
p-adic Methods in Number Theory:
A Conference Inspired by the Mathematics of Robert Coleman

May 26-30, 2015

Notes by Tony Feng



Notes from Coleman’s Memorial Conference

Proc-2



Notes from Coleman’s Memorial Conference

Conference Program

Day 1 5

Morning 5
6 Integration on curves, from Abel to Coleman

Dick Gross

13 Quadratic Twists of Elliptic Curves
John Coates

Afternoon 17
17 P-adic vector bundles and parallel transport

Annette Werner

21 Most odd degree hyperelliptic curves have only one rational point
Bjorn Poonen

Day 3 27

Morning 27
27 Diophantine stability

Karl Rubin

31 Rankin-Selberg Euler systems in Coleman families
Sarah Zerbes

37 The Witt vector affine Grassmannian
Peter Scholze

Day 4 43

Morning 43
43 The p-adic geometry of modular curves and other moduli spaces

Jared Weinstein

47 Eigenvarieties and the p-adic Langlands program
Jared Weinstein

Afternoon 53
53 The Spectral Halo

Adrian Iovita

57 The eigencurve: a view from the boundary
Kevin Buzzard

Day 5 63

Morning 63
63 A survey of 15 years of p-adic point counting

Kiran Kedlaya

69 p-adic methods and class fields of real quadratic fields
Henri Darmon

Proc-3



Notes from Coleman’s Memorial Conference

Afternoon 77
77 Theta operators on Picard modular surfaces at an inert prime

Ehud de Shalit
85 Some explicit computations on the curves related to p-adic Hodge theory

Jean-Marc Fontaine

Proc-4



Notes from Coleman’s Memorial Conference

Disclaimer
These are very rough and informal notes that I live-TEXed at the conference. I emphasize that they are my personal notes
and may not accurately reflect the actual contents of the talks. (In particular, I was unable to scribe for any of the talks on
the second day.) Their faithfulness to the originals has suffered from my insufficiently fast typing, lack of understanding,
mental exhaustion, and in some cases shortage of computer battery. Of course, I take full responsibility and apologize for all
omissions and inaccuracies.

My intention in writing these notes was for private use, but I have made them public in case they turn out to be useful to
anybody.
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INTEGRATION ON CURVES, FROM ABEL TO COLEMAN

DICK GROSS

♠♠♠ TONY: [I missed the first 15 minutes due to traffice :(]

1. Coleman Integration

X is a curve of genus g.

1.1. Differentials of the second kind.

Definition 1.1. The differentials of the second kind on a curve are those
which are locally exact at every point P of X, which is equivalent to having
vanishing residue at all points.

Example 1.2. Exact differentials η = dG are differentials of the second kind.

The quotient space of the differentials of the second kind by the exact
ones has dimension 2g, and is isomorphic to the first de Rham cohomology
group H1(X,C).

1.2. Rigid analytic spaces. Suppose we have an affine variety Y0 = Spec A0

over a finite field Fp. Lift A0 to a smooth, finitely generated Zp-algebra A
and then form

Â = lim←−−(A/pnA).

Example 1.3. If Y0 = A1
Fp

then A0 = Fp[t]. One lift is A = Zp[t], and then

the completion is Â = Zp[[t]]. We can think of this as the ring of power
series converging on the closed unit disk.

Let Y be the rigid analytic space with the algebra of functions Â⊗Qp. The
quotient of the space of locally exact analytic differentials by the subspace
of exact differentials on Y is the finite dimensional vector space H1(Y0,Qp).
The definition depended on a choice of lift, but it turns out that this coho-
mology group is in some sense “independent” of the lift (for instance, its
dimension is independent).

Strictly speaking, this isn’t quite right. It turns out that there are some
things that you expect to be exact but aren’t. Technically, one needs to
consider instead a “weaker completions” and “wide open spaces,” but we’ll
ignore these technicalities.

Notes from Coleman’s Memorial Conference

Proc-6



DICK GROSS

The cohomology group H1(Y0,Qp) is equipped with a linear endomor-
phism T induced from an analytic lifting F : Y → Y of the Frobenius mor-
phism F0 : Y0 → Y0 to Y . This depends of the lift of course, but the char-
acteristic polynomial of Frobenius turns out to depend only on Y0. Miracu-
lously, it has integer coefficients, and is the same as the characteristic poly-
nomial of Frobenius on `-adic cohomology group H1(Y0,Q`) for all `. This
can be used to do point counts, via the formula

#Y0(Fp) = p − tr(pT−1|H1).

(T is invertible because we know from the theory of weights that the eigen-
values of Frobenius have absolute value p?, and in particular are non-zero.)

1.3. Coleman integration. Robert had the following beautiful observa-
tion. If M is the characteristic polynomial of T , then by the Cayley-Hamilton
theorem, M(T ) = 0 on H1(Y0,Qp) so M(F∗)(η) = dG is exact (since it van-
ishes in cohomology). This gives a rigid analytic integral for M(F∗)(η).
What about locally analytic integrals for η?

The problem is that there are too many. Indeed, notice that on the open
residue disc of points with the same reduction as a given point P, we have
a convergent expansion

η =
∑

anzn dz, where a−1 = 0 (since η is of the second kind).

Then a locally analytic integral of η is given by the convergent series
∑ an

(n + 1)
zn+1 + CP,

which converges since we’re on the open disc. However, we can choose the
constants CP in each disc arbitrarily. This lack of uniqueness makes it hard
to turn this into a functorial theory.

Robert solved this as follows. Start with complete curve X over Qp with
good reduction X0. Let Y0 = X0−S be the affine curve obtained by removing
a finite set S of points of X. Let Y be the rigid analytic space obtained by
lifting and removing the open residue discs reducing to points in S . Let ω
be an algebraic differential on X whose poles all lie in the removed residue
discs (and thus is analytic on Y), and let y be a point in Y .

Theorem 1.4. There is a unique locally analytic function G(x) =
∫ x

y
ω on

Y satisfying

(1) dG = ω,
(2) G(y) = 0, and
(3) M(F∗)(G) is rigid analytic.

Notes from Coleman’s Memorial Conference
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INTEGRATION ON CURVES, FROM ABEL TO COLEMAN

This turns the theory of p-adic cohomology on its head! We started out
discussing cohomology by starting with a variety over Fp and constructing a
rigid analytic space; Robert instead considered integration on rigid analytic
spaces by looking to the special fiber.

Example 1.5. I’ll show you one of Robert’s favorite examples. Let X = P1

and ω = dx
x (which is not of the second kind)

Remove D(0) = {x : |x| > 1} and D(∞) = {x : |x| < 1} and you get
Y = {x : |x| = 1}. In the complex analytic world this is a very small set, the
unit circle, but in the p-adic world it is actually quite large. Robert named
the “unit tire.” You can imagine it as a union of p − 1 discs, each centered
at a distinct p − 1st root of unity.

Then F(x) = xp and ω = dx
x is a basis of H1(Y0,Qp). So F∗(ω) = pω, and

the characteristic polynomial is M(x) = x − p.
For y = 1, the Coleman integral G(x) =

∫ x

1
ω satisfies:

(1) G is locally analytic,
(2) dG = ω,
(3) G(1) = 0,
(4) G(xp) − pG(x) is a rigid analytic with derivative zero ♠♠♠ TONY:

[why?], there must be a constant C. (This is the importance of ana-
lyticity - there are many locally constant functions, which all have
derivative 0.)

But since G(1) = 0, C = 0. So G(xp) = pG(x), and by iteration G(xpn
) =

pnG(x). Now, in a residue disk around 1,

G(1 + z) =

∫
d(1 + z)

1 + z
= z − z2/2 + z3/3 − z4/4 + . . .

What about the other disks? Since ζ pn
= 1, the relation G(xp) = pG(x)

implies that pnG(ζ) = 0, so G(ζ) = 0, and all the values at the other disks
are determined by this relation.

So the Coleman integral G = logp is Iwasawa’s logarithm.
In this computation the key point was that pn , 1: there are no Frobenius

eigenvalues that are roots of unity.

1.4. Effective Chabauty. If ω is of the first kind, then its integral G is
locally analytic everywhere. For a divisor D =

∑
mx[x] of degree 0, let

∫

D
ω = G(D) :=

∑
mxG(x).

In the complex case, Abel’s theorem implies that the value G(D) =
∫

D
ω

depends only on the image of D in the Jacobian J. Robert recognized that
you should be able to describe this purely in the arithmetic of the abelian
variety.

Notes from Coleman’s Memorial Conference
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DICK GROSS

He found that the integral of ω is the composition

Div0(X)(Qp)→ J(Qp)
log−−→ Lie(J(Qp)) � H1(X,OX)

〈ω,−〉−−−→ Qp

(We have used the Serre duality pairing at the end.)
An important consequence of this was that D ≡ (x) − (y) is torsion in J

if and only if
∫ x

y
ω = 0 for all regular ω. Why? If the integrals are 0 for all

the regular differentials, and Serre duality is perfect, then the image of the
divisor in H1(X,OX) is 0, so the logarithm is 0. But it was known classically
that the kernel of the logarithm precisely consists of torsion.

You can attempt to explicitly calculate the integrals as a power series
in order to find an explicit description of the torsion. This led to Robert’s
effective Chabauty method: if the Mordell-Weil rank of X is less than g, then
the closure of the rational points has codimension at least 1 in the Jacobian,
so there is a regular differential vanishing on them, and pulling back to the
curve cuts out an algebraic condition on the rational points.

2. Differentials and Height Pairings

2.1. Differentials of the Third Kind. Abel also defined “integrals of the
third kind.”

Definition 2.1. A differential ν is said to be of the third kind if its only poles
on X are simple, and if all of its residues are integers. (In particular, they
include the differentials of the first kind, which are regular.)

Remark 2.2. This is not a vector space, because of the integrality condition.

Example 2.3. Logarithmic differentials ν = d f / f are of the third kind.
The quotient of differentials of the third kind by logarithmic derivatives

is a commutative, connected algebraic group G of dimension 2g, whose
tangent space is H1(X). In the complex case there is a homomorphism
H1(X,C)

exp−−→ G(C) and in the p-adic case there is a logarithm G(Qp) →
H1(X,Qp).

Associated to the differential of the third kind, we have the residual divi-
sor of degree zero:

Resdiv(ν) :=
∑

P

ResP(ν)[P].

Every divisor D of degree zero occurs as a residual divisor of a differential
of the third kind. This follows from an easy argument using Riemann-Roch.
Indeed, it is evidently sufficiently to construct divisors of the form P−Q as
residual divisors. By Riemann-Roch, there is a divisor of high degree with
simple poles at P + Q and no simple poles anywhere else (compare H0(K)

Notes from Coleman’s Memorial Conference

Proc-9



INTEGRATION ON CURVES, FROM ABEL TO COLEMAN

with H0(K + P + Q). The residues at P and Q are negatives, since their sum
is 0, and rescaling gives a residual divisor P − Q.

Given a differential of the third kind ν with a given residual divisor, any
other such is unique up to the addition of a differential of the first kind:
ν∗ = ν + ω.

When D = ( f ) is principal, we can take νD = d f / f . Can we normalize
the lifting D 7→ νD to generalize this? We don’t know. ♠♠♠ TONY: [don’t
know what this means]

2.2. Periods. How did Riemann do this? For a closed path γ on a R surface
X and a differential ω of the first kind, the period

∫
γ
ω depends only on the

class of γ.
The period integrals determine ω, so there is an injection

W = H0(X,Ω1) ↪→ V = Hom(H1(X,Z),C) = H1(X,C).

The space V is symplectic of dimension 2g, the subspace W is of dimension
g and isotropic, satisfying W ∩ W = 0. The map taking ω 7→ Rep

∫
γ
ω

gives an isomorphism W � Hom(H1(X,Z),R), because the dimensions are
the same and this is an injection. Indeed, suppose you had form whose real
parts of periods were 0. Then the complex conjugate form would have real
periods, which would be something in W ∩W.

2.3. Local Height Pairing. Let D be a degree 0 divisor and ν be a differen-
tial of the third kind with residual divisor D. Let ω be the unique differential
of the first kind withs Rep

∫
γ
ω = Rep

∫
γ
ν. Then νD := ν − ω is the unique

differential of the third kind with
(1) Resdiv(νD) = D and
(2) Rep

∫
(νD) = 0 for all cycles γ ∈ H1(X − |D|,Z).

Then you can define a Neron local height pairing on relatively prime divi-
sors D and E, given by

〈D, E〉 = Rep
∫

E
νD = Rep

∫

D
νE,

with equality following from a form of Stokes. A nice property of this is
that if ν = d f / f , then

〈( f ), E〉 = log | f (E)|.
The important thing about these pairings is that if you sum up them up, then
you get one on the Jacobian.

Robert recognized that this could be done p-adically. Nomalize the choice
of differential νD with residual divisor D. When the reduced curve X0 is or-
dinary, we can normalize νD using the unit root eigenspace. To elaborate,

Notes from Coleman’s Memorial Conference
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we have H1(X,Qp) = W ⊕U. There is a part of W where the eigenvalues of
Frobenius are p-adic units. Normalize as follows: there’s an exact sequence

W = H0(X,Ω1)→ G(Qp)→ J(Qp)

where G is differential of third kind modulo logarithmic derivatives (see
Example 2.3). By the logarithm, G(Qp) maps to H1(X,Qp). This has two
coordinates, in W and U: normalize so that the W-coordinate is in the unit
root eigenspace.

The local height pairing is then given by the Coleman integral

〈D, E〉p =

∫

E
νD =

∫

D
νE

satisfying 〈( f ), E)〉p = logp( f (E)). For relatively prime divisors, the poles
lie in disjoint residue disks. See Colmez book - Integration sur les varieties
p-adiques, Asterisque 248 (1998).
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QUADRATIC TWISTS OF ELLIPTIC CURVES

JOHN COATES

1. Introduction

Let me begin by reviewing what we know about elliptic curves con-
cerning the Birch and Swinnerton-Dyer conjecture. Let E/Q be an elliptic
curve. We denote, as usual,

• E(Q) for the rational points of E,
• X(E) for its Tate-Shafarevich group,
• L(E, s) for its L-function, and
• rE = ords=1 L(E, s), the analytic rank.

Theorem 1.1 (Gross-Zagier, Kolyvagin). If rE ≤ 1, then E(Q) has rank rE

and X(E) is finite.

Remark 1.2. Even with these hypotheses, we do not know the precise for-
mula for the order of X(E) which is predicted by Birch and Swinnerton-
Dyer.

Theoretically, very little is known in the way of how to show that rE ≤ 1
(of course, it is can be checked numerically in examples).

Throughout, let M be the discriminant of a quadratic extension of Q. Let
k = k(M) be the number of prime factors of M, and E(M) the quadratic
twist of E by Q(

√
M)/Q. Associated to L(E(M), s) there is a root number

wE(M) = ±1.

Conjecture 1.3 (Goldfeld).
(1) Among all twists with wE(M) = +1, we have rE(M) = 0 outside a

set of density 0.
(2) Among all twists with wE(M) = −1, we have rE(M) = 1 outside a

set of density 0.

The best previous results toward this were proved by Bump, Hoffstein,
etc. which say that there are infinitely many twists with these properties.

2. Statement of results

Together with Y. Li, Y. Tian, and S. Zhai we have investigated this for
particular curves. In particular, we consider quadratic twists of X0(49). A

Notes from Coleman’s Memorial Conference
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JOHN COATES

model is
A = X0(49) : y2 + xy = x3 − x2 − x − 1.

This has CM by OK , where K = Q(
√−7). This elliptic curve, and its twists,

are the only curves over Q for which 2 is ordinary or potentially ordinary.
One can show by 2-descent that A(Q) = Z/2Z, with the cusps ∞ and [0] =

(2,−1).
We know that wA(M) = +1 when M > 0 and (M, 7) = 1 and wA(M) = −1

when M < 0 and (M, 7) = 1.
We now restrict our attention to twists by:

R = {R = p1 . . . pk | pi ≡ 1 (mod 4), inert in K}.
If R ∈ R, then Sel2(A(R)) has F2-dimension 1 (it’s obviously at least 1, be-
cause there’s a 2-torsion point). So the rank is 0, as you can verify by
2-descent. According to Birch and Swinnerton-Dyer, you would expect the
L-function to be non-vanishing.

Theorem 2.1 (CLTZ). If R ∈ R, then L(A(R), 1) , 0.

Theorem 2.2 (Rubin-Gonzalez-Aviles). If L(A(M), 1) , 0, then #X(A(M))
is as predicted by BSD.

The fundamental (least positive real) period of A is

Ω∞ =
Γ(1/7)Γ(2/7)Γ(4/7)

2π
√

7
.

The theorem then says that if R ∈ R, then

#X(A(R)) =
L(A(R), 1) · √R

Ω∞2k(R)=1 .

We know that this is an odd positive integer (odd because the 2-descent
shows that the 2-part of X is zero).

Numerical data. Dabroski, Jedrzejak, Szymaszkriewicz computed for #X(A(R))
for R ∈ R(32 × 109), where R(X) := {R ∈ R : R ≤ X}. Based on this, they
guessed:

(1) For every odd positive t, there exists R ∈ R with #X(A(R)) = t2.
This is verified for t ≤ 2357. The large p such that X(A(R))(p) , 0
is p = 2851.

(2) The “cumulative” Shafarevich group size∑

R∈R(X)

#(X(A(R)))

is either (a) cX3/2 for c = 0.00434, or (b) based on heuristics of
Heath-Brown c′X3/2/(log X)1/8 with c′ = 0.0124. Since (log X)1/8

Notes from Coleman’s Memorial Conference
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QUADRATIC TWISTS OF ELLIPTIC CURVES

is basically constant in the range, we can’t really tell which one is
correct from the data.

Now, we turn to a case where the twists have rank 1.

Definition 2.3. Let

P =
{
M = −`R | ` prime ,`≡3 (mod 4),`>3,` inert in K

R=p1...pk∈R,pi inert in Q(
√−`)

}
.

The last condition is unnecessary for 2-descent, but it is needed for our
method, which uses the theory of Heegner points.

If M ∈ P then Sel2(A(M)) has F2-dimension 2. BSD predicts that L(A(M), s)
has a simple 0 at s = 1, and we confirm this.

Theorem 2.4 (CLTZ). If M ∈ P, then rA(M) = 1.

In this case predicts that L′(A(M),1)
√−M

Ω∞2k(R) is supposed to be #X(A(M)) times
the height of the canonical generator.

