ALGEBRA QUAL PREP: ALGEBRAIC GEOMETRY

TONY FENG

These are hints; they are not a model for what to write on the quals.

1. Spring 2010 A5

See problem 7.

2. FALL 2010 M3

If $P=(f)$ when f is irreducible. If P is not principle, we take two irreducibles $f, g \in P$ which are coprime. In $\mathbf{C}(y)[x]$, which is a Euclidean domain, we can write

$$
a f+b g=1, \quad a, b \in \mathbf{C}(y)
$$

Clearing denominators, we find $a^{\prime}, b^{\prime} \in \mathbf{C}[x, y]$ and $h \in \mathbf{C}[y]$ such that

$$
a^{\prime} f+b^{\prime} g=h
$$

Hence the vanishing set of f and g is contained in a union of horizontal lines. Then $V(P)$ is contained in a single horizontal line, at which we reduce to the statement for polynomials in one variable.

3. Spring 2011 M4

(a) The ideal generated by the f_{i} and d in $K\left[x_{1}, \ldots, x_{n}\right]$ have no zero, so (since K is algebraically closed) it must be the unit ideal. Hence we can find $a_{1}, \ldots, a_{n}, b \in$ $K\left[x_{1}, \ldots, x_{n}\right]$ such that

$$
\sum a_{i} f_{i}+b d=1
$$

Then $b g=r$ on S, since $r=r \cdot 1=\sum r a_{i} f_{i}+r b d$.
(b) This is equivalent to: there does not exist $h, f \in \mathbf{Q}[x, y]$ such that

$$
h \cdot(y-x)-1=f(x, y)\left(x^{2}+y^{2}-1\right)
$$

Setting $x=y$ in this relation, it would give $f^{\prime} \in \mathbf{Q}[x]$ such that $1=f^{\prime}(x)\left(2 x^{2}-1\right)$. But $2 x^{2}-1$ is not a unit in $\mathbf{Q}[x]$, since for example it vanishes on $\sqrt{2}$.
4. Spring 2013 A4
(i) Vanishing on $x \in K^{n}$ is a linear equation on the coefficients of $p \in \mathbf{C}\left[x_{1}, \ldots, x_{n}\right]$. Therefore vanishing on $Z \cap K^{n}$ is a system of such equations. The solution space to this system over \mathbf{C} is tensored up from that of K. So we deduce $p=\sum c_{i} p_{i}$ with $c_{i} \in \mathbf{C}, p_{i} \in K\left[x_{1}, \ldots, x_{n}\right]$ vanishing on $Z \cap K^{n}$. Then by the Nullstellensatz, $p_{i} \in \sqrt{J}$, hence vanishes on Z.
(ii) The statement is equivalent to saying that any $\left.f \in \mathbf{C}\left[x_{1}, \ldots, x_{n}\right]\right]$ vanishing on $Z \cap$ K^{n} vanishes on Z. But that is what we just proved in (i).
(iii) Given $V(I) \subset \mathbf{C}^{n}$, we want $V(I) \cap K^{n}=V($?) to be closed. The Zariski closure $V(I) \cap K^{n Z a r}$ is the vanishing set of an ideal which is extended from $J \subset K\left[x_{1}, \ldots, x_{n}\right]$ by the same argument as in part (i), namely that the ideal is defined by a system of linear equations with coefficients in K.

Therefore we reduce to showing that for such a $J, V_{\mathbf{C}}(J) \cap K^{n}$ is Zariski closed. We claim that it is in fact the vanishing set $V_{K}(J)$ taken in $K\left[x_{1}, \ldots, x_{n}\right]$. We have $\mathfrak{m} \in V_{\mathbf{C}}(J) \cap K^{n}$ if and only if all $f \in J \otimes_{K} \mathbf{C}$ vanish on \mathfrak{m}, while $\mathfrak{m} \in V_{K}(J)$ if and only if all $g \in J$ vanish on \mathfrak{m}. Clearly the second condition is stronger, so $V_{\mathbf{C}}(J) \cap K^{n} \subset$ $V_{K}(J)$. But in part (i) we proved the converse.

5. Fall 2013 A5

Omitted.

