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1. OVERVIEW

The course is about the Atiyah-Singer Index Theorem. Its statement is given below,
although it may not make sense at the moment; the beginning of the course will intro-
duce the necessary ingredients.

Theorem 1.1 (Atiyah-Singer). The index of a Dirac operator D of a Clifford module E
over a compact, oriented manifold M of even dimension is

ind(D ) =

∫

M

bA(M )ch (E/S ).

For now, the interesting thing to take away about this theorem is that it relates two
things that don’t seem like they should be related. The left hand side

ind(D ) :=

¨

“graded dimension of D ”

dim(ker D +)−dim coker(D +)

is an analytic object. Meanwhile, the right hand side can be written in terms of the cap
product pairing on M as

∫

M

bA(M )ch (E/S ) = 〈[ bA(M )ch (E/S )], [M ]〉.

That makes it clear that it is a topological quantity. It is also “local” in the sense that
integration is computed locally.

Remark 1.2. To elaborate a bit more on the formula, bA(M ) = det
�

R/2
sinh R/2

�1/2
where R is

the Ricci curvature of M .

Even the form of the equation immediately yields interesting information. For ex-
ample, it is obvious that the left hand side is an integer and highly non-obvious that the
right hand side is an integer. So if, for example, you compute

∫

M
bA(M )ch (E/S ) and you

don’t get an integer, you can deduce that the hypotheses were false (this would give, for
instance, a proof that M is not orientable).

The Atiyah-Singer index theorem encompasses many other important results.

Chern-Gauss-Bonnet. The Chern-Gauss-Bonnet formula is

χ(M ) =

∫

M

Pf(R ).

This is a special case of the Atiyah-Singer index theorem. For now, let’s content our-
selves with figuring out what the corresponding objects (D ,E ) in the index theorem
should be. How can we realize the Euler characteristic as the index of some operator
on a vector bundle? We should take the bundle E =

∧•T ∗M and D = d +d ∗.
Since D is self-adjoint by construction, ker D = ker D 2 = ker∆. By Hodge theory, this

is H •
dR(M ). Then ind(D ) is the graded dimension of H •

d R (M ), which is the alternating
sum of the Betti numbers, and that is the Euler characteristic. We’ll come back and
compute the right hand side later on in the course.
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Hirzebruch Signature Theorem. Suppose M is a manifold of dimension 4k . The Hirze-
bruch signature theorem says that

σ(M ) =

∫

M

L (M )

where σ(M ) is the signature of M (the signature of the intersection form on H2k (M ))

and L (M ) = det
�

R/2
tanh R/2

�1/2
.

Again, this is a special case of the Index theorem applied to the bundle E =
∧•T ∗M

where D = d + d ∗, and ker D ∼= H •
dR(M ). This time, we take the graded dimension in-

duced by the Hodge ∗, normalized so that ∗2 = 1. This graded dimension gives the
signature.

Hirzebruch-Riemann-Roch. If M is a Kähler manifold and W →M is a holomorphic
vector bundle, then the Hirzebruch-Riemann-Roch formula says that

χhol(W ) =

∫

M

Td(M )ch (W ).

This is the Atiyah-Singer index theorem applied withE =
∧0,•T ∗M ⊗W and D = ∂ +∂

∗
.

Then ker D is essentially holomorphic sections, and ind(D ) is the graded dimension,
which is the holomorphic Euler characteristic.



4 LECTURES BY DAN BERWICK-EVANS LECTURES NOTES BY TONY FENG

Part 1. Geometric Preliminaries

2. CONNECTIONS

Definition 2.1. Let E →M be a vector bundle. A covariant derivative is a map

∇: Γ (M , E )→ Γ (M , T ∗M ⊗E )s

such that for f ∈C∞(M ),

∇( f · s ) = d f ⊗ s + f ·∇s (Leibniz rule).

This is equivalent to the data of a connection on E , so we’ll use the two terms inter-
changeably.

Denote Ω•(M , E ) = Γ (M ,
∧•T ∗M ⊗E ). Then we can extend∇ to an operator

∇: Ω•(M , E )→Ω•+1(M , E )

by the Leibniz rule: for α ∈Ωk (M ) and s ∈Ω•(M , E ),

∇(α∧ s ) = dα∧ s + (−1)kα∧∇s

Definition 2.2. For v ∈ Γ (T M ), recall that there is a contraction operator

ιv : Ω•(M )→Ω•−1(M )

defined by
ιvω(v1, . . . , vp ) =ω(v, v1, . . . , vp ).