Numerical data. Again we have some numerical results. Let

V`(X) = {M = −`R ∈ P, |M| ≤ X}
and

T`(X) =
∑

M∈V`(X)

L′(A(M), 1)
√−M

Ω∞2k(R) � c`X3/2 log X

for some c`.
Let E/Q be an elliptic curve and C the conductor of E. We have by

modularity a map f : X0(C) → E sending f ([∞]) to 0 and f ([0]) to some
torsion point of E(Q).

Lemma 2.5 (Birch-Heegner). Assume that f ([0]) < 2E(Q) (so the 2-primary
part of E(Q) is non-trivial). Let ` be any prime with ` > 3 and ` ≡ 3
(mod 4) such that C splits in Q(

√−`). Then L(E(−`), s) has a simple zero at
s = 1.

Their argument, as it stands, only works when you twist by a prime.

Theorem 2.6 (CLTZ). Assume that (i) f ([0]) < 2E(Q) and (ii) E has a good
supersingular prime q with q ≡ 1 (mod 4). Then, for each k ≥ 1, there exist
infinitely many odd squarefree M with k(M) = k and rE(M) = 1. Also, for
each k ≥ 2 there exist infinitely many odd squarefree M with rE(M) = 0.

Example 2.7. Let E = X0(14). Then we can take q = 5 and E(Q)(2) =

Z/2Z. The theorem tells us that L(E(M), 1) , 0 for infinitely many M =

q1 . . . qk if k ≥ 1.
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You can do a 2-descent on E to find that Sel2(E(M)) has F2-dimension 1
for qi ≡ 3, 5, 6 (mod 7) and 5 (mod 8). So we should have non-vanishing
in all of these cases, but we can’t prove it.

Example 2.8. If E is given by y2 = x3 − x2 − x − 2, then C = 84 and we
can take q = 41 or 89. Looking through the tables, there are many elliptic
curves satisfying the necessary properties. There are probably infinitely
many curves to which this applies.

The proof is via analysis of what happens at the humble prime 2. Some-
how, this is more powerful than any analytic methods (so far) - they can’t
prove infinitude while control the number of prime factors, which we do.

Notes from Coleman’s Memorial Conference
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P-ADIC VECTOR BUNDLES AND PARALLEL TRANSPORT

ANNETTE WERNER

1. Setup

Let X/Qp be a proper, smooth, connected scheme. We may sometimes
base change to XCp . We denote Zp ⊂ Qp and Op ⊂ Cp the respective
valuation subrings, which both have residue field k � Fp.

Goal. Define a category of vector bundles on XCp admitting “p-adic
parallel transport.”

By “parallel transport” we mean a representation of the étale fundamental
groupoid π1(X) in parallel transports of vector spaces. More precisely, π1(X)
is a category whose objects are x ∈ X(Cp) and whose morphisms between
x, x′ ∈ X(Cp) are isomorphisms of fiber functors:

Homπ1(X)(x, x′) = Iso(Fx,Fx′)

where Fx is the functor from the category of finite étale covers Y → X to the
category of finite sets taking α : Y → X to the fiber {y ∈ Y(Cp) | α(y) = x}.
So an isomorphism of fiber functors is a recipe for taking a point of the fiber
over x under any finite étale cover to a point over x′. This is a profinite set.

Definition 1.1. A p-adic parallel transport on a vector bundle E is a functor

ρE : π1(X)→ VecCp︸︷︷︸
fin. dim.

which is continuous, meaning that it is continuous on each set of mor-
phisms.

In particular, for all x ∈ Cp we get a finite-dimensional continuous repre-
sentation of πét

1 (X, x) over Cp.

2. Statement of Results

2.1. Dimension one. There are several results known when dim X = 1.

Theorem 2.1 (Deninger-Werner). Vector bundles E of degree 0 with poten-
tially strongly semistable reduction admit parallel transport.

Notes from Coleman’s Memorial Conference
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ANNETTE WERNER

Let us explain the condition here.

• “Potentially” means “after replacing X by a finite cover Y
α−→ X and

E by α∗E.
• “Semistable” means that the slope deg

rank of a subbundle is no larger
than that of E.
• “Strongly semistable” means that pullbacks via all (non-negative)

powers of absolute Frobenius are semistable.
• The technical condition we require is that there is a relative curve
X/Zp with generic fiber X, and a vector bundle E on X ⊗ Op with
generic fiber E, such that the special fiber E⊗Opk is strongly semistable
of degree 0 on each irreducible component of Xk.

Semistability is a difficult notion on reducible varieties, and we remove
difficulties by imposing this condition on each component.

2.2. Motivation. This is a p-adic analog of results on the topological fun-
damenetal group in complex geometry. Harder-Narasimhan showed that
from unitary representations one gets stable vector bundles. There is also a
correspondence discovered by Simpson.

Faltings showed a p-adic version of the Simpson correspondence: there
is an equivalence of categories

{
p-adic Higgs bundles

on XCp

}
↔

{generalized representations
of πét

1 (X, x)

}
.

A big open question is to determine the subcategory of p-adic Higgs bundles
corresponding to (honest) representations of πét

1 (X, x). One can show that
the degree 0 line bundles are there, but we don’t know what else is.

2.3. Higher dimension. There is a work in progress in higher dimensions.
Let X/Qp be a smooth, proper connected scheme and U ⊂ X a Zariski open
subset.

Definition 2.2. Let BX,U be the (full) category of vector bundles on XCp such
that there exists a (flat, proper, finite presented) X/Zp with generic fiber X,
and

• there exists a vector bundle E on X ⊗ Op with generic fiber E,
• There exists a proper, finitely presented map π : Y → X such that
π|π−1(U) is finite étale and the special fiber (π∗E)⊗Op k is trivial on Yk.

Definition 2.3. Let BX be the category of vector bundles in BX,Ui for all
members Ui of a Zariski covering (Ui) for X.

Theorem 2.4 (Deninger-Werner). Every E in BX admits p-adic parallel
transport ρE : π1(X)→ VecCp . Moreover, the association E 7→ ρE is functo-
rial in E, exact, and compatible with⊕,⊗,Hom, and Gal(Qp/Qp)-conjugation.
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P-ADIC VECTOR BUNDLES AND PARALLEL TRANSPORT

3. Sketch of Proof

Let E ∈ BX,U . Take x, x′ ∈ U(Cp) ⊂ X(Op). Let γ be an étale path in U
from x to x′. We want to construct an isomorphism ρE : Ex → Ex′ .

We’re going to define for all n a morphism ρE,n : Ex⊗Op/pn → Ex′⊗Op/pn

(Ex is an Op-lattice) and set

ρE(γ) := (lim−−→
n

ρE,n(γ)) ⊗ Cp

Assume that there exists π : Y → X proper and finitely presented such that
(1) (π∗E)⊗Op/pn is trivial onY⊗Op/pn (the nth tickening of the special

fiber), and
(2) π|π−1(U) is finite étale.

This looks like a p-adic thickening of the condition imposed on the category
BX,U .

If this is given, then replacingY by a “nice” covering we have a canonical
parallel transport on the trivial bundle π∗E ⊗ Op/pn, by using the trivializa-
tion.

To elaborate, choose y ∈ Y(Cp) = Y(Op) over x. Then γ(y) = y′ where
π(y′) = x′, as γ is by definition an isomorphism of the fiber functor. This
gives

(π∗E)y ⊗ Op/pn � //

�
��

(π∗E)y′ ⊗ Op/pn

�
��

Ex ⊗ Op/pn ρE,n(γ)
// Ex′ ⊗ Op/pn.

That defines a representation modulo pn. Of course, there are many things
to check in order to ensure that this is well-defined.

The induction step uses de Jong’s theory of alterations and generaliza-
tions of ideas of Bhatt. You see, Y depends on n. The obstruction to it
working for n + 1 is some obstruction in a cohomology group. Then you
have to kill this obstruction class by passing to some bigger cover. The
obstruction lives in a world modulo pn, and you want to lift all the way to
characteristic 0, so there is quite some work to be done.

Now, to get a representation on all of X, you use an analogue of the Seifert
van Kampen theorem.
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4. Abelian varieties

Let X = A/Qp be an abelian variety with good reduction. Then it can
be shown that every homogeneous bundle on A lies in BA. (Homogeneous
means that t∗xE � E for all x ∈ A(Cp).) Over C, the homogeneous bundles
are precisely the ones admitting an integrable connection.

Theorem 4.1 (Deninger-Werner). The following diagram commutes:

Ext1(OA,OA)
E 7→ρE //

�

��

Ext1
Rep π1(A,0)(Cp,Cp)

�
(
1 ∗

1

)
7→∗

��
Hom(π1(A, 0),Cp)

�
��

H1(A,OA) ⊗Qp
Cp Hodge-Tate

// H1
ét(A,Qp) ⊗ Cp)

The proof relies crucially on Coleman’s description of the Hodge-Tate
periods in terms of Coleman integrals, which goes as follows. LetA be the
Néron model of A, and let

0→ ωÂ →V → A→ 0

be the universal vectorial extension (i.e. any other vectorial extension is a
pushout of V), which has ωÂ(S ) = H0(S , e∗Ω1

A/S ). If (apn)pn ∈ Ap(Cp) =

Apn(Op), choose pre-images bn ∈ V(Op) (which are well-defined up to
ωÂ(Op). Then pnbn is a well-defined class in ωA(Op)/pnωÂ(Op). We have
a map

θA : TpA→ ωA(Op)
sending (apn) 7→ lim←−−n

pnbn. Dualizing and tensoring with Cp gives the
Hodge-Tate map.
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MOST ODD DEGREE HYPERELLIPTIC CURVES HAVE ONLY
ONE RATIONAL POINT

BJORN POONEN

1. Introduction

Let me begin by recalling a theorem which you probably al know.

Theorem 1.1 (Faltings). Let C be a curve of genus g > 1 over Q. Then
C(Q) is finite.

Consider C a smooth, projective curve with model y2 = f (x), a monic
separable polynomial of degree 2g + 1. It is most convenient to view this
as the weighted projective space ProjQ[x, y, z]/(y2 = z2g+2 f (x/z)), where y
has weight g + 1 and x, z have weight 1.

There is an obvious rational point on C, namely the point at ∞: (1 : 0 :
0) ∈ C(Q).

Theorem 1.2 (Poonen-Stoll). For each g ≥ 3,
(1) the fraction of such C satisfying C(Q) = {∞} is positive,
(2) this fraction tends to 1 as g→ ∞,
(3) in fact, it is ≥ 1 − (12g + 20)2−g.

Remark 1.3. The “fraction” is meant in an asymptotic sense, by choosing
models with integer coefficients and studying the asymptotics of the fraction
as the coefficients vary in a growing box. Conjecturally, the fraction should
be 1 for all g.

The proof is by Chabauty’s method at the prime 2. The proof uses re-
sults of Bhargava-Gross on sizes of Selmer groups of the Jacobians, and
also on equidistribution of Selmer elements. It strengthens earlier work of
Bhargava-Gross bounding the average number of rational points by 3 (this
is actually a bound on the Selmer group).

2. Chabauty’s method

Chabauty’s idea was to consider the embedding C ↪→ JC sending x 7→
[x]− [∞] and study it p-adically, for some fixed prime p. Let r = rank J(Q).
Envision the Jacobian as a box and C as a curve in it.
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The nice thing about working p-adically is that J(Q)-points must lie in a
small analytic subgroup - unlike Q, where they can (and probably will) spi-
ral around in a Zariski-dense way if they have irrational coefficients (the
point is somehow that Z is bounded in Zp, but unbounded in R.) You
can show that J(Qp) has a finite index open subgroup isomorphic to Zg

p.
Therefore, J(Q) is of at most g. More generally, if J(Q) is of rank r
then J(Q) is of dimension at most r. Now, C(Qp) has dimension 1, and
C(Q) ⊂ C(Qp) ∩ J(Q). Chabauty’s idea was that if r < g, then the intersec-
tion should be finite for these dimension reasons.

Theorem 2.1 (Chabauty). If r < g, then C(Qp)∩ J(Q) is finite, so in partic-
ular C(Q) is finite.

Our method proceeds by studying the commutative diagram

C(Q) �
� //

��

C(Qp)

��
J(Q) �

� // J(Q) �
� // J(Qp)

To analyze this, you don’t actually look at equations for J (which can’t be
found or used effectively in practice). Instead, you examine the logarithm
map: there exists a homomorphism/local diffeomorphism

J(Qp)
log−−→ Qg

p

sending

P 7→
(∫ P

0
ω1, . . . ,

∫ P

0
ωg

)
.

Choose the basis ω1, . . . , ωg ∈ H0(JQp ,Ω
1) so that the image of the loga-

rithm is Zg
p. (This is technically non-trivial.)

C(Q) �
� //

��

C(Qp)

��
J(Q) �

� // J(Q) �
� // J(Qp)

log // // Zg
p

Now, to make this work one has to have some control of the “direction” of
the Mordell-Weil group inside J(Qp), to make sure that it doesn’t intersect
C(Qp) too much. The idea is that you can get a little bit of information of
the Mordell-Weil group by knowing about the p-Selmer group.

Notes from Coleman’s Memorial Conference

Proc-22



MOST ODD DEGREE HYPERELLIPTIC CURVES HAVE ONLY
ONE RATIONAL POINT

3. The Selmer Group

Let me remind you of the construction of the Selmer group. From the
Kummer sequence

0→ J[p]→ J
p−→ J → 0

one gets an inclusion

J(Q)/pJ(Q) ↪→ H1(Q, J[p]).

The global image is hard to control. However, you can do this for each
place, and take the product

J(Q)/pJ(Q) δ //

��

H1(Q, J[p])

res
��∏

v J(Qv)/pJ(Qv)
δ′ // ∏

v H1(Qv, J[p])

Any class in the image of J(Q)/pJ(Q) ↪→ H1(Q, J[p]) certainly comes from
δ′, and the p-Selmer group measures this first-order condition.

Definition 3.1. We define the Selp J := res−1(Im δ′).

So we have an obvious map Selp J → J(Qv)/pJ(Qv) for each v.

Theorem 3.2 (Bhargava-Gross). Consider a familyF of hyperelliptic curves
C defined by finitely many congruence conditions on the coefficients.

(1) The average size of Sel2 J = 3,
(2) J(Qv)/2J(Qv) is locally constant as the C varies v-adically, and if

we shrink F to trivialize this bundle of finite groups so that we may
pick a uniform isomorphism J(Qv)/2J(Qv) � G for all C ∈ F , then

{
image of s under Sel2 J → J(Qv)/2J(Qv) � G : C∈F height(C)<X

s∈Sel2 J\{0}
}

becomes equidistributed in G as X → ∞.

Remark 3.3. Obviously one has to remove s = 0 from consideration, as 0
always maps to the identity of G. The map Sel2 J → J(Qv)/2J(Qv) isn’t an
injection, so you do also hit the identity of G.
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C(Q) �
� //

��

C(Qp)

��
J(Q) �

� //

����

J(Q) �
� //

��

J(Qp)
log // //

��

Zg
p

����
J(Q)/pJ(Q) // //

� t

''

J(Q)/pJ(Q) // J(Qp)/pJ(Qp) // // Fg
p

Selp J

77
33

(Why isJ(Q)/pJ(Q) → J(Q)/pJ(Q) surjective? For (not very deep) topo-
logical reasons: pJ(Q) is open.)

We’d like to control the image of the Mordell-Weil group. That’s too
hard, but if we reduce modulo p, then we know whatever goes through the
Mordell-Weil group goes through the Selmer group. That’s like knowing
“one p-adic digit” about the image of the Mordell-Weil group.

The surjectivity of J(Q)/pJ(Q)→ J(Q)/pJ(Q) follows from topological
facts.

Now we have to take p = 2 in order to use Bhargava-Gross, and v = p to
get the right Selmer group.

Let’s add a little more into the diagram. We define ρ : Zg
p d Pg−1(Fp) to

be the “scale and reduce” map if it’s defined.

C(Q) �
� //

��

C(Qp)

��
J(Q) �

� //

����

J(Q) �
� //

��

J(Qp)
log // //

ρ◦log

����

Zg
p

����

ρ

""
J(Q)/pJ(Q) // //

� t

''

J(Q)/pJ(Q) // J(Qp)/pJ(Qp) // // Fg
p

// Pg−1(Fp)

Selp J

77

σ

33

Pσ

99

Lemma 3.4. If
• σ is injective and
• ρ ◦ log C(Q2) and Pσ(Sel2 J) are disjoint,

then C(Q2) ∩ J(Q) ⊂ J(Q2)[odd].
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The proof of this is basically by chasing through the diagram. You would
like to force something to be just {∞}, but the logarithm kills all torsion so
you can’t get that from the diagram.

Lemma 3.5. For 100% of C, C(Q2) ∩ J(Q) ⊂ J(Q2)[2].

The Bhargava-Gross equidistribution theorem implies that σ is usually
injective, and Pσ(Sel2) is usually small.

I think of it in this way. You’re sitting at the origin, and looking up into
the sky - however, you have bad vision so you can only see with “one digit”
of precision. You see two types of things. One is the curve winding around
in the sky. The second is the Selmer group elements, which appear ran-
domly like shooting stars. You hope that the shooting stars don’t intersect
the curve often.

This will be the case if both are pretty sparse. We just indicated why the
Selmer elements are sparse, so what remains is to show that the image of
the curve is also small.

4. The image of C(Q2)

We need to show that the average #ρ(log C(Q2)) = o(2g).

Proposition 4.1. On average we have

#ρ(log C(Q2)) ≤ 6g + 9.

First suppose that C has good reduction at 2. Obviously this isn’t okay
for the proof, because not 100% of curves have good reduction at 2, but
let’s think about what happens in this case. Think of C(Q2) → C(F2) as a
fibration with fibers being p-adic disks. We need to show:

(1) the number of disks is small, and
(2) the size of ρ ◦ log(each disk) is small.

The first is easy because #C(F2) ≤ 5, because C is a ramified double cover
of P1

F2
ramified at∞.

What about the second part? The restriction of log to a disk takes the
form

log |disk =

(∫
w1(t) dt, . . . ,

∫
wg(t) dt

)
, wi(t) ∈ Z2[[t]].

Up to 1-units, this is the same as ( f1(t), . . . , fg(t)) with fi ∈ Q2[t].

