
ALGEBRA QUAL PREP: COMMUTATIVE ALGEBRA

TONY FENG

1. SPRING 2012 A1

(a) Do it.
(b) Let x1, . . . , xn be a (finite) set of generators for J , which exist because A is Noether-

ian. We make a map A[x ′1, . . . , x ′n ]→G J (A) by sending (x ′1)
e1 . . . (x ′n )

en to the element
x e1

1 . . . x en
n viewed in J e1+...+en ⊂G J (A). Check that this is a ring homomorphism, and

is surjective. Since a quotient of a Noetherian ring is Noetherian, and A[x ′1, . . . , x ′n ]
is Noetherian by Hilbert Basis theorem, we deduce that G J (A) is Noetherian.

2. FALL 2012 M4

(i) We claim that the matrix of f has determinant a unit. This will show that f is in-
vertible, hence is injective. To see the claim, note that the surjectivity of f implies
the surjectivity of ∧n f : R →R , which is multiplication by det f .

(ii) Let In = ker( f ◦n ). Then we have an increasing chain

I1 ⊂ I2 ⊂ I3 ⊂ . . .

Since R is Noetherian, eventually Ik = Ik+1 = Ik+2 . . .. This means ker( f ◦k ) = ker( f ◦k+1).
But since f is surjective, so is f ◦k . Hence we can find x such that f ◦k (x ) ∈ I1 − 0,
so that x ∈ Ik+1− Ik .

(iii) Take f : k [x1, x2, . . .]→ k [x2, . . .] sending x1 7→ 0.

3. FALL 2011 A4

(i) We show that A is integral over AG . Indeed, any a ∈ A satisfies the monic polyno-
mial

∏

g∈G

(X − g (a ))

which has coefficients in AG .
Since A is finitely generated (as an algebra) over k , it is finitely generated (as an

algebra) over AG . Since it is also integral over AG as we just showed, it is finite as
a module over AG .

(ii) It suffices to prove the following general lemma (sometimes called the “Artin-Tate
Lemma”): if A is finitely generated over R , and B ⊂ A is a subalgebra such that A
is finite over B , then B is finitely generated over R .

Take a set of generators for A as an algebra over R , say x1, . . . , xn . These are
all integral over B , so they satisfy monic polynomials with coefficients in B ; let
y1, . . . , yN be all such coefficients. These generate a subring C of B . Furthermore
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it is clear that A is finite over C . Since R is noetherian, so is C , hence B is also
finite over C . Therefore B is finitely generated as an algebra over A.

Note: one can find a counterexample when R is not noetherian. Take the square-
zero extension structure on R ⊕R , which contains R ⊕ I as a subring for any ideal
I ⊂R .

4. SPRING 2012 A3

(a) You should know the definition of integral. If B is finitely generated as an A-module,
then we can pick a finite set of generators x1, . . . , xn . Given b ∈ B , multiplication by
b can be given by a matrix (bi j ). This satisfies its own characteristic polynomial,
so multiplication by b satisfies that characteristic polynomial. So we find a monic
polynomial in b such that multiplication by it annihilates 1 ∈ B , hence is 0.

(b) The map A→ B factors as A� A/I ,→ B . Since Spec (A/I )⊂ Spec A is closed, we can
reduce to the case where f is injective. We then claim that Spec B � Spec A. Pick
a prime p of A, which we want to show is in the image of Spec B . Since localization
is exact, we have

Ap ,→ B ⊗Ap

is still an injective integral extension.
Let q be a maximal ideal of B ⊗A Ap. Then we have

Ap/(q∩Ap) ,→ B ⊗A Ap/q

is still an injective integral extension. But since q is maximal, B ⊗A Ap/q is a field. If
a field is integral over a domain, that domain must be a field. So q∩Ap is the unique
maximal ideal of Ap, which is p.

5. FALL 2013 M4

(a) Done before.
(b) Done before.
(c) First we check that B is closed under addition and multiplication. Let x , y ∈ B .

Then A[x ] ⊂ B is a finite A-module, hence A[x , y ] ⊂ B is a finite A[x ]-module. As
this contains x+ y and x y , we find that they are also integral over A by (a). Now, we
need to show that any x ∈ L can be represented as p/q where p , q ∈ B . Certainly x
satisfies a monic equation over K :

x n +
pn−1

qn−1
x n−1+ . . .+

p1

q1
x +

p0

q0
= 0.

Set q :=
∏

qi and r j =
∏

j 6=i q j . Multiply by q n to get

(q x )n +pn−1rn−1(q x )n−1+pn−2rn−2(q x )n−2+ . . .+p1r1(q x ) +p0r0 = 0

with each coefficient in B . This shows that q x is integral over A, hence lies in B .
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6. SPRING 2013 M1

(i) We use the going-up theorem: let A ,→ B be a integral. Then for any chain p1 ( p2

in A and q1 of B mapping to p1, we can extend to q1 ( q2 restricting to the chain p1 (
p2. (Replacing A ,→ B by A/p1 ,→ B/q1, this reduces to the surjectivity statement
proved earlier.)

This shows that dim B ≥ dim A. On the other hand, if q1 ⊂ q2 is a proper inclu-
sion of ideals of B with both qi restricting to p ∈ Spec A, then Ap/p ,→ Bp/q1 is the
inclusion of a field into a domain integral over it, which shows that Bp/q1 is a field
and hence that q2 = q1.

(ii) Noether normalization: any finitely generated algebra A over k is finite over k [x1, . . . , xn ].
Proof sketch: embed Spec A in affine space, and choose generic presentations to
hyperplanes until the map has finite fibers.

(iii) By Noether normalization we have a finite map k [x1, . . . , xn ]→ B , hence dim B =
dim k [x1, . . . , xn ] = n . As finiteness is preserved by tensoring, the map K [x1, . . . , xn ]→
K ⊗k B is also finite. Hence by (a) we also have dim K ⊗k B = dim K [x1, . . . , xn ] = n .

7. SPRING 2013 A1

(i) Done before.
(ii) It suffices to show that if A ,→ B is integral, then we can extend an embedding

A ,→ K to B ,→ K . By induction/Zorn’s Lemma we can do this in the case where B
is generated as an A-algebra by a single element x . Then B ∼= A[x ]/ f (x ) for some
monic polynomial f . We can find an extension just by sending x to a root of f in
K .

(iii) Consider a non-trivial separable field extension E /F . Let G = Gal(E /F ) and A =
E . Then we know that there are |G | F -embeddings E ,→ F .

8. SPRING 2014 M4

(i) We have BQ/Q ,→ B ′ ⊗B BQ/P
′. This is an integral extension, so B ′ ⊗B BQ/P

′ is a
field. But then P ′ coincides with Q ′ in B ′⊗B BQ , hence P ′ =Q ′.

(ii) Let the pi be the primes of B ′ over p ∈ Spec B . By Prime Avoidance, we can find
x ∈ p1 −
⋃

i>1 pi . Consider
∏

g∈G (g x ). This lies in
⋂

(g p1) ∩ B = p ⊂ pi for any
pi . A product of elements not in pi cannot lie in pi , so some g x ∈ pi . This forces
g p1 = pi .
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