5.16. We claim that we have an isomorphism C H ∗(X ) =G r (G0(X ))
sending Z 7→ OZ (the grading is by the dimension of the support of the coherent sheaf).
Since X is smooth, this in turn is isomorphic to G r (K0(X )).

To check that the group homomorphism C H (X ) → G r (K (X )) sending [Z ] 7→ [OZ ] is
well-defied, one just has to check that two linearly equivalent points in P1 gives the same
class in G r (K (X )), because all relationsin C H∗(X ) are pullbacks from this situation. Note
that we really do need to pass to the associated graded in order to obtain a homomor-
phism, because [V +W ] should go to [OV ]+ [OW ]− [OV∩W ].

By the preceding lemma, the composition

K (X )
ch−→C H (X )

∼−→G r (K (X ))→ K (X )

is the identity modulo lower order terms. It thus suffices to show that K (X )
ch−→C H (X ) is

surjective.
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Well, if you start with a coherent sheafF on X , with rank r , then it is “mostly a vector
bundle” in the sense that there exists a dense open subset U ⊂ X such that F|U is a
vector bundle over U . Why is this true? After twisting by a sufficiently ample divisor, one
can produce a map O r

X →F (n � 0) inducing an isomorphism on the generic point, and
then the kernel and cokernel are supported on things on higher codimension. Then one
untwists and inducts. �

Applications to moduli spaces. LetMg be the moduli space (stack) of genus g curves.
Whenever you have a moduli space it’s useful to understand its cohomology and Chow
ring, as that gives you “characteristic classes” for the relevant structure.

So how can we get a handle on H ∗(Mg )? Well, one explicit way is to study subvarieties
onMg (e.g. the locus of hyperelliptic curves), as these should be “Poincaré dual” to a
cohomology classes.

Another way is to use our knowledge of vector bundlesMg and compute characteris-

tic classes of them. For instance,Mg has a universal curve Cg
π−→Mg , whose fiber over

a point is the corresponding curve. Let ω be the relative dualizing sheaf of Cg /Mg , i.e.
and Ω = π∗ω. This has rank g , as the space of holomorphic differentials on a genus g
curve is g -dimensional. Therefore, we obtain characteristic classes λ1, . . . ,λg ∈H ∗(Mg ),
namely λi := c i (Ω).

On the other hand, we have cohomology classes c i (ω) ∈ H ∗(Cg ) and from them we
can obtain cohomology classes π∗(c i (ω)) ∈H ∗(Mg ). Grothendieck-Riemann-Roch says
that these two sets of cohomology classes should be related.

This is a prototypical example of GRR is used. You want to study cohomology classes
on Mg , and you obtain two collections via characteristic classes on some family, and
you want to compare them.
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Part 2. Some equivariant ingredients

6. TOPOLOGICAL CLASSIFYING SPACES

The purpose of this section is entirely to motivate issues that will arise in attempting
to define “quotient stacks” and their Chow groups.

6.1. Principal G -bundles. A central theme in algebraic topology is to attach algebraic
invariants to topological spaces, such as homotopy groups, homology groups, coho-
moloy groups, etc. We will be discussing a very specific kind of topological object, which
is nonetheless ubiquitous: the principal G -bundle. You may be familiar with character-
istic classes of vector bundles (which arose even in the statement of the Riemann-Roch
theorem), which are algebraic invariants attached to a special kind of principal G -bundle
(for G =GLn ).

Definition 6.1. Let G be a topological group. A principal G -bundle over X is a topological
space P equipped with a continuous, free action of G and a map

π: P→X

such that

(1) π identifies the quotient space G \P with X , and
(2) π is locally trivial, i.e. for all x ∈X there is an open neighborhood x ∈U ⊂X such

that

p−1(U )
∼= //

##

U ×G

||
U

Remark 6.2. We say that G acts freely on Y if the map G × Y → Y × Y sending (g , y ) 7→
(y , g y ) is a homeomorphism onto its image. The bijectivity is equivalent to all stabilizers
being trivial, which is the familiar notion of free action for discrete groups.

Example 6.3. The trivial G -bundle on X is the product space G × X with the obvious
projection map.

Any G -bundle π: P→X admitting a global section s : X → P is trivial, as we can view s
as giving a coherent choice of identity element in each fiber. Concretely, we have a map
G ×X → P sending (g ,x ) 7→ g s (x ), which is necessarily an isomorphism.

Example 6.4. As with vector bundles, one can think of principal G -bundles in terms of
gluing. Explicitly, if {(Uα,φα)}is a trivialization of π: P → X , then P is determined by the
transition functions τβα : U →G :

G ×Uα

τβα

88

φ−1
α // p−1(Uα)

φβ // G ×Uβ

These transition functions must satisfy the cocycle conditions to be consistent. Thus G is
called the “structure group.”
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One immediate consequence of this definition is that if G = GLn , then our transition
functions also define a vector bundle. So we see that there is an equivalence between
principal GLn -bundles and vector bundles! In fact whenever G is the automorphism
group of a certain structure, a principal G -bundle will have an alternate interpretation
in terms of that structure.

6.2. Characteristic classes. Even if you are not familiar with principal G -bundles, you
have probably encountered plenty of vector bundles and appreciate their importance.
Vector bundles can be hard to “classify,” but a first step is to attach algebraic invariants
to vector bundles. Namely, to any vector bundle V → X one can associate elements of
H ∗(X ) in a functorial way (meaning compatibly with pullbacks).

Example 6.5. If V → X is a complex vector bundle of (complex) rank n , then there are
Chern classes c1(V ), c2(V ), . . . , cn (V )∈H ∗(X ;Z).

Example 6.6. If V → X is a real vector bundle of rank n , then there are Stiefel-Whitney
classes w1(V ), w2(V ), . . . , wn (V )∈H ∗(X ;Z/2).

One might ask why these characteristic classes exist, and why there aren’t any more
out there waiting to be discovered. Classifying spaces answer these questions in a very
elegant way.

Definition 6.7. The classifying space BG (well-defined up to homotopy) is a space repre-
senting the functor Top→ Set sending

X 7→ {principal G -bundles on X }/isom.

on a “nice enough” subcategory of spaces (e.g. CW complexes). In other words, there is
a natural bijection

Hom(X , BG )/homotopy↔{principal G -bundles on X }/isom

It is a theorem that such a space always exists. In fact, here is a “concrete” construc-
tion. Take a contractible space EG on which G acts freely. [Why does such a thing always
exist?] Then BG = EG /G .

The map EG → BG is the “universal principal G -bundle,” and it corresponds to the
identity map BG → BG . Given a map f : X → BG , the corresponding principal G -bundle
is the pullback

f ∗EG //

��

EG

��
X

f // BG
A consequence of the definition is that H ∗(BG ) parametrizes all functorial assignments
of cohomology classes to principal G -bundles.

Proof. Indeed, given a vector bundle P → X , we get a map X → BG pulling back the
universal bundle to P .

P

��

// EG

��
X // BG
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We can then assign to P the pullback of a cohomology class of BG along this map. Con-
versely, suppose we have such an assignment. Then it is completely determined by its
value on the universal bundle, as any other bundle is a pullback of this one. �

We claim that if we have a group homomorphism H →G , then we get a map BH →
BG . Indeed, by definition giving a map BH → BG is the same as giving a functorial
recipe for turning a principal H bundle into a principal G -bundle. One perspective on
a principle H-bundle is in terms of transition functions with values in H satisfying the
cocycle conditions. But if we compose that with the homomorphism to G , then we get
transition functions valued in G satisfying the cocycle conditions, hence a principal G -
bundle.

If H ⊂G is a subgroup, we can choose the map BH → BG to be a fibration with fiber
G /H . To see this, note that H acts freely on EG a fortiori, and the fibers of EG /H →
EG /G are evidently G /H .

The result we state now is probably not the optimal one, but it suffices for our pur-
poses.

Proposition 6.8. If H ,→ G is a weak homotopy equivalence, then BH → BG is a weak
homotopy equivalence.

Proof. Recall that H ,→G is a weak homotopy equivalence if it induces isomorphisms on
all homotopy groups, which implies (Hurewicz’s Theorem) that it induces isomorphisms
on all (co)homology groups.

By the long exact sequence of homotopy groups for the fibration H →G →G /H , we
see that πi (G /H ) = 0 for i > 0. Next applying the long exact sequence of homotopy
groups for the fibration G /H → BH → BG shows that BH and BG are weakly homotopy
equivalent. �

Example 6.9. By Proposition 6.8, B GL(1,R)∼= BZ/2. What is BZ/2? Well, Z/2 acts freely
on S∞, which is contractible. So BZ/2 ∼= RP∞. This has a cell structure, with one cell of
each dimension and in Z/2-(co)homology, the boundary maps are 0 (that’s what makes
it easy to calculate!). In fact, H ∗(RP∞;Z/2)∼=Z/2[w1]where |w1|= 1.

Given any real line bundle L→X , we get a map f : X →RP∞ such that the pullback of
the tautological bundle is L. The first Stiefel-Whitney class w1(L) is precisely f ∗[w1].

Example 6.10. By Proposition 6.8, B GL(1,C)∼= BS1. Again, S1 acts on S∞ ⊂C∞ by multi-
plication, and the quotient is CP∞. The cohomology ring is H ∗(CP∞;Z)∼=Z[c1].

Given any complex line bundle L → X , we get a map f : X → CP∞ such that the pull-
back of the tautological bundle is L. The first Chern class c1(L) is precisely f ∗[c1].
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7. STACKS

In this and the next section, we give a quick crash course on stacks (borrowing heavily
from [Hei10]). Our goal is not to cover, in any way, a comprehensive treatment of the
theory, and indeed not even the small corner of it that we need later. Even for the small
slice of material that we treat, we do not claim to present the “optimal” definitions or
resuts.

Our aim is to modest: to motivate the rather abstract definition, highlight the main
examples which will be relevant to us, and dip just deep enough into the theory so that
the reader will comfortable with the basic language of stacks. While the precise defini-
tions can often be unwieldy, a familiarity with the core ideas can go a long way towards
guessing or “black boxing” technical issues whenever they arise.

7.1. Motivation: quotient stacks. The idea of “quotient stack” in algebraic geometry
is modeled on that of classifying spaces. Some of the topological notions - homotopy,
contractibility, quotient topology - do not translate so easily to the realm of algebraic
geometry, but the formal properties do.

What would it mean to have “classifying spaces” in algebraic geometry? Ideally, we
could find a scheme BG such that

HomSch(X , BG )↔{principal G -bundles on X }.

In other words, we want to represent the functor taking a scheme X to algebraic principal
G -bundles over X .

Remark 7.1. Here I am brushing an important technical point under the rug: the “local
triviality” should not be with respect to the standard Zariski topology (except in lucky
cases), but some finer Grothendieck topology. We’ll discuss this in greater detail later.

Unfortunately, no such space BG exists in the category of schemes. With a bit of fa-
miliarity with the theory of moduli spaces, it is easy to see why: for instance, as long
as G has non-trivial center, a principal G -bundle will have non-trivial automorphisms
given by multiplication by non-trivial central elements. To obtain a “space” with the
right properties, we will have to enlarge our concept of algebro-geometric space, which
is the realm of stacks.

More generally, if X is a scheme and G is any group acting on X , then we want to
be able to produce a space [X/G ] such that sheaves on [X/G ] are “the same” as G -
equivariant sheaves on X . This sort of object [X/G ] is called a quotient stack.

Example 7.2. For a group G acting on a point pt, the stack [point/G ] is called the clas-
sifying stack BG . Then we want sheaves on BG to be equivalent to representations of
G .

Topologically, taking the quotient of a point by G is just a point, so the stack must
remember additional data. A first (not very accurate) approximation is to think of the
stack [X/G ] as the quotient space together with the information of the stabilizer groups
of G at corresponding points of X . However, this is a dangerously inaccurate slogan in
general.
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7.2. Prototypical examples. Perhaps the first definition of schemes that everybody learns
is in terms of concrete “geometric” data: a topological space and a sheaf of functions,
satisfying some local conditions... However, an alternate perspective, which proves very
fruitful, view schemes as functors of points from schemes (or just rings) to sets. This
second approach is the one that we take en route to stacks.

Formally, a stack will be defined as a functor on the category of schemes satisfying cer-
tain conditions. There will be various levels of “geometric” conditions that we can im-
pose, which will force the stacks to conform more closely to our traditional conception
of spaces in algebraic geometry (but at a price of generality). Thus, stacks are almost tau-
tologically introduced as representing “spaces” for functors that cannot be represented
in the traditional world of schemes. The general conditions are modelled on some par-
ticular examples that we now discuss.

Example 7.3. Consider the functor ϕg : Sch→ Sets sending X to the set of isomorphism
classes of flat families f : Y →X with fibers being smooth projective curves of genus g .

If this functor were representable by some spaceMg (the “fine moduli space of curves
of genus g ”) then, analogously to the existence of the universal bundle on BG , the iden-
tity mapMg →Mg would correspond to a universal family of genus g curves over M g

from which all other families would be pulled back. That is, the identification

HomSch(X ,Mg ) =ϕg (X )

would send a map X →Mg to the pullback of the universal family, and all families would
be obatined in this way.