Lemma 4.2. If φ is the map P1
Qp

f1,..., fg−−−−−→ Pg−1
Qp

with deg fi ≤ n for each i, then

#ρ ◦ φ(P1(Qp)) ≤ np + 1.
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This is done by resolving the birational map of arithmetic surfaces over
Zp, and counting the number of components in the special fiber.

There is a similar, but much worse, picture in the case of bad reduction.
You have to work with a proper regular model C of C, which could now
have hundreds of components. The final ingredient is that the average size
of #Csmooth(F2). If you just compute this over all possibilities, you can show
that it is < 3. Remarkably, this is even smaller than in the good reduction
case! The point is that the most common type of bad reduction is quite
mild, involvng two points coming together, and this reduces the number of
rational points.
♠♠♠ TONY: [is this really only over Q?]
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DIOPHANTINE STABILITY

KARL RUBIN

1. Introduction

1.1. Notation. Throughout this talk, K is a number field, V is a variety
over K, and L is an extension field of K. We’ll think of K and V as fixed,
and L as varying.

Definition 1.1. We say that V is diophantine stable for the extension L/K if
V(L) = V(K), i.e. V acquires no new rational points over L.

We say that a finite, non-trivial extension L belongs to V if there exists
x ∈ V(K) such that L = K(x), or equivalently if V(L) )

⋃
K⊂F(L V(F).

Let L(V) be the set of finite extensions L/K such that L belongs to V .

Example 1.2. L(P1) = {all finite non-trivial L/K}, since P1 acquires new
points over every non-trivial extension. The same is obviously true for any
variety containing P1.

More generally, suppose X is smooth, projective, irreducible curve of
genus 0. Let Σ = {v : X(Kv) = ∅}. Then by the Hasse principle,

L(X) = {L/K : 2 | [Lw : Kv] for all v ∈ Σ,w | v of L}.
Note that Σ determines X up to isomorphism. ♠♠♠ TONY: [by “split primes
philosophy”?]

Example 1.3. Let E/(K = Q) be an elliptic curve. Then conjecturally L(E)
contains “half” of the quadratic extensions of K.

Philosophy. The general belief is that apart from “special” families of ex-
amples, L(V) should be sparse. So we expect that most extensions are
diophantine stable.

We denote X ∼ Y if X and Y are birational, and L(X) ∼ L(Y) if these
two sets are “equal up to a finite number of fields.” It’s easy to show that if
X ∼ Y (birational), then L(X) ∼ L(Y).

What about the converse? That turns out to be false. A counterexample
was produced by Golstein and Klagsbrum.

Example 1.4. Suppose C,C′ are curves of genus 1 such that Jac(C) �
Jac(C′) =: E. Then we can think of C,C′ are elements of the Weil-Chatelet
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group H1(K, E), i.e. as principal homogeneous spaces for E. If these gen-
erate the same subgroup, then L(C) = L(C′). ♠♠♠ TONY: [don’t quite see
why]

These are the only examples that we know of where the converse fails.

1.2. Statement of Results.

Theorem 1.5. Suppose that X and Y are irreducible curves, with g(X) = 0.
If L(X) ∼ L(Y) then X ∼ Y.

The point is that if Y doesn’t have genus g, thenL(Y) is not “big enough”
to match L(X).

Theorem 1.6. Suppose X is a smooth, irreducible, projective curve of genus
g(X) > 0 and EndK(Jac(X)) = EndK(Jac(X)). Then there exists a set S
of rational primes with positive density such that for all ` ∈ S and all
n ≥ 1, there exist infinitely many cyclic extensions L/K of degree `n such
that X(L) = X(K).

Contrast this with the genus 0 case. In the genus 0 case, once the curve
has a point, then it has new points in every extension. In the positive genus
case, we can always finitely many cyclic extensions for which there are no
new rational points.

Our actual work is on abelian varieties, from which we deduce the pre-
ceding result.

Theorem 1.7. Suppose A is a simple abelian variety and EndK(A) = EndK(A).
Then there exists a set S of rational primes with positive density (in the set
of all rational primes) such that for all ` ∈ S and all n ≥ 1, there exist
infinitely many cyclic extensions L/K of degree `n such that A(L) = A(K).

The deduction works by picking a map X → J(X) (not necessarily an em-
bedding - to define this map we just need a rational divisor of sufficiently
high degree) and then compose with projection to a simple quotient A of
J(X). There is some work here, since the map is not necessarily an embed-
ding, but it is not too serious.

Remark 1.8.
(1) Sometimes, e.g. if E is a non-CM elliptic curve, we have

S = {` : ` �E 0}.
In particular, the density of S is 1.

(2) We can require L/K to be completely split at a given finite set of
places. (For instance, if K is totally real then we can find infinitely
many diophantine stable L which are totally real; if K ⊂ Qp then we
can find infintely many diophantine stable L which are in Qp.)
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This follows from general theorems in mathematical logic.

1.3. Applications. By applying the theorem iteratively, you can find many
infinite extensions furnishing no new rational points.

Corollary 1.9. Given X as in Theorem 1.6, there are uncountably many
L/K with X(L) = X(K).

Most of these have to be infinite, since there are only countably many
finite extensions.

Example 1.10. If X = X0(p) and p ≥ 23 is not 37, 43, 67, 163 then the only
rational points on X0(p) over Q are the cusps. This gives uncountably many
fields L/Q such that no elliptic curve over L has an L-rational subgroup of
order p.

Example 1.11. If we apply this to X an elliptic curve over Q with positive
rank, it follows by work of Shlapentokh, building on work of Poonen, etc.
that there exist uncountably many L with

(1) Hilbert’s 10th problem has a negative answer over OL,
(2) The first-order theory of L is undecidable.

1.4. Sharpness of the results. How close is our theorem to being sharp?
It turns out that the answer is: not close at all.

Definition 1.12. For an extension L/K, let DL/K be the relative discriminant.
Set

N`(X) = #{L/K cyclic of degree ` | V(L) = V(K),Nm(DL/K) < X}.
and

NE,`(X) = #{L/K cyclic of degree ` | V(L) = V(K),Nm(DL/K) < X.

Theorem 1.13 (Wright). We have

N`(X) ∼ X1/(`−1)(log X)explicit power.

Example 1.14. If ` = 2 and K = Q, then (as mentioned earlier) we expect
NE,2(X) ∼ 1

2 N2(X). For general K, we expect NE,2(X) ∼ cN2(X) for some
0 ≤ c ≤ 1.

For general `, we expect NE,`(X) ∼ N`(X) certainly for ` � 0, and one
might even expect this for ` ≥ 3. (There are some precise conjectures
that predict that when K = Q, this should be true for ` ≥ 3, and that the
difference is finite if ` ≥ 7.)

Theorem 1.15. If L is large enough so that GK → Aut(E[`]) � GL2(F`) is
surjective, then

NE,`(X) � N`(X)/(log X)`/(`
2−1).

Notes from Coleman’s Memorial Conference

Proc-29



KARL RUBIN

Remark 1.16. By work of Serre, we know that the hypothesis holds for all
sufficiently large `.

2. Ideas of Proof

Let A be a simple abelian variety. We want to find many L/K of degree `
such that the rank doesn’t grow - the torsion is not a problem to control. We
consider the Weil restriction of A from L to K, which fit into a short exact
sequence

0→ AL/K︸︷︷︸
def

→ ResL
K A→ A→ 0.

♠♠♠ TONY: [what is this, actually?] Taking K-points gives the exact se-
quence

0→ AL/K(K)→ A(L)→ A(K)
so if we want to know if rank A(L) = rank A(K), then it suffices to study if
AL/K(K) has rank 0.

We have an inclusion Z[Gal(L/K)] ↪→ End(ResL
K(A)). That induces

Z[µ`] ↪→ End(AL/K). If λ = ζ`−1 ∈ Z[µ`] then we have AL/K[λ] � A[`] ♠♠♠
TONY: [why?]. Therefore,

Selλ(AL/K) ⊂ H1(K, AL/K[λ]) � H1(K, A[`]).

Now, the Selmer group is cut out by local conditions depending on L. By
controlling the local behavior of L/K, we can control Selλ(AL/K) and hence
choose L/K so that Selλ(AL/K) = 0.

Let me just finish by saying the new input needed for this. The idea is to
carefully choose a set of primes at which the image of Frobenius acts in a
certain special way. For this, we need the image of Galois to be pretty large
at those primes.

Theorem 2.1 (Larsen). LetO be the ring of integers of the center of End(A)⊗
Q. There exists a set S of rational primes of positive density such that for
all ` ∈ S and λ ∈ O above `,

(1) there exists γ ∈ GK(µ`) such that A[λ]/(γ − 1)A[λ] is a non-zero
simple End(A)/λ-modules and

(2) there exists γ ∈ GK(µ`) such that A[λ]/(γ − 1)A[λ] = 0.
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RANKIN-SELBERG EULER SYSTEMS IN COLEMAN
FAMILIES

SARAH ZERBES

1. Euler systems

Let V be a p-adic representation of GQ := Gal(Q/Q), unramified outside
a finite set of primes Σ.

Definition 1.1 (Rubin). An Euler System for V is a collection {zm}m≥1, with
zm ∈ H1(Q(µm),V∗(1)) such that

(1) the zm take values in a lattice independent of m,
(2) The Euler system norm relations:

coresm`
m zm` =


zm l | m or ` ∈ Σ,

P`(σ−1
` )zm otherwise. =

where P`(X) = det(1 − Xσ−1
` |V).

Theorem 1.2 (Rubin). If z1 , 0, then the strict Selmer group Sel(V/Q) is
finite.

If one knows some stronger hypothesis, then one gets that the Bloch-Kato
Selmer group is finite.

Example 1.3. There are two classical examples of Euler systems.
(1) Cyclotomic units: V = Qp is the trivial representation.
(2) Kato’s Euler system: V = Vp(E) for E an elliptic curve, or V =

M( f ), where f is a modular form of weight ≥ 2.

2. The Euler System of Beilinson-Flach classes

Let f , g be modular forms, more precisely eigenforms of level N such
that p | N, of weights k + 2, k′ + 2 ≥ 2.

Theorem 2.1 (Lei-L-Z, Kings-L-Z). Let 0 ≤ j ≤ min(k, k′). Then there ex-
ist (Beilinson-Flach) classes (BF( f ,g, j)

m )m≥1, with BF( f ,g, j)
m ∈ H1(Q(µm),M( f )∗⊗

M(g)∗(− j)), satisfying “Euler System style” norm relations, which are re-
lated to Lp( f , g, 1 + j).
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2.1. Idea of construction. Start with a Siegel unit

g1/m2N ∈ O(Y1(m2N))×
Kummer−−−−−→ H1

ét(Y1(m2N),Zp(1)).

Then construct an embedding ιm,N : Y1(m2N) → Y1(N2) × µm sending z 7→
(z, z + 1/m). Now consider the pushforward

H1
ét(Y1(m2N),Zp(1))

(ιm,N )∗−−−−→ H3
ét(Y1(N)2 × µm,Zp(2))

♠♠♠ TONY: [what is this?] This maps by the Hoschild-Serre spectral se-
quence to H1(Q(µm),H2

ét(Y1(N),Zp(2)), and then to H1(Q(µm),M( f )∗⊗M(g)∗(− j)).
The image is the class BF( f ,g, j)

m that we wanted.
This only construct classes in a very limited range of j. To get higher

weights, one uses interpolation.

3. Interpolation in cyclotomic families

Let Γ = Gal(Q(µp∞)/Q) � Z×p . Write Λ(Γ) for the Qp-valued measures
on Γ. (This is the Iwasawa algebra.)

We would like to have classes (BF( f ,g,cyc))m≥1,p-m (here cyc is the cyclo-
tomic character) which interpolate the geometric classes that we have con-
structed. That is, we would like

(BF)( f ,g,cyc)
m ∈ H1(Q(µm),M( f )∗ ⊗ M(g)∗ ⊗ Λ(Γ))

such that integrating against the measures recovers the “geometric” classes
that we already constructed:

(BF)( f ,g, j)
mpr =

∫

1+prZp

χ jα(BF)( f ,g,cyc)
m for all r ≥ 0, 0 ≤ j ≤ min k, k′. (1)

What we would need is that

coresmpr+1

mpr BF( f ,g, j)
mpr = BF( f ,g, j)

mpr .

But our classes didn’t quite satisfy the Euler system norm relations. They
satisfied

coresmpr+1

mpr (BF)( f ,g, j)
mpr+1 = α fαg · BF( f ,g, j)

mpr

where α f , αg are Up-eigenvalues of f , g. If λ = Vp(α fαg) > 0, then renor-
malizing gives denominators.

Definition 3.1. We denote by Dλ(Γ) the Qp-valued distributions on Γ of
weight λ.

Theorem 3.2 (KLZ, LZ). Assuming that λ < 1 + min(k, k′). Then there
exist (BF( f ,g,cyc)

m such that BF( f ,g,cyc)
m ∈ H1(Q(µm),M( f )∗ ⊗ M(g)∗ ⊗ Dλ(Γ))

satisfying (1).
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Ths gives an Euler system for j in the critical range. However, this is
a little unsatisfying for a couple reasons: we had to assume a small slope
condition, and it only works for modular forms of weight at least 2, whereas
we would really like the result for modular forms of weight 1. The solution
to these problems is to consider variation in Coleman families.

4. Variation in Coleman families

Let W be a weight space and U ⊂ W an open disc such that Z≥0 ∩ U is
dense in U. Let ΛU be the ring of functions on U.

Definition 4.1. A Coleman family F over U (of tame level N) is a power
series

f =
∑

n≥1

an(F )qn ∈ ΛU[[q]]

such that
(1) a1(F ) = 1,
(2) the specialization Fk for almost all k ∈ Z≥0∩U is a classical modular

form of weight k + 2 and level Γ1(N) ∩ Γ0(p).

Theorem 4.2 (Coleman-Mazur, Buzzard). Let f be an eigenform of weight
at least 2 and level N suh that p | N. Assume that f is of finite slope and
not critical slope. Then there exists a Coleman family through f .

4.1. ΛU-adic representation attached to F . Let Y1(N(p)) be the modular
curve attached to Γ1(N)∩Γ0(p). LetH be the relative homology sheaf of the
universal elliptic curve above Y1(N(p)). Audreatta-Iovita-Stevens construct
a sheaf of distributionsDU(H) on Y1(N(p)) (a sheaf of ΛU-modules). This
is closely related to overconvergent modular symbols.

Definition 4.3. We define the étale overconvergent cohomology

MU = H1
ét(Y1(N(p)),DU(H)).

This has an action of GQ and the Hecke algebra.

Definition 4.4. Let F be a Coleman family of tame level N. Define

MU(F ) = MU[γn = an(F ) for all n]

i.e. the part with Hecke eigenvalues an(F ).

Theorem 4.5 (Ash-Stevens, Bellendre). MU(F ) is a direct summand of MU ,
and recovers M(Fk)∗ for almost all k ∈ Z≥0 ∩ U.

Theorem 4.6 (LZ). Let F ,G be Coleman families of tame level N over
M,M′ of slopes λF , λG. Then there exists (BF(F ,G,cyc)

m )m≥1,p-m, with BF(F ,G,cyc)
m ∈

H1(Q(µm),M(F )⊗̂M(G)⊗̂DλF +λG(Γ)) interpolating geometric classes.
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Relation to L-values. It turns out that these classes are related to special
values of Urban’s p-adic L-function. We call this the “explicit reciprocity
law.” Let k ∈ Z≥0 ∩ U, k′ ∈ Z≥0 ∩ U′ and j � 0. Then

exp∗(BF(Fk ,Gk , j)
1 ) = (∗)Lp(Fk,Gk, 1 + j)

This is deduced by using knowledge of the relation between the geometric
classes and the L-function, and then analytic continuation to get the general
case.

4.2. Idea of proof of construction. The first step is to construct a 2-variable
family (BF(F ,G, j)

m ) for fixed j. The second step is to show interpolation in
the cyclotomic direction.

To elaborate on the first step: we need to introduce “étale nearly over-
convergent cohomology,” whose relation to étale overconvergent cohomol-
ogy is analogous to that between Urban’s theory of “nearly overconvergent
modular forms” and overconvergent modular forms.

Remark 4.7.
• If you special the 2-parameter family, you can get a 1-parameter

(cyclotomic) family for any pair of forms which are not of critical
slope. This gets rid of the no small slope assumption.
• If f , g have level prime to p, then we get an Euler system for each

pair of non-critical slope p-stabilizations.
• This is a generalization of earlier results about variation in Hida

families.

5. Applications

Theorem 5.1 (K-L-Z,L-Z). Let f , g be modular forms such that wt( f ) >
wt(g) ≥ 1 such that L( f , g, 1 + j) is critical. If L( f , g, 1 + j) , 0 and
some technical hypotheses are satisfied, then the Bloch-Kato Selmer group
of M( f ) ⊗ M(g)(1 + j) is finite.

The sketch of proof: put f and g into Hida families. Specialize, and use
Rubin’s Euler system machine.

We emphasize that f , g may be non-ordinary.

5.1. Special case. Let’s assume that f corresponds to an elliptic curve over
Q and g has weight 1, hence corresponds to a 2-dimensional Artin represen-
tation ρ, trivialized by K.

Definition 5.2. We say that g is p-regular if ρ(Frobp) is not a scalar.

Theorem 5.3 (KLZ, LZ). If L(E, ρ, 1) , 0 then for all but fintely many p
such that g is p-regular, Selp∞(E/K)[p] is finite.
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In particular, this implies finiteness of the p-primary part of X(E/K)[p].
This was first proved by Bertolini, Darmon, and Rogers.
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THE WITT VECTOR AFFINE GRASSMANNIAN

PETER SCHOLZE

1. The classical case

Let k be a field. We want to parametrize k[[t]]-lattices in k((t))n, for some
fixed n ≥ 1. We want to do this not just for points but also families. So
consider the functor

Graff : k − algebras→ Sets
sending R to the set of finite projective R[[t]]-modules M, equipped with an
isomorphism M[1/t] � R((t))n. This is the functor of points of a scheme,
the classical affine Grassmannian.

There are several reasons to be interested in this. Historically, it comes
up in studying the moduli stack of G-bundles on a curve. It also comes up
in the geometric Langlands program, again in the context of studying the
moduli stack of G = GLn-bundles on a curve.

However, today we’re going to consider this as an object of interest for
its own sake.

The affine Grassmannian is huge (not finite type). To get something of
finite type, one needs to cut it down by finite bounds. Let a ≤ b for a, b ∈
Z. Let Graff,[a,b] ⊂ Graff parametrize lattices between tak[[t]]n and tbk[[t]]n.
Then

Graff = lim−−→
a,b

Graff,[a,b]

where all the transition maps are closed embeddings.