For v ∈ Γ (T M ), we define∇v = ιv ◦∇.

Definition 2.3. The curvature of∇ is the form F ∈Ω2(M , End(E )) defined

F (v, w ) =∇v∇w −∇w∇v −∇[v,w ] for v, w ∈ Γ (T M ).

One has to check that F is linear over C∞(M ), but this is easy.

Definition 2.4. We call (E ,∇) flat if F = 0.

Example 2.5. If E =M ×V is the trivial bundle, then d is a flat connection.

Example 2.6. On E =M×V , a connection takes the form d+A =∇ for A ∈Ω1(M , End(E )).
Then F = d A+A ∧A.

Since any vector bundle is locally trivial, we have locally (E ,∇)∼= (M ×V , d +A).

Definition 2.7. A metric on E →M is a map of vector bundles E ⊗ E → R which is an
inner product upon restriction to fibers.

On global sections, this induces a map Γ (E )⊗ Γ (E )→C∞(M ).

Definition 2.8. Given (E ,∇, 〈−,−〉)we say that∇ is compatible with 〈−,−〉 if

d 〈v, w 〉= 〈∇v, w 〉+ 〈v,∇w 〉 ∈Ω1(M ).

Definition 2.9. For a connection∇ on T M , the torsion T is

T (v, w ) =∇v w −∇w v − [v, w ].

If T = 0, then we say that∇ is torsion-free.



THE ATIYAH-SINGER INDEX THEOREM 5

It is a fact that given a metric on T M , there is a unique connection that is both
torsion-free and compatible. This is called the Levi-Civita connection.
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3. SUPER VECTOR BUNDLES

In this section we develop a formalism of “super vector bundles”, which are essen-
tially just Z/2-graded vector bundles, which will be useful for encoding sign issues.

3.1. Super vector spaces.

Definition 3.1. A super vector space is a Z/2-graded vector space:

E = E even⊕E odd.

We might also denote E even = E + = E 0 and E odd = E − = E 1.

Example 3.2. We denote by Rn |n = Rn
︸︷︷︸

even

⊕ Rn
︸︷︷︸

odd

.

Definition 3.3. A super-algebra is an algebra A whose underlying vector space is a super
vector space whose multiplication respects the grading, i.e. E i ⊗E j → E i+ j .

Example 3.4. (Exterior algebra)
∧•V is a super-algebra, with

(
∧•

V )even =
∧even

V and (
∧•

V )odd =
∧odd

V .

Example 3.5. (Clifford algebras) For (V ,Q ) a vector space V with quadratic form Q , we
can define the Clifford algebra

Cl(V ,Q ) = T (V )/〈v ⊗ v +1 ·Q (v )〉.
Here T (V ) is the tensor algebra. Since we’ve identified a degree 2 element with a de-
gree 0 element, the Clifford algebra is only Z/2-graded. Note that V ⊂Cl(V ,Q ) has odd
degree. This lets you figure out the grading of everything.

Definition 3.6. A super algebra is super-commutative if for a , b ∈ A,

a · b = (−1)|a |·|b |b ·a ,

where |a |= deg(a ) ∈ {0, 1} and |b |= deg b ∈ {0, 1}.

Example 3.7.
∧•V is super-commutative. However, Cl(V ,Q ) is not super-commutative

in general.

3.2. Maps between super vector spaces. Let E , F be super vector spaces. Then

Hom(E , F )+ =Hom(E +, V +)⊕Hom(E −, V −)

and
Hom(E , F )− =Hom(E +, V −)⊕Hom(E −, V +).

Remark 3.8. There’s a more abstract formulation of things which makes this a little
more conceptual. There’s a symmetric monoidal category of vector spaces whose ob-
jects are super vector spaces, and morphisms are even maps. The signs comes from the
monoidal structure:

(E ⊗ F )even = (E even⊗ F even)⊕ (E odd⊗ F odd)

and
(E ⊗ F )odd = (E even⊗ F odd)⊕ (E odd⊗ F even).
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The signs come from an isomorphism E ⊗ F ∼= F ⊗ E , sending e ⊗ f 7→ (−1)|e |·| f | f ⊗ e
which is built into the monoidal structure.

