ALGEBRA QUAL PREP: COMMUTATIVE ALGEBRA

TONY FENG

1. SPRING 2012 Al

(a) Do it.
(b) Let x_{1}, \ldots, x_{n} be a (finite) set of generators for J, which exist because A is Noetherian. We make a map $A\left[x_{1}^{\prime}, \ldots, x_{n}^{\prime}\right] \rightarrow G_{J}(A)$ by sending $\left(x_{1}^{\prime}\right)^{e_{1}} \ldots\left(x_{n}^{\prime}\right)^{e_{n}}$ to the element $x_{1}^{e_{1}} \ldots x_{n}^{e_{n}}$ viewed in $J^{e_{1}+\ldots+e_{n}} \subset G_{J}(A)$. Check that this is a ring homomorphism, and is surjective. Since a quotient of a Noetherian ring is Noetherian, and $A\left[x_{1}^{\prime}, \ldots, x_{n}^{\prime}\right]$ is Noetherian by Hilbert Basis theorem, we deduce that $G_{J}(A)$ is Noetherian.

2. FALL 2012 M4

(i) We claim that the matrix of f has determinant a unit. This will show that f is invertible, hence is injective. To see the claim, note that the surjectivity of f implies the surjectivity of $\wedge^{n} f: R \rightarrow R$, which is multiplication by $\operatorname{det} f$.
(ii) Let $I_{n}=\operatorname{ker}\left(f^{\circ n) \text {. Then we have an increasing chain }}\right.$

$$
I_{1} \subset I_{2} \subset I_{3} \subset \ldots
$$

Since R is Noetherian, eventually $I_{k}=I_{k+1}=I_{k+2} \ldots$. This means $\operatorname{ker}\left(f^{\circ k}\right)=\operatorname{ker}\left(f^{\circ k+1}\right)$. But since f is surjective, so is $f^{\circ k}$. Hence we can find x such that $f^{\circ k}(x) \in I_{1}-0$, so that $x \in I_{k+1}-I_{k}$.
(iii) Take $f: k\left[x_{1}, x_{2}, \ldots\right] \rightarrow k\left[x_{2}, \ldots\right]$ sending $x_{1} \mapsto 0$.

3. FALL 2011 A4

(i) We show that A is integral over A^{G}. Indeed, any $a \in A$ satisfies the monic polynomial

$$
\prod_{g \in G}(X-g(a))
$$

which has coefficients in A^{G}.
Since A is finitely generated (as an algebra) over k, it is finitely generated (as an algebra) over A^{G}. Since it is also integral over A^{G} as we just showed, it is finite as a module over A^{G}.
(ii) It suffices to prove the following general lemma (sometimes called the "Artin-Tate Lemma"): if A is finitely generated over R, and $B \subset A$ is a subalgebra such that A is finite over B, then B is finitely generated over R.

Take a set of generators for A as an algebra over R, say x_{1}, \ldots, x_{n}. These are all integral over B, so they satisfy monic polynomials with coefficients in B; let y_{1}, \ldots, y_{N} be all such coefficients. These generate a subring C of B. Furthermore
it is clear that A is finite over C. Since R is noetherian, so is C, hence B is also finite over C. Therefore B is finitely generated as an algebra over A.

Note: one can find a counterexample when R is not noetherian. Take the squarezero extension structure on $R \oplus R$, which contains $R \oplus I$ as a subring for any ideal $I \subset R$.

4. Spring 2012 A3

(a) You should know the definition of integral. If B is finitely generated as an A-module, then we can pick a finite set of generators x_{1}, \ldots, x_{n}. Given $b \in B$, multiplication by b can be given by a matrix $\left(b_{i j}\right)$. This satisfies its own characteristic polynomial, so multiplication by b satisfies that characteristic polynomial. So we find a monic polynomial in b such that multiplication by it annihilates $1 \in B$, hence is 0 .
(b) The map $A \rightarrow B$ factors as $A \rightarrow A / I \hookrightarrow B$. Since $\operatorname{Spec}(A / I) \subset \operatorname{Spec} A$ is closed, we can reduce to the case where f is injective. We then claim that Spec $B \rightarrow$ Spec A. Pick a prime \mathfrak{p} of A, which we want to show is in the image of Spec B. Since localization is exact, we have

$$
A_{\mathfrak{p}} \hookrightarrow B \otimes A_{\mathfrak{p}}
$$

is still an injective integral extension.
Let \mathfrak{q} be a maximal ideal of $B \otimes_{A} A_{\mathfrak{p}}$. Then we have

$$
A_{\mathfrak{p}} /\left(\mathfrak{q} \cap A_{\mathfrak{p}}\right) \hookrightarrow B \otimes_{A} A_{\mathfrak{p}} / \mathfrak{q}
$$

is still an injective integral extension. But since \mathfrak{q} is maximal, $B \otimes_{A} A_{\mathfrak{p}} / \mathfrak{q}$ is a field. If a field is integral over a domain, that domain must be a field. So $\mathfrak{q} \cap A_{\mathfrak{p}}$ is the unique maximal ideal of $A_{\mathfrak{p}}$, which is \mathfrak{p}.

