ALGEBRA QUAL PREP: ALGEBRAIC GEOMETRY

TONY FENG

These are hints; they are not a model for what to write on the quals.

1. Spring 2010 A5

See problem 7.

2. FALL 2010 M3

If P = (f) when f is irreducible. If P is not principle, we take two irreducibles $f, g \in P$ which are coprime. In C(y)[x], which is a Euclidean domain, we can write

$$af + bg = 1$$
, $a, b \in \mathbf{C}(y)$.

Clearing denominators, we find $a', b' \in \mathbf{C}[x, y]$ and $h \in \mathbf{C}[y]$ such that

$$a'f + b'g = h.$$

Hence the vanishing set of f and g is contained in a union of horizontal lines. Then V(P) is contained in a single horizontal line, at which we reduce to the statement for polynomials in one variable.

3. Spring 2011 M4

(a) The ideal generated by the f_i and d in $K[x_1,...,x_n]$ have no zero, so (since K is algebraically closed) it must be the unit ideal. Hence we can find $a_1,...,a_n, b \in K[x_1,...,x_n]$ such that

$$\sum a_i f_i + b d = 1.$$

Then bg = r on S, since $r = r \cdot 1 = \sum ra_i f_i + rbd$.

(b) This is equivalent to: there does not exist $h, f \in \mathbf{Q}[x, y]$ such that

$$h \cdot (y - x) - 1 = f(x, y)(x^2 + y^2 - 1).$$

Setting x = y in this relation, it would give $f' \in \mathbf{Q}[x]$ such that $1 = f'(x)(2x^2 - 1)$. But $2x^2 - 1$ is not a unit in $\mathbf{Q}[x]$, since for example it vanishes on $\sqrt{2}$.

4. Spring 2013 A4

(i) Vanishing on *x* ∈ *Kⁿ* is a linear equation on the coefficients of *p* ∈ C[*x*₁,..., *x_n*]. Therefore vanishing on *Z* ∩ *Kⁿ* is a system of such equations. The solution space to this system over C is tensored up from that of *K*. So we deduce *p* = ∑*c_i p_i* with *c_i* ∈ C, *p_i* ∈ *K*[*x*₁,..., *x_n*] vanishing on *Z* ∩ *Kⁿ*. Then by the Nullstellensatz, *p_i* ∈ √*J*, hence vanishes on *Z*.

TONY FENG

- (ii) The statement is equivalent to saying that any $f \in \mathbb{C}[x_1, ..., x_n]$ vanishing on $Z \cap K^n$ vanishes on Z. But that is what we just proved in (i).
- (iii) Given $V(I) \subset \mathbb{C}^n$, we want $V(I) \cap K^n = V(?)$ to be closed. The Zariski closure $V(I) \cap K^{nZar}$ is the vanishing set of an ideal which is extended from $J \subset K[x_1, ..., x_n]$ by the same argument as in part (i), namely that the ideal is defined by a system of linear equations with coefficients in *K*.

Therefore we reduce to showing that for such a J, $V_{\mathbb{C}}(J) \cap K^n$ is Zariski closed. We claim that it is in fact the vanishing set $V_K(J)$ taken in $K[x_1, ..., x_n]$. We have $\mathfrak{m} \in V_{\mathbb{C}}(J) \cap K^n$ if and only if all $f \in J \otimes_K \mathbb{C}$ vanish on \mathfrak{m} , while $\mathfrak{m} \in V_K(J)$ if and only if all $g \in J$ vanish on \mathfrak{m} . Clearly the second condition is stronger, so $V_{\mathbb{C}}(J) \cap K^n \subset V_K(J)$. But in part (i) we proved the converse.

5. Fall 2013 A5

Omitted.

6. Spring 2014 A1

- (i) Omitted.
- (ii) Let b₁,..., b_m be generators for B as an A-algebra. By Noether normalization applied to K ⊗_A B as a K-algebra, the images of b₁,..., b_m in K ⊗_A B are finite over K, hence they satisfy monic polynomials p₁,..., p_m of degrees d₁,..., d_m over K. Since there are only finitely many coefficients, these monic polynomials all lie in B ⊗_A A_a for some a ∈ A−0.

We show that the (finite!) set of monomials $\{\prod b_i^{e_i}: 0 \le e_i < d_i\}$ generates B_a as an A_a -module. It is clear that b_1, \ldots, b_m are algebra generators for B_a over A_a , so any $x \in b$ can be written as a polynomial in the b_i with coefficients in A_a . Using the polynomials p_i as relations, we can arrange that this polynomial involves only monomials of the form in our generating set.

(iii) Since $A_a \hookrightarrow B_a$ is finite, the map Spec $B_a \to \text{Spec } A_a$ is surjective. Therefore Spec(f) contains the open subset $\text{Spec } A_a$.

7. Fall 2014 A5

- (a) Write $f = \sum a_i \otimes b_i$ with the a_i independent over k. Since $B/\mathfrak{m}_x \cong k$ (the Nullstellensatz implies it is a finite extension of k, which is k since it is algebraically closed).
- (b) By writing a finite expression for a zero-divisor, we deduce that any counterexample lives in $A \otimes_k R'$ with R' finitely generated over k, hence we may rename R' to B and assume that B is finitely generated over k.

Suppose $x, y \in A \otimes_k B$ are such that xy = 0. For maximal $\mathfrak{m} \subset B$, we write $\phi_{\mathfrak{m}}: A \otimes_k B \to A$. Clearly $\phi_{\mathfrak{m}}(xy) = 0$ still. Moreover, if $x, y \neq 0$ then by (a) there is a Zariski-open subset of \mathfrak{m} such that $\phi_{\mathfrak{m}}(x) \neq 0$ and $\phi_{\mathfrak{m}}(y) \neq 0$, contradicting that *A* is a domain.

(c) Done before.

2

8. Spring 2015 M1

This problem was a typo.

9. FALL 2015 A5

- (a) They are all of the following form: $(x_1 a_1, \dots, x_n a_n)$ with $a_i \in F$.
- (b) Evaluation at *a* defines a homomorphism $K[x_1,...,x_n] \rightarrow K(a)$, where K(a) is the finite extension of *K* generated by the coordinates of *a*. This finiteness implies that the homomorphism is surjective.
- (c) By the Nullstellensatz there is a natural bijection between zero sets and radical ideals. Furthermore, radical ideals are determined by the maximal ideals containing them (namely, as the intersection). So *Z* determines a collection of maximal ideals of $\overline{K}[x_1, ..., x_n]$. Those collections that come from ideals of $K[x_1, ..., x_n]$ are characterized by the ones that are Galois-stable, by (b). So we find that *Z* is determined by an ideal *I* in $K[x_1, ..., x_n]$; it remains to explain why it is principal.

We know that $I \otimes_K \overline{K}$ is principal. So, by looking at an element of I of minimal degree, we find that there is $g \in I$ such that $g = \alpha f$ for $\alpha \in \overline{K}^*$. The any $h \in I$ can be written as $h = \beta f$ for some $\beta \in \overline{K}[x_1, ..., x_n]$, and so $\beta \alpha \in K[x_1, ..., x_n]$ as it is fixed by Gal (\overline{K}/K) .