It may be worth remarking that if we forget this sign, then we obtain simply the usual
category of Z/2-graded vector spaces.

For a superalgebra A, the super-commutator of a , b ∈ A is

[a , b ] = a b − (−1)|a |·|b |b a .

Notice that [−,−] = 0 ⇐⇒ A is super-commutative.

Definition 3.9. A super trace on A is a linear map ϕ : A → C or R vanishing on super-
commutators, i.e. ϕ([a , b ]) = 0 for all a , b ∈ A.

Example 3.10. For A = End(E ), and a ∈ A, we can define

str(a ) =

¨

tr(a |E + )− tr(a |E − ) a even

0 a odd
.

We claim that this is a super trace. Indeed, if a , b have opposite parity, then [a , b ] is

odd so str([a , b ]) = 0 tautologically. If a , b are even, then we may write a =
�

a+ 0
0 a−

�

and b =
�

b+ 0
0 b−

�

and str([a , b ]) = tr([a+, b+])− tr([a−, b−]) = 0−0= 0. Finally, if a , b are

odd then we may write

a =
�

0 a+
a− 0

�

b =
�

0 b+
b− 0

�

Then

[a , b ] =
�

b+a−+a+b− 0
0 b−a++a−b+

�

.

Again, we see that str([a , b ]) = 0.

3.3. Hermitian super vector bundles.

Definition 3.11. A hermitian super vector bundle is a super vector bundle E = E +⊕E −,
where E + and E − are each equipped with a hermitian structure.

A consequence of the definition is that odd elements and even elements are auto-
matically orthogonal to each other.

Definition 3.12. A family of odd operators U ∈ Γ (M , End(E )) is self-adjoint if

U =
�

0 V
V ∗ 0

�

.

Example 3.13. If E =
∧•T ∗M , then a family of odd operators is given by interior mul-

tiplication / contraction ιv for v ∈ Γ (T M ). Fixing a Riemannian metric on T M , we also
have ∧v ∗. These are odd, and ιv +∧v ∗ is self-adjoint (really the point is that ιv and ∧v ∗

are “adjoints,” but we haven’t defined this).
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For a super vector bundle E →M , we can form the space Ω•(M , E ) with a Z×Z/2-
grading. We get a totalZ/2 grading from this by viewing theZ grading as aZ/2 grading,
and then summing. For example, ωeven ⊗ sodd ∈ Ω•(M , E )odd if ωeven ∈ Ωeven(M ) and
sodd ∈ Γ (M , E odd).

Definition 3.14. A super connection on a super vector bundle is an odd map

A: Ω•(M , E )→Ω•(M , E )

such that A(α∧ s ) = dα∧ s + (−1)|α|α∧A(s ), where α ∈Ω•(M ) and s ∈Ω•(M , E ).

Example 3.15. If M is a point, then E is a super vector space, and a super connection
is an odd endomorphism of E . As we’ll see soon, a Dirac operator is an odd endomor-
phism of a super Hilbert space.

Definition 3.16. The curvature of a super connection is A2 =A ◦A.

Proposition 3.17. A2 is linear over Ω•(M ), i.e. A2 ∈ Ω•(M , End(E )). Also, [A,A2] = 0
(corresponding to the usual Bianchi identity A(F ) = 0).

Proof. Exercise. �

Note that A is determined by its restriction to Γ (M , E ) = Ω0(M , E ). We can express
A as

∑

i Ai where Ai : Ω0(M , E )→ Ωi (M , E ). If we look at the effect of the Leibniz rule,
then A1 =∇ is an ordinary connection and Ai ∈Ωi (M , End(E ))odd.

From this description, we see that the space of super-connections is an affine space
for Ω1(M , End(E ))odd. This is analogous to the usual space of connections being an
affine space for Ω•(M , End(E )).
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4. CHARACTERISTIC CLASSES

4.1. Chern-Weil Theory. One nice feature of the curvature tensor is that it gives dif-
ferential form representatives of characteristic classes of vector bundles; this is called
Chern-Weil theory. We’ll briefly review it.

Definition 4.1. Given a polynomial f (z ), let

f (A2) =
N
∑

i=0

f (n )(0)
n !

(A2)n .

Then str( f (A2)) ∈Ω•(M ).