This is not true as stated: there is no “fine moduli space of curves of genus g ” (which
is a scheme). The problem is that some curves have nontrivial automorphisms.

Why is the presence of automorphisms problematic for the existence of moduli spaces?
Essentially, automorphisms allow us to construct “families” which are locally trivial but
not globally trivial. This means that any representing morphism must be locally con-
stant, but not globally constant. That of course is impossible in general.

Example 7.4. To illustrate, let’s consider a concrete example. If G =Z/2 acts on a curve D
of genus g , then we can produce a nontrivial family of curves over X , all of whose fibers
are isomorphic to D.

Indeed, let E → X be any principal Z/2-bundle of schemes. Then consider the family
of curves over X , (E ×D)/(Z/2). It has fibers all isomorphic to D, but it is typically not a
trivial bundle.

IfMg existed, then the family would corresponding to a morphism X →Mg which
would necessarily be constant (since all the fibers are isomorphic). However, that would
imply that the pullback is the trivial bundle.

Example 7.5. Consider the functor Sch → Sets sending X to the set of isomorphism
classes of vector bundles of rank n on X (or more generally, principal G -bundles on X ).
We will shortly see that the right target category to consider is not the category of sets
but the category of groupoids; we can ignore this distinction for now. This should be
represented by a stack BG .
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7.3. Definition of stacks. We have just remarked on the limitations of the notion of “set
up to isomorphism” in dealing with moduli problems where the objects have automor-
phisms. A more uniform way to deal with this is to keep track of automorphisms. The
naturual apparatus to do this is a categorical generalization of sets called groupoids. A
“set up to isomorphism” may be viewed as a category in which all morphisms are the
identity map.

Definition 7.6. A groupoid is a category in which all morphisms are isomoprhism.

A stack will be defined as a particular kind of contravariant functor Sch → Grpoid,
generalizing the the Yoneda embedding of schemes into contravariant functors Sch→
Set. To see what axioms we should impose in order to define a “reasonable” category,
keep in mind the two prototypical examples we discussed in the previous section:

• Mg associates to a scheme X the groupoid of flat families of smooth, projective,
genus g curves over X .
• BG associates to a scheme X the groupoid of principal G -bundles on X .

We reiterate for emphasis that since we are considering groupoids instead of sets, many
families or bundles which would ordinarily be identified will be considered as distinct
objects, “connected” by isomorphisms.

Now, what are the features of algebro-geometric families over a space that we would
like to codify?

• The functoriality via pullback of families: if X → X ′ is a morphism of schemes
and F ′ is a family over X ′, then one has a pullback family over X :

F //

��

F

��
X // X ′

• The fact that families can be glued together from loca; data, and similarly for
morphisms.

There are some subtleties in formulating these issues properly. For example, the usual
pullback is constructed “up to isomorphism.” This means that there is no natural “single-
valued” notion of pullback, so that we can only define a (not necessarily unique) pull-
back object for a given family, obviously all of which are isomorphic. But if one is pre-
pared to ignore set-theoretic issues, then one can make a coherent choice of distin-
guished pullback object (a “cleavage”) and assume the existence of pullback functors.

Next, it turns out that stacks are naturally regarded as 2-categories, meaning that there
are morphisms between morphisms. Thus it turns out not to be natural to view stacks
as literal functors in the usual sense, but functors “up to homotopy.” Concretely, this
means that the composition of pullbacks is not equal on the nose to the pullback of the
composition, but that there exists a natural transformation between them. (Invoking
again the analogy with the homotopy category, it is more natural to ask that two maps
be homotopic rather than equal on the nose.)

To glue families and morphisms, we need a notion of “open covering” of a scheme.
The Zariski topology is an option, but it is decidedly inadequate terms. In technical
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terms, what we need is a Grothendieck topology on Sch. Concretely, this means that we
specify for each scheme a family of morphisms which are to be considered “coverings”
in our “topology,” which satisfy certain coherence axioms modelled on the properties of
topological coverings. We could almost proceed directly to the definition of a stack, but
it seems worthwhile to embark on a brief digression about Grothendieck topologies.

Definition 7.7. LetC be a category. A Grothendieck topology onC is a collection of sets
of morphisms {Ui →U} called coverings, such that

(1) for any isomorphism U →V , {U →V } is a covering of V .
(2) If {Ui → U} is a covering of U and V → U is a morphism in C , then the fiber

products V ×U Ui exist in C and {V ×U Ui →V } is a covering of V .
(3) If {Ui → U} is a covering, and for each i we have a covering {Vi j → Ui }, then
{Vi j →U} is a covering.

Example 7.8. Let X be a topological space,C be the category of open subsets of X (mor-
phisms are inclusions). Define a covering {Ui →U} to be a collection of open sets whose
union is U . This is a Grothendieck topology, and the traditional notion of covering.

Example 7.9. On the category Sch there are four commonly used Zariski topologies,
listed from coarsest to finest.

• The Zariski topology: a collection of arrows {Ui →U} is a covering if the Ui form
an open cover of U in the Zariski topology.
• The étale topology: a collection of arrows {Ui →U} is a covering if the morphism
∐

Ui →S is étale and surjective.
• The fppf topology: a collection of arrows {Ui →U} is a covering if the morphism
∐

Ui →S is faithfully flat and locally of finite presentation.
• The fpqc (flat) topology: a collection of arrows {Ui →U} is a covering if the mor-

phism
∐

Ui → S is faithfully flat, and every affine subset of U is the image of
some quasicompact open subset in

∐

Ui .

Definition 7.10. A site is a categoryC equipped with a Grothendieck topology.
For a siteC , a sheaf M is a contravariant functorC → Set such that

(1) (Identity axiom) For every covering {Ui →U}, if two sections a ,b ∈M (U ) agree
when pulled back toM (Ui ) for all i , then a =b .

(2) (Sheaf axiom) For any covering {Ui →U} and any a i ∈M (Ui ) agreeing inM (Ui×U

Uj ) for all i , j , there is a section a ∈M (U ) that restricts to all a i .

Thus we see that the notion of a sheaf on a site captures the notion of “gluing objects”
that we wanted stacks to have.

It turns out that we could take either the étale, fppf, or fpqc topologies for our pur-
poses, but the Zariski topology is definitely too coarse. However, as a sanity check we
had better make sure that schemes, viewed through their functors of points, actually
form sheaves in these topologies (it is obvious that they are sheaves for the Zariski topol-
ogy).

Theorem 7.11 (Grothendieck). Let S be a scheme. A representable functor on Sch/S is a
sheaf in the flat topology.
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Proof sketch. Let’s first just digest the assertion. Given a scheme Y → S we consider the
contravariant functor X 7→ HomS(X , Y ). This is a functor from schemes over S to sets,
and the claim is that this is a sheaf in the flat topology.

For simplicity, we just consider a flat covering which consists of a single morphism,
and we work in the category of k -schemes for some field k . The theorem asserts that for
any surjective flat quasicompact morphism X ′ → X over S, and any morphism X ′ → Y
over S such that the two compositions X ′×X X ′→ X ′→ Y are equal, there is a map from
X → Y inducing X ′→ Y .

X ′×X X ′

�� �� ##
X ′ //

��

Y

X

::

Since morphisms are local in the Zariski topology, we may reduce to the case where Y is
affine. Then a map to Y is a map to affine space with some algebraic conditions, so we
reduces to the case where Y = An . But then a map to Y is the same as a bunch of maps
to A1, so we may reduce to the case Y =A1.

That is, we’re given a regular function f ∈O (X ′) such that the two pullbacks to X ′×X X ′

are equal, and we want to deduce that f is pulled back from X .
Let’s think about what this means algebraically. Reducing to the case where B is affine,

we have a faithfully flat A-algebra B , and we want to know that if f ∈ B satisfies 1⊗ f =
f ⊗1 in B ⊗A B , then f comes from A.

This is a special case of the exactness of the Amitsur complex

0→ A→ B→ B ⊗A B (7.1)

(the last map sends b 7→b ⊗1−1⊗b ) which is usually proved early on in descent theory.

Exercise 7.12. Prove that (7.1) is exact. (Hint: it suffices to show exactness after tensoring
with B . Then consider the section B ⊗A B ⊗A B → B ⊗A B obtained by multiplying the
first two coordinates.

�

Now we have all the notions that we need in order to define stacks. We adopt as our
site Sch with the étale, fppf, or fpqc topology.

Definition 7.13. A stackM is sheaf of groupoids

M : Sch→Grpoid.

Explicitly,M is the data of

(1) for each X ∈Ob (Sch) a groupoidM (X ),
(2) for each morphism f : X → Y ∈Mor (Sch) a functor f ∗ :M (Y )→M (X ),
(3) for any pair of morphisms f : X → Y and g : Y →Z a natural transformation

( f ◦ g )∗ =⇒ g ∗ ◦ f ∗
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satisfying the gluing conditions

• (Objects glue) Given a covering {Ui → X }, and {Fi ∈M (Ui )} a collection of ob-
jects, and for each pair i , j an isomorphism τi j : Fi |Ui×U Uj → Fj |Ui×U Uj satisfy-
ing a cocycle condition on triple “overlaps,” then there exists F ∈M (U ), unique
up to unique isomorphism, together with isomorphisms φi : F |Ui

∼= Fi such that
τi j =φj ◦φ−1

i .
• (Morphisms glue) Given F, F ′ ∈ M (X ), and a covering {Ui → X } together with

a morphism ψi : F |Ui →→ F ′|Ui for each i such that for each pair i , j we have
ψi |Ui∩Uj = ψj |Ui∩Uj , then there exists a unique morphism ψ: F → F ′ such that
ψ|Ui =ψi .

It is basically immediate from the definition thatMg and BG are stacks. However, for
the purposes of working geometrically we will want to restrict our attention to a smaller
class of “algebraic stacks” (and even further within them) in which we can really do ge-
ometry. It is a non-trivial theorem that Mg and BG lie in those restricted classes of
stacks.

Definition 7.14. Let X be a scheme and G an algebraic group acting on X . We define the
quotient stack [X/G ] sending T to the groupoid of principal G -bundles P→ T equipped
with a G -equivariant map to X , i.e. diagrams

P

G−bundle
��

G -equiv. // X

T

As a sanity check, let’s make sure that if X/G exists as a scheme then we recover the
same definition. In that case, the claim would be that there is a canonical isomoprhism
between Hom(T, X/G ) and the set

P

G−bundle
��

G -equiv. // X

T

Indeed, X → X/G is a principal G -bundle, so given a morphism T → X/G we can pull
back X to obtain a principal G -bundle P → T , and the map P → X is automatically G -
equivariant. Conversely, given a diagram as above we get a map T →X/G by descent.

P

G−bundle
��

G -equiv. // X

��
T // X/G
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Example 7.15. Let G be an algebraic group over a field k . We claim that BG is the quo-
tient stack [pt/G ], where the G action is the only possible one on pt= Spec k . By defini-
tion, if T is a scheme then Hom(T, [pt/G ]) is the groupoid of diagrams

P

G−bundle
��

G -equiv. // pt

��
T pt/G

where P is a principal G -bundle on T . But given any such P , the structure map to pt is
G -equivariant and unique, so this is just the same as the data of P .

7.4. Morphisms of stacks. Morphisms of stacks are natural transformations, but since
stacks are not quite functors in the traditional sense (they are functors “up to homotopy,”
e.g. they need not preserve compositions on the nose, but only up to natural transfor-
mations), there are a few minor novelties in formulating the correct definition.

Definition 7.16. A morphism of stacks φ :M →N consists of, for each T ∈Ob (Sch), a
functor

φT :M (T )→N (T )
together with, for each morphism f : S→ T ∈Mor (Sch), a natural transformation

φ f :φS ◦M ( f )∗ =⇒ N ( f ∗) ◦φT

We emphasize that this means that the usual diagram depicted below does not commute
on the nose, but there is a natural transformation between the two compositions (which
is necessarily an isomorphism on all objects because the categories are all groupoids).

N (S) N (T )
N ( f ∗)oo

M (S)

φS

OO

φ f

8@

M (T )
M ( f ∗)

oo

φT

OO

Yoneda’s Lemma. There is a version of Yoneda’s Lemma for stacks. Let T be a scheme,
and denote by T the stack S 7→Hom(S, T ).

Theorem 7.17 (Yoneda). For any stackF , there is a natural equivalence of categories

Hom(T ,M )∼=M (T ).

Exercise 7.18. Prove this. The argument is almost identical to the usual one, except that
one has to take some care since for example morphisms of stacks only preserve pullbacks
up to natural equivalence.

Example 7.19. We have a morphism B GLn ×B GLn → B GLm n induced by the tensor
product of the associated vector bundles.
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We mentioned that stacks form a 2-category, i.e. there is a natural notion of morphism
between morphisms of stacks. Namely, if φ and ψ are two morphismsM →N , then a
2-morphism betweenφ andψ is the data of a natural transformationφT →ψT for each
T ∈Ob (Sch), compatible with the pull-back functors in the sense that for any f : S→ T ∈
Mor (Sch), the following diagram commutes (on the nose!)

φS ◦M ( f )∗
φ f //

��

N ( f )∗ ◦φT

��
ψS ◦M ( f )∗

ψ f // N ( f )∗ ◦ψT

Example 7.20. Consider the stack BG and Id: BG → BG as morphism of stacks. If z ∈
Z (G ), then “multiplication by z ” is a 2-morphism Id→ Id.