Theorem 1.1 (Beauville-Laszlo). All the Graff,[a,b] are projective schemes
over k.

Example 1.2. Graff,[0,1] = {lattices between k[[t]]n and tk[[t]]n}. This is just
the same as sub k-vector spaces of kn = k[[t]]n/tk[[t]]n, which is

∐n
d=0 Gr(d, n).

2. TheWitt vector case

Let k be a perfect field of characteristic p. Let W(k) be the ring of Witt
vectors. We want to parametrize “W(k)-lattices in W(k)[1/p]n.”

Why might one be interested in such structures? One source of examples
comes from Dieudonné theory. If M is a Diudonné module over k, i.e. a
finite free W(k)-module M equipped with ϕM : (ϕ∗M)[1/p] � M[1/p], then
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M and ϕ(M) are two lattices in the same vector space M[1/p] (here ϕ is
the lift of Frobenius). If you have a family of such and you trivialize one,
then you can view the other as varying in a fixed vector space, which gives
rise to period maps. Thus one obtains period maps from “moduli spaces
of p-adic Hodge structures” (e.g. from Rapoport-Zink spaces) to spaces of
such lattices.

The problem is that W(R) for a general k-algebra R are not well-behaved.
For example, they may have p-torsion (if R is not reduced), and W(R)/p→
R is not an isomorphism in general (if R is not perfect) - so W(R) can’t be
viewed as a “flat” lift of R.

Definition 2.1. Recall that R is perfect if Φ : R → R sending x 7→ xp is an
isomorphism. Any R has a (functorial) perfection: lim−−→Φ

R =: Rperf.

Example 2.2. The perfection of R = Fp[t] is Fp[t1/p∞].

The perfection doesn’t change the étale site, so “Rperf knows étale coho-
mology.”

Fact. If R is perfect, then

W(R) =


∞∑

n=0

[an]pn | an ∈ R



and evidently W(R)/p � R.

Because of the problems with non-perfect rings, it is useful to focus on
representing only perfect things.

Definition 2.3. Define the functor

GrW aff :
{
perfect k-algebras

}→ Set

sending R to the set of finite projective W(R)-modules M equipped with an
isomorphism M[1/p] � W(R)[1/p]n, up to equivalence.

Theorem 2.4 (Bhatt-Scholze). GrW aff,[a,b] is represented by the perfection
of a projective scheme over k.

Previously, X. Zhu had proved that it is a perfection of a proper algebraic
space. However, the method of proof is completely different.

Once you know this, you can talk about the étale cohomology of this
space. Zhu proved a geometric Satake equivalence in this setting.

The strategy is to construct a natural line bundle L on GrW aff and prove
that it is ample. We can’t construct enough sections directly; the method is
indirect.
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Example 2.5. We have GrW aff,[0,1] =
∐

d Gr(d, n)perf.

Classically, on Graff,[a,b] we have the line bundle L := detR(taR[[t]]n/M),
which makes sense because taR[[t]]n/M is a finite projective R-module.
This gives an embedding

Graff,[a,b] ↪→
∐

d

Gr(d, tak[[t]]n/tbk[[t]]n).

What happens if you try to do this in mixed characteristic? Well, you run
into the problem that paW(R)n/M is no longer an R-module (e.g. consider
W(R)/p3).

The idea is to filter paW(R)n/M such that all the gradeds Qi are finite
projective R-modules. For example, if R is a field then one can filter by
powers of p. Then one would like to “define”

L := det R(paW(R)n/M) =
⊗

i

det R(Qi).

The intuition is that if you have a short exact sequence of R-modules, then
the determinant of the middle module is the tensor product of the outer
determinants.

There are some problems:

(1) Such a filtration may not exist; it exists only after non-flat covers of
Spec R ♠♠♠ TONY: [mmm?]. So we need a strong non-flat descent.

(2) Even if such a filtration exists, it may not be unique. There are
two solutions to this problem; the more conceptual one is to use
K-theory (which we shall explain).

Example 2.6. What’s an example where the naïve filtration (by powers of
p) doesn’t work?

You can have a family of modules which looks like a family of W(R)/p2

degenerating (W(R)/p)⊕2 (think a Schubert cell limiting to something in its
closure). Modulo p, the family has generically rank 1, but the special fiber
has rank 2, so this can’t be finite projective.

3. Non-flat descent

We want to consider a bigger topology (than fpqc) where all the necessary
descent works.

Definition 3.1. A map f : X → Y of (qcqs) schemes is a v-cover (v stands
for valuation) (=universally subtrusive) if for all maps Spec V → Y , with V
a valuation ring, there exists an extension of valuation rings V ↪→ W and a
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diagram

Spec W

��

∃ // X

��
Spec V // Y

Said differently, to any scheme X there is a set of (equivalence classes of)
valuations on X, denoted |Xad|, and we are asking that |Xad|� |Yad|.
Example 3.2. (1) If f is faithfully flat, then f is a v-cover. First lift the most
special point, then use the going up theorem to extend.

(2) If f is proper surjective, then f is a v-cover. First lift the most generic
point, then use the valuative criterion to extend. (e.g. Y red ↪→ Y is a v-
cover.)

(3) a finitely presented v-cover is an h-cover in the sense of Voevodsky.
The h covers apply to most geometric situations, but it turns out that you
can do it more generally and this is sometimes useful.

Example 3.3. If Y = A2
k and X = Bl(0,0)A

2 \ {x} for x in the exceptional
fiber, but there’s a valuation on Y corresponding to the “direction of x”
which doesn’t extend to the blowup. ♠♠♠ TONY: [eh?]

Recall that a Grothendieck topology is said to be subcanonical if all repe-
sentable presheaves are schemes.

Theorem 3.4 (Gabber, Bhatt-Scholze). The v-topology on qcqs perfect schemes
is subcanonical and

Hi
v(Spec A,O) =


A i = 0,
0 i > 0

for perfect A, and vector bundles form a stack for the v-topology.

Remark 3.5. We’ve restricted to the category of perfect schemes. This can’t
work for the category of all schemes because the fact that the inclusion of
reduction is v-cover would imply that a scheme and its reduced structure
both represent the same functor.

Remark 3.6. If B← A→ C is a diagram of perfect rings, then TorA
i (B,C) =

0 for i > 0. So coherent base change always holds for perfect schemes.

Remark 3.7. This is a more elementary analogue of the “faithful topology”
on perfectoid spaces, developed in Peter’s Berkeley course.

We want to define

L := “ det R”(pnW(R)n/M) = “ det R”(M → paW(R)n)

where M → paW(R)n is a perfect complex of W(R)-modules supported on
Spec R.
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Definition 3.8. We define the K-theory spectra K(R) to be the group built
from perfect complexes of R-modules, and modding out by the usual rela-
tions of short exact sequences.

We define the spectra K(W(R) on R) to be the same construction for com-
plexes of perfect W(R)-modules supported on Spec R.

Then M → paW(R)n can be interpreted as a point of K(W(R) on R).

Corollary 3.9. The functor detR : K(R) → Pic(R) extends uniquely to a
functor d̃etR : K(W(R) on R)→ Pic(R).

There’s always a K(R)→ K(W(R) on R) because any perfect complex of
R-modules can be regarded as a perfect complex of W(R)-modules.

Proof. If R is a perfection of a regular ring, then a theorem of Quillen says
that K(R)

∼−→ K(W(R) on R). Concretely this means that when you have a
complex of perfect W(R) modules on R, then there exists a filtration whose
gradeds are R-modules.

In general, you use this plus de Jong’s alterations and v-descent. �

Remark 3.10. Since everything here commutes with filtered colimits, we
can immediately reduce to the finitely generated case.

4. The central extension of LG

Let G = SLn. The algebraic loop group LG(R) = G(W(R)[1/p]), for R
perfect. Then LG acts on GrW aff by translating the lattice. However, L is
not equivariant for this action.

Proposition 4.1 (Bhatt-Scholze). There is a simple extension (as in the clas-
sical case)

1→ Gm → L̃G → LG → 1
such that L is L̃G-equivariant.

Definition 4.2. L̃G is defined by the functor of points

R 7→ {g ∈ LG(R) + isom. d̃et R(W(R)n g−→ p−NW(R)n) � R,N � 0}.
Question. What is this extension for R = Fp?

1→ F×p → L̃G(Fp)→ SLn(Qp)→ 1. (1)

This turns out to be related to a construction of Steinberg. For any field L
(= Qp), there is an extension

1→ K2(L)→ ˜SLn(L)→ SLn(L)→ 0. (2)

One way to understand this is the following. There is a map of classifying
spaces B SLn(L) → B GL∞(L), which in turn maps to B GL∞(L)+ � K(L).
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We have π0(B SLn(L)) = ∗ and π1(B SLn) = SLn(L), and π0(K(L)) = 2 and
π1(K(L)) = L∗. It turns out that the composition K2(L)→ ˜SLn(L)→ SLn(L)
induces the determinant on π1. So one gets

BS Ln(L)→ τ≥2K(L)→ τ≤2
≥2K(L) = B2(K2(L),

and unlooping this is exactly equivalent to giving such an extension. ♠♠♠
TONY: [learn more homotopy theory]

So we have two natural extension of SLn(Qp), by F×p and K2(Qp).

Proposition 4.3. The extension (1) is the pushout of the extension (2) along
the Hilbert symbol: K2(Qp)→ K1(Fp) = F×p .
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OTHER MODULI SPACES

JARED WEINSTEIN

1. Semistable reduction

1.1. Semistable models. Let Γ ⊂ SL2(Z) be a congruence subgroup.

Motivation Question. Describe the semistable reduction of X(Γ)Cp .

Let’s recall the meaning of “semistable reduction.” Given a curve X/Cp,
there exists a semistable model X/OCp , i.e. a model whose special fiber
whose only singularities are nodes. The special fiber Xs is well-defined up
to P1 (obtained as the exceptional fibers of blowing up).

Remark 1.1. If X started out over Qp, then you might need to pass to an
extension field to see the semistable reduction. This is the original problem
that Coleman was considering when I got involved.

Let p be odd, p - N ≥ 5. We confuse X0(pn) with X(Γ0(pn) ∩ Γ1(N)).
(This N is an auxiliary “tame inertia” level.)

Example 1.2.
• X(1) has good reduction.
• X0(p) has semistable reduction over Qp. The special fiber has two

copies of X0(1) (which is X0(N)), meeting over the supersingular
locus.
♠♠♠ TONY: [Deligne-Rapoport picture of X0(p) as “DNA strand”.]

• X0(p2) was done by Edixhoven in ’90.
• X(p) was done by Bouw-Wewers in ’04.
• X0(p3) was done by Coleman-McMurdy in ’10.
• X0(p4) was done by Tsushina in ’11.
• X1(p3) was done by Imai-Tshushima in ’11.

The latter three use rigid geometry. To give a semistable model of the curve
is equivalent to give a covering of the associated rigid analytic space.

1.2. Semistable coverings.

Definition 1.3. A semistable covering of a rigid-analytic curve X is a cov-
ering by wide open spaces Uv such that
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(1) for all v,w distinct, Uv ∩ Uw is a finite disjoint union of annuli,
(2) for all v,w, x distinct, we have Uv ∩ Uw ∩ Ux = ∅,
(3) Zv := Uv \⋃w,v Uw is affinoid with Zi irreducible smooth.

We won’t define the meaning of “wide open.” See Coleman’s original
paper, or the paper of Coleman-McMurdy.
♠♠♠ TONY: [picture - widen opens are open 2-manifolds]
The affinoid Zv is necessary to talk about good reduction. (You can’t “re-

duce” an arbitrary rigid analytic space.) Let Z = Spm A and Z = Spec A+/mCp A+.

Theorem 1.4 (Coleman ’93). If X/Cp is a smooth proper algebraic curve,
then

{semistable models of X} ↔ {semistable covering of X}.
How does this work? If you have a semistable model X, then its special

fiber is a union of components Yv. On the other side, there is a reduction
map Xan → Xs. Then Uv = red−1(Yv), Zv is the pre-image of a smooth point,
and the annuli are the pre-images of nodes.

2. Modular curves

Let’s think about applying this to the semistable reduction of modular
curves.

We can reduce the main question to the following. Let E0/Fp be a supsersin-
gular elliptic curve. Let Mm be the region in (X(pm)an

Cp
) where E = E0. This

is like a residue neighborhood of E0. Then by Coleman’s Theorem, it suf-
fices to find a semistable covering of Mm.

Why does it suffice to treat the supersingular case? We understand the or-
dinary regions much better. Katz-Mazur have a description of the semistable
model in terms of Igusa curves, which intersect horribly over the supsersin-
gular locus.

This is what Coleman and McMurdy did for X0(p3). There actual work
was quite technical, so I’ll just try to distill the important principles.

2.1. Observations of Coleman-McMurdy.
• The importance of the elliptic curves E ∈ X0(p3) such that their

formal group Ê has extra endomorphisms: Ê ) Zp. They called
such E “fake CM.” Elliptic curves with CM have this property, but
some without CM do too. The wide opens are centered around
points with fake CM.
• The importance of the Gross-Hopkins map.
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2.2. Challenges.
• It is difficult to find coordinates on X(pm).
• The question is related to the representations of GL2(Qp). After

all, modular curves are where modular forms live, and modular
forms are automorphic forms for GL2(Qp). But X(pn) only has
a GL2(Z/pnZ) action - in particular the full symmetry group isn’t
present - plus Hecke operators.

The solution to both of these challenges is to work at “infinite level.” That
means “set m = ∞.” Since we have a tower of modular curves, we might
seek to find a tower of semistable reductions.

3. Infinite level

Notation: Mm is the rigid space, and Mm is the corresponding formal
scheme. Can we make a tower

. . .→M2 →M1 →M0

of semistable models for

. . .→ M2 → M1 → M0?

Furthermore, we demand thatMi →Mi−1 be finite.
This seemed promising because Coleman actually proved that given a

morphism of two rigid curves, you can find semistable models and a map
between them. This might seem like it already solves the problem, but
doing it for the tower is tricky. You can produceM1 →M0, but to produce
M2 → M1 you might have to refine the wide opens involved in defning
M1. But that destroys the original semistable covering, so you have to
refine that. Anyway, if you try to do this for the whole tower, you don’t end
up with a semistable covering because you had to shrink the wide opens so
much that they were no longer wide opens. In fact, they shrink infinitely
much precisely around the points of fake CM. So you have to remove those.

Let Msp
m ⊂ Mm (sp for “special”) be the subset of fake CM points and

Mnsp
m = Mm \ Msp

m . This is still a rigid space, but it’s complicated because
we have removed infinitely many points. It’s like the Drinfeld upper half-
plane, P1 \ P1(Qp) ♠♠♠ TONY: [???]

Theorem 3.1 (Weinstein). There exists a GL2(Qp)-compatible family of
semistable modelsMnsp

m :

. . .→Mnsp
2 →Mnsp

1 →Mnsp
0

such that all components of the special fibers fit into a tower

. . .→ C2 → C1 → C0
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with Ci ⊂ Mnsp
i,s an irreducible component. Moreover, C := lim←−−Ci is the

perfection of one of three isomorphism classes of curves:
(1) P1,
(2) y2 = xp − x,
(3) yp+1 = xp + x.

Remark 3.2. The second curve appears already in Coleman-McMurdy, and
the third appears in Tsushima’s paper.

Let Am be the deformation ring of Ê0 with level pm structure. Then we
have a sequence

A0 → A1 → A2 → . . .

with A0 � Zp[[u]]. The space Mm is the rigid generic fiber of Spf Am.

Theorem 3.3 (Weinstein). Let A∞ = (lim−−→ Am)∧ (completed with respect to
the topology generated by p and u). Then

A∞,OCp
�
OCp[[x1/p∞ , y1/p∞]]

(∆(x, y)1/pm − ζpm)m≥1
.

Remark 3.4. The ∆(x, y) is explicit, and the SL2(Qp) action on A∞,OCp
is

explicit. It’s miraculous that this group symmetry, which is absent at any
finite level, appears at infinite level, and we can explicitly describe it.

In terms of this, the wide opens forming a semistable cover are defined
in terms of linear inequalities in x, y.

Let Γ be the set of systems . . .→ C2 → C1 → C0, where Ci ⊂ Mnsp
i,s . This

is the dual graph of the semistable model. There are two kinds of “ends” of
Γ. One kind comes from fake CM points, and the other ones come from the
fact that Mm was not compact, so it has ends to begin with. So there are two
kinds of ends.

There’s a picture of the dual graph. From the Bruhat-Tits building of
GL2(Qp), you have ends parametrized by P1(Qp), with branching by P1(Z/pmZ)
at each juncture. However, there are other ends branching out, which reach
towards the fake CM curves. These don’t have degree p + 1, for example -
their degrees are related to supercuspidal representations of GL2(Qp).

Corollary 3.5. M∞ = lim←−−Mm is a perfectoid space.

The story of this is that Peter Scholze and I gave consecutive talks at the
IAS, his introducing perfectoid spaces and my introducing this theorem. We
both realized immediately that what I was talking about was a perfectoid
space. Since then, Peter has realized that other things become perfectoid at
“infinite level,” such as Rapoport-Zink spaces and Shimura varieties.
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EIGENVARIETIES AND THE P-ADIC LANGLANDS PROGRAM

MATT EMERTON

1. Introduction

1.1. Eigenvarieties. There is a correspondence
{

certain p-adic families of
automorphic eigenforms

}
↔

{
certain p-adic families of

Galois representations

}
.

When one talks about eigenforms, one should be more precise: eigenforms
for what? For the Hecke operators. Which Hecke operators? In particular,
there are two “cases:” the part prime to p, and the Hecke operators at p.
Here we mean to consider eigenforms for all Hecke operators. Now, by
Cebotarev’s theorem a Galois representation is already determined by what
happens away from p, so it “loses” information at p. One should include
some extra data at p to make up for it.

{certain p-adic families of
automorphic eigenforms
for all Hecke operators

}
↔

{
certain families of

Galois representations
plus extra data at p

}
.

1.2. p-adic Langlands. The p-adic Langlands program describes a corre-
spondence between the p-adic representation theory of GL(A), or GLn(Q`),
or GLn(Qp)) and global or local p-adic Galois representations.