Proposition 4.2. If A be a superconnection, then str( f (A2)) is a closed form of even de-
gree.

If At is a one-parameter family of superconnections, then

(1) We have
d

d t
str( f (A2

t )) = d str
�

dAt

d t
f ′(A2

t )
�

.

(2) [str( f (A2
0))] = [str( f (A2

1))] ∈H even
dR (M ) for A0,A1 super connections on E →M .

The usual Chern-Weil theory uses a connection between the trace and the de Rham
d , and the analogous thing applies here.

Lemma 4.3. str([A,α]) = d str(α) for α ∈Ω•(M ; End(E )).

Proof. Locally, A= d +ω. Then

str([d +ω,α]) = str(dα) + str([ω,α])

(since [d ,α] is multiplication by dα). Sinceω,α are endomorphism valued forms, and
a supertrace vanishes on commutators by definition, we have str([ω,α]) = 0. To finish,
it is clear that str(dα) = d str(α). �

Proof of Proposition 4.2. For the first part, the Lemma we have

d (str( f (A2)) = str([A, f (A2)])

= 0

with the latter inequality following from the Bianchi identity. This shows that str( f (A2))
is closed.

The operatorA2 is even, so f (A2) is even. Since str preserves degree, str f (A2) ∈Ω•(X )
is even. Caution: f (A2) being does not mean that it doesn’t have “odd parts” (since they
can be valued in odd degree differential operators), but taking the supertrace kills those
parts.

(1) We claim that d
d t str( f (αt )) = str(dαt

d t f ′(αt )). By linearity, it suffices to handle the
case f (z ) = z n . In that case, we have

d

d t
str(αn

t ) = str

�

n−1
∑

i=0

αi
t

dαt

d t
αn−i−1

t

�

.
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Here we must be careful with the order of things, since the operators aren’t commuta-
tive. But by the cyclicity of the supertrace, this is n str(dαt

d t α
n−1
t ), as desired.

Our calculation shows that

d

d t
str( f (A2

t )) = str

�

dA2
t

d t
f ′(A2

t )

�

and d
d t A

2
t = At

dAt
d t +

dAt
d t At = [At , dAt

d t ]. So by repeated application of the Bianchi iden-
tity and the lemma (in that order),

d

d t
str( f (A2

t )) = str
��

At ,
dAt

d t
f ′(A2

t )
��

= d str
�

dAt

d t
f ′(A2

t )
�

.

(2) Letω=A1−A0. Take At = A0+ tω. Then

str( f (A2
1))− str( f (A2

0)) = d

∫ 1

0

str
�

dAt

d t
f ′(At )

2
�

d t .

�

Remark 4.4. It is useful to have this explicit expression for the form interpolating be-
tween str( f (A2

1)) and str( f (A2
0)). This is sometimes called the Chern-Weil form.

Example 4.5. If A=A1 =∇, then f (A2) is the usual Chern-Weil form of f .

4.2. Characteristic classes.

4.3. Chern classes. For f (z ) = exp(−z ), str( f (A)) is the Chern character of (E ,A). Ex-
plicitly,

ch (E ,A) = str(e −A
2
).

The cohomology class is actually independent of the choice of connection, so we may
just write ch (E ) = [str(e −A

2
)].

If E = E + ⊕ E −, with superconnection A = (E ±,∇±) then ch (E ,A) = ch (E +,∇+)−
ch (E −,∇−).

Properties of the Chern character.

• ch (E ⊕ F ) = ch (E ) + ch (F ).
• ch (E ⊗ F ) = ch (E )^ ch (F ).

In fact, these even hold at the level of forms.

4.4. Genera.

Definition 4.6. We define the bA genus of M to be

bA(∇) = det
�

R/2

sinh(R/2)

�1/2

where R =∇2 (i.e. the curvature).
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Remark 4.7. You might wonder, where in the above definition does the supertrace ap-
pear? It’s hiding in the expression det(e A) = e Tr A .

Definition 4.8. With R =∇2 as before, the Todd class is

Td(∇) = det
�

R

e R −1

�

.

Properties.

• bA(∇0⊕∇1) = bA(∇0)∧ bA(∇1).
• Td(∇0⊕∇1) = Td(∇0)∧Td(∇1).

Usually one considers bA for real vector bundles, and Td for complex vector bundles.
For real vector bundles, bA(∇) ∈Ω4k (M ).