7.5. Fibered products of stacks. The definition of the fibered product is also a little dif-
ferent from usual, because it is not natural to demand equality of morphisms (along two
compositions), but only a natural transformation between them.

Definition 7.21. If φ :M →X and ψ:N →X are two maps of stacks, then the fibered
product

N ×XM //

��

M

φ

��
N

ψ
// X

is the functor sending T to the groupoid

{(m , n ,α) |m ∈M (T ), n ∈N (T ),α:φ(m )→ψ(n )}.

Example 7.22. Let X be a scheme and G an algebraic group. We want to digest the mean-
ing of the fibered product

X ×BG pt //

��

pt

π

��
X

ψ
// BG

Part of the structure data is the morphism X → BG = [pt/G ], which is the same as speci-
fying a principal G -bundle P→X .

Let’s try to understand X ×BG pt through its functor of points.

T

��

**$$
X ×BG pt //

��

pt

π

��
X

ψ
// BG
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By definition, a T -point of X×BG pt is the same as maps f : T →X and g : T → pt, together
with a map (necessarily an isomorphism)

α:ψ ◦ f (T )→π ◦ g (T ).

What does this really mean? Again, ψ ◦ f (T ) is equivalent to the data of a principal G -
bundle on T , namely f ∗P . Similarly,π◦g (T ) is equivalent to the data of another principal
G -bundle on T , namely g ∗pt, which is the trivial bundle. So that means α is a trivializa-
tion of f ∗P (i.e. an isomorphism with the trivial bundle), which is the same as a section
T → f ∗P .

In conclusion, we have seen that a map T → X ×BG pt is the same as a map f : T → X
and a section s : T → f ∗P

f ∗P //

��

P

��
T

s

88

f
// X

This is the same as specifying a map T → P . So we see that X ×BG pt(T ) ∼= P(T ), or
X ×BG pt∼= P . Of course, this is what we expected: pt→ BG is the “universal” G -bundle.
Note that the presence of the map α, measuring the difference along the two pullbacks,
is crucial to achieving the the right characterization!

Exercise 7.23. Let G be an algebraic group and H ⊂G a closed subgroup.

• Show that there is a canonical map BH → BG .
• Show that there is a (2-)cartesian diagram

G /H //

��

BH

��
pt // BG

Exercise 7.24. Let G be an algebraic group and H .G a closed normal subgroup.

• Show that there is a canonical map BG → B (G /H ).
• Show that there is a (2-)cartesian diagram

BH //

��

BG

��
pt // B (G /H )

Exercise 7.25. IfM is a stack, then we define its inertia stack I (M ) is the fibered product
M ×(M×M )M . Show that

I (M )(T ) = {(m ,α) |m ∈M (T ),α∈Aut(m )}.

In particular, ifM = [X/G ] then

IM = {(g ,x ) | x ∈X , g ∈Aut(X )}.
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8. ALGEBRAIC STACKS

8.1. Artin stacks. The category of stacks that we have just defined is too general to work
with in algebraic geometry. We would like to upgrade notions of smoothness, dimen-
sion, sheaves, etc. from schemes to stacks. For instance, we would like to say in some
meaninful way that “Mg has dimension 3g −3.” To make these notions precise, we need
to demand a little extra structure. This comes in the form of an “atlas” covering the stalk
by a scheme.

For motivation, look back at Example 7.22. Here the stack BG admits a “uniformiza-
tion” from a scheme pt. If we base change along any map from a scheme X → BG then
the fibered product is the total space of a principal G -bundle over X , and in particular
a smooth, surjective morphism. Thus, the map pt→ BG should morally be considered
as “smooth covering.” Thus, we should able to use it to descend the usual geometric
properties of schemes to BG .

This is the prototype for the notion of algebraic stack, which is a stack equipped with a
covering by a scheme (an “atlas”) satisfying some conditions. This will allow us to trans-
fer geometric notions from schemes to stacks, provided that they satisfy good descent
properties. Before we can give a complete definition, we need to highlight some techni-
cal considerations.

Definition 8.1. LetM be a stack, and let x : X →M and y : Y →M be two maps from
schemes. Then the fiber product X ×M Y (along x and y ) is called the isomorphism stack
Isom(x , y ).

To see why this is a reasonable name, consider its T -points:

T

f

��

g

))##
X ×M Y //

��

Y

y

��
X x

//M

We have

Isom(x , y )(T ) = {( f , g ,α) | f : T →X , g : T →X ,α: f ∗x ∼= g ∗y }.
This is not only a stack but a sheaf (it lands in the subcategory Set ⊂ Grpoid consisting
of groupoids with trivial automorphism groups). In fact, in many natural examples it is
actually a scheme (e.g. Example 7.22). This general phenomenon has a name:

Definition 8.2. We say that a morphism of stacks M → N is representable if the base
change along any map from a scheme Y toN is again a scheme:

Y ×N M //

��

M

��
Y // N
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In the future, we may use the convention that stacks denoted by ordinary Roman let-
ters are schemes.

Definition 8.3. We say that a stackM is an algebraic stack (or Artin stack) if the following
conditions hold.

(1) For any schemes X , Y and maps X →M , Y →M the fibered product X ×M Y is
a scheme.

(2) There exists a scheme U (which we may refer to as an atlas) with a map u : U →
M such that for all maps from a scheme X →M , the base change of u is smooth
and surjective:

X ×M U //

��

U

u
��

X //M
(3) The forgetful map Isom(u , u ) =U×MU →U×U is quasicompact and separated.

Remark 8.4. The third condition is a technical condition that you can ignore for our
purposes.

Another unimportant technical remark is that it can be better to relax (1) by allowing
X ×M Y to be an “algebraic space” instead of a scheme. (Algebraic spaces sit between
schemes and algebraic stacks.)

Exercise 8.5. Show that condition (1) is equivalent to the diagonal mapM →M ×M
being representable.

8.2. Deligne-Mumford stacks. There is a subclass of Artin stacks which are “nicer” in
many ways, and often come up in practice.

Definition 8.6. We say that an Artin stackM is a Deligne-Mumford stack (or DM stack
for short) if the atlas U can be taken such that any base change X ×M U →X is étale and
surjective:

X ×M U //

étale
��

U

u
��

X //M

Remark 8.7. It is usually also required that the diagonal morphism M → M ×M is
quasicompact. We shall ignore this issue.

Example 8.8. The computation in Example 7.22 shows that BG is an Artin stack (but not
a Deligne-Mumford stack if G has positive dimension).

Exercise 8.9. Show that [X/G ] is an Artin stack.

Facts about DM stacks.

Theorem 8.10. IfM is a Deligne-Mumford stack and T is a quasicompact scheme, then
any object ofM (T ) has only finitely many automorphisms.
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Theorem 8.11. If G acts on X with finite reduced stabilizers, then [X/G ] is a Deligne-
Mumford stack.

Proof. See [Edi00] for a discussion of this proof and many others. �

Theorem 8.12 (Rydh). If Spec k
x−→ [X/G ] is a point and [X/G ] is a DM stack, then there

exists a stabilizer-preserving morphism [U/Gx ]→ [X/G ]where U is affine.

This gives a local picture of a DM stack as a quotient of a scheme by a finite group,
and Artin stacks as being locally quotients by positive-dimensional groups. However, we
caution against taking this picture too literally: for instance, there are Artin stacks all of
whose objects have finite stabilizers.

8.3. Algebraic spaces.

Definition 8.13. An algebraic space is a Deligne-Mumford stack which is a sheaf of sets
(rather than groupoids). In other words, it is a functor on Sch with no non-trivial auto-
morphisms.

Example 8.14. For a scheme X and a finite group G acting freely on X , the quotient stack
[X/G ] is an algebraic space. There is an étale atlas given by X → [X/G ].

If X is quasiprojective, then X/G is a quasiprojective scheme. If X is not quasiprojec-
tive, then Hironaka showed that X/G need not be a scheme.

Example 8.15. We give an example of an algebraic space that is not a scheme. Let Y be
the quotient of A1 modulo the étale equivalence relation x ∼−x if x 6= 0.

This algebraic space comes with a morphism Y → A1, sending x 7→ x 2, which is an
isomorphism over A1 − {0}. Moreover, this is bijective, and both Y and A1 are smooth
over k . But f is not étale at 0 (so f is not an isomorphism). Indeed, in a neighborhood of
0 the map f “looks like” x 7→ x 2.

8.4. Geometric properties. Any property which is “local” in the smooth topology can be
immediately generalized from schemes to Artin stacks using an atlas. Though the reader
can probably guess how this works, we spell it out explicitly.

Definition 8.16. Let P be a property of schemes that “can be checked” on coverings in
the sense that if X is a scheme and X ′ → X is a covering, then X has P if and only if X ′

does.
LetM be an Artin stack. Then we say thatM has property P if for some (equivalently,

any) atlas u : U →M , U has property P .

Example 8.17. This applies with P = smooth, normal, reduced, locally of finite presen-
tation, locally noetherian, regular...

More generally, it is straightforward to generalize this to a relative version when the
morphism is representable.

Definition 8.18. Let P be a property of morphisms of schemes X → Y that “can be checked”
on coverings in the sense that if Y ′→ Y is a covering, then X → Y has property P if and
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only if X ×Y Y ′→ Y has property P .

X ×Y Y ′ //

��

X

��
Y ′ // Y

LetM →N be a representable morphism of Artin stacks. Then we say thatM →N has
property P if for some (or equivalently, any) atlas u : U →N an atlas, the base-change
U ×N M →U has property P .

U ×N M

��

//M

u
��

U // N

Example 8.19. This applies with P = closed immersion, open immersion, affine, proper,
finite...

Example 8.20. This can be used to define the notion of “closed substack” and “open
substack.” In particular, using the atlas X → [X/G ] we see that open substacks of [X/G ]
are of the form [V /G ] for an open subscheme V ⊂X , and likewise for closed substacks.

Finally, when a morphism of stacks is not representable we can still transfer properties
that are local on the source and target for the given topology.

Definition 8.21. Let P be a property of morphisms of schemes X → Y that can be “checked
locally on source and target” in the sense that if Y ′→ Y and X ′→ X are coverings fitting
into a commutative (but not necessarily fiber!) square

X ′ //

��

X

��
Y ′ // Y

then X → Y has property P if and only if X ′→ Y ′ has property P .
Let M → N be an arbitrary morphism of Artin stacks. Then we say that M → N

has property P if there exist atlases u : U →M and v : V →N fitting into a commutative
diagram

U

��

//M

u
��

V // N
such that U →V has property P .

Example 8.22. This applies with P = smooth, flat, locally of finite presentation...

Example 8.23. The map BG → pt is not representable. This is a consequence of the
following exercise:

Exercise 8.24. Show that a representable morphism induces an injection on automor-
phisms groups of objects.
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This is actually an isomorphism if one replaces schemes with algebraic spaces in all
the definitions.

Example 8.25. A situation that arises frequently in algebraic geometry is that one has
an action of G = GLn on a space X , but the center acts trivially. Then there is a mor-
phism of stack quotients [X/GLn ]→ [X/PGLn ] which is smooth and surjective but not
representable.

8.5. Sheaves on stacks. We can use the same idea to “descend’ the notion of sheaf on a
stack. As before, the way to proceed is to find a “descent” formulation of the notion on
schemes (in terms of the appropriate topology), and apply this to an atlas u : U →M .

In the case of schemes, if U →X is covering then a quasicoherent sheaf on X is the data
of a quasicoherent sheaf on U , equipped with an isomorphism p ∗1F ∼= p ∗2F on U ×X U
satisfying cocycle conditions on U ×X U ×X U .

Definition 8.26. LetM be a stack and u : U → X an atlas. A quasicoherent sheaf onM
is the data of a sheaf FU on U , together with an isomorphism p ∗1F ∼= p ∗2F on U ×M U
satisfying cocycle conditions on U ×M U ×M U .

8.6. Coarse moduli spaces. Classically, a coarse moduli space M g of genus g curves was
constructed using Geometric Invariant Theory. One might ask what the relation is be-
tween M g and the moduli stackMg . This relationship fits into a general situation.

Definition 8.27. For a stackM , a categorical quotient is a scheme M such that any map
M →X to a scheme (algebraic space) factors uniquely through M :

M

!!

// X

M
∃

>>

A coarse moduli space forM is a categorical quotient M which induces a bijection on
geometric points:M (k ) =M (k ). (This is obviously unique if it exists.)

Theorem 8.28 (Keel-Mori). Every separated Deligne-Mumford stack has a coarse moduli
space.

Example 8.29. Categorical quotients can be smaller than expected. For example, the
categorical quotient of [An/Gm ] is just a point because any Gm -equivariant map to An

must be constant.

Example 8.30. If X is a scheme (algebraic space) and G acts on X via finite stabilizers,
then [X/G ] has a coarse moduli space M . Moreover, [X/G ] → M is proper and quasi-
finite.