The basic thing about p-adic Galois representations is that away from
p the data is relatively simple because a local Galois group at ` is almost
pro-`: there is a filtration

GQ` ⊃ I` ⊃ Iwild
`︸︷︷︸

pro-`

.

So in a p-adic representation Iwild
` doesn’t play much of a role. On the other

hand, the data at p is much more complicated.
This global recipe is via a local recipe, describing a local correspondence

between p-adic representations of GLn(Q`),GLn(Qp) and local p-adic Ga-
lois representations.

The point of the Langlands program is to exploit representation theory.
Langlands emphasized that automorphic forms have many symmetries, and
the data of an automorphic form looks confusely redundant if you don’t take
the symmetries into account.
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In Hida or Coleman’s theory, group representations don’t appear at all.
So it’s at least interesting to ask if we can understand the theory of eigen-
varities from the point of view of representation theory.

2. Relating Eigenvarieties to Representation Theory

2.1. Completed cohomology. To fix ideas, we start with GL2. We recall
the construction of completed cohomology. Y(pm) is the modular curve of
full level pm. (There should be an auxiliary tame level floating around, as in
Jared’s talk, which we’ll just ignore.) Then we can consider H1(Y(pm),Zp).
Since the modular curves form a tower, the homologies form a projective
system, so we can take

H̃1 := lim←−−
m

H1(Y(pm),Zp).

This is a representation of GL2(Qp), and admits an action of the “prime-to-
p” Hecke algebra T.

Theorem 2.1. H̃1 is finitely generated over Zp[[GL2(Zp)]].

A more traditional thing to do in the Langlands program would be to take
the cohomology. Then we would have an inductive limit, which basically
amounts to taking the union of all cohomology classes. This would be an
admissible smooth representation - smooth because any class lives at finite
level, and admissible because taking invariants of a compact open takes
you back to finite level. On the other hand, the representation H̃1 is far
from smooth - it is much bigger than the representations that appear in the
traditional p-adic Langlands program.

2.2. Galois deformations. Fix ρ : GQ → GLn(Fp) an irreducible modular
representation, corresponding to a maximal ideal m ⊂ T. Then you would
have an action of Tm on H̃1,m. Then there is a “universal Galois represen-
tation” obtained from gluing together all the stuff ♠♠♠ TONY: [eh???]; this
is packaged in the ring Tρ. There is a also a universal deformation ring Rρ,
and a map between them:

Spec Tρ → Spec Rρ.

Under some assumptions on ρ, this is an isomorphism.
If we had considered something else (cohomology), we would have seen

all weight 2 modular forms of level p∗, which is only countably much data.
Taking completed homology smashes together the Galois representations,
etc. making this an isomorphism.

Spec Rρ is 2-dimensional over Zp. The third dimension (coming from Zp)
can be viewed as the determinant; we will often fix a determinant, eliminat-
ing this determinatn. Now, H̃1 is four-dimensional, but it has an action of
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the three-dimensional symmetries Tρ, so you might naïvely guess that the
result is one-dimensional, i.e. a module of one-dimensional support over
the Iwasawa eigencurve.

The main thing to take away is that p-adic homology knows about all
the p-adic modular forms and all the p-adic Galois representations. But it
contains a lot more than the eigenvariety. In particular, it contains all sorts
of bad things: modular forms of infinite slope, Galois representations which
are not crystalline, etc.

What is an intuitive description of the dimensions of Rρ? One is twisting
(this is the dimension of the determinant, which we’ve already mentioned).
Another is the weight (Hida). What about the other? It’s a little confusing;
there’s no canonical label that we know. So two dimensions of deformations
over Spec Zp are a little mysterious.

2.3. Cutting out the eigenvariety. What I’d like to describe is how to cut
this picture down to an eigenvariety. We have to somehow remove GL2(Qp)
and introduce Up into the game. H̃1 is a p-adically completed object, living
on a space Spec Tρ, or perhaps more naturally considered as the formal
scheme Spf Tρ. So H̃1 is a kind of formal scheme-y type of object, whereas
the eigenvariety is a rigid analytic object. To go from formal to rigid, we
pass to analytic vectors:

H̃1,an = H̃1 ⊗Zp[GL2(Zp)] D(GL2(Zp)).

Here D(GL2(Zp)) are distributions on GL2(Zp). When you have a formal
scheme and invert p, you can pass to the rigid analytic generic fiber. That’s
a quasi-stein (wide-open), and it has its own ring of functions Trig

ρ
, and also

an action of GL2(Qp). It’s maybe not obvious because GL2(Qp) doesn’t
stabilize GL2(Zp), but actually you could have taken any compact open
subgroup instead of GL2(Zp) and it would give you something canonically
isomorphic, and GL2(Qp) does stabilize the system of compact opens.

On the space of coinvariants (H̃1,an)(1 Zp
0 1

) you have an action of Hecke

operators ht, for

t ∈ T + =

{(
a 0
0 d

)
| t

(
1 Zp

0 1

)
t−1 ⊂

(
1 Zp

0 1

)}
.

Then the action of ht on (H̃1,an)(1 Zp
0 1

) is defined by

v 7→
∑

n∈
(
1 Zp
0 1

)
/t
(
1 Zp
0 1

)
t−1

ntv.
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The fact that we are averaging over
(

1 Zp
0 1

)
ensure that this sum lies in the

space of coinvarants. So now we have an action of the monoid T +.
Now we want to cut down to things of finite slope. There’s a good way

to do that! We have an inclusion T + ⊂ T (diagonal matrices). To make T +

act invertibly is to make T act. We want a group algebra to act, but what
group algebra? If you just tensor, you get something algebraic which is
insensitive to the topological structure. This is bad, so we instead define T̂
to be the ring of continuous characters T → Qp

×
. As T � Z×Z×Z×p ×Z×p , a

character of T corresponds to two characters of Z×p and two characters of Z.
A character Z×p is parametrized by the “weight space”W, and a character

of Z is any choice of element of Qp
×
, so this isW×W× Gm × Gm.

Definition 2.2. We define the completed group ring

M := O(T̂ )⊗̂Qp[T +](H̃1,an)(1 Zp
0 1

).

This is an O(T̂ ) × Tρ-module.

Theorem 2.3. M is the global sections of a coherent sheaf on T̂ .

Imagine drawing Ĝm×W. The support ofM is a curve, and it has discrete
(but infinite) fibers over W. This is the “spectral curve” of Coleman and
Mazur, cut out by Fredholm power series of Up. To see that, you could lo-
calize H̃1 at ρ, which is irreducible; then we get a projective module over the
group ring and you can show that the coinvariants are an orthonormalizable
Frechet module over the group ring of Z×p , namelyW.

You can look at the O(T̂ )-subalgebra A of End(M) given by the image
of T, which is a coherent commutative algebra acting faithfully on M by
construction, and so we can consider the relative spec, Spec A. The claim
is that this is an eigenvariety. If we fix a Gm (i.e. determinant) and weight
space then it’s a curve, and we are claiming that it is the eigencurve.

Remark 2.4. This is quite similar to Stevens’ theory of modular symbols for
overconvergent modular forms.

3. Applications

What can you do with this? Several different things, including applica-
tions to p-adic L-functions.

I’ll instead talk about how to use more representation-theoretic methods.
For instance, it’s nice to know that when you have a sheaf over an eigenva-
riety that you have a multiplicity one statement. For instance, isM locally
free? I don’t know. It’s obviously locally free on an open set, but we’ll give
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a meaninful locally free description at many points. (If you had something
like smoothness of the base plus Cohen-Macaulayness ofM then we would
get freeness ♠♠♠ TONY: [?!], but you don’t have that.)

One of the subtle ways was discovered by Fred Diamond, using the
Taylor-Wiles patching method. I want to explain how to apply that to
the setup here. The key thing that drives Fred’s argument: globally you
know almost nothing about Spec Tρ. Even if you had Cohen-Macaulay on
M (which we don’t), we don’t have smoothness on the base. The patch-
ing thing is that you compute the deformation rings locally, where you can
see that they are smooth. This is analogous to what you dow ith perverse
sheaves in Geometric Langlands.

So here’s how the argument goes. You have a local deformation space
of ρK/Qp

, which is honestly smooth. There’s a fact that has been proved in
some generality: the map from global to local is actually finite. So it’s not
far from the truth to assume that it’s a closed immersion. (That would be
the statement that some strict Selmer group vanishes).

[Picture of a slice including into a box. The boxiness corresponds to
unobstructedness]

Choose an auxiliary prime q ≡ 1 (mod pn) for some large n. Now we
consider a deformation ring relaxing the conditons at q [picture is slightly
thicker slice], but the choice of q makes this still an embedding. It’s surpris-
ing that you can do this: you allow ramification at q, but arranging so that
the decomposition group at p remembers it. This is like having a charac-
ter whose conductor is divisible by q, but is captured by the decomposition
group at p - the condition that you need is that Frobp generates (Z/q)×.

Okay, so we’ve chosen a prime q. The amount of extra stuff you see is
the p-Sylow of (Z/q)×. As far as modular forms are concerned, you get
genuinely more modular forms by adding this q into the level. You get
free of rank one over the group ring adjoint the p-sylow. You’re doing
infinitesimal thickening in the p-sylow direction. As n gets large, you fill
out the local deformation space.

We’re going to describ a local version of H̃1, namelyM∞ - it is a patched
version of H̃1. This gives another construction of p-adic local Langlands
of Breuil. You can show that at ∞, the coinvariants of the augmentation
ideal is supported on the locus of Barsotti-Tate representations. (You don’t
know that it’s supported on the whole locus - that would be the content of
modularity.) One can form (M∞,an)

1 Zp

0 1



(coinvariants) and tensor with

O(T̂ ) to getM∞.

Theorem 3.1 (Breuil-Mellman-Schraen). The support ofM∞ (in (Spf Rloc)rig×
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T̂ ) is a union of components of the trianguline locus.

The optimal result is that the support is the entire trianguline locus: the
Zariski closure of trianguline representations. Also implicit in their argu-
ments is that M∞ is Cohen-Macaulay, hence free over the smooth locus.
Then you can recover M over the eigenvariety by pulling back along the
map from global to local.
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ADRIAN IOVITA

1. Introduction

[This is joint work with F. Andreatta and V. Pillowi on a conjecture of R.
Coleman.]

We begin by basically transcribing some private notes of Robert concern-
ing the eigencurve. Let p > 0 be a prime integer and N > 0 an integer prime
to p. Then

• (1998) Coleman-Mazur defined a rigid analytic object called the
eigencurve when p > 2 and N = 1.
• (2003) Kevin Buzzard extended the construction to all p and all N.

Denote this object Ep(N).
There is a simple description of the eigencurve in terms of moduli proper-
ties. It is a rigid analytic curve which parametrizes finite slope, overconver-
gent, normalized, p-adic eigenforms of tame level N.

The geometry of Ep(N) is still poorly understood. Let W rig denote the
rigid analytic space associated to the formal scheme Spf(Λ) where

Λ := Zp[[Z×p]] � Zp[(Z/pZ)×][[T ]]
1 + p 7→ 1 + T.

There is a morphism κ : Ep(N)→ W rig sending f 7→ κ( f ) (its weight).

Definition 1.1. If f is a p-adic overconvergent eigenform, then Up( f ) = ap f
and we say that the slope of f is vp(ap).

Let k : Z×2 → C×2 be a character (viewed as an element of weight space).
In 2005, Buzzard-Kilford proved that if p = 2 and N = 1, k ∈ W rig, such
that |k(5) − 1|2 > 1/8 then the slopes of overconvergent 2-adic modular
forms of weight k are 0, t, 2t, 3t, . . ., where t = v2(k(5) − 1), and each slope
occurs with multiplicity 1. A similar result for p = 3,N = 1 was proved by
Roe in 2008. Robert was interested in generalizing this.

1.1. Robert’s conjecture. From now on assume p ≥ 5,N ≥ 3. Fix a
character ε : (Z/pZ)× → Qp

×
. Let Λ = Λε be the ε-component of Λ, so

Λ � Zp[[T ]]. Let Qε(X) ∈ Λ[[X]] be the characteristic series of the operator
Up on p-adic families of overconvergent eigenforms.
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Conjecture 1.2 (Coleman, 2012?). There exists a Banach space over Fp((T )),
denoted Mε of “overconvergent modular forms over Fp((T ))” with a com-
pact action of Up such that the characteristic series

Pε(X) := det(I − XUp | Mε) = Qε(X) mod pΛ[[x]].

This conjecture expresses something very deep. The p-adic modular
forms live in Qp-vector spaces, which are very rigid. But the characteristic
polynomial of Up - the most important Hecke operator - has a very simple
integral shape. So Robert’s guess was that there should exist an integral
theory of families of p-adic modular forms.

Remark 1.3.
(1) Robert gives a precise recipe for the construction of Mε using re-

duction modulo p of p-adic families in characteristic 0 close to the
boundary of the weight space W rig

ε .
(2) Coleman claimed that his conjecture is related to generalizing the

result of Buzzard-Kilford for all p and all N.
(3) A recent result of R. Liu, D. Wan, and L. Xiao proved the Buzzard-

Kilford result for all p for modular forms associated to definite
quaternion algebras.

2. Geometric definition of Mε

Let k := kε : Z×p → Fp[[T ]]× be the character sending 1 + p 7→ 1 + T and

(Z/pZ)×
ε−→ F×p .

2.1. The construction. Let X = X1(N)Fp . We have the ordinary locus

X
ord

. In the moduli-theoretic interpretation of X1(N)Fp parametrizing ellip-
tic curves plus a point of order N, the ordinary locus describes the subset of
elliptic curves of ordinary reduction. Equivalently, X

ord
= {x ∈ X | Ha(x) ,

0} where Ha ∈ H0(X, ωp−1) is the Hasse invariant.

(1) Let E → X
ord

be the universal semi-abelian scheme and Frobn : E →
E(pn). Then Hn := ker(Frobn) ⊂ E[pn] is the canonical subgroup of
E.

(2) The Cartier dual HD
n is étale. For all n ≥ 1, we can consider

IGn := Isom
X

ord(HD
n ,Z/pnZ) - here Z/pnZ is the constant scheme.

This admits a map to X
ord

which is finite étale, Galois with group
Gn = (Z/pnZ)×.

(3) We have a tower

. . .→ IGn+1 → IGn
(Z/pnZ)×−−−−−−→ X

ord
.
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This gives a monodromy representation π1(X
ord
, ∗)→ Z×p

k−→ Fp[[T ]]×,

which can be interpeted as an action of π1(X
ord
, ∗) on Fp[[T ]]. By

work of Katz, one can canonically attach a pair (ωord,k, φord) where
ωord,k is a locally free rank 1 sheaf on X

ord ×Fp Fp[[T ]] and φord is a

Frobenius endomorphism on ωord,k.
(4) Let M

ord
ε := H0(X

ord×FpFp[[T ]], ωord,k), the space of T -adic modular
forms over Fp[[T ]].

Question. Does (ωord,k, φord) overconverge? (i.e. does it extend to a
neighborhood of this formal scheme?)

(5) Let r ≥ 1. Set Xord
= X

ord ×Fp Fp[[T ]] and X = X ×Fp Fp[[T ]]. Then
we construct some open formal subscheme Xr in the blowup (in the
category of formal schemes) of X along I = (Hapr

,T ). We have a
map

Xr

��

X Xord
_?

oo

(6) For all n ≥ 1, we have an Igusa tower IGn×Fp Fp[[T ]] over Xord
, and

denote by IGr,n the normalization of Xr in IGn ×Fp Fp[[T ]]. So we
get a tower of formal schemes.

IGr,n+1

��
IGr,n

(Z/pnZ)×

��
Xr

We now define

IGr,∞ := lim←−−n
IGr,n

π

��
Xr

This admits a Z×p action.

Definition 2.1. We define the sheaf ωk
r := π∗(OIGr ,∞)[k

−1
].
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A priori, this seems like it could be a terrible thing, or completely trivial.
However, we prove:

Theorem 2.2. ωk is locally free of rank 1 over Xr for r ≥ 2, and

ωk
r |Xord = ωord,k.

Define
M

k
ε := H0(Xr, ω

k
r).

This is a space of overconvergent modular forms over Fp[[T ]] of weight k, r.
It admits a Hecke action. One should invert T to get a Banach space, such
that Up is compact for the T -adic topology (but we think it is important that
this came from an integral construction.)

3. Connections with modular forms in characteristic 0

Oops, we’re out of time. Let me just say that we can work near the bound-
ary of the weight space (an adic space) in the T -adic topology and we can
produce integral locally free modular sheaves of rank 1, whose reduction
mod p is ωk

r .
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KEVIN BUZZARD

1. The eigencurve

Coleman and Mazur raise several questions about eigencurves at the be-
ginning of their paper. The eigencurve seems very abstract, but I eventually
realized that they are actually not so hard to write down. For instance, the
“simplest” example is for p = 2 and N = 1, there is a “level 1, 2” eigen-
curve, and Emerton and I figured out how to answer many of their questions
for this special case.

Let p be a prime number. We’ll work in tame level 1 throughout. Then
we have the familiar isomorphism

j : X0(1)|Zp

∼−→ P1

Thinking of X0(1)Fp as parametrizing elliptic curves, you have the cusp at
∞, some “random” supersingular points, and the rest of the points are nice
ordinary curves.

The pre-image of each point is a disk. In X0(1)(Cp), there is a disk ly-
ing over ∞ which parametrizes curves of bad reduction, and 3 open disks
parametrizing elliptic curves with supersingular reduction.

Nick Katz emphasized that congruences between modular forms reflects
something about the modular forms being p-adically close, which comes
down to being close away from the supersingular discs. Let X0(1)ord be
X0(1) minus the supersingular discs.

You can do something slightly more subtle: throw away smaller disks.
This requires a choice of center (in non-archimedean geometry, all points
are the center). Choose a center x of a supersingular disc with x defined over
W(Fp) (there’s a canonical disc of radius 1/p parametrizing curves defined
over an unramified extension). Then X0(1)≥r is obtained by throwing away
the open discs of radius r centered at these x’s.

Set Mord
0 to be the holomorphic (i.e. rigid analytic) functions on X0(1)ord.

Define M0(r) to be holomorphic functions on X0(1)≥r. These are (big!) p-
adic Banach spaces, admitting continuous Hecke action. This work goes
back to Katz. Katz also knew that the special Hecke operator Up was con-
tinuous on M0(1)ord and compact on M0(r).
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2. A toy model

Let me give a toy example of how I think about these things. Let q be a
p-adic variable. A toy model for X0(1)ord is a closed disc |q| ≤ 1, and a toy
model for X0(1)≥r is a closed disc |q| ≤ 1 + ε. Then

Mord
0 =

{∑
anqn : |an| → 0

}

and
M0(r) =

{∑
anqn : |an|(1 + ε)n → 0

}
.