4.5. Back to the big picture.

Example 4.9. Recall the Hirzebruch-Riemann-Roch formula: for E → M a holomor-
phic vector bundle over a Kähler manifold,

ind(∂ + ∂
∗
) =

∫

M

Td(M )ch (E ).

The right hand side now makes sense.

Example 4.10. Recall the Hirzebruch signature formula:

σ(M ) = ind(d +d ∗) =

∫

M

L (M ).

Here L (M ) = det
�

R/2
tanh(R/2)

�1/2
where ∇ is some connection on T M and R is the curva-

ture of∇.

Remark 4.11. When not specified, the bundle in question is the tangent bundle.
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5. CLIFFORD ALGEBRAS

5.1. The Clifford algebra. Let V be a real vector space, Q a quadratic form on V (pos-
sibly degenerate). There are three perspectives on what a Clifford algebra is.

(1) (Generators and relations) Let Cl(V ,Q ) be the algebra generated by V with rela-
tions v ·w +w · v =−2 ·Q (v, w ).

(2) (Universal property) Cl(V ,Q ) is initial with respect to linear maps c : V → A to
an algebra A such that c (v ) · c (w ) + c (w ) · c (v ) =−2Q (v, w ).

V
c //

##

A

Cl(V ,Q )

∃!

OO

(3) (Quotient of tensor algebra) Cl(V ,Q ) is the following quotient of the tensor alge-
bra:

T (V )/{v ⊗w +w ⊗ v =−2Q (v, w )}.
The naturalZ-grading on T (V ) induces aZ/2-grading on Cl(V ,Q ) =Cl+(V )⊕Cl−(V ),

and V ⊂Cl−(V ).
There is an anti-automorphism of Cl(V ) determined by v 7→ −v . (So it reverses the

order of a “word.”) We denote this by a 7→ a ∗.
The natural action of O (V ) on V extends to an action on Cl(V ).

5.2. Clifford modules. The exterior algebra
∧•V carries an action of Cl(V ,Q )making

it into a Clifford module. The action can be specified on V , provided that it satisfies the
necessary relations. Let ιv denote contraction with Q (v,−) ∈ V ∗. Then we define the
action of v ∈V on

∧•V via cl(v ) :=∧v − ιv . This is self-adjoint (see Example 3.13).
We get from this a symbol map Cl(V )→

∧•V sending a 7→ cl(a ) ·1 (the action). This
is not an algebra map, but it does give an isomorphism of Z/2-graded O (V )-modules
Cl(V )∼=

∧•V .
There’s a filtration on Cl(V ) with Cl(V )0 =R, Cl(V )1 =R⊕V , etc. and the associated

graded is
∧•V .

5.3. Bundles of Clifford modules. For M a Riemannian manifold, we have inner prod-
uct spaces (Tx M , g ) for each x ∈M , so we get a bundle of algebras Cl(T M )whose fiber
at x ∈M is Cl(Tx M , g ).

Definition 5.1. A bundle of Clifford modules on M is a super vector bundle E →M with
a smooth fiberwise action by Cl(T M ), together with a hermitian metric and compatible
super-connection on E , i.e.

(1) For all s1, s2 ∈ Γ (E ) and v ∈ Γ (M , T M )⊂ Γ (M , Cl(T M ))we have

〈cl(v ) · s1, s2〉+ 〈s1, cl(v ) · s2〉= 0

and
(2) The connection A on E is compatible with the Levi-Civita connection ∇ on

T M : for all v ∈ Γ (M , T M )

[A, cl(v )] = cl(∇v )
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as operators on Ω•(M , E ).

The Clifford bundle has a symbol map σ : Cl(T M ) →
∧•T M which is an isomor-

phism of Z/2-graded vector bundles.

Definition 5.2. For E a Clifford module and W aZ/2-graded vector bundle with a super
connection A, call W ⊗E a twisted Clifford module with action Id⊗clE .
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6. DIRAC OPERATORS

6.1. Classical Dirac operators.

Definition 6.1. The Dirac operator associated to a Clifford module E (with ordinary
connection∇E ) is the composition

D : Γ (M , E )
∇E

−→ Γ (M , T ∗M ⊗E )
metric−−−→ Γ (M , T M ⊗E )

cl−→ Γ (M , E ).

In local coordinates we have

D =
∑

i

cl(d x i )∇i ,

so [D , f ] = cl(d f ).