Example 8.31. The moduli stack of elliptic curves overC is the quotient stackH/SL(2,Z).
The corresponding coarse moduli space is just A1

C. This isomorphism is called the j -
invariant.

In this case, the difference between the stack and the coarse moduli space has to do
with the extra data of the automorphisms, which is captured in the stack. Most elliptic
curves have automorphism group Z/2 (with the non-trivial element being the inverse in
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the group law), but one (up to isomorphism over C) has automorphism group Z/4 and
one has automorphism group Z/6.

The fact that the moduli stack of elliptic curves is a quotient H/SL(2,Z) means that
this moduli stack has a Kähler metric with curvature −1. This has some interesting geo-
metric consequences: for instance, it implies that any family of elliptic curves over P1,
or A1, must have all fibers isomorphic. Indeed, such a family would give a morphism
A1 → [H/SL(2,Z)]. The universal cover of this latter space is H, and since A1 is simply-
connected, this lifts to a mapA1→H. SinceH is isomorphic to the unit disc as a complex
manifold, Liouville’s theorem implies that any such analytic map is constant.

On the other hand, the fact that the coarse moduli space of elliptic curves is isomor-
phic to the affine line (where the natural Kähler metric has curvature 0 rather than −1)
also has geometric consequences. For instance, the fact that there are infinitely many
distinct elliptic curves over Q follows immediately from the fact that the affine line has
infinitely many rational points, and one can check that there is an elliptic curve over Q
with any given j -invariant.

By contrast, for big enough positive integers n the coarse moduli space of elliptic
curves with a point of order n has genus at least 2. Faltings showed that every curve
of genus at least 2 over Q has only finitely many rational points. (The special case of
modular curves which is relevant here was established earlier by Mazur.) So for all suffi-
ciently large n , there are only finitely many elliptic curves over Q with a point of order n ,
up to isomorphism overQ.
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9. CHOW GROUPS OF QUOTIENT STACKS

9.1. Construction. Although stacks might seem too far from “genuine” geometric spaces
to admit a Chow ring, Totaro [Tot99] gave a definition of the “Chow ring of BG .” Edidin-
Graham subsequently generalized [EG00] this definition to quotient stacks. The reader
may be disappointed or pleased to learn that it does not involve any of the formalism of
stacks that we have just belabored!

The motivation goes back to the topological construction of BG as EG /G , where EG
is a contractible space with a free G -action. We don’t have the luxury of an algebro-
geometric version of EG , but if we can pick an “almost contractible” space with a free
G -action then we might expect to get a reasonable definition of (at least some) Chow
groups.

Consider the topological story. If V is contractible and S ⊂ V has high codimension,
say real codimension at least i + 1, then the inclusion V − S ,→ V will induce an iso-
morphism on homotopy groups the π0, . . . ,πi . In particular, V −S will be i -connected.
Then the map V −S→ EG will induce an isomorphism on homotopy groups in dimen-
sion up to i , hence also an isomorphism on homology groups up to dimension i + 1 by
Hurewicz’s theorem. Motivated by this, Totaro defined C H i (BG ) =C H i (V −S)/G for any
pair (V,S) such that G acts freely on V −S and codimV S > i . The more general definition
of Edidin-Graham is:

Definition 9.1. Let X be a smooth quasiprojective variety with an action of an algebraic
group G . If V is a faithful G -representation and S ⊂V is a subset with codimV S > i , then
we define the G -equivariant Chow ring

C H i
G ([X/G ]) :=C H i

G (X ) :=C H i (X × (V −S))/G

where the G acts diagonally on X × (V −S) .

In order for this to really be well-defined, we have to check that it is independent of
the choice of (V,S).

Proof. We want to show that if (V,S) are (V ′,S′) are two pairs such that G acts freely on
both V −S and V ′−S′ and codimV S, codimV ′ S′ > i then

C H ∗(X × (V −S))/G ∼=C H ∗(X × (V ′−S′))/G for ∗< i .

We use the “double fibration trick” due to Bogomolov in order to reduce to the special
case where one pair “dominates” the other, in the sense that V ′ =V and S′ ⊃S.

We first reduce to the case where the representations are equal by considering a com-
mon domination by V ×V ′. Then X × (V −S)×V ′ is a vector bundle over X × (V −S), so
(X×(V−S)×V ′)/G exists and X×S×V ′ has codimension at least i in X×V×V ′. Similarly,
X×V ×(V ′−S′) is a vector bundle over X×(V ′−S′), satisfying the right conditions. By the
homotopy axiom, a space as the same Chow groups as any vector bundle over it. This
reduces to the case V =V ′.

Next, replacing S′with S∪S′ allows us to assume that S′ ⊃S. Then we apply the excision
axiom (2.1):

C H∗(X × (S′−S))/G →C H∗(X × (V −S))/G →C H∗(X × (V −S′))/G → 0
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is exact. But since S′ has codimension greater than i , C H∗(X × (S′ −S))/G vanishes up
to codimension i , so the map C H∗(X × (V −S))/G → C H∗(X × (V −S′))/G must be an
isomorphism in codimension up to i . �

We can informally think of [X/G ] as lim−→i
(X × (Vi −Si )/G . As a limit of spaces this may

not really make sense, but we have shown that the limit of Chow groups lim−→i
C H i (Vi −

Si /G ) really does make sense, so we can just define it to be C H i (BG ).
We can make all the definitions we want, but why is this a good definition?

Theorem 9.2. Let G be a reductive group over a field k . Then the above group C H i (BG )
is naturally identified with the set of (pullback) functorial assignments for every smooth
quasiprojective variety X ,

{principal G -bundle over X }→C H i X .

Proof. See [Tot99]. �

Remark 9.3. This gives a natural ring structure on C H i X , which agrees with what you
think it is (namely the inverse limit of the ring structures on the finite approximations).

9.2. Examples. Our strategy for computing BG will be to find a representation of G such
that the action is free on the complement of a high codimension subset S. We then need
to compute the quotient variety (V −S)/G . When G is a finite group we can just take the
ring of invariants in V −S; when G is a linear algebraic group, the quotient exists as a
quasi-projective variety by general theory.

9.2.1. Stratifications.

Example 9.4. Let G =Gm . Then G acts on An+1 by scalar multiplication, and the action
is free onAn+1−{O}. The quotient space is one that we know and love: Pn . We computed
earlier that C H ∗(Pn )∼=Z[c1].

Let L n be the tautological line bundle on Pn . The inclusion via 0-section Pn → L n

sends the class of the hyperplane to the class of a codimension 2 plane. On the one
hand, we know that C H ∗(L n ) → C H ∗(Pn ) is an isomorphism by homotopy invariance.
On the other hand, we have a pushforward map

C H n−k (Pn ) =C Hk (Pn )→C Hk (L n )
∼−→C Hk−1(Pn ) =C H n−k+1(Pn ).

For k = n , this composition takes the fundamental class of Pn to the class of the zero sec-
tion in C Hk (L), and then to the hyperplane class in Pn . The upshot is that the inclusion
of Pn as the zero section of L n induces multiplication by c1(L n ) at the level of the Chow
ring.

Taking the “limit” n → ∞, where we get BGm = P∞ and L∞ is the “universal” line
bundle, we obtain the general statement:

Corollary 9.5. If L→X is any line bundle, then the map

C Hk (X )→C Hk (L)∼=C Hk−1(X )

induced by the inclusion X ,→ L as the zero section corresponds to multiplication by c1(L)∈
C H ∗(X ) in C H ∗(X ).
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This result will prove surprisingly useful!

Example 9.6. What’s B GL(n )? Let V be the standard representation of GL(n ). Let W =
Hom(AN , V ) ∼= V N for N � 0. Then GL(V ) acts freely on the open subset of surjective
linear maps Surj(An , V ). The quotient space Surj(An , V )/GL(V ) is isomorphic to Gr(N −
n , N ), by associating to a surjective linear map its kernel.

The codimension of the complement goes to∞with N , so we get that

C H ∗B GL(n ) = lim−→C H ∗Gr(N −n , N )“=C H ∗Gr(∞−n ,∞).”

As the Grassmannian also admits an algebraic affine stratification (via Schubert cells), its
Chow groups are the free abelian group on the set of cells, like the ordinary cohomology
ring. Therefore,

C H ∗B GL(n )∼=Z[c1, . . . , cn ] |c i |= i .

By the earlier theorem, each c i furnishes a functorial assignment from rank n vector
bundles V →X to C H i (X ), which is called the Chern class.

9.2.2. Finite groups.

Example 9.7. Let’s try to compute C H ∗B (Z/2).
To compute C H i=0, we can take the reflection representation on A1. Then Z/2 acts

freely on A1−{O}, with quotient again A1−{O}, so

C H 0(BZ/2)∼=C H 0(A1−{O})∼=Z.

To compute C H i=1, we can take the reflection representation onA2. ThenZ/2 acts freely
on A2 − {0} by multiplication by ±1. The ring of invariants its k [x 2,x y , y 2] ⊂ k [x , y ],
which you might recognize as the (affine) quadric cone Q := Spec k [u , v, w ]/(u w − v 2).
Removing the origin corresponds to removing the cone point.

When calculating the first Chow group, we may as well throw the cone point back
in since it has codimension 2 (hence doesn’t affect C H 1). We claim that C H 1Q ∼= Z/2,
generated by the class of a line through the origin lying on the cone, e.g. u = 0.

First let’s see why twice the line should be zero. A plane tangent to the line intersects
the cone in the double line. As the plane is rationally equivalent to zero on A3, its inter-
section is rationally equivalent to zero on the cone.

According to the basic exact sequence, the quotient of C H 1 by the class of this line is
just C H 1 of the cone minus the hyperplane section. That corresponds to inverting u , in
which case we get Spec k [u±, v ], which is an open subset of affine space, and hence has
trivial C H 1.

In general, Z/2 will act freely on An − {O}, and you can see that the quotient will be
Spec (k [x1, . . . ,xn ])2• minus the origin. That’s the affine cone over the Veronese embed-
ding of the smooth quadric inPn−1 minus the cone point. For the purposes of calculating
the Chow groups, we can always throw the cone point back in. The C Hk of this variety
will have a class represented by a k -plane contained in the quadric, whose double is the
intersection of an ambient plane with the quadric, hence rationally equivalent to 0.

Exercise 9.8. Show that these plane classes generate, so that the Chow ring is Z[h]/(2h).

Don’t sweat to much on this exercise - we will shortly see a more efficient way to see
the answer.
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Example 9.9. Let P → X be a principal Gm -bundle (with X smooth). Then P is the total
space of the corresponding line bundle L minus the 0-section. The excision sequence
(viewing X ,→ L as the zero section) gives

C H∗(X )→C H∗(L)→C H∗(L−X = P)→ 0.

But by Corollary 9.5, the map C H∗(X )→C H∗(L) is multiplication by c1(L), so we get that
C H∗(P) =C H∗(X )/c1(L).

Compare this with the Gysin sequence of a circle bundle in topology:

. . .→H i−2X
c1(L)−−→H i X →H i P→H i−1X → . . .

Example 9.10. We can use the result of Example 9.9 to give a slick computation of C H ∗(BZ/p ).
Let W be a faithful 1-dimensional representation of Z/p (i.e. via a non-trivial char-
acter) and V = W ⊕n . As Z/p acts freely on V − {O}, an nth level approximation to
B (Z/p ) is (V −{O})/(Z/p ). Now, this action factors through a representation of Gm , via
Z/p ,→Gm ,→GL(V ). Therefore, we should have a fiber bundle

Gm /(Z/p )→ BZ/p → BGm .

This doesn’t really make sense in the category of schemes, but concretely An − {O} can
be used as an “approximation to EG ” for both Gm and Z/p , so we have a genuine fiber
bundle

Gm /(Z/p )→ (An −{O})/(Z/p )→ (An −{O})/Gm .

Of course, we computed the latter objects as Pn−1, and Gm /(Z/p ) ∼= Gm . This realizes
(An −{O})/(Z/p ) as a Gm -bundle over Pn−1, corresopnding to the line bundle O (−p ) as
it’s evidently the p th power of the tautological bundle. That puts this example in the
context of 9.9, so

C H ∗B (Z/p )∼=C H ∗P∞/p c1
∼=Z[c1]/p c1.

Observe that we recover the computation of B (Z/2), with much less fussing around!

9.2.3. Classical groups. We now develop the tools to calculate the Chow ring of some
classical groups.

Theorem 9.11. Let G be an affine group scheme over k and V a faithful representation of
G . Under the induced map

C H ∗BG L(V )∼=Z[c1, . . . , cn ]→C H ∗BG

let c i 7→ c i V . Then
C H ∗(GL(V )/G )∼=C H ∗BG /(c1V, . . . , cn V ).

Proof. We (morally) have a fibration

GL(n )/G → BG → B GL(n ).

By “looping” this, we also get

GL(n )→GL(n )/G → BG .

(To make this mathematically sound, argue that if V −S approximates E GL(n ) then we
get

GL(n )/G → (V −S)/G → (V −S)/GL(n )
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and
GL(n )→ [H × (V −S)]/G → (V −S)/G .

where the G -action on a product is always diagonal.)
This shows that GL(n )/G is a principal GL(n )-bundle over BG . That’s the same as a

vector bundle, so it suffices to show that if P→X is principal GL(n )-bundle, then

C H ∗(P) =C H ∗(X )/(c1(P), . . . , cn (P)).