Now we think of
Up

(∑
anqn

)
=

∑
an/pqn.

With respect to the obvious basis {1, q, q2, q3, . . .} of Mord
0 , Up has the matrix

(for p = 2)


1 0 0 0 0 . . .
0 0 1 0 0 . . .

0 0 0 0 1 . . .
...

...
...

...
...

. . .



since Up(1) = 1,Up(q) = 0,Up(q2) = q, etc.
You can easily see that this is continuous. First, well-definedness is that

each column has entries tending to 0 p-adically, and continuity is that prop-
erty that there is a global bound on the entries of the matrix.

We can also see that this is not compact. Indeed, a compact operator is a
limit of finite rank operators. Concretely, for any ε > 0 there is a horizontal
line such that everything below has size at most ε. That obviously fails here,
as there are always 1’s in the matrix below any horizontal line.

On the disc |q| ≤ 2, a basis is 1, 2q, 4q2, . . .. So now the matrix for U2 is


1 0 0 0 0 . . .
0 0 2 0 0 . . .

0 0 0 0 4 . . .
...

...
...

...
...

. . .



Now we see that this is compact.
Compact operators are really good, because they’re well-approximated

by ones of finite rank. If M = (mi j)i, j≥0 is a compact endomorphism, we can
define

det(1 − XM) = lim
N→∞

det(1 − XMN)

where MN is the truncation of M to i, j ≤ N.
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3. Back to the real world

The operator Up acting on overconvergent functions is compact (as we
said, this was already known to Katz), so

det(1 − XUp) ∈ Qp[[X]]

is defined, and even better this converges for all X ∈ Cp.
Katz studied this for integer weights.

Question. Can we make this work for a general p-adic weight κ ∈
W := Homcts(Z×p ,C

×
p)?

In other words, can we give a definition of overconvergent modular forms
of weight κ? This was a problem that Robert solved brililantly.

Example 3.1. For k ≥ 2 even,

Ek = 1 +
2

ζp(1 − k)

∑
σ∗k−1(n)qn.

This is a level p Eisenstein series, with UpEk = Ek.
This sits in a nice family. For κ ∈ W, we can define Eκ by a formal

q-expansion in Cp[[q]] (specializing to the usual one when k is an integer).
Robert recognized that it would be hard to say anything about these, but

he somehow found interesting things to say nonetheless. A crucial result
is that Eκ(q)/Eκ(qp) is the q-expansion of an overconvergent function (this
is expected, if you expect both the numerator and the denominator to be
overconvergent modular forms of weight k). This is hard! It uses the con-
struction of the eigencurve, for instance.

One can ask interesting questions like: how far does this overconverge?
W is a finite union of discs, and as κ → boundary, Eκ(q)/Eκ(qp) overcon-
verges less and less.

Why is this important? It allows us to give a definnition of overconger-
gent modular forms of weight κ. This was Robert’s definition (there are
better ones now):

Definition 3.2. An overconvergent modular form of weight κ is a formal q-
expansion F =

∑
anqn such that F/Eκ the q-expansion of an overconvergent

function (weight 0).

Now the big question is: do we have a theory of Hecke operators?

Question. Is Up(F) overconvergent of weight κ if F is?
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The answer (due to Coleman) is yes! The reason is that one can fill in a
diagram

M0(r)
Eκ //

U∗p
��

Mκ(r)

Up

��
M0(r) // Mκ(r)

where
U∗p(F) = Up(FEκ(q)/Eκ(qp)).

This definition makes sense because everything is an overconvergent func-
tion. So the operator

Up :
∑

anqn 7→
∑

anpqn

is compact (because the diagram commutes, it factors through a compact
map). Then it makes sense to define

Pκ(X) = det(1 − UpX|Mκ(r)).

For all κ ∈ W, we have Pκ(X) ∈ Cp[[X]] converging for all x ∈ Cp. Now,
since this all varies analytically, the Pκ glue to give P(X) =

∑
anXn ∈

O(W)[[X]]. In fact, Robert proved that P(X) ∈ Zp[Z×p][[X]].

Remark 3.3. Here is a question of Bergdall-Pollack. Each an is a function
onW. Does there exist a closed disc D ⊂ W such that the zeroes of an all
lie in D? Or are there zeros arbitrarily close to the boundary?

The reason that we went through it is to emphasize that this is really
concrete mathematics, which you can compute.

4. Eisenstein series

If p = 2 and N = 1 then X0(1)ord is isomorphic to a closed disc. You can
compute Eκ(q)/Eκ(qp) using a formula in Washington’s book.

If E is the Eisenstein family, you can compute E(q)/E(qp) ∈ Z2[[w]][[x]].
If f = ∆(q2)/∆(q), then f induces an isomorphism between X0(1)ord and

a closed disc. We can use this to express:
E(q)
E(q2)

=
∑

bn f n, bn ∈ Z2[[w]].

Now, E doesn’t overconverge, so the bn don’t tend to 0 p-adically.
However, on the closed disc |w| ≤ 1/8, the function E(q)

E(q2) does overcon-
verge (only at the boundary does it fail to overconverge). Therefore,

E(q)
E(q2)

∈ Z2[[w/8]][[8 f ]].
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This is saying that on a small closed disc (parametrized by the first variable),
the family overconverges a lot.

We also have E(q)
E(q2) ∈ Z2[[w, f ]]. Therefore, E(q)

E(q2) ∈ Z2[[w,w f , 8 f ]]. This
tells us something about the coefficients bn, namely that bn ∈ (8,w)n.

Upshot: we can compute the matrix of U2 on ordinary 2-adic modular
forms. Using basis 1, f , f 2, . . . the matrix of U2 is (the matrix of U2 in
weight 0) times (the matrix representing multiplication multiplication by
E(q)
E(q2) ), but we know that the latter can be described is in terms of the explicit
calculable bn.

If f =
∆(q2)
∆(q) , we want to compute U2( f n). That is f ( τ2 )n + f (1+τ

2 )n. You can
explicitly solve this to get an explicit formulae for the matrix entries. That
implies that U2 on ordinary forms looks like



1
82 8 1
84 83 82 8 1 . . .
...

...
. . .


×



b0

b1 b0

b2 b1 b0 . . .
...

...
. . .



This implies that the matrix for U2 looks like


1
(8,w)2 (8,w) 1
(8,w)4 (8,w)3 (8,w)2 (8,w) 1 . . .
...

. . .



Even though this matrix is not compact, we can still define the character-
istic power series det(1 − X(mi j)0≤i, j≤N) and it is a miraculous fact that this
converges as N → ∞. That gives bounds for P(X), and implies that the
slopes of U2 near the boundary are bounded below by 0, v(w), 2v(w), . . ..

What I actually did with Kilford was some hideous combinatorics con-
cerning when you get p-adic units, and the result was that these lower
bounds exact.

Later, work of Liu, Wan, and Xiao showed that these lower bounds must
be tight for formal reasons: near the boundary, if you have a form of weight
α then you also have a form of weight k − 1 − α by an Atkin-Lehner in-
volution. They then pushed through the theory for automorphic forms on a
definite quaternion algebra, and used the Atkin-Lehner trick to get precise
formulae for the slopes.
♠♠♠ TONY: [picture of christmas tree]
I told this to Robert and he instantly said that is great because you can

glue in P1 to get something compact. I still haven’t figured out if this is
sueful for anything.
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A SURVEY OF 15 YEARS OF P-ADIC POINT COUNTING

KIRAN KEDLAYA

1. Zeta functions of algebraic varieties

Let Fq be a finite field of characteristic p. We defined the zeta function of
a variety X over Fq as

ζ(X, s) =
∏

x

(1 − #κ(x)−s)−1

as x runs over closed points of X and κ(x) denotes the residue field.

Example 1.1. If X = Spec Z, then the analogous definition gives the Rie-
mann zeta function.

Equivalently (and probably closer to the language Weil would have orig-
inally expressed it in), x runs over Galois orbits of Fq-rational points and
κ(x) denotes the minimal field of definition.

Let T = q−s. Then one can show that

ζ(X,T ) = exp


∞∑

n=1

T n

n
#(Fqn)

 .

This form is much easier to use in practice.

Example 1.2. ζ(Pd
Fq
,T ) = 1

(1−T )(1−qT )...(1−qdT ) and if X is an elliptic curve of
Fq, then

ζ(X,T ) =
1 − aT + qT 2

(1 − T )(1 − qT )
where a = q + 1 − #X(Fq). Hasse proved a bound |a| ≤ 2

√
q.

Based on these and more examples, Weil famous conjectured analogues
of the properties of the Riemann zeta function. The first was:

Conjecture 1.3. The power series ζ(X,T ) represents a rational function of
T .

Theorem 1.4 (Dwork, 1960). The power series ζ(X,T ) is p-adic mero-
morphic: it is the ratio of two power series over Qp with infinite radii of
convergence.
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This ζ(X,T ) converges for small T ∈ C (by a trivial estimate on the
number points in terms of the dimension), an argument of Borel (1894)
then shows that it is rational.

2. The computational problem

Problem. Can one produce an algorithm that, given an explicit defini-
tion of X (i.e. defining equations), returns the rational function ζ(X,T )?

The answer is yes: you can compute a bound on the degree of the numer-
ator and denominator of ζ(X,T ), and then enumerate by brute force X(Fqn)
for enough values of n.

However, this is clearly at least an “exponential-time” algorithm. Unless
q and the degree bound are quite small, it is impractical.

What if we demand a “polynomial-time” algorithm?
A careless version of the question is probably no: even the length of the

answer can be exponential in the length of the input. Also, X(Fq) is dicey
because some NP-complete problems can be reduced to it. For instance if
q = 2 then this is asking for solutions to boolean equations.

That just means you should ask this question in a more modest way. In
2000, interest grew due to applications to hyperelliptic curve cryptography.
Other interest comes from computing motivic L-functions, to test special
values conjectures such as BSD. So versions of this question are of interest
both within number theory and in more applied areas.

2.1. First attempt. Let’s try to formulate a more precise version of the
question.

Problem. Fix a positive integer n. Is there an algorithm that, given an
algebraic variety X of postive dimension n, returns the rational function
ζ(X,T ) in “polynomial time?”

To quantify “polynomial time” (in the length of the input) we must spec-
ify an input mechanism for X. If Z ⊂ X is a closed subscheme, then the
set-theoretic disjoint union X = Z

∐
(X \ Z) induces a factorization

ζ(X,T ) = ζ(Z,T )ζ(X − Z,T )

This reduces computing the zeta function in general to computing it for
affine hypersurfaces.

Example 2.1. You can write Pn as a union of affine spaces in the standard
way.
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Remark 2.2. This is similar to how Dwork originally attacked the rationality
problem, except that Dwork originally reduced to a hypersurface of a torus.

Question. Fix a positive integer n. Is there an algorithm that, given f ∈
Fq[x1, . . . , xn] of degree d returns the rational function ζ(X,T ) for X =

Spec Fq[x1, . . . , xn]/( f ) in time poly(d, log q)?

This is open. Some special cases are known. The earliest methods are
based on étale cohomology. In principle, one can compute ζ(X,T ) by com-
puting the action of Frobenius on mod ` cohomology for a few small primes
`.

Theorem 2.3 (Schoof 1985; Pila 1990). Fix a positive integer d. There
is an algorithm which, for f ∈ Fq[x1, x2] of degree d, returns the rational
function ζ(X,T ) for X = Spec Fq[x1, x2]/( f ) in time poly(log q).

Schoof’s original work is practical for cryptographers, e.g. q = 2100.
Pila’s is worse, but maybe works for genus 2. At lower scales, such as used
by number theorists, other methods are competitive.

The dependence on d is horrible: it’s worse than exponential.

Theorem 2.4 (Lauder-Wan, 2000-2008). Fix a positive integer n. There is
an algorithm which, for f ∈ Fq[x1, . . . , xn] of degree d, returns the rational
function ζ(X,T ) for X = Spec Fq[x1, . . . , xn]/( f ) in time poly(d, p, logp q).

Remark 2.5. This is bad if p is huge (it’s exponential in that input argument).

The approach is by transcribing Dwork’s proof of rationality. However,
the resulting algorithm has not been made practical.

However, Dwork’s approach was later adapted in a p-adic Weil coho-
mology theory bearing a more formal resemblance to étale cohomology,
and also yielding more effective computation methods. This is work of
Kedlaya, Lauder, Denef, ...

We will restrict our discussion to the case where X is a curve. In this case,
there are important links to Coleman’s theory of p-adic abelian integrals,
Chabauty-Coleman, and non-abelian Chabauty.

3. p-adic cohomology for curves

Let X be a curve of genus g over Fq. Lift X to a smooth proper curve X̃
over Zq (this is possible e.g. because the moduli stack of curves is smooth).
The p-adic cohomology of X “is” the algebraic de Rham cohomology of the
generic fiber X̃Q. The important part is H1, which sits in an exact sequence

0→ H0(X̃Q,Ω)→ H1
dR(X̃Q,Qq)→ H1(X̃Q,O)→ 0.
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As in the classical theory of Rieman surfaces, elements of H1
dR can be rep-

resented by certain meromorphic differential forms. There is a canonical
endomorphism Frobq of H1

dR such that

ζ(X,T ) =
det(1 − T Frobq,H1

dR)
(1 − T )(1 − qT )

.

One way to produce Frobq is using crystalline cohomology (Grothendieck’s
preferred approach). This is by Grothendieck’s typical abstract approach -
he defines a “crystalline site,” etc. However, from this interpretation it is
not straightforward to cmotue the matrix action of Frobq on a basis.

3.1. Rigid analytic space. By rigid GAGA, H1
dR(X̃Q,Qq) is also the de

Rham cohomology of the rigid analytification Y of X̃Q. There is a reduction
map red: Y → X whose inverse images are open residue discs.

Definition 3.1. A wide open subset of Y is an open subset consisting of the
complement of a (non-empty) finite union of closed discs, each contained
in a residue disc.

3.2. Monsky-Washnitzer Frobenius action. In general, there does not
exist an automorphism of X̃Q (or Y) lifting the q-power Frobenius auto-
morphism of X.

However, for any open affine subspace U of X, there exist wide open
subset V1,V2 of Y with f (Y −Vi) = X −U and an isomorphism ϕ : V1 → V2

lifting Frobenius.

Theorem 3.2 (Monsky-Washnitzer, 1971). Via the canonical isomprhism
H1

dR(V1) � H1
dR(V2), we have

ζ(U,T ) =
det(1 − qϕ−1T,H1

dR(V1))
1 − qT

.

Computing the zeta function of U is basically equivalent to computing
the zeta function of X, up to a finite number of Euler factors.

3.3. A p-adic framework for computing ζ.
(1) Choose X̃ lifting X.
(2) Choose the open subset U, wide open V , and isomorphism ϕ. (If

q , p, one can lift p-power Frobnenius and iterate. This is how you
get the logp q runtime. Henceforth we ignore this issue.)

(3) Apply ϕ to 1-forms representing a basis of H1
dR(V).

(4) Use known relations in H1
dR(V) to write result of Frobenius pullback

as exact 1-forms plus Qq-linear combinations of basis vectors.
(5) Since we know essentially have the matrix of ϕ, we may recover

ζ(U,T ) from the characteristic polynomial of ϕ on H1
dR(V).
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Note that the characteristic polynomial has coefficients in Z, but we com-
pute it over Qq. This involves inexact (truncated) arithmetic, analogous to
floating-point arithmetic for R. Similarly, since V is a wide open its holo-
morphic functions are infinite power series, so you truncate here as well.

3.4. Example. (Kedlaya, 2001) Suppose p , 2 and X is a hyperelliptic
curve of the form y2 = P(x) where deg P(x) = 2g + 1, lifted to y2 = P̃(x)
where P̃(x) = 2g + 1 (it’s espcially easy to lift since the curve is hyperellip-
tic). Let U ⊂ X be the set where y is invertible - so we’re throwing out the
point at infinity as well as the finite Weierstrass points. Then H1

dR(V) admits
a basis consisting of xidx/y for 0 ≤ i ≤ 2g − 1 and x jdx/y2 for 0 ≤ j ≤ 2g.
These span the −1 and +1 (respectively) eigenspaces H1

dR(V)mp for y 7→ −y,
and it turns out that the −1 eigenspace spans H1

dR(Y) so we focus on that.
We may take ϕ to sends x 7→ xq and y 7→ yq(P̃(xq)/P̃(x)q)−1/2 (com-

puted by e.g. a binomial series). You can perform calculations in H1
dR(V)

systematically, e.g. there are explicit relations convering Q(x)dx/y2n+1 into
R(x)dx/y2n−1 (we omit technicalities, but remark that this is easy using the
fact that P, P′ have resultant 1).

Remark 3.3. The infinite series expansion for ϕ(y) requires careful trunca-
tion both p-adically and x-adically.

4. Coleman integration

Coleman defined path integrals
∫ Q

P
ω for any meromorphic differential

ω on a wide open subset V ⊂ Y and any P,Q which are not poles of ω.
This is easy if P,Q lie in a single residue disc, because ω admits an analytic
antiderivative F on the disc, so we can simply define

∫ Q

P
ω = F(Q) − F(P).

Coleman figured out how to make this work if F is only locally analytic on
U. The problem is that there is a different“constant of integration” for each
disc - how do you make coherent choices for all of them?

The key was the idea of “analytic continuation along Frobenius,” pio-
neered by Dwork. This was done by Coleman in 1981. In 2007 at Banff,
Robert and I resolved it in a different way. We were discussing how to de-
velop an algorithm to effectively compute Coleman integrals. It turns out
that you can do it easily with a slight modification of his original construc-
tion!
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The key property of Coleman integrals is that they satisfy a change of
variables formula for lift of Frobenius:∫ Q

P
ϕ∗(ω) =

∫ ϕ(Q)

ϕ(P)
ω.

Coleman used this originally by applying R(ϕ) where R is the characteristic
polynomial of ϕ on H1

dR(U). By Cayley-Hamilton, R(ϕ∗)(ω) is exact, hence
has an analytic primitive. If you take a basis ω1, . . . , ωn of H1

dR(U), then the
Monsky-Washnitzer computation gave us

ϕ∗(ω j) =
∑

i

Ai jωi + d f j

in which we previously we discarded f j and retained Ai j. Then
∫ Q

P
ϕ∗(ω j) =

∫ ϕ(Q)

ϕ(P)
ω j =

∑

i

Ai j

∫ Q

P
ωi + f j(Q) − f j(P).