Example 6.2. The exterior bundle E =
∧•T M has a Clifford module structure from the

symbol mapσ. Explicitly, if v ∈ Γ (T M ) then cl(v ) = v ∧−ιv .
Then the Dirac operator is

D (w ) =
∑

i

cl(e i )∇i w =
∑

i

e i ∧∇i

︸ ︷︷ ︸

≈d

ω−
∑

i

ιei
∇i

︸ ︷︷ ︸

≈d ∗

ω

which is (d +d ∗)ω if the connection is torsion-free.

6.2. Clifford superconnections and Dirac operators. We can also define a Dirac op-
erator for Clifford superconnections. Let E →M be a Clifford bundle. Recall that we
defined a symbol map σ : Cl(T M ) ∼=

∧•T M . This induces an isomorphism (using the
metric as well)

σ : Ω•(M , E )∼= Γ (M , Cl(T M )⊗E ).
For a Clifford superconnectionA on E , we define the Dirac operator DA by the compo-
sition

Γ (M , E )
A−→Ω•(M , E )

σ−1

−→ Γ (M , Cl(T M )⊗E )
cl−→ Γ (M , E ).

What does this look like in local coordinates? Locally, we may write

A= d x i ⊗∇i +
∑

I⊂{1,...,n}
d x I ⊗AI .

Then

DA =
n
∑

i=1

cl(d x i )⊗∇i +
∑

I

cl(d x I )⊗AI .

Proposition 6.3. For A a Clifford super-connection on E , we have

A2 =R E + F E /S

where R E ∈Ω2(M , Cl(T M )) ,→Ω2(M , End(E )) is defined by

R E (ei , e j ) =
1

2

∑

k<`

〈R (ei , e j )ek , e`〉cl(e k )cl(e `).

and moreover F E /S ∈Ω•(M , EndCl(T M )(E )), i.e. is Cl(T M )-linear.
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Remark 6.4. Roughly speaking, R E is a Clifford version of the curvature (of the Levi-
Civita connection), and F E /S is what’s left.

Proof. [A2, cl(a )] = [A, [A, cl(a )]]. By the property of being a Clifford superconnection,
this is

[A, cl(∇LC a )] = cl((∇LC )2a )

= cl(R a )

(computation)= [R E , cl(a )]

which shows that [A2−R E , cl(a )] = [F E /S , cl(a )] = 0. �

Definition 6.5. We define the twisting curvature of E to be F E /S ∈Ω•(M , EndCl(T M )(E )).

6.3. Index of a Dirac operator. For a Clifford module (E ,A) suppose that DA is self-
adjoint. Then let D ± =DA|Γ (M ,E ±) so

D =
�

0 D −

D + 0

�

with (D +)∗ =D −.

Definition 6.6. We define the index of D to be

ind(D ) := dim ker D +−dim coker D +

and the superdimension of D to be

sdim(D ) := dim ker D +−dim ker D −.

Lemma 6.7. If D is self-adjoint, then ind(D ) = sdim(D ).

Proof. We have

sdim(ker D ) = dim(ker D +)−dim(ker D −)

= dim(ker D +))−dim(ker(D +)∗)

= dim(ker D +)−dim(coker D +)

= ind(D )

�

Theorem 6.8 (Atiyah-Singer). The index of the Dirac operator of a Clifford module over
a compact, oriented, even-dimensional manifold M is

ind(D ) = (2πi )−n/2

∫

M

bA(M ) · ch (F E /S ).
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7. SPIN

7.1. The spin groups.

Definition 7.1. Let Pin(V ) be the multiplicative subgroup of Cl(V ) generated by V −
{0} ⊂Cl(V ). Let Spin(V ) = Pin(V )∩Cl(V )0.

Define a homomorphism Pin(V )→O (V )whose value on v ∈V such that ||v ||= 1 is

x 7→ v · x · v−1 =−v · x · v = x −2〈x , v 〉v.

This element is in GL(V ), and from its form you can see that it is actually a reflection
through the plane perpendicular to v . Since Pin(V ) is generated by v ∈V , we can pro-
duce any composition of reflections, so Pin(V )�O (V ).

Furthermore, Spin(V )⊂Cl(V )0, so its image is in SO(V ), i.e.