We already saw this in the special case n = 1. That implies the result for a direct sum
of line bundles, i.e. a (Gm )n -bundle. Then the result holds for a Borel by homotopy
invariance, and the general case can be reduced to the Borel by considering a flag (this is
a reflection of the splitting principle in algebraic geometry).

�

We can use this to gain information about C H ∗BG if we know C H ∗(GL(V )/G ) (or vice
versa). For instance, if C H ∗(GL(V )/G ) is trivial, then C H ∗BG is generated by c1V, . . . , cn V .

Example 9.12. What is C H ∗BO(n )C? Let V be the standard representation of O(n ), in-
ducing an embedding O(n ) ,→ GL(n ). To apply Theorem 9.11, we need to understand
GL(n )/O(n ).

Well, GL(n ) acts on symmetric forms on V , i.e. Sym2 V ∗, which is isomorphic toAn (n+1)/2.
All non-degenerate symmetric bilinear forms are GL(n )-equivalent, and the stabilizer of
a non-degenerate form is O(n ). Therefore, GL(n )/O(n ) can be realized as an open subset
of An (n+1)/2, so

C H ∗GL(n )/O(n ) =

(

Z ∗= 0,

0 ∗> 0.

By the theorem, we may conclude that C H ∗BO(n ) is generated by c1, . . . , cn . What’s the
kernel?

As the representation V of O(n ) is self-dual, we get c1 = −c1, and in general c j =
(−1)j c j (V ). Therefore, 2c j = 0 for all odd j . In fact, these are the only relations. One
way to see this is that the map

Z[c1, . . . , cn ]/(2c2k+1 = 0) ,→H ∗(BO(n ),Z)

is injective, but this factors through Chow. Therefore, we conclude that

C H ∗BO(n )∼=Z[c1, . . . , cn ]/(2c2k+1 = 0).

Example 9.13. What is C H ∗B Sp(2n )C? Again, let V be the standard representation of
Sp(2n ). Then GL(2n ) acts transitively on the space of symplectic forms on V , which the
non-degenerate ones being isomorphic to an open subset of affine space. Therefore,
C H ∗BG will be generated by C H ∗Z[c1, . . . , c2n ]. But what are the relations?

Again, the natural symplectic form makes V self-dual, so by the same reasoning we
get 2c i = 0 for i odd. In fact, we claim that c i = 0 for i odd. It suffices to show that
C H ∗B Sp(2n ) ,→ C H ∗BT = C H ∗BGm (the maximal torus), as we checked that the latter
is torsion-free. Since BT is an iterated affine space bundle over B B (the classifying space
of the Borel), it suffices to show that C H ∗B Sp(2n ) ,→C H ∗B B . This fits into a fiber bundle

Sp(2n )/B→ B B→ B Sp(2n ).
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Now, Sp(2n ) is one of Grothendieck’s list of “special groups,” meaning that this bundle is
actually Zariski locally trivial, so we can take a section over an open subset and then take
its closure. (This is a version of Hilbert’s Theorem 90 for the symplectic group, which is
reflected in the linear algebra fact that there is only 2n-dimensional symplectic vector
space over any field.) This defines a cycle α ∈ C H ∗B B pushing forward to the funda-
mental class 1 ∈ C H 0 B Sp(2n ). This gives a section for the induced map of Chow rings
C H ∗B Sp(2n ) → C H ∗B B , as the projection formula tells us that f ∗(α · f ∗x ) = x for all
x ∈C H ∗B Sp(2n ).

It is known that H ∗(B Sp(2n ),Z)∼=Z[c2, c4, . . . , c2n ], so by the same argument as above
we must have found all relations in the Chow ring: we conclude that C H ∗B Sp(2n ) ∼=
Z[c2, c4, . . . , c2n ].
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10. EQUIVARIANT K -THEORY

10.1. Equivariant sheaves. We now introduce a group action into the picture. Suppose
that we have an algebraic group G acting on our space X . This means that we have an
action morphism

G ×X
a−→X

satisfying the usual axioms, which can be expressed as certain commutative diagrams.

Definition 10.1. A morphism f : X → Y is G -equivariant with respect to given G -actions

G ×X
a X−→X and G ×Y

a Y−→ Y if the following diagram commutes:

G ×X
a X //

1× f
��

X

f
��

G ×Y
a Y // Y

We want to have a notion of a “G -equivariant vector bundle” E on X . A natural defini-

tion would be to demand that that E admit a G -action such that the projection map E
π−→

X is G -equivariant. However, to better match the generalization to coherent sheaves we
choose a different formulation:

Definition 10.2. Let p2 : G ×X → X denote the second projection map. A G -equivariant
vector bundle on X is a locally free sheaf E on X equipped with an isomorphism

θ : a ∗E ∼= p ∗2E

on G ×X , satisfying the cocycle condition

p ∗23θ ◦ (1×a )∗θ = (m ×1)∗θ

where p23 : G ×G ×X →G ×X is the projection and m : G ×G →G is the multiplication
within G .

Exercise 10.3. Show that Definition 10.2 is equivalent to demanding that the projection
map from the total space of E to X be G -equivariant.

Definition 10.4. Let p2 : G ×X → X denote the second projection map. A G -equivariant
coherent sheaf on X is a coherent sheaf F on X , equipped with an analogous isomor-
phism satisfying an analogous cocycle condition to that in Definition 10.2.

Definition 10.5. We denote by G0(G , X ) the Grothendieck group of G -coherent sheaves
and K0(X ) the Grothendieck group of G -vector bundles.

Example 10.6. If X = Spec k , then the notions of coherent sheaf and vector bundle on
X coincide, both being a finite-dimensional k -vector space. A G -equivariant coherent
sheaf on X is then simply a finite-dimensional representation of G . Thus, G0(G , X ) =
K0(G , X ) =R(G ), the representation ring of G .

Example 10.7. If G is a finite abelian group over C, then by the classical theory of finite
group representations the representation ring is the free abelian group on the irreducible
representations, which coincides with the usual group algebraC[G ] (since all of the irre-
ducibles are one-dimensional).
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Example 10.8. Let G = Gm /C. Any representation of G is absolutely irreducible, and
the irreducible representations are the characters. Therefore, the representation ring is
Z[Z]∼=C[x ,x−1]. This coincides with the group algebra C[Gm ] again, but we emphasize
that this is not true in general.

Proposition 10.9. Let [X/G ] be a quotient stack. Then we have canonical isomorphisms

K0(G , X )∼= K0([X/G ]) and G0(G , X )∼=G0([X/G ])

Proof. Using the smooth atlas X → [X/G ], we have by definition that a vector bundle
(resp. coherent sheaf) on X/G is the same as a vector bundle (resp. coherent sheaf) on
X satisfying descent data. We have to verify that this descent data corresponds precisely
to the G -equivariance.

The definition of G acting freely on X is that the map

G ×X
(a ,Id)
−−→X ×[X/G ] X

sendin (g ,x ) 7→ (g x ,x ) is an isomorphism, hence also that

G ×G ×X →X ×[X/G ] X ×[X/G ] X

sending (g , g ′,x ) 7→ (g g ′x , g ′x ,x ) is an isomorphism. We can use this to compare the
definition of G -equivariance with the descent formalism from X to X/G . For instance,
the map m × Id: G ×G ×X →G ×X translates into p13 : X ×[X/G ] X ×[X/G ] X →X ×[X/G ] X .

Exercise 10.10. Complete the proof.

�

Example 10.11. By Example 10.6, we see that K0(BG )∼=G0(BG )∼=R(G ).

Example 10.12. Let p : X → B be a principal G -bundle. Then applying Proposition 10.9
with X =X , so that B = [X/G ], we obtain canonical isomorphisms

K0(G , X )∼= K0(B ) and G0(G , X )∼=G0(B ).

Example 10.13. Let G be a finite group. We have maps pt→ BG and BG → pt. The first
map is the universal bundle over BG , which in terms of the functor of points sends a
scheme T to the trivial G -bundle over T , and the second map sends any principal G -
bundle over T to T .

We have K (pt) ∼= Z and K (BG ) ∼= R(G ). What are the pushforward maps K (pt) →
K (BG ) and K (BG )→ K (pt)? Note that their composition must be the identity.

A sheaf on BG corresponds to a G -equivariant sheaf on the atlas pt; what sheaf is this?
By definition, the map pt→ BG corresponds to a cartesian diagram

G

π′

��

f ′ // pt

π

��
pt

f // BG

By base change, for a vector bundle V on pt we have π∗ f ∗V ∼= f ′∗(π
′)∗V = V ⊗Spec k [G ].

So we see that the map K (pt)→ K (BG ) corresponds to tensoring with the regular repre-
sentation of G .
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Next, the map K (BG )→ K (pt) corresponds to taking global sections. The global sec-
tions of a sheafF on BG are the G -invariants of the global sections of the pullback sheaf
on pt.

As a sanity check, we verify that the compositionis the identity: (V ⊗k [G ])G ∼=V .

10.2. Atiyah-Bott localization. ♠♠♠ TONY: [TODO]
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Part 3. Equivariant Riemann-Roch

11. EQUIVARIANT RIEMANN-ROCH

11.1. Baum-Fulton-MacPherson. We are finally about to state the equivariant Riemann-
Roch theorem of Edidin and Graham. First, we highlight a generalization of the Grothendieck-
Riemann-Roch theorem to singular varieties, after which the equivariant Riemann-Roch
theorem is patterned.

The Baum-Fulton-MacPherson theorem says that for all finite type schemes over k

there exists an isomorphism G (X )
τX−→ C H ∗(X ) which is covariant for proper morphisms

X → Y , which agrees with ch ·Td(TX ) if X is smooth (and thus recovers Grothendieck-
Riemann-Roch in that case.

K (X )Q
τX //

��

C H ∗(X )Q

��
K (Y )Q

τY // C H ∗(Y )Q

In general, the map τX satisfies

τX ([OV ]) = [V ]+ lower order terms

and indeed this underlies why τX is an isomorphism.

11.2. Riemann-Roch for quotient stacks. Let X be a scheme and G a linear algebraic
group acting on X . We seek a Riemann-Roch theorem for the quotient stack [X/G ].

Remark 11.1. The quotient stack [X/G ] is Deligne-Mumford if all stabilizers are finite
and geometrically reduced (the latter condition is automatic in characteristic 0) [EG00].

For notational purposes, from now on we will use K (X ) to denote the rational Grothendieck
group of coherent sheaves on X ). We have a homomorphism K ([X/G ]) → C H ([X/G ]),
which may not be an isomorphism, but it factors through an isomorphism which we will
shortly describe:

K ([X/G ]) //

##

C H ([X/G ])

?

∼=

::

The ring K ([X/G ]) has an augmentation ideal, i.e. the ideal of objects of rank 0. For
example, K (BG ) is the representation ring of G , and has the augmentation ideal of rank 0
virtual representations. This is the “universal case.” Any morphism X → Spec k , which is
obviously flat, descends to a map f : [X/G ]→ BG . This induces a pullback f ∗ : K (BG )→
K ([X/G ]), and the augmentation ideal for K ([X/G ]) is generated by the pullback of the
augmentation ideal of K (BG ). Note that one can think of this again as the ideal of virtual
vector bundles of rank 0.

Definition 11.2. We define bK ([X/G ]) to be the completion of K ([X/G ]) at the augmenta-
tion ideal.
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This is the missing ingredient ? in the diagram above. The map K ([X/G ])→C H ([X/G ])
should be something like ch ·Td([X/G ]). Letting g denote the Lie algebra of G equipped
with the adjoint action of G , it is natural to think of T[X/G ] = TX /g.

Theorem 11.3 (Edidin-Graham). The map ch ·Td(T X )/Td(g) factors through an isomor-
phism

K ([X/G ])
ch ·Td(T X )/Td(g) //

&&

C H ([X/G ])

bK ([X/G ])

∼=

88

Example 11.4. If G = Gm = C×, then (by Example 10.8) we have R(G ) = Z[s , s−1]. The
augmentation ideal is evidently generated by s a − s b , hence is the principal ideal (s −1).
So we see that the augmentation ideal cuts out the identity in Spec R(G ).

Let X = Spec k , so [X/G ] = BG . Then (by Example 10.11) G ([X/G ]) ∼= Z[s , s−1] and
(by Example 9.4) C H ∗([X/G ]) ∼= Z[[t ]]. Tracing through these identifications, the Chern
root of the representation corresponding to s is t . Therefore, we can identify the map
appearing in the equivariant Riemann-Roch theorem (which requires tensoring withQ)
with

Q[s , s−1]→Q[[t ]]
s 7→ e t

This is not an isomorphism, as expected. However, the equivariant Riemann-Roch theo-
rem predicts that it factors through the completion of G (BG ) at the augmentation ideal.

Q[s , s−1]

&&

// Q[[t ]]

ÛQ[s , s−1](s−1)

99

What is the completion ÛQ[s , s−1](s−1)? If we set u = s −1, then we are taking the comple-
tion of Q[u , (1+u )−1] at (u ). But of course (1+u ) is already invertible in Q[[u ]], so we
simply obtainQ[[u ]]. Thus we indeed witness the isomorphism

bG ([X/G ])∼=Q[[u ]]
∼−→Q[[t ]]∼=C H ∗([X/G ]).