But writing
∫ ϕ(Q)

ϕ(P)
=

∫ P

ϕ(P)
+

∫ Q

P
+

∫ ϕ(Q)

Q
(recalling the integration within residue

disc is easy!) we end up with

(A − 1)−1(vector of
∫ Q

P
ωi) = (computable vector)

Since A has no eigenvalues equal to 1 by Weil (we’ve assumed good reduc-
tion!), this pins down all the constants of integration.

For hyperelliptic curves, this strategy was implemented by Jennifer Bal-
akrishnan in her PhD thesis (based on work of Robert Bradshaw at the 2007
Arizona Winter School). Balakrishnan and Tuitman are currently extend-
ing this to more general curves (even arbitrary curves of good reduction).
This should make it routine to compute the integrals arising in Chabauty-
Coleman method. Previously indirect methods were used - using additivity
and the arithmetic of the Jacobian to reduce to a single disc. Moreover, you
can used iterated Coleman integrals arising in Kim’s non-abelian Chabauty
method.
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P-ADIC METHODS AND CLASS FIELDS OF REAL
QUADRATIC FIELDS

HENRI DARMON

The theme is the explicit construction of class fields of real quadratic
fields. This is a joint work with Alan Lauder and Victor Rotger, and but
also of earlier work with Samit Dasgputa.

1. Introduction

1.1. Explicit class field theory. The story starts with the theorem of Kronecker-
Weber that all abelian extensions of Q can be generated by roots of unity:

Over quadratic imaginary fields, there is a similar story by which abelian
extension can be explicitly constructed using ellilptic curves with complex
multiplication, and specifically their j-value and torsion points.

Hilbert’s 12th problem asks about explicit class field theory in general:
is it possible to generate class fields of other number fields from values of
concrete transcendental functions at explicit arguments?

So there is a satisfying answer for K = Q or a quadratic imaginary exten-
sion. The “first” case where this is open is that of real quadratic fields.

1.2. Stark’s conjecture. Let K be a real quadratic field and

ψ : Gal(H/K)→ L× ⊂ C×
a character of mixed signature (i.e. −1 on one real embedding and +1 on
the other).

Conjecture 1.1 (Stark). The L-function L(K, ψ, s) has a simple zero at s = 0
and

L′(K, ψ, 0) = log |uψ|
where uψ ∈ (O×H ⊗ L)ψ.

Thus one can construct explicit units in H by exponentiating values of
L′(K, ψ, 0). This leads to many concrete computations of explicit class
fields. In fact, this approach is used by many computer packages. The
drawbacks:

(1) Stark’s conjecture is open, and
(2) (more subjectively) there is not a very strong analogy with the the-

ory of singular moduli.
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1.3. Fourier coefficients of modular forms. The idea of Bill Duke and
Yingkun Li was that the Fourier coefficients of “mock modular forms” of
weight one involve logarithms of algebraic numbers belonging to interest-
ing class fields.

The goals of this lecture:
(1) describe this idea, and
(2) propose a p-adic variant which is better suited than archimedean

counterpart for explicit class field theory for real quadratic fields.

2. Weak harmonicMaass forms

Definition 2.1. A weak harmonic Maass form of weight k, level N, and
character χ : (Z/N)× → C× is a real analytic function f : H→ C satisfying

(1) the usual modular transformation property,
(2) linear exponential growth at cusps,
(3) ∆kF = 0 where ∆k is the weight k hyperbolic Laplacian.

The hyperbolic Laplacian ∆k factors as δk = ξ2−k ◦ ξk where ξk is some
“lowering operator.” This sends weak harmonic Maass forms of weight k to
holomrphic cusp form of weight 2 − k. So we get an exact sequence:

0→ M†
k → Hk

ξk−→ S 2−k → 0.

The kernel is the space of “weakly holomorphic modular form of weight
k,” poles at cusps (and in particular is infinite dimensional). This is usually
applied with k being small or negative. In our application, k = 1.

2.1. Fourier expansion. A wakly harmonic Mass form F has Fourier ex-
pansion

F(z) =
∑

n≥n0

c+(n)qn

︸       ︷︷       ︸
holomorphic

−
∑

n>0

c(n)βk(n, y)q−n

︸                 ︷︷                 ︸
non-holomorphic

.

The c(n) of the non-holomorphic part are just the Fourier coefficients of
f (z) :=

∑
c(n)qn. The “holomrphic part” c+(n) is more subtle and interest-

ing.

Definition 2.2. A mock modular form is the holomorphic part of the weak
harmonic Maass form (denoted

∑
c+(n)qn above).

Definition 2.3. If f̃ is the holomorphic part of a weakly harmonic Maass
form F, then the cusp form f := ξkF is called the shadow of f̃ .

It’s important to observe that a cusp form can be the shadow of different
mock modular forms. Any two mock modular forms with the same shadow
differ by a classical weakly holomorphic modular form.

Notes from Coleman’s Memorial Conference

Proc-70



P-ADIC METHODS AND CLASS FIELDS OF REAL QUADRATIC
FIELDS

Philosphy. Fourier expansion of mock modular forms encodes gener-
ating series of interesting arithmetic functions.

2.2. The work of Duke-Li. Let H be Hilbert class field of K = Q(
√−p)

with p ≡ 3 (mod 4). Let ψ be a class group character, and θψ the associated
theta series (modular of weight 1). We are interested in mock modular form
whose shadow is θψ.

Theorem 2.4 (Duke, Li). There exists a mock modular form θ̃ψ with shadow
θψ, for which we have (certain normalizing conditions) and the coefficients
c+
ψ(n) are logarithms of u(n) algebraic numbers in H (units when n < 0).

Similar results were obtained more or less simultaneously by Ehlen and
Viazovska, by different methods. A common feature of all three works is
that the coefficients c+

ψ(n) are related to traces of singular moduli, so the
theory of complex multiplication play an essential role in the proofs.

However, the statement itself certainly doesn’t need complex multipli-
cation! This suggests that we can generalize it! Let f be any classical
newform of weight 1 associated to odd, irreducible, two-dimensional Artin
representation not induced from quadratic imaginary.

Conjecture 2.5. There is a mock modular form f̃ whose Fourier coefficients
are simple linear combinations with algebraic coefficients of logarithms of
algebraic numbers in H, lying in the field cut out by the adjoint (ρ f ).

There is some experimental evidence in the paper of Duke and Li, for a
certain octahedral modular form.

Let K be a real quadratic field and ψ : GK → C× any character of mixed
signature. Let θψ ∈ S 1(N, χ) be Hecke’s theta series of weight one attached
to ψ, and c+

ψ(n) the nth Fourier coefficient of θ̃ψ.

Conjecture 2.6 (Yingkun Li). For all rational primes `, the real and imag-
inary parts of c+

ψ(`) are logarithms of elements of OK[1/`]×1 .

Li proves this in several settings, by relating the c+
ψ(`) to certain traces of

singular moduli, on the HIlbert moduli surface attached to K.

Remark 2.7. It is disappointing that the coefficients describe things living
in K, not the class field H, as that means the Fourier coefficients of θ̃ψ don’t
contain interesting information about H.

3. p-adic methods

Now I want to discuss the possibility of transposing this to the p-adic
setting. There are several advantages there:
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(1) analogues of Stark’s conjecture are more tractable,
(2) the p-adic world allows for aesthetically pleasing parallels with the

classical theory of singular moduli, in the setting of real quadratic
fields,

(3) a natural p-adic analogue of the Duke-Li theorem does lead to non-
trivial class invariants in ring class fields of real quadratic fields.

3.1. Gross-Stark conjecture. The p-adic analogue of Stark’s conjecture:

Conjecture 3.1 (Gross). Let χ : Gal(H/F)→ L× be a totally odd character
of a totally real field F, and suppose χ(p) = 1 on a single prime p of F above
p. Then there exists uχ ∈ (OH[1/p])× ⊗ L)χ satisfying

L′p(F, χ, 0) ∼ logp NmFp/Qp(uχ).

Dasgupta, Pollack, Darmon, plus work of Ventulla (2011) proved this.
♠♠♠ TONY: [what about a more general version?]
The proof uses p-adic deformations and congruences with families of

Eisenstein series, following the pioneering approach of Ribet and Mazur-
Wiles.

3.2. Singular moduli. Let K be a quadratic imaginary field and τ ∈ H∩K.
Then one can associate the order

Oτ = {α ∈ C | α(Z + Zτ) ⊂ Z + Zτ}.
This is an order in an imaginary quadratic field, and the ring class field Hτ

is an extension of K with Gal(Hτ/K) = Pic(Oτ). The theory of complex
multiplication tells us that the singular modulus j(τ) generates ring class
field Hτ.

One can replace j by any rational function the j-line, or even on X1(N).
We would like to extend this to real quadratic fields.

3.3. Dasgupta’s thesis. The goal of Samit’s thesis was to extend this the-
ory of singular moduli to ring class fields of real quadratic fields. More
precisely, his thesis develops a p-adic analytic theory of elliptic units for
real quadratic fields.

Let u ∈ O×Y0(N) be a modular unit with u(∞) = 1. Then d log u = du/u is
weight two Eisenstein series, and

u(τ) = exp
(∫ τ

i∞
du/u

)
.

We can write this in a very roundabout way as an integral over the boundary
of a cycle:

= exp
(∫

∂−1(τ−i∞)
E2

)
.
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This may be seem contrived, but it is useful for understanding parallels with
the formulas in Samit’s thesis. His thesis works in one dimension higher: he
studies cycles of real dimension 1 on a two-dimensional symmetric space.

3.4. Mock hilbert modular surfaces. The p-adic Poincaré upper half plane
is Hp := Cp −Qp. ♠♠♠ TONY: [why?!] We also define the “congruence sub-
group”

Γp(N) =

{(
a b
c d

)
∈ S L2(Z[1/p]) : N | c

}
.

The group Γp(N) acts discretely on Hp × H (the second factor is the usual
upper half plane). The quotient can be thought of as “mock” (in a sense
unrelated to the “mock” of “mock modular forms”) modular surface.

Let p be a prime inert in a real quadratic K, so that Hp ∩K is non-empty.
Let γτ be a generator for stabilizer of τ in Γp(N).

To each τ ∈ H ∩ K, we can associate the cycle

Zτ := {τ} × (geodesic from x to γτx) ⊂ Γp(N)\(Hp × H).

This is a cycle of real dimension one on the mock Hilbert modular surface.
You want to think of it as being nullhomologous, like the zero cycle τ − i∞
in the CM theory.

Then Samit defines a Coleman-style p-adic integration theory on Hp ×
H, whereby the classical Eisenstein series du/u is parlayed into a “mock
Hilbert modular Eisenstein series” E(p)

2 on Hp×H of parallel weight 2. This
is not quite a function in reality, but you can at least make enough sense of
it to talk about its periods. Then define an integral

up(τ) = expp

(∫

∂−1Zr

E(p)
2

)
.

These formulas convey spirit of the construction, but it can be made con-
crete and rigorous.

Conjecture 3.2. The p-adic number up(τ) is a global p-unit in OHτ
[1/p]×,

and behaves exactly like elliptic units u(τ) attached to quadratic imaginary
τ.

Theorem 3.3. This conjecture is compatible with Gross-Stark conjecture
for totally odd ring class characters, and in fact is a non-trivial refinement
of it.

Although we proved Gross-Stark, this conjecture remains open.
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3.5. A Duke-Li style conjecture. Let p be a prime splitting in real qua-
dratic K.

Conjecture 3.4 (Darmon-Lauder-Rotger). There exists an overconvergent
p-adic modular form gτ of weight one satisfying, for all primes ` inert in K,

a`(gτ) ∼Q× logp u`(τ)

for suitable u`(τ) ∈ Q`2 .

There is good experimental confirmation.
This conjecture suggests that ring class invariants of real quadratic fields

can be packaged into modular generating series, after replacing mock mod-
ular forms by p-adic modular forms.

Note that the Gross-Stark conjectures involves p-adic logarithms of p-
adic units, while this involves p-adic logarithms of `-adic units.

3.6. A p-adic Duke-Li theorem. Let ψ be a totally odd ring class character
of K.

Lemma 3.5 (Tate). There is a ray class character ψ0 of K of mixed signa-
ture, satisfying ψ0/ψ

′
0 = ψ (where ψ′0 is the conjugate of ψ′) and hence

Ad(IndQK ψ0) = IndQK ψ ⊕ 1 ⊕ χK .

♠♠♠ TONY: [unwind the equivalence]
The p-adic counterpart of a mock modular form θ̃ψ0 whose shadow is

θψ0 is an overconvergent generalized eigenform attached to θψ0 . Here the
meaning of “overconverent” is as usual, and “generalized eigenform” is in
the sense of “generalized eigenvetor.”

Assume that θψ0 is regular at a prime p, i.e. has p-stabilizations with
distinct p-eigenvalues of Up. Replacing by a p-stabilization, we can assume
that

Upθψ0 = αθψ0 .

Theorem 3.6 (Cho-Vatsal, Bellaiche-Dimitrov, Adel Betina). The Coleman-
Mazur eigencurve is smooth at the classical weight one point xψ0 attached
to θψ0 , but it is not étale above weight space at this point.

♠♠♠ TONY: [picture: there is ramification at the point. ]

Proof. Both tangent space and relative tangent space of the fiber above
wiehgt 1 at xψ0 are one-dimensional. The proof uses the fact that the three
irreducible constituents Ad(IndQK ψ0) occurs with multiplicities (0, 1, 0) in
O×H ⊗ C, i.e. units are concentrated χK .

This is the same thing that prevented Duke-Li from getting interesting
units in class fields!

�
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The result should be thought of as a positive one, as it’s telling us about
the existence of an interesting non-classical modular form. Hence:

Corollary 3.7. The natural inclusion

Mp,oc
1 (N, χ)[θψ0] ↪→ Mp,oc

1 (N, χ)[[θψ0]]

is not surjective.

Hecke doesn’t act semisimply on Mp,oc
1 (N, χ)[[θψ0]].

Definition 3.8. A modular form θ′ψ0
= 0 in Mp,oc

1 (N, χ)[[θψ0]] which is not
classical (i..e. not an eigenvector) is called an overconvergent generalized
eigenform. This is said to be normalized if a1(θ′ψ0

) = 0 (since we can add
any multiple of an honest eigenvector with this eigenavlue).

Remark 3.9. We don’t need that the generalized eigenspace is 2-dimensional
in order to make this normalization.

Theorem 3.10 (Darmon-Lauder-Rotger). The normalized generalized eigen-
form θ′ψ0

attached to θψ0 can be scaled in such a way that for all primes ` - N
with χK(`) = −1,

a`(θ′ψ0
) ∼L× logp u`(ψ)

where u` has some explicit description, and is a unit.

♠♠♠ TONY: [there is also some formula for a` which I couldn’t copy
down]

Remark 3.11. The techniques in [DLR] are fundamentally p-adic in nature,
relying only on p-adic deformations and some simple class field theory for
H. In particular, the theory of CM or singular moduli plays no role in
[DLR].

Also, we note that [DLR] is only 9 pages long (with 6 page intro) and
handles essentially all ψ0, while the archimedean stuff is really involved -
this is why Duke-Li handles only the special case of unramified characters
of quadratic imaginary fields of prime discriminant.

You might thus be skeptical that there is a convincing analogy between
mock modular forms in archimedean world and overconvergent p-adic mod-
ular forms. To convince you, we remind you of a classical result:

Theorem 3.12 (Kudla-Rapoport-Yang). Let χ be an odd Dirichlet charac-
ter of prime conductor N and E1(1, χ) the associated weight one Eisenstein
series. For all n ≥ 2 with gcd(n,N) = 1,

an(Ẽ1(1, χ)) ∼L×
1
2

∑

`|n
log ` · (ord`(n) + 1) · an/`(E1(1, χ)).
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Compare with our formula [RLD] for the Fourier coefficients - there is
a strong similarity! ♠♠♠ TONY: [Unfortunately, this is the formula that I
didn’t write down...]

The phenomena described in [DLR] can be viewed as a fragment of a
“p-adic Kudla program.”
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This is joint work with Eyal Goren.

1. Classical theta operators

The theta operator is a formal operator on q series

θ = q
d

dq
:

∑
anqn 7→

∑
nanqn.

If you think in terms of Dirichlet series, this effects a shift in s, which is like
a Tate twist.

If q = e2πiz, this is essentially differentiation by z. Ramanujan observed
that this destroys modularity. However, it can be corrected if you sacrifice
holomorphicity. More precisely, Maass found that if ∂ = 1

2πi

(
∂
∂z + k

z−z

)
then

∂ induces
M∞

k (Γ,C)→ M∞
k+2(Γ,C).

One wants to extend this to negative weights k. Shimura knew that if you
iterated this k times going from −k to k, then you actually preserve holomor-
phicity, even though the intermediate steps do not. This plays a significant
role in Borcherds’ theory, and the p-adic shadow appears later in Coleman’s
work.

There is a theory of Maass-Shimura operators, which has arithmetic sig-
nificance even though these are only C∞ operators.

2. The p-adic theory

That’s the story overC. The p-adic one is much better behaved. Swinnerton-
Dyer and Serre (1972) proved that for p ≥ 5 and level 1, there is an operator

θ : Mk(Γ,Fp)→ Mk+p+1(Γ,Fp)

(note that the shift in weight is 2 + p − 1, the p − 1 being the weight of the
Hasse invariant). This is done at the level of q expansion.

Katz (1975) gave a general geometric interpretation of this. Let
• X = X(N) be the open modular cuve,
• A

π−→ X the universal elliptic curve,
• ω := ωA/X ⊂ R1π∗Ω•A/X =: D.
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Suppose D = ω + U as OX-modules. Then we have maps

ωk // Symk D

∆ Gauss-Manin
��

Symk D ⊗Ω1
X

� Kodaira-Spencer
��

Symk D ⊗ ω2 = ωk+2 ⊕ . . .
projection

��
ωk+2

Over C, we know that U = ω (by the C∞ Hodge decomp), which gives
Maass-Shimura operators.

Over Fp, we know Frob∗ exists if you remove the supersingular points.
We can then take U = Frob∗(D(p)), the “unit root space.”

