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These are hints; they are not a model for what to write on the quals.

1. SPRING 2010 A5

See problem 7.

2. FALL 2010 M3

If P = ( f )when f is irreducible. If P is not principle, we take two irreducibles f , g ∈ P
which are coprime. In C(y )[x ], which is a Euclidean domain, we can write

a f + b g = 1, a , b ∈C(y ).

Clearing denominators, we find a ′, b ′ ∈C[x , y ] and h ∈C[y ] such that

a ′ f + b ′g = h .

Hence the vanishing set of f and g is contained in a union of horizontal lines. Then
V (P ) is contained in a single horizontal line, at which we reduce to the statement for
polynomials in one variable.

3. SPRING 2011 M4

(a) The ideal generated by the fi and d in K [x1, . . . , xn ] have no zero, so (since K is
algebraically closed) it must be the unit ideal. Hence we can find a1, . . . , an , b ∈
K [x1, . . . , xn ] such that

∑

ai fi + b d = 1.

Then b g = r on S , since r = r ·1=
∑

r ai fi + r b d .
(b) This is equivalent to: there does not exist h , f ∈Q[x , y ] such that

h · (y − x )−1= f (x , y )(x 2+ y 2−1).

Setting x = y in this relation, it would give f ′ ∈ Q[x ] such that 1 = f ′(x )(2x 2 − 1).
But2x 2−1 is not a unit in Q[x ], since for example it vanishes on

p
2.

4. SPRING 2013 A4

(i) Vanishing on x ∈ K n is a linear equation on the coefficients of p ∈ C[x1, . . . , xn ].
Therefore vanishing on Z ∩K n is a system of such equations. The solution space
to this system over C is tensored up from that of K . So we deduce p =

∑

ci pi with
ci ∈C, pi ∈ K [x1, . . . , xn ] vanishing on Z ∩K n . Then by the Nullstellensatz, pi ∈

p
J ,

hence vanishes on Z .
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(ii) The statement is equivalent to saying that any f ∈ C[x1, . . . , xn ]] vanishing on Z ∩
K n vanishes on Z . But that is what we just proved in (i).

(iii) Given V (I ) ⊂ Cn , we want V (I ) ∩ K n = V (?) to be closed. The Zariski closure
V (I )∩K n Z a r is the vanishing set of an ideal which is extended from J ⊂ K [x1, . . . , xn ]
by the same argument as in part (i), namely that the ideal is defined by a system
of linear equations with coefficients in K .

Therefore we reduce to showing that for such a J , VC(J )∩K n is Zariski closed.
We claim that it is in fact the vanishing set VK (J ) taken in K [x1, . . . , xn ]. We have
m ∈VC(J )∩K n if and only if all f ∈ J ⊗K C vanish on m, while m ∈VK (J ) if and only
if all g ∈ J vanish on m. Clearly the second condition is stronger, so VC(J )∩K n ⊂
VK (J ). But in part (i) we proved the converse.

5. FALL 2013 A5

Omitted.

6. SPRING 2014 A1

(i) Omitted.
(ii) Let b1, . . . , bm be generators for B as an A-algebra. By Noether normalization ap-

plied to K ⊗A B as a K -algebra, the images of b1, . . . , bm in K ⊗A B are finite over
K , hence they satisfy monic polynomials p1, . . . , pm of degrees d1, . . . , dm over K .
Since there are only finitely many coefficients, these monic polynomials all lie in
B ⊗A Aa for some a ∈ A−0.

We show that the (finite!) set of monomials {
∏

b ei
i : 0≤ ei < di } generates Ba as

an Aa -module. It is clear that b1, . . . , bm are algebra generators for Ba over Aa , so
any x ∈ b can be written as a polynomial in the bi with coefficients in Aa . Using
the polynomials pi as relations, we can arrange that this polynomial involves only
monomials of the form in our generating set.

(iii) Since Aa ,→ Ba is finite, the map Spec Ba → Spec Aa is surjective. Therefore Spec ( f )
contains the open subset Spec Aa .

7. FALL 2014 A5

(a) Write f =
∑

ai ⊗ bi with the ai independent over k . Since B/mx
∼= k (the Nullstel-

lensatz implies it is a finite extension of k , which is k since it is algebraically closed).
(b) By writing a finite expression for a zero-divisor, we deduce that any counterexample

lives in A⊗k R ′ with R ′ finitely generated over k , hence we may rename R ′ to B and
assume that B is finitely generated over k .

Suppose x , y ∈ A ⊗k B are such that x y = 0. For maximal m ⊂ B , we write
φm : A ⊗k B → A. Clearly φm(x y ) = 0 still. Moreover, if x , y 6= 0 then by (a) there
is a Zariski-open subset of m such thatφm(x ) 6= 0 andφm(y ) 6= 0, contradicting that
A is a domain.

(c) Done before.
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8. SPRING 2015 M1

This problem was a typo.

9. FALL 2015 A5

(a) They are all of the following form: (x1−a1, . . . , xn −an )with ai ∈ F .
(b) Evaluation at a defines a homomorphism K [x1, . . . , xn ]→ K (a ), where K (a ) is the

finite extension of K generated by the coordinates of a . This finiteness implies that
the homomorphism is surjective.

(c) By the Nullstellensatz there is a natural bijection between zero sets and radical
ideals. Furthermore, radical ideals are determined by the maximal ideals contain-
ing them (namely, as the intersection). So Z determines a collection of maximal
ideals of K [x1, . . . , xn ]. Those collections that come from ideals of K [x1, . . . , xn ] are
characterized by the ones that are Galois-stable, by (b). So we find that Z is deter-
mined by an ideal I in K [x1, . . . , xn ]; it remains to explain why it is principal.

We know that I ⊗K K is principal. So, by looking at an element of I of minimal
degree, we find that there is g ∈ I such that g =α f for α ∈ K

∗
. The any h ∈ I can be

written as h = β f for some β ∈ K [x1, . . . , xn ], and so βα ∈ K [x1, . . . , xn ] as it is fixed
by Gal(K /K ).
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