However, this isomorphism sends u 7→ e t − 1, which is more “complicated” than the
naïve map u 7→ t .

Example 11.5. Let X = Spec k and G =µ2. Then we have

K (G , pt)Q =R(G )Q =Q[x ]/(x 2−1).

Note that this agrees with the coordinate ring, as expected from Example 10.7.
On the other side, the Chow ring of [X/G ] is Q[t ]/2t ∼= Q, by Example 9.7. This is

obviously not isomorphic to the K -theory, but the equivariant Riemann-Roch theorem
predicts an isomorphism after completing at the augmentation ideal.
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Indeed, the augmentation ideal is I = 〈χ − 1〉, and completing Q[x ]/(x 2 − 1) with re-
spect to I gives(Q[x ]/(x 2−1))(x−1)

∼=Q[x ]/(x −1)∼=Q.

Exercise 11.6. Check that the map τ= ch ·Td(T X/g) sends x 7→ e t = 1∈ K ([X/G ]).

11.3. Examples.

Example 11.7. (Weighted projective line) In the introduction, we saw hints of a Riemann-
Roch theorem for the weighted projective line P1(a ,b ). Over C, we have an action C∗ on
A2 sending x 7→λ−a x and y 7→λ−b y . A line bundle on P(a ,b ) is a line bundle onA2 with
a compatible action of C∗.

Exercise 11.8. Show that the coarse moduli space of P1(a ,b ) is the usual P1.

Any line bundle on A2 is trivial, so if we denote a generator by T then the action of
C∗ is necessarily of the form T 7→ λ`T . We denoted by ξ` the corresponding line bundle
on P(a ,b ). Then we counted Γ(P(a ,b )ξ`). We saw a linear plus oscillatory behavior,
and we wondered if there could be a Riemann-Roch formula underlying the results. The
conjectured formula was

h0(P(a ,b ),ξ`) =
`

ab
+

1/a +1/b

2
+ (oscillation term). (11.1)

Now let’s analyze this using the equivariant Riemann-Roch theorem.

Computation of Chow ring. Let’s warm up with the simplest case a = 1,b = 1. Then
P1(1, 1) = (A2 \0)/Gm . We have an excision exact sequence for Chow rings

C H∗(pt/Gm )→C H∗(A2/Gm )→C H∗(A2−0/Gm )→ 0.

Now C H ∗(pt/Gm ) =C H ∗(BGm ) = Z[u ]. As A2/Gm is an A2-vector bundle, we also have
C H ∗([A2/Gm ]) ∼= Z[t ]. What is the map C H∗(pt/Gm )→ C H∗(A2/Gm )? The element 1 ∈
C H ∗(pt/Gm ) is always represented by the fundamental class, which is modelled at the
finite approximations to the Chow ring by the fundamental class of Pn . On the other
hand, the finite approximations to the Chow ringof [A2/Gm ] are [A2× (An+1−0)/Gm ]∼=
Pn+2−P1 ⊂Pn+2, with t representing the hyperplane class. Since the intersection of two
hyperplane classes in Pn+2 is the class of Pn , we may conclude that this map is sends
1 7→ t 2. By the excision sequence, we deduce that C H ∗(A2−0/Gm )∼=Z[t ]/t 2.

This was the case (a ,b ) = (1, 1). In general, we see that in the map C H∗(pt/Gm ) →
C H∗(A2/Gm ) the fundamental class 1 is sent to the class of the “intersection of the x and
y axes inA2.” Looking in the approximations for [A2× (An+1−0)/Gm ], we see that these
axes represent a t and b t , since they are cut out by elements of degree a and b . The
conclusionis that 1 7→ (a t ) · (b t ), hence

C H ∗(P1(a ,b ))∼=Z[t ]/ab t 2 .

Now the degree map on K -theory induces a map Q[t ]/ab t 2 7→Q. We claim that under
this map, t 7→ 1

ab . It has stuff going on at the 1/a and 1/b weighted points, which are the
images of the line a t and b t whose intersection cut out the pushforward of the class of
the point.
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Computation of K-theory. We also have an excision exact sequence

K (pt/Gm )→ K (A2/Gm )→ K (A2−0/Gm )→ 0.

We know that K (pt/Gm ) is the representation ring ofGm , which is Z[s , s−1], so similarly
K0(A2/Gm ) ∼= Z[t , t −1]. What is the map K0(pt/Gm )→ K0(A2/Gm )? It suffices to com-
pute the image of 1, which is the class of O0 ∈G (A2/Gm ). To find this, we should resolve
by vector bundles. We can use the Koszul complex:

0→OA2
(x ,y )T
−−−→O ⊕2

A2

(−y ,x )
−−−→→OA2 →Opt→ 0.

Now comes an important point. Here x and y represent functions on A2 rather than co-
ordinates, so the action ofGm has weight negative a on x and negative b on y . Therefore,
as equivariant bundlesO ⊕2

A2 has weight (a ,b ) (in order to make the map equivariant), etc.
By passing to the alternating sum, we conclude that

[Opt] = 1− t a − t b + t a+b .

Here’s another way of going about this computation. We can first compute [Ox−axis] by
the resolution

0→OA2
x−→OA2 →Ox−axis→ 0.

This shows that [Ox−axis] = (1− t a ). Then applying a similar argument on Ox−axis
∼= A1,

which now has an action of weight b , we obtain again [Opt] = (1− t a )(1− t b ). So the
conclusion is that

K (P1(a ,b ))∼=Q[t ]/(1− t a )(1− t b ).

The Todd class. We want to compute TP(a ,b ) because we eventually want to take its
Todd class. For the normal P(1, 1), you have the usual Euler exact sequence

0→O →O (1)⊕O (1)→ T → 0.

The same proof for P(a ,b ) gives a “weighted Euler exact sequence”

0→O → ξa ⊕ξb → T → 0.

By the multiplicativity of Todd class, we get

Td(TP(a ,b )) =
�

1+
1

2
a t + . . .

��

1+
1

2
b t + . . .

�

= 1+
1

2
(a +b )t .

Then

ch(ξ`) ·Td(TP(a ,b )) = e `t
�

1+
a +b

2
t

�

= (1+ `t )(1+
a +b

2
t )

= 1+(`+
a +b

2
)t
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which has degree 1
ab (`+

a+b
2 ). This agrees with what we guessed in (11.1), except for the

error term. The error term is coming from the pieces supported away from 1∈ Spec R(G ),
as we discussed before.

For simplicity, let’s consider the case a = 1,b = 2. Then

K (BGm )Q ∼=Q[t ]/(1− t 2)(1− t )∼=Q[t ]/(1− t )2(1+ t )

and what we computed above was the contribution from the Q[t ]/(t − 1)2 piece. The
class of ξ` in K -theory is t `, which modulo (t − 1)2 is `t + 1, but modulo t + 1 is (−1)`.
That is why we also get a contribution involving (−1)` to h0(ξ`).

What about higher rank vector bundles? For a direct sum of line bundles, the naïve
expected answer is

h0(V ) = deg V + rank V (
1

2
χtop).

Even though this is wrong wrong, we’ll see that it is sometimes right for vector bundles.
For instance, take V = 1+ξ. Then we predict that

h0(V ) =
1

2
+2(

1

2
×

3

2
) = 2.

But h0(O ) = 1 and h0(ξ) = 1, so this is actually correct! You can check that our prediction
for ξk +ξk+1 will be always be right. The reason comes from the fact that bundles of this
form vanish at the ideal (1+ t ), so there is no extra contribution.

More general weighted projective spaces. It is easy to see how this discussion general-
izes. Given integers a 0, . . . , a n , we can consider

[An+1−0/C×] =:Pn (a 0, . . . , a n )

with the action λ(x0, . . . ,xn ) = (λa 0 x0, . . . ,λa n xn ).
The same argument shows that

K (Pn (a 0, . . . , a n ))∼=Z[χ ,χ−1]/(χa 0 −1) . . . (χa n −1)

and the Chow ring is

C H ∗(Pn (a 0, . . . , a n )) =Z[t ]/(a 0 . . . a n )t n+1.

Tensoring withQ, we see that

K (P(a 0, . . . , a n ))Q ∼=Q[χ ,χ−1]/(χ −1)n+1(χa 0−1+ . . .+1)(χa n−1+ . . .+1)

which can be decomposed as

Q[χ ,χ−1]/(χ −1)n+1⊕ stuff not supported at 1.

The Riemann-Roch theorem identifies the first summand with C H ∗(Pn (a 0, . . . , a n ))Q.
Now, the other summands depend very much on the specific choice of a i .
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12. THE GEOMETRY OF QUOTIENT STACKS

We will work towards a proof of the Equivariant Riemann-Roch Theorem and other
facts that we have mentioned, but not proved. However, we will do so in a more leisurely
fashion, exploring as we go.

12.1. Four points on P1. We have seen that basic questions about the simple example
P1 has led to very deep and fascinating mathematics, and we return to it again. The goal
is to explore how Deligne-Mumford (DM) stacks come up “in nature.”

Consider the space “P1 with four unordered points” up to automorphisms of P1. This
is a little vague so far, so let’s try to digest what it means.

Given four ordered points on P1, there exists a unique automorphism sending the
first three to 0, 1,∞, and the fourth to λ. Therefore, “four ordered points” on P1 are
parametrized by P1, via the cross-ratio λ (there are some automorphism issues at λ =
0, 1,∞which we’ll ignore).

We might say this in a slightly different way, that four unordered points are parametrized
by “P1/S4.” This means that there is an S4-action on “space of four ordered points” and
we should quotient out by this group. But actually the Klein four subgroup V4 ⊂ S4 acts
trivially, and we have an exact sequence

1→V4→S4→S3→ 1

so the space is really “P1/S3.” This is a projective curve admitting a degree 6 cover by P1,
so it must itself be P1.

If we want to study “line bundles on the quotient,” then we need to understand the
group action on line bundles. For instance, we have the line bundle O (n ) on P1.

Problem 12.1. When, and in how many ways, can one extend the S4 action from P1 to
O (n )?

In particular, such an extension would make Γ(O (n )) into an S4-representation, and
then the graded ring

⊕

d≥0Γ(O (n ))would be a representation of S4.

Problem 12.2. What does Γ(O (n )) “look like” as n grows?

An algebraic digression. Let’s abstract this question a bit. Let G be a finite group (non-
abelian) and let V be a finite-dimensional representation over C. What representations
occur in Symn V ? A related question: what representations occur in V ⊗n ?

Exercise 12.3. Find estimates on “how often” a given irreducible representation of G oc-
curs in Symn V and V ⊗n .

Example 12.4 (Finite cyclic groups). The representation ring of G =Z/n is A =C[t ]/(t n−
1). So we have “recovered” the group in this funny way from its representation ring, and
the eigenspace decomposition corresponds to a decomposition as representations.

Example 12.5 (The multiplicative group). A finite-dimensionalGm -representation is the
same as a finite-dimensional module overC[t , t −1]. But Spec C[t , t −1] =Gm , so we again
“recover” the group. However, things get subtler over a non-abelian group.

63



Equivariant Algebraic Geometry Math 245B

Now let’s go back to our original example. We have an S4 action on P1, which in stacky
terms means that we have a diagram

P1 //

��

[P1/S4]

��

// P1

pt // BS4

A line bundle on BS4 is just a k -module with S4 action, i.e. a representation of S4, so the
earlier question Problem 12.2 can be thought of as asking how to “push forward” a line
bundle on P1 to a line bundle on BS4.

Back to four points on P1. We saw that the action of S4 on P1 factors through S3, so let’s
study [P1/S3].

First of all, what is the action of S3 on P1? Explicitly, it can be described as the effect
on the cross-ratio induced by permuting 0, 1,∞. Let’s calculate the effect in coordinates.
Let x , y be coordinates on P1 and u = x/y . Then the elements of S3 are

u 7→ u

u 7→ 1−u

u 7→ 1/u

u 7→ u /(u −1)

u 7→ 1/(u −1)

u 7→ (u −1)/u

What are the points with non-trivial stabilizers? {0, 1,∞} and {1/2, 2,−1} have stabilizer

of size 2, and the roots of u 2−u+1= 0, which are { 1±
p

3
2 }, form an orbit of size 2. We claim

that this is everything. We could easily check this directly, but let’s see it in a different way.
Intuitively, P1 should be a “covering space” of [P1/S3] (with deck transformations S3).

Since P1 has Euler characteristic 2, the space [P1/S3] should have Euler characteristic
2/6 = 1/3. On the other hand, we are “removing” each point x that has a non-trivial
stabilizer and pasting back in a point with “weight” 1

Stab(x ) , for a total of

2−1−1−1+
1

2
+

1

2
+

1

3
= 1/3.

The reasoning here is that a “stacky point” with stabilizer of order 2 “is” B (Z/2), since it
admits a double cover by a point.

Let’s try to rigorously justify the claim that the inclusion of a point with Z/2 stabi-
lizer corresponds to a closed embedding B (Z/2) ,→ [P1/S3]. First of all, what is the map
B (Z/2)→ [P1/S3]? We have defined this notion in terms of T -points.
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A map from a test scheme T to B (Z/2) is a diagram

Y
Z/2−equiv.//

Z/2
��

pt

��
T // B (Z/2)

From this we want to produce, in a functorial way, a diagram

W
S3-equiv. //

S3

��

P1

��
T // [P1/S3]

which specifies a map from T to [P1/S3]. To do so, we can extend the structure group on
Y from Z/2 to S3 to produce a principal S3-bundle W → T . (Recall from Exercise 7.23
that given an inclusion H ,→G , we have a map BH → BG .)

Next, we need to define a map from W to P1. We begin by mapping Y to P1 by collaps-
ing it to a point inP1 with stabilizerZ/2. This isZ/2-equivariant by definition. We extend
the map to W → P1 by sending σ ·x 7→σ(x ) for σ ∈S3. If this is well-defined, then it will
be S3-equivariant by contruction. But the only ambiguity comes from the Z/2-action on
Y , and the orbit of the point in P1 which is the image of Y is Z/2-invariant.

The fact that B (Z/2) ,→ [P1/S3] is a closed embedding follows from Y ,→ W being a
closed embedding.

Computation on [P1/S3]. In order to get a computational handle on the stack [P1/S3], it
is useful to produce an étale cover in terms of affines. If we choose an S3-invariant open
affine subsetU ⊂P1, then we obtain a diagram

U �
� open //

S3

��

P1

S3

��
V �
� open // [P1/S3]

We can take U to be P1 \ {0, 1,∞}, which is Spec C[u ]u (u−1). A natural thing to do is to
form Spec (C[u ]u (u−1))S3 , which will end up giving the coarse moduli space for V .

Exercise 12.6. Since we threw out one orbit, the coarse space should be A1. Show that
(C[u ]u (u−1))S3 ∼=C[t ]. What is t ?

We have a cover Spec C[u ]u (u−1) → [Spec C[u ]u (u−1)/S3]. The latter has two “stacky”
points, and the map should be an isomorphism away from the stacky points. How might
one prove this? If you find the corresponding values of t , and poke them out, then you
should find A1−{two points}with an honest S3-cover.

Using the explicit data of this étale cover, we can push and pull sheaves to heart’s
content, and do all calculations on the honest schemeP1. For instance, what’s the degree
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of a point?

P1

deg 6
��

[P1/S3] // Spec k

Let d be the degree of the point in [P1/S3] corresponding to the orbit {0, 1,∞} consisting
of 3 reduced points, which has deg 3. Then the degree of this point must be 3

6 = 1/2.

12.2. Euler characteristics for stacks. In the discussion of the previous sections, we ex-
ploited the idea of an “Euler characteristic” for stacks. Let’s explore this. For a complex
manifold, the compactly supported Euler characteristic is

χe (X ) =
∑

i

(−1)i h i
c (X )

where h i
c (X ) = dim H i

c (X ) is the dimension of the compactly supported cohomology.
This is additive in nice situations, e.g. if X = Y

︸︷︷︸

open

∪ Z
︸︷︷︸

closed

is a decomposition into open

and closed subsets, then we have

χe (X ) =χe (Y )+χe (Z ).

It is easy to check that under a finite étale map f : X → Y of degree d , we have

χe (X ) = dχe (Y ).

In order to extend this notion to stacks, we simply apply this formula to some étale cover.
Of course, one has to check that it is well-defined (i.e. independent of cover). To do this,
one takes the fibered product of any two étale covers by schemes (using that the diagonal
is representable for Deligne-Mumford stacks):

X ×X X ′ //

��

X

��
X ′ // X

In general one may not have a finite étale cover of X , but it has some étale cover. If X
is quasicompact, then one can choose an étale cover comprised of finitely many finite
étale morphisms {Ui →X}, and one can stratifyX by the number of pre-images, apply
our previous definition for finite étale covers, and then add them up.

This “argument sketch” raises even more questions. What does it even mean to stratify
a stack? We say that X = Y

∐

Z if any “point” Spec k → X factors through Y or Z .
We’ve basically just sketched an argument for the following result.

Proposition 12.7. SupposeX is a finite type Deligne-Mumford stack with atlas U
π−→X .

Then there exists a finite collection of locally closed substacks Z1, . . . ,Zn that are equidi-
mensional, such thatX =Z1

∐

. . .
∐

Zn , and such that π−1(Zi )→Zi is finite étale.
66



Equivariant Algebraic Geometry Math 245B

This is a quasi-proposition in the sense that I am not sure that the proof is written
down. The proof should just be straightforward from the following fact about schemes:
given a finite type scheme X and a surjective étale map U →X , the result is true, with the
stratification being determined by fiber degrees.

The upshot is that the proposition allows us to define an Euler characteristic for finite-
type DM stacks. .

Remark 12.8. It is a serious theorem that every Deligne-Mumford stack (finite type over
a field k ) has a finite cover by a scheme. This is non-trivial (the definition of an atlas
doesn’t involve properness) - see for instance [EHKV01].

This is a handry crutch to use. For instance, what does it mean for a morphism of
stacks to be proper? We’ve defined this for representable morphisms, but there are set-
tings of interest where we don’t have this, e.g. Mg → pt. For testing properness, you can
instead use a proper cover by a scheme.

We now restrict our attentiont to DM stacks, so we can talk about proper morphisms.
IfX →Y is a proper morphism of (DM) stacks, then there is a pushforward map on

Chow groups
π∗ : C H∗X →C H∗Y .

Here (unlike in the case of schemes), we crucially need rational coefficients. In particu-
lar, ifX is proper over k then we get a “degree” map

C H0(X )
π∗−→C H0(pt)

which is traditionally denoted by π∗β =
∫

β . The goal of an “equivariant Riemann-Roch
Theorem” is to describe a “formula” for the Euler characteristic for DM stacks, generaliz-
ing Grothendieck-Riemann-Roch for schemes.
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13. COMPUTING EULER CHARACTERISTICS

13.1. Definition of Euler characteristic. Suppose G acts on X (tamely), and [X/G ] is a
proper algebraic stack. Then the associated coarse moduli spaceX = [X/G ] is a proper
algebraic space. We can define an Euler characteristic

χ : KG (X )
∼−→ K ([X/G ])→ K (pt) =Z

by

χ(F ) =
∑

i

(−1)i h i (X ,F )G .

Here h i (X ,F )G denotes the dimension of the invariant subspace of cohomology, dim H i (X ,F )G .
Is this well-defined? One concern is that the cohomology groups may not be finite-

dimensional if X is not proper. In general X need not be proper, but as long as [X/G ] is
proper the vector spaces H i (X ,F )G will be finite-dimensional, because they agree with
H i ([X/G ],π∗F )∼=H i (M , p∗π∗F )where p : [X/G ]→M is a coarse moduli space for [X/G ]
(Theorem 8.28).

13.2. Locality of Equivariant Riemann-Roch. We now attempt to give a general expla-
nation for what’s going on. LetX = [X/G ] be a quotient stack which is smooth, proper,
and Deligne-Mumford. Let E be a vector bundle onX . We would like to be able to com-
pute the holomorphic Euler characteristic. The first guess might be to write down the
same expression as appears in Hirzebruch-Riemann-Roch:

χ(X ,E ) =
∫

X
ch(E )Td(X ).

(Here the integral is shorthand for taking the pushforward to a point and then the de-
gree.) However, this is not quite right, and here is where we see the main difference
between shemes and stacks.

Let E1 ∈ K (X ) = KG (X ) be the class constructed as follows. The space KG (X ) is a
module over the representation ring R(G ). The augmentation ideal corresponds to an
element 1∈ Spec R(G ), and E1 is the component of E supported at 1.

Theorem 13.1. We have

χ(X ,E1) =

∫

X
ch(E )Td(X ) (13.1)

.

Definition 13.2. Some terminology on group actions:

• We say that the group action is proper if the action map

G ×X
π−→X ×X

is a proper map. This is equivalent to the quotient stack [X/G ] being separated.
• We say G acts with finite stabilizer if π is finite. If G is affine, which is the case in

all of our situations, then this is equivalent to π being proper.
• We say G acts with finite stabilizers if π is quasi-finite.
• We say that G acts freely if π is a closed embedding.

68



Equivariant Algebraic Geometry Math 245B

Remark 13.3. This admittedly terrible terminology is, unfortunately, well established in
the literature.

Proof of Theorem 13.1. We now work towards the proof of Theorem 13.1, beginning with
some general observation.

Lemma 13.4. If f : X ′ → X is a finite map, then the pushforward map f ∗ : C H∗(X ′) →
C H (X ) is surjective.

Proof. If deg f = d , then f ∗ f ∗ is multiplication by d . �

Next we use the fact that every DM stackX has a finite atlas. In our caseX = [X/G ],
this means that there exists a finite G -equivariant map X ′ → X of schemes such that
X ′ := [X ′/G ] is representable, i.e a scheme.

By the Lemma, C H∗(X ′)�C H∗(X ), hence also

C H∗(G , X ′) =C H (X ′)�C H (X ) =C H∗(G , X ).

This is still a surjection after completing after tensoring with Q. Then by the Equivari-
ant Riemann-Roch theorem, the corresponding map on the K -theory side is an isomor-
phism:

K (X ′)m1� K (X )m1 .

But sinceX ′ is a scheme, its K -theory is supported at 1, i.e. K (X ′)m1 = K (X ′).
Now, to prove the theorem we may take α∈ K (X )m1 and show that

∫

X
ch(α)Td(X ) =χ(α).

Write α = f ∗α′ for some α′ ∈ K (X ′). Since f is a finite map, χ(X ,α) = χ(X ′,α′). We
wish to apply the Hirzebruch-Riemann-Roch Theorem toX ′ with resect to α′, although
we meet the technical complication (which we shall ignore) that in general X ′ will be
singular, so we need a generalization to singular schemes. In any case, that tells us that

∫

X
χ(α′)Td(X ′) =χ(X ′,α′) =χ(X ,α).

To finish off, we want to see that
∫

X
χ(α′)Td(X ′) =

∫

X
χ(α)Td(X )

but this is precisely the statement that the equivariant Riemann-Roch map is covariant
for proper morphisms. �

So the integral only recovers the Euler characteristic over the identity component. Why
should we have expected this to be true?

(1) The Chern character can only possibly “see” the component at 1. Since the right
hand side of (13.1) only knows E through the component at 1, we can’t expect to
“see” more on the left hand side.
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(2) There are various equivariant cohomology theories, and the naïve equivariant
cohomology theory automatically involves a localization at 1. Namely, the naïve
construction (“Borel-Moore”) for equivariant cohomology of X under an action
of G is

H ∗BM ,G (X ) :=H ∗(X ×EG /G ).

You can define this for any kind of cohomology theory, and indeed this is how we
defined the equivariant Chow groups. We claim that whenever we do this kind
of construction, there is implicitly a localization at 1 involved. Since the Chern
character maps to the Chow ring, which is constructed in this naïve way, it must
also localize at 1.

Theorem 13.5 (Atiyah-Segal completion theorem). The map

KG (pt)→ K (BG )

is an isomorphism after completing at the augmentation ideal.

Remark 13.6. The left hand side is Rep(G ). The right hand side is the limit of K -theory
in EG /G , i.e. the inverse limit of K -theory of K ((Vi − 0)/G ) of a sequence of increasing,
faithful G -representations

Vi ,→Vi+1 ,→ . . .

Example 13.7. For G =Gm , we have KGm (pt)∼= Rep(Gm )∼= Z[t , t −1]. The natural action
ofGm on An+1−0 is free, so BGm = limn Pn and

K (BGm ) = lim←−K (Pn ).

Now, K (Pn ) is generated by line bundles, which are all of the form O (n ). However, there
are some relations. We claim that K (Pn ) is generated by 1, t ±1, t ±2, . . .. More precisely,
there is an exact sequence

0→O →O (1)n+1→O (2)(
n+1

2 )→ . . .→O (n +1)→ 0.

This is essentially the Koszul complex: the maps O → O (1)n+1 are multiplication by x j ,
etc. This relation shows that

K (Pn )∼=Z[t ]/(t −1)n+1

so the inverse limit is the completion of Z[t ] at t −1. But that’s the same as the comple-
tion of the representation ring at t −1.

Upshot: the naïve formula only computes the Euler characteristic of the “part sup-
ported at 1.” We need to perform some trickery in order to compute the other contribu-
tions.

Theorem 13.8 (Edidin-Graham). If G acts on X with finite stabilizers, then K ([X/G ])Q
is supported at a finite number of maximal ideals of Spec R(G )Q. In addition, we have
C H i

G (X ) = 0 for i > dim X −dimG .
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You should think of R(G ) as some sort of model for the group G . The K -theory K ([X/G ])
is like a sheaf on Spec R(G ), and we are saying that it is supported at finitely many points.
Notice how this is compatible with what we saw in Examples 11.4 and 11.5. So we have

K ([X/G ]) =
⊕

m∈Spec R(G )

K ([X/G ])m

where we implicitly use rational coefficients here and henceforth.
Let m1 be the augmentation ideal (corresponding to 1 ∈G ). In these terms, the Equi-

variant Riemann-Roch theorem describes a diagram

K ([X/G ])Q
τ //

''

C H ∗([X/G ])Q

K ([X/G ])m1

∼

77

To understand the other components of G0(G , X ) we’ll use the localization theorem in
equivariant K -theory.