You can use this U to make θ : H0(Xord, ωk)→ H0(Xord, ωk+2) with simple
poles at Xss. This is only on the ordinary locus, with poles at the supersin-
gular locus, so you multiply by the Hasse invariant h ∈ H0(X, ωp−1) to kill
the poles on the supersingular locus, and get an operator

Θ := h ◦ θ : H0(X, ωk)→ H0(X, ωk+p+1).

This has the property that on q-expansions, “θ = Θ.”
This has relations to Galois representations and congruence between mod-

ular forms: see Swinnerton-Dyer and Serre on Ramanujan congruences, and
Gross’ theory of companion forms.

I want to explain Robert’s use of this. One of his famous results is that
“Overconvergent modular forms of small slope are classical.” We can think
of “small” as meaning that the slope is at most k + 1.

Key points. Although θ preserves p-adic modular forms (in the sense of
Serre), it doesn’t preserve overconvergent modular forms. However:

(1) We have θk+1 : Moc
−k → Moc

k+2 (i.e. a power of θ does preserve over-
convergent forms). This is geometric: analyze Gauss-Manin con-
nection on the crystal/local system from Symk of the de Rham co-
homology. [A C version of this was known by Shimura]

(2) The cokernel of θk+1 above is filled out by classical forms. More-
over, for a slope α < k + 1 this implies that

Mk+2,α = θk+1(Moc
−k)α ⊕ (Classical)α.

Looking at the q-expansion of a Up-eigenform f =
∑

anqn, then
one finds: anp = λan for ordp λ = α. Also, one has an estimate
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anpr = O(pr(k+1)). Combining these, we find that if ordp λ is too
small, then that incompatibility forces f = 0, which implies that on
this part everything is classical.

There are more power modern arguments, but that was Robert’s
proof.

3. Picard modular surfaces

Let E be a quadratic imaginary field, V = E3. We have a hermitian
structure on V given by

(u, v) = tu


1

1
1

 v

which has signature (2, 1). Then the group G = GU(V, (−,−))/Q of general
linear similitudes on V is quasi-split. It is known that G∞ = G(R) acts on X,
the unit ball in C2. If x0 is the center, then K∞ = Stab(x0) and K f ⊂ G(A f )
is principal level subgroup of level N ≥ 3.

The theory of Shimura varieties gives a canonical model S E/E (E the
reflex field) such that

S E(C) = G(Q)\G(A)/K∞K f �
⋃

1≤ j≤n

Γ j\X.

Even better, this has a smooth integral model S/R0 where R0 = OE[1/2NDE]
(N is the level and DE is the discriminant of E).This has a smooth arithmetic
compactification S /R0, worked out by Larsen, Bellaïche, Lan.

What’s important for us is that this solves the moduli problem:

Classify A = (A, λ, ι, α)/(R/R0) where
• A is an abelian 3-fold,
• λ : A→ Â is a principal polarization,
• ι : OE ↪→ EndR(A) is an inclusion with Rosatiλ(a) = a), and
• Lie(A/R) is anOE-module of type (2, 1), α is a level-N structure.

One gets a universal abelian variety π : A → S and semi-abelian variety
A → S (the compactification).

From now on, S := S Fp
where p is a good inert prime. We study the

structure of S Fp
. There’s been a lot of good work recently on Shimura

varieties in characteristic p. The key tool is Rapoport-Zink local models.
The structure of the special fiber was explained by Voollaard, Wedhorn and
others.
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There is a dense open set S µ, the µ-ordinary stratum. Then there are
a bunch of reduced curves S ss which is the super-singular locus. The third
stratum is S ssp (super special), which just consists of points. The p-divisible
group at points x ∈ S µ, S ss, S ssp is described.

Theorem 3.1 (Voollaard). For N ≥ N0(p), every irreducible component of
S ss is the Fermat curve

C : xp+1 + yp+1 + zp+1 = 0.

Any two components intersect in at most one pont. Through each point there
are p + 1 branches, and each intersection point is transversal. There are
p3 + 1 intersection points on each irreducible component. Finally, S ssp =

S sing
ss .

Remark 3.2. The generalization of this is probably in terms of Deligne-
Lustzig varieties. The dual graph is related to the Bruhat-Tits building for
GL2(Qp).

Theorem 3.3 (Goren-de Shalit). The number of irreducible components is

c2(S )/3 = χtop/3.

By work of Holzapfel, this is (up to constants) [Γ(1) : Γ(N)] · L(
(

DE
·
)
, 3).

Remark 3.4. This is independent of p!
Rapoport-Zink gives a parametrization of the irreducible components by

certain double cosets. However, to get c2(S )/3 one needs different ideas: in-
tersection theory, and secondary Hasse invariant (needed to compute certain
self-intersections).

4. Hasse invariant

Let Σ,Σ be the two maps OE → OE/pOE ⊂ Fp. Then

ωA/S =: ω = ω(Σ) ⊕ ω(Σ)
= P︸︷︷︸

rank 2

⊕ L︸︷︷︸
rank 1

.

Then one has Ver : A(P) → A (the first being the twist of A by absolute
Frobenius) dual to Frobenius, inducing V : ω → ω(p). Because this is not
Fp-linear, it exchanges the Σ and Σ parts:

VP : P → L(p)

and
VL : L → P(p).
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Then composing gives

hΣ = V (p)
P ◦ VL ∈ Hom(L,L(p2)) = Hom(L,L⊗p2

).

The Hasse invariant is the corresponding element of H0(S ,Lp2−1), which is
Mp2−1(N;Fp).

Proposition 4.1. (i) VP,VL are rank 1 outside S ss. (ii) Div(hΣ) = S ss.

Remark 4.2. It content of the second part is that hΣ has a simple zero on S ss.

That is, the image of VL is tranverse to the kernel of VP on the ordinary
locus, but they come together on the supersingular locus. The simplicity of
the zero is subtle, however.

This has been generalized greatly, to other Shimura varieties.

5. Igusa surfaces of level p

This is a surface Igµ equipped with an étale map

Igµ

τ

��
S µ

(1) with étale Galois group ∆ := (OE/pOE)×.
(2) classifies (A, ε : OE ⊗ µp ↪→ A[p]),
(3) can be compactified over S ss to be totally ramified along S ss, normal

surface with singularities over S ssp.
(4) It is “relatively irreducible.” (inverse image of any connected com-

ponent irreducible?)
(5) (most importantly) τ∗L has a tautological section a, with ap2−1 = hΣ

(supposedly easy to see in characteristic p, didn’t catch why).

6. Definition of Θ andMain Theorem

We should say that we were very much motivated by Gross’ treatment of
the classical theta operator on his paper on the tameness criterion.

We have the Kodaira-Spencer isomorphism

KS : P ⊗ L ∼−→ Ω1
S .

Over Igµ, we have
τ∗(P ⊗ L) � Ω1

Igµ .

The operator Θ goes from Mk(N,Fp) = H0(S ,Lk) to Mk+p+1(N,Fp).
The map is defined as follows. For f ∈ H0(S ,Lk),
(1) Pull back f via τ to get a τ∗ f ∈ H0(IGµ, τ

∗Lk),
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(2) Divide by ak to get (τ∗ f )/ak ∈ H0(IGµ,O),
(3) Take the exterior derivative to get d((τ∗ f )/ak) ∈ H0(IGµ,Ω

1
S ),

(4) Apply the inverse of KS to get KS −1(d((τ∗ f )/ak)) ∈ τ∗(P ⊗ L),
(5) Apply VP : P ⊗ L → L(p) ⊗ L � Lp+1,
(6) Multiply by ak to get

ak · (VP ⊗ 1)((KS )−1d(t∗ f /ak)) ∈ H0(IGµ, τ
∗Lk+p+1)

which descends back down to S µ.

Remark 6.1. The key is the map VP ⊗ 1. Since the operator beings by
dividing by ak, it introduces a pole of order k. Differentiation turns this into
a pole of order k + 1, and if you didn’t apply VP ⊗ 1 then multiplying by
ak at the end leaves a pole. Multiplication by Hasse invariant is buried in
VP ⊗ 1, which makes this holomorphic again. However, this isn’t the only
thing- that would be too crude because the Hasse invariant has a zero on S ss

of order p2 − 1!

Questions.
(1) What happens over the supersingular locus?
(2) What is the effect on q-expansions?

Theorem 6.2 (Goren-de Shalit).
(1) Θ( f ) extends holomorphically across S ss

(2) Θ( f ) has the effect of “q d
dq” on Fourier-Jacobi expansions.

(3) Θ is a derivation, with image contained in the space of cusp forms.
(4) Θ is compatible with classical Θ on embedded modular curves.

Remark 6.3. (1) The idea to use Igusa is due to D. Gross (in the classi-
cal case).

(2) VP ⊗ 1 “clears all problems at cusps and along S ss.”
(3) There are “arithmetic” Fourier-Jacobi expansions (in two variables:

q and theta functions)
(4) Serre and Jochnovitch considered “Theta cycles.” By “Fermat’s lit-

tle theorem” Θp f = Θ f . Serre defined a filtration where the weight
of a form is the least weight whose reduction gives you that form.
Usually the filtration grows by p + 1 each time you apply Θ, but oc-
casionally it drops (since you have to come back to the starting point
eventually). Jochnovitch found that there are exactly two drops: ex-
actly when the weight becomes divisible by p.

Here you get increase by the filtration p+1 each time, but to drop
you have to divide by Hasse invariant, which has weight p2 − 1. So
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there can only be one step where the weight drops. But when? It
has nothing to do with the weight being divisible by p.
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SOME EXPLICIT COMPUTATIONS ON THE CURVES
RELATED TO P-ADIC HODGE THEORY

JEAN-MARC FONTAINE

1. The Fargues-Fontaine curve

1.1. Preliminaries.

Definition 1.1. A complete curve is a pair (X, deg) where X is a separated,
connected, regular scheme which is noetherian of dimension 1, and deg: |X| →
N>0 (where |X| is the set of closed points on X) is a map such that deg Div( f ) =

0 for all f ∈ k(X)×.

One can check that H0(X,OX) is a field E (the field of definition of X)
and E is algebraically closed in k(X), the function field of X.

Example 1.2. A smooth projective curve is complete.

This is what’s important for us: given such an X, there is a notion of de-
gree for a vector bundle (coming from the degree of a line bundle, which is
well-defined by the assumption of completeness). Then one has the notion
of a semistable vector bundle of slope λ. Any vector bundle has a Harder-
Narasimhan filtration by semistable vector bundles.

Suppose X has a closed point of degree one, denoted ∞. Define Xe =

X \ {∞}. This is an affine scheme Spec Be, where Be is Dedekind. There is a
natural map Pic(Xe) = Pic(Be)→ Pic0(X), sending [x] 7→ [x]− (deg x) · [∞].

1.2. Review of construction and properties. Now fix k an algebraically
closed field of characteristic p > 0. Consider a pair (E, F) where

• E is a locally compact non-archimedean field, whose residue field
Fq is contained in k.
• F ⊃ Fq is a perfect field of characteristic p equipped with a non-

trivial absolute value. F is not necessarily complete; a typical ex-
ample we have in mind is the algebraic closure of a perfectoid field.
We suppose kF ⊂ k.

Think of E and F as having nothing to do with each other. For instance,
they may have different characteristics.

From the data (E, F) we construct X = XE,F a complete curve defined
over E with H0(X,OX) = E.
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Properties of XE,F .
(1) (Residue fields) Let x ∈ |XE,F | be a closed point.

(a) If ch E = p, then [k(x) : F̂] = deg x. This is already strange
because E is a discrete valuation ring, and k(x) contains an in-
discrete valuation ring.

(b) If ch E = 0, then k(x) is a perfectoid field and [k(x)[ : F̂] =

deg x.
(2) (Functoriality) Let E′ be a finite separable extension of E. Then

XE′,F = E′ ⊗E XE,F .

(We are cheating slightly: we need kE′ ⊂ k. If this is not the case,
then the above is a definition.)

If F′ is a finite extension of F (automatically separable because
F is perfect), then XE′,F′/XE,F is an étale cover. If E′/E and F′/F
are both Galois, then this is a Galois covering, and the Galois group
Gal(E′/E) × Gal(F′/F).

Choose {x} a geometric closed point of X. This gives an algebraic
closure of E and F. Then we have

πét
1 (X, {x}) = Gal(E s/E) × Gal(F/F).

2. An equivalence of categories

2.1. Galois Descent. Let F be an algebraic closure of F and F̃ a comple-
tion of F. We have X = XE,F and X = XE,F with a map X → X (careful
though: this is not the limit of the curves constructed from the finite exten-
sions of F). We also have

X̃ = XE,F̃

α

��
α̃

&&

X = XE,F

α

��
X = XE,F

Then for any coherent OX-moduleV, one has maps:

V → α∗V → α̃∗V.
But there is more data here, because GF := Gal(F/F) acts on X and X̃.
So in fact this induces a functor from the category of coherent OX-modules
to RepOX

(GF) to RepOX̃
(GF). These are both equivalences of categories.
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[We’re cheating separately: OX,OX,OX̃ are considered as sheaves of topo-
logical rings.]

When you have a field of characteristic 0, there is a way of getting rid of
almost all ramification by taking a Zp extension. Over a field of character-
istic p, there is an even easier way: take the perfection.

2.2. Classification of vector bundles. Since we’re on a curve, we can con-
sider the category of vector bundles (just the coherent OX-modules with no
torsion).

The main theorem is:

Theorem 2.1. If F = F̃ (i.e. F is complete and algebraically closed) then
any semistable vector bundle of slope 0 is trivial.

If V is any finite dimensional E-vector space, then we can form OX ⊗ V ,
which is a vector bundle on X which is semi-stable of slope 0. The theorem
says that this induces an equivalence of categories. The inverse functor is
V 7→ H0(X,V).

Combing this with the Galois action, we have an equivalence of cate-
gories

RepE(GF)
∼−→ {semistable vector bundles of slope 0 over XE/F}.

(This is even an equivalence of Tannakian categories.)

2.3. Special case. Choosing ∞ ∈ |X|, we have Xe = Spec Be. We had the
identification Pic(Be) � Pic0(X). Under the equivalence of categories, we
get an identification with Galois representations of dimension 1.

Pic(Be) � G∨F := Homcont(GF ,Gm).

Let I be a non-zero ideal of Be. This defines a 1-dimensional Galois repre-
sentation. What is it? We have an inclusion Be ⊂ Be,F̃ , and we can extend
I 7→ IBe,F̃ = bBe,F̃ . Now, (Be,F̃)× = E×. If g ∈ GF , then g(b) = η(g)b for
some η(g) ∈ E×, and this defines the corresponding character.

Let K be a p-adic field. Suppose K ⊂ L ⊂ K where L is big enough
so that L̂ is a perfectoid field (for instance, it could be obtained by add
compatible system of pn roots of a uniformizer to K).

If E = Qp, then we take F = L̃[. We know GF = GL = Gal(K/L), then
applying this equivalence of categories we see that a representation of GF

is the same as a semistable vector bundle of slope 0 over XE,F . If we choose
L/K to be Galois and set Γ = Gal(L/K), then Γ acts on XE,F and we get an
equivalence of categories between Rep(GK) and Γ-equivariant bundles.

Then B+
dR = ÔX,∞. ♠♠♠ TONY: [wow! work this out]
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3. Construction of the curve

Let E, F be given. Choose π a uniformizing parameter of E. B is an
E-algebra (which is equipped with a topology, but we don’t care about that
for now) equipped with an automorphism ϕ. We define

XE,F = Proj(P =
⊕

d∈N
Pd)

where Pd is the eigenspace of B associated to ϕ:

Pd = B(πd) := {b ∈ B | ϕ(b) = πdb}.
So what is B? There are two cases.

Characteristic p. If ch E = p, then B is the ring of rigid analytic functions
on

D− := {c ∈ F̃ | 0 < |c| < 1}
with coefficients in F. How does E figure into this? The point is that if we
view π ∈ E as an indeterminant, then

B =


∑

n∈Z
anπ

n | an ∈ F,∀ρ ∈ (0, 1) : |an|ρn → 0 as n→ ±∞
 .

Then E ⊂ B as
∑

n�−∞ anπ
n for an ∈ Fq.

Characteristic 0. If ch E = 0, then we try to mimic the above. We define
A := OE ⊗W(Fp) W(OF), any element of which can be expressed uniquely as∑∞

n=0 π
n[an] for an ∈ OF (we are using the usual notation for the Teichmüller

lift). We define a ring Bb = A[1/π, 1/[$]] where $ ∈ mF is any non-zero
element, so anything in Bb can be uniquely expressed as

∑
n�−∞[an]πn where

an ∈ F and there exists C such that |an| ≤ C for all n.
For any ρ ∈ (0, 1) we can define a norm∣∣∣∣

∑
[an]πn

∣∣∣∣
ρ

= sup
n∈Z
|an|ρn.

Let B be the completion of Bb for this family of norms.
Then ϕ(

∑
anπ

n) =
∑

[aq
n]πn.

Remark 3.1. There’s something that can go wrong here. If you have
∑

n∈Z[an]πn

which converges in both direction, you get an element of B, but we don’t
know (and I don’t believe that much) that this expression exists for any-
thing in B, or that this is unique. That is, if ch E = 0 then we don’t have a
canonical expression of b ∈ B as a

∑
n∈Z[an]πn.

So F is the coefficient field and E is the field containing the uniformizer.
In some cases, we can interchange them.
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SOME EXPLICIT COMPUTATIONS ON THE CURVES RELATED
TO P-ADIC HODGE THEORY

Definition 3.2. A perfectoid field F of characteristic p is small if there exists
u ∈ F such that kF(u)rad is dense in F. If this is the case, u can be chosen in
mF and then F = (kF((u))rad)∨.

For all s ∈ Z[1/p], we can define zs to be the Teichmüller lift [us] ∈ A ⊂
B. Let

∆− = lim←−−(D−
x 7→xq

−−−−→ D−
x 7→xq

−−−−→ D− → . . .)

so any δ ∈ ∆− has a representation δ = (δk)k∈N with δk ∈ F̃ and 0 < |δk| < 1
and δq

k+1 = δk.
We can view B as the ring of analytic functions on ∆− with coefficients

in K0 = E ⊗W(Fq) W[kF]. Then any element f can be written uniquely as∑
s∈Z[1/p] aszs with a condition on the as (exercise: describe it) and f (S ) =∑
asδ

s where if s = q−kn then δs = δn
k .

In the equal characteristic case, A− = D−.
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