Spin(V )

����

� � // Pin(V )

����
SO(V ) �

� // O(V )

What’s the kernel?

Proposition 7.2. There is an exact sequence

{±1} ,→ Spin(V )� SO(V ).

Proof Sketch. The kernel consists of all elements of Spin(V ) super commuting with all
x ∈V . That implies (though we haven’t shown it yet) that the kernel consists of scalars,
because Cl(V ,Q ) is a (super)simple algebra over itself. Then we just have to check that
the only scalars in Spin(V ) are {±1}.

The map a 7→ a ∗ : Cl(V )→ Cl(V ) is an anti-homomorphism. (For v ∈ V , this takes
v 7→ v−1 =: v ∗.) So any scalar a ∈ Spin(V )has the property that a ∗ = a−1, but also a ∗ = a
♠♠♠ TONY: [why??], hence scalars have order 2. �

Let Spin(k ) = Spin(Rk ) for Rk with the standard metric.

Proposition 7.3. For k ≥ 2, Spin(k ) is connected and for k ≥ 3, Spin(k ) is simply-connected
and is the universal cover of SO(k ).

Proof. From Proposition 7.2 we get a long exact sequence of homotopy groups

π1(Z/2) π1(Spin(k )) π1(SO(k ))

π0(Z/2) π0(Spin(k )) π0(SO(k ))
δ

and we know thatπ1(SO(k ))∼=Z/2 for k ≥ 3. For k ≥ 2, we need to connect±1 in Spin(k )
by a path. One such t 7→ cos t + e1e2 sin t where e1, e2 are linearly independent (so we
are obviously using k ≥ 2 here.) This implies that π0(Z/2)→ π0(Spin(k )) is 0, verifying
connectedness.

For simply-connectedness, we have to check that π1(Z/2)→π1(Spin k ) is also 0. But
that is obvious.
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�

Corollary 7.4. We have Lie(Spin(V ))∼= Lie(SO(V ))∼=
∧2 V .

For A = (ai j ) ∈ Lie(SO(V )), A 7→ 1
2

∑

i< j ai j ei e j ∈ Lie(Spin(V ))gives an explicit inverse.

7.2. Spin structures. We will give three different (but equivalent) definitions of a spin
structure.

Definition 7.5. A spin structure on M is a Spin(n = dim M )-principal bundle Spin M →
M that is a double cover of the frame bundle SO(M ) such that on fibers the covering
map is the double cover Spin(n )→ SO(n ). Equivalently,

Spin(M )×Spin(n )Rn ∼= T M .

If M has a spin structure, then it is called a spin manifold.

There are some topological obstructions to the existence of a spin structure. From
the short exact sequence

1→Z/2→ Spin(n )→ SO(n )→ 1

and the associated long exact sequence in cohomology

H 1(m ;Z/2) H 11(M ; Spin(n )) H 1(M ; SO(n ))

H 2((Z/2) . . .
δ

we get a classα ∈H 1(M ; SO(n )), classifying SO(M ), and its image under H 1(M ; SO(n ))→
H 2(M ;Z/2) is the Stiefel-Whitney class w2(M ). It describes the obstruction of lifting
SO(n ) to a Spin(n ) bundle. Also, since M is oriented w1(M ) = 0. Therefore, we can also
define:

Definition 7.6. M is spin if w1(M ) =w2(M ) = 0. Its spin structures are then a torsor for
H 1(M ;Z/2).

Finally, we have one last definition.

Definition 7.7. A spin structure on M is a bundle of Z/2-graded irreducible Cl(T M )−
Cl(Rn ) bimodules.

Why are these definitions equivalent? The equivalence of the first two has already
been sketched. To compare the first and third, note that if Spin(M ) is a spin structure in
the first sense, then we can form the bundle Spin(M )×Spin(n )Cl(Rn )which has a Clifford
action on the right and a Cl(T M )-action on the left.

7.3. Spinor representation. Let V ∼= (Rn , 〈−,−〉).

Definition 7.8. A chirality operator is Γ ∈C`(V ) :=Cl(V )⊗C defined by

Γ := i p e1 . . . en , p =

¨

n/2 n even

(n +1)/2 n odd

and {ei } an orthonormal basis of V .
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Note that Γ 2 = 1, and

Γ v =

¨

+v Γ n odd,

−v Γ n even.

For n even, we get a Z/2-grading on complex Clifford modules