6. Spring 2014 Al

(i) Omitted.
(ii) Let b_{1}, \ldots, b_{m} be generators for B as an A-algebra. By Noether normalization applied to $K \otimes_{A} B$ as a K-algebra, the images of b_{1}, \ldots, b_{m} in $K \otimes_{A} B$ are finite over K, hence they satisfy monic polynomials p_{1}, \ldots, p_{m} of degrees d_{1}, \ldots, d_{m} over K. Since there are only finitely many coefficients, these monic polynomials all lie in $B \otimes_{A} A_{a}$ for some $a \in A-0$.

We show that the (finite!) set of monomials $\left\{\prod b_{i}^{e_{i}}: 0 \leq e_{i}<d_{i}\right\}$ generates B_{a} as an A_{a}-module. It is clear that b_{1}, \ldots, b_{m} are algebra generators for B_{a} over A_{a}, so any $x \in b$ can be written as a polynomial in the b_{i} with coefficients in A_{a}. Using the polynomials p_{i} as relations, we can arrange that this polynomial involves only monomials of the form in our generating set.
(iii) Since $A_{a} \hookrightarrow B_{a}$ is finite, the map $\operatorname{Spec} B_{a} \rightarrow \operatorname{Spec} A_{a}$ is surjective. Therefore $\operatorname{Spec}(f)$ contains the open subset Spec A_{a}.

7. Fall 2014 A5

(a) Write $f=\sum a_{i} \otimes b_{i}$ with the a_{i} independent over k. Since $B / \mathfrak{m}_{x} \cong k$ (the Nullstellensatz implies it is a finite extension of k, which is k since it is algebraically closed).
(b) By writing a finite expression for a zero-divisor, we deduce that any counterexample lives in $A \otimes_{k} R^{\prime}$ with R^{\prime} finitely generated over k, hence we may rename R^{\prime} to B and assume that B is finitely generated over k.

Suppose $x, y \in A \otimes_{k} B$ are such that $x y=0$. For maximal $\mathfrak{m} \subset B$, we write $\phi_{\mathfrak{m}}: A \otimes_{k} B \rightarrow A$. Clearly $\phi_{\mathfrak{m}}(x y)=0$ still. Moreover, if $x, y \neq 0$ then by (a) there is a Zariski-open subset of \mathfrak{m} such that $\phi_{\mathfrak{m}}(x) \neq 0$ and $\phi_{\mathfrak{m}}(y) \neq 0$, contradicting that A is a domain.
(c) Done before.

8. Spring 2015 M 1

This problem was a typo.

9. FALL 2015 A5

(a) They are all of the following form: $\left(x_{1}-a_{1}, \ldots, x_{n}-a_{n}\right)$ with $a_{i} \in F$.
(b) Evaluation at a defines a homomorphism $K\left[x_{1}, \ldots, x_{n}\right] \rightarrow K(a)$, where $K(a)$ is the finite extension of K generated by the coordinates of a. This finiteness implies that the homomorphism is surjective.
(c) By the Nullstellensatz there is a natural bijection between zero sets and radical ideals. Furthermore, radical ideals are determined by the maximal ideals containing them (namely, as the intersection). So Z determines a collection of maximal ideals of $\bar{K}\left[x_{1}, \ldots, x_{n}\right]$. Those collections that come from ideals of $K\left[x_{1}, \ldots, x_{n}\right]$ are characterized by the ones that are Galois-stable, by (b). So we find that Z is determined by an ideal I in $K\left[x_{1}, \ldots, x_{n}\right]$; it remains to explain why it is principal.

We know that $I \otimes_{K} \bar{K}$ is principal. So, by looking at an element of I of minimal degree, we find that there is $g \in I$ such that $g=\alpha f$ for $\alpha \in \bar{K}^{*}$. The any $h \in I$ can be written as $h=\beta f$ for some $\beta \in \bar{K}\left[x_{1}, \ldots, x_{n}\right]$, and so $\beta \alpha \in K\left[x_{1}, \ldots, x_{n}\right]$ as it is fixed by $\operatorname{Gal}(\bar{K} / K)$.