13.3. Using the localization theorem. We will focus our attention on the special case
where G = T is a torus over C. We know (Theorem 13.8) that

K ([G /X ]) =
⊕

h∈T

K ([X/G ])mh

Henceforth we will abbreviate K (·)h := K (·)mh .

Remark 13.9. It turns out that h is not in the support of K ([G /X ]) if h acts without any
fixed points. Therefore any h appearing in the support must fix a non-empty locus. Snce
G is assumed to act with finite stabilizer, this implies that h must have finite order.

The equivariant Riemann-Roch theorem describes a map

K ([X/G ])1
τx−→C H ∗([X/G ])Q.

Unfortunately, this map only gets at the part of the equivariant K -theory supported at
1 ∈ T . We would like to “see” all of K ([X/G ]) in order to obtain a formula analogous to
the classical Riemann-Roch Theorem for the Euler characteristic

Definition 13.10. If V is vector bundle on a scheme X , then we define

λ−1(V ) = 1− [V ∗]+ [
2
∧

V ∗]− . . .

A cute shorthand for this is (1− t )V ∗ |t=1.

Theorem 13.11 (Localization Theorem). The inclusion ιh : X h ,→ X induces an isomor-
phism on (rational) K -theory:

K ([X/G ])h ∼= K ([X h/G ])h .
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Moreover, if λ−1(Nh ) ∈ K (X h )h denotes the (equivariant) Euler class of Nh , then we have
the explicit formula for α∈ K ([X/G ]):

α= (ιh )∗
ι∗hα

λ−1(N ∗h )
.

This is helpful because it allows us to “twist” the information from the equivariant
Riemann-Roch Theorem. Let us elaborate.

Recall from Example 10.8 that for G = Gm , we have R(G ) ∼= C[G ]. It is easy to see
that this will hold for tori as well. Now, for each h ∈G we have a “translation by h” map

G
th−→G sending g 7→ g h, and this induces an automorphism of C[G ] = R(G )C = K (BG )

by (t #
h f )(g ) = f (h g ). In particular, the map t #

h : R(G )C→R(G )C sends mh 7→m1.
If Y is a G -space, and h ∈ G has finite order and acts trivially on Y (to see why this

seemingly silly situation might arise, we will eventually apply this with Y = X h ), then t #
h

lifts to an automorphism of K ([Y /G ]) as follows. If F is a G -coherent sheaf on Y , then
we have a decomposition

F =
⊕

χ∈X •(〈h〉)

F (χ)

(here X • is the character group of the subgroup generated by h) and we define

t #
h ([F ]) :=

⊕

χ

χ(h)F (χ).

Remark 13.12. You can think of this as being analogous to a (finite) Fourier transform.

The crucial point is the following.

Proposition 13.13. For anyF ∈ K ([X/G ]), we have

χ([X/G ],F ) =χ([X/G ], th (F )).

Proof. The Euler characteristic passes through the invariant subsheafFG , which corre-
sponds to the trivial character χ = 1 in the decomposition

F =
⊕

χ

F (χ).

Since th fixes theF (χ), it doesn’t affect the Euler characteristic. �

Now we can apply the Equivariant Riemann-Roch Theorem after twisting by h to de-
tect the part supported at h:

K ([X/G ])mh

∼ // K ([X h/G ])mh

t #
h // K ([X h/G ])m1

ERR∼
��

C H ∗([X h/G ])C

Putting all of these together gives an isomorphism

K ([X/G ]) =
⊕

h∈G

K ([X/G ])mh

∼−→
⊕

h∈G

C H ∗([X h/G ]).
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Using this we deduce:

Theorem 13.14. LetF be an equivariant vector bundle onX = [X/G ]. Then we have

χ(X ,F ) =
∑

h∈G

∫

[X h/G ]

ch

�

th
ι∗hF

λ−1(N ∗h )

�

·Td([X h/G ]).

13.4. Localization in the Chow ring. As somewhat of an aside, we describe a localiza-
tion formula at the level of Chow rings (as opposed to K -theory). Let α∈C HG

∗ (X ) (recall
that we are takingQ-coefficients). Then we have an inclusion

ιG : XG ,→X .

Theorem 13.15. We have

α= ιG∗
ι∗Gα

c top(NG )
.

As a sanity check, let’s verify the degrees. Restricting to XG increases the degree (codi-
mension) by r , while dividing by the top Chern class decreases the codimension by r , and
pushing forward doesn’t change it.

Exercise 13.16. Use this to show that P1, deg(c1(O (1))) = 1.

Example 13.17. Suppose X proper and smooth, and the G -action on X has finitely many
fixed points. (For comfort, you can assume that we’re over C). Then we have

χ(X ) = #XG .

Why? The Euler characteristic can be expressed as

χ = c t op (T X ).

Taking α= c t op (T X ) in the Localization Theorem, we have

ι∗Gα= c t op (ι∗G T X ) = c t op (NG ).

Therefore, the Localization theorem equates αwith the puhforward of #XG copies of 1.
As a fun application, take X = G (k , n ) and let Gn

m scale every coordinate separately.
Then the only fixed k -planes are the coordinates ones, of which there are

�n
k

�

.

13.5. Example. Let’s go back and (finally!) resolve our confusion about P(1, 2). We pre-
viously computed that

χ(P(1, 2),ξ`1) =
`

2
+

3

4
+ (error terrm).

The error term is the contribution from χ(ξ−1). Using the localization theorem, this
should be

∫

X−1/G ]

ch

�

t−1
ι∗−1ξ

`

λ−1(N ∗−1)

�

·Td([X−1/G ]).

Let’s analyze the ingredients in this formula.

The fixed locus. The locus X−1 corresponds to x = 0, which is the punctured y -axis.
Therefore, X−1/G = Bµ2, which has rational Chow ring Q. Therefore, the degree map
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simply picks out the constant term. However, we note that since Bµ2 is “half a point” we
actually have

∫

Bµ2
1= 1

2 .

Computation of Todd class. What is Td(Bµ2)? By definitions, this is Td(pt)/Td(g),
where g is the adjoint representation, but these are both trivial! So we see that Td(Bµ2) =
1.

Computation of K -theory. Recall (Example 10.7) that K (Bµ2) ∼= Z[t ]/(t 2 − 1), so we
have

K (Bµ2)Q ∼=Q[t ]/(t −1)(t +1).
The class of i ∗−1ξ

` in K ([X−1/G ]) is t `. Since the y -axis is cut out by the equation x = 0
which has weight 1, the conormal bundle has weight 0, so the class of N ∗h is t −1. There-
fore,

t−1
ι∗−1ξ

`

λ−1(N ∗−1)
=
(−1)`t `

1+ t −1 .

Only the constant term will matter. Since t−1 moves the K -theory class to one supported
at 1, it suffices to plug in t = 1 to obtain a K -class of 1

2 . Integrating (and using that Bµ2

has “mass 1/2”) gives an error term of (−1)`

4 .
Feeding everything into our formula, we arrive at

χ(P(1, 2),ξ`) =
`

2
+

3

4
+
(−1)`

4
.
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14. RIEMANN-ROCH AND INERTIAL STACKS

14.1. Group actions and the inertia stack. Let G → S be a group scheme. If S = Spec k
and G /S is of finite typoe, then G is an algebraic group. We are interested in linear al-
gebraic groups, i.e. closed subschemes of GL(n )/k . These are all affine obviously, but it
turns out conversely that all affine group schemes are linearizable.

We have a map G ×X → X ×X sending (g ,x ) 7→ (g x ,x ). We want to construct a space
that keeps track of the objects of the quotient, and also the isotropy groups. So we form
the fibered product

IG X

��

// X

∆
��

G ×X // X ×X

Here IG X is the group scheme of stabilizers for G acting on X , which you can think of in
terms of the functor of points as

IG X (T ) = {(x , g )∈X (T )×G (T ) | g ·x = x }.

This is a group scheme over X , whose fiber over a point x ∈X is the isotropy group Gx .
Now we define an action of G on IG X , via h · (g ,x ) = (h g h−1, hx ). This is compatible

for the G -action on the other three terms of the fibered square, and taking the quotient
by G recovers the inertial stack (see Example 7.25) together with its natural group scheme
structure over [X/G ];

I [X/G ]

��

[(IG X )/G ]

��
[X/G ] [X/G ]

Recall that I [X/G ] is the inertia stack [X/G ]×[X/G ]×[X/G ] [X/G ], which can be thought of
as

I [X/G ](T ) = {(x ,α) | x ∈ [X/G ](T ),α∈Aut(x )}.
Note that if G acts with finite stabilizer (which we are always assuming to be the case)
then (x ,α)∈ I [X/G ](T ) only if α has finite order (but this is not necessarily sufficient).

14.2. Restatement in term of inertial stacks. Recall that we used the Equivariant Riemann-
Roch theorem plus a “twisting” automorphism th to obtain an isomoprphism.

K ([X/G ]) =
⊕

h∈G

K ([X/G ])mh

∼−→
⊕

h∈G

C H ∗([X h/G ]).

We claim that
⊕

h∈G

C H ∗([X h/G ])∼=C H ∗G (IG X ).

From the identification
[(IG X )/G ]∼= I [X/G ]

it follows more or less by definition that

C H ∗G (IG X )∼=C H ∗(I [X/G ]).
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This suggests that perhaps the familiar version of Grothendieck-Riemann-Roch can be
salvaged in a different way, via a map K ([X/G ]) → C H ∗(I [X/G ]) rather than a map to
C H ∗([X/G ]). (Note that in the case where [X/G ] is a scheme, which necessarily means
that G acts freely on X , we obviously have I [X/G ] = [X/G ].)

The key technical point is:

Proposition 14.1. There is a finite G -equivariant decomposition

IG X =
⊔

g

Sg

where each Sg = {(x , g ) | g ∈ StabG (x )} ⊂ I X is a connected component of IG X .

This G -equivariant decomposition descends to a decomposition into connected com-
ponents of I X , and the claim is that C H ∗([Sh/G ]) corresponds to the summand C H ∗([X h/G ]).
This is clear.

Again using the decomposition, we can define twisting automorphisms t : K (I [X/G ])C ∼=
K (I [X/G ])C, which corresponds to the same one from before.

14.3. Examples.

Example 14.2. Consider P1(1, 2). As we’ve seen in §11.3, we have

K (P(1, 2))Q ∼=Q[t ]/(t −1)2(t +1)
∼=Q[t ]/(t −1)2⊕Q[t ]/(t +1).

Before, we identified the first summand with C H ∗(P(1, 2))Q using the Baum-Fulton ho-
momorphism. We can uniformly understand both by passing to the inertial stack.

In the language above, we have X =A2−0 and G =Gm . The group scheme IG X over X
has two “layers,” namely S1

∼=X (because the identity stabilizers all of x ) and S−1
∼=A1−0,

the punctured y -axis. This realizes the decomposition

I X =S1 ∪S−1.

The Chow group is thus

C H ∗(IP(1, 2))∼=C H ∗(P(1, 2))⊕C H ∗(Bµ2).

Note that we could also write Bµ2 = P(2), to make the general pattern clearer. And in-
deed, we have C H ∗(Bµ2)Q ∼=Q, which is isomorphic to the second component.

Exercise 14.3. Write down the explicit isomorphism afforded by the equivariant Riemann-
Roch theorem.

Example 14.4. Consider P1(1, 3). Then

K (P(1, 3))∼=Q[x ]/(x −1)2(x 2+x +1).

Tensoring with C splits this as

K (P(1, 3))∼=C[x ]/(x −1)2⊕C[x ]/(x −ω)⊕C[x ]/(x −ω2).

Again, the “first version” of the equivariant Riemann-Roch theorem only recovers the
first summand as C H ∗(P(1, 3)). To get the rest, we study the inertia stack.
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We first have IG X = X 1
∐

Xω
∐

Xω2 . Each of Xω and Xω2 is a line, so S1
∼= X , Sω ∼=

Sω2 ∼=A1−0. Passing to quotients, we obtain the decomposition

I [X/G ] =P(1, 3)tP(3)tP(3)

Therefore,
C H ∗(I [X/G ])∼=C H ∗(P(1, 3))⊕Q⊕Q,

which is compatible with the K -theory.

Exercise 14.5. Write down the explicit isomorphism afforded by the equivariant Riemann-
Roch theorem.

Example 14.6. Consider P2(1, 2, 4). Here X =A3−0, and we have

K (P(1, 2, 4))C ∼=C[χ]/(χ −1)(χ2−1)(χ4−1)
∼=C[χ]/(χ −1)3(χ +1)2(χ − i+)(χ + i ).

Let’s start decomposing IG X into connected components. Again, we have S1
∼= X . We

also have non-trivial fixed loci for −1 and ±i . Note that −1 fixes an entire punctured
plane, so S−1

∼=A2−0. Each of ±i fixes a punctured line A1−0.
Taking the quotient by G , we obtain

P(1, 2, 4) =P(1, 2, 4)tP(2, 4)tP(4)tP(4)

and taking Chow groups recovers something at least abstractly isomorphism to K -theory.

Exercise 14.7. Write down the explicit isomorphism afforded by the equivariant Riemann-
Roch theorem.

The formula for general weighted projective spaces should now be obvious.
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