5. FALL 2013 M4

(a) Done before.
(b) Done before.
(c) First we check that B is closed under addition and multiplication. Let $x, y \in B$. Then $A[x] \subset B$ is a finite A-module, hence $A[x, y] \subset B$ is a finite $A[x]$-module. As this contains $x+y$ and $x y$, we find that they are also integral over A by (a). Now, we need to show that any $x \in L$ can be represented as p / q where $p, q \in B$. Certainly x satisfies a monic equation over K :

$$
x^{n}+\frac{p_{n-1}}{q_{n-1}} x^{n-1}+\ldots+\frac{p_{1}}{q_{1}} x+\frac{p_{0}}{q_{0}}=0
$$

Set $q:=\prod q_{i}$ and $r_{j}=\prod_{j \neq i} q_{j}$. Multiply by q^{n} to get

$$
(q x)^{n}+p_{n-1} r_{n-1}(q x)^{n-1}+p_{n-2} r_{n-2}(q x)^{n-2}+\ldots+p_{1} r_{1}(q x)+p_{0} r_{0}=0
$$

with each coefficient in B. This shows that $q x$ is integral over A, hence lies in B.

6. Spring 2013 Ml

(i) We use the going-up theorem: let $A \hookrightarrow B$ be a integral. Then for any chain $\mathfrak{p}_{1} \subsetneq \mathfrak{p}_{2}$ in A and \mathfrak{q}_{1} of B mapping to \mathfrak{p}_{1}, we can extend to $\mathfrak{q}_{1} \subsetneq \mathfrak{q}_{2}$ restricting to the chain $\mathfrak{p}_{1} \subsetneq$ \mathfrak{p}_{2}. (Replacing $A \hookrightarrow B$ by $A / \mathfrak{p}_{1} \hookrightarrow B / \mathfrak{q}_{1}$, this reduces to the surjectivity statement proved earlier.)

This shows that $\operatorname{dim} B \geq \operatorname{dim} A$. On the other hand, if $\mathfrak{q}_{1} \subset \mathfrak{q}_{2}$ is a proper inclusion of ideals of B with both \mathfrak{q}_{i} restricting to $\mathfrak{p} \in \operatorname{Spec} A$, then $A_{\mathfrak{p}} / \mathfrak{p} \hookrightarrow B_{\mathfrak{p}} / \mathfrak{q}_{1}$ is the inclusion of a field into a domain integral over it, which shows that $B_{\mathfrak{p}} / \mathfrak{q}_{1}$ is a field and hence that $\mathfrak{q}_{2}=\mathfrak{q}_{1}$.
(ii) Noether normalization: any finitely generated algebra A over k is finite over $k\left[x_{1}, \ldots, x_{n}\right]$. Proof sketch: embed Spec A in affine space, and choose generic presentations to hyperplanes until the map has finite fibers.
(iii) By Noether normalization we have a finite map $k\left[x_{1}, \ldots, x_{n}\right] \rightarrow B$, hence $\operatorname{dim} B=$ $\operatorname{dim} k\left[x_{1}, \ldots, x_{n}\right]=n$. As finiteness is preserved by tensoring, the map $K\left[x_{1}, \ldots, x_{n}\right] \rightarrow$ $K \otimes_{k} B$ is also finite. Hence by (a) we also have $\operatorname{dim} K \otimes_{k} B=\operatorname{dim} K\left[x_{1}, \ldots, x_{n}\right]=n$.
7. Spring 2013 Al
(i) Done before.
(ii) It suffices to show that if $A \hookrightarrow B$ is integral, then we can extend an embedding $A \hookrightarrow K$ to $B \hookrightarrow K$. By induction/Zorn's Lemma we can do this in the case where B is generated as an A-algebra by a single element x. Then $B \cong A[x] / f(x)$ for some monic polynomial f. We can find an extension just by sending x to a root of f in K.
(iii) Consider a non-trivial separable field extension E / F. Let $G=\operatorname{Gal}(E / F)$ and $A=$ E. Then we know that there are $|G| F$-embeddings $E \hookrightarrow \bar{F}$.

8. Spring 2014 M4

(i) We have $B_{Q} / Q \hookrightarrow B^{\prime} \otimes_{B} B_{Q} / P^{\prime}$. This is an integral extension, so $B^{\prime} \otimes_{B} B_{Q} / P^{\prime}$ is a field. But then P^{\prime} coincides with Q^{\prime} in $B^{\prime} \otimes_{B} B_{Q}$, hence $P^{\prime}=Q^{\prime}$.
(ii) Let the \mathfrak{p}_{i} be the primes of B^{\prime} over $\mathfrak{p} \in \operatorname{Spec} B$. By Prime Avoidance, we can find $x \in \mathfrak{p}_{1}-\bigcup_{i>1} \mathfrak{p}_{i}$. Consider $\prod_{g \in G}(g x)$. This lies in $\bigcap\left(g \mathfrak{p}_{1}\right) \cap B=\mathfrak{p} \subset \mathfrak{p}_{i}$ for any \mathfrak{p}_{i}. A product of elements not in \mathfrak{p}_{i} cannot lie in \mathfrak{p}_{i}, so some $g x \in \mathfrak{p}_{i}$. This forces $g \mathfrak{p}_{1}=\mathfrak{p}_{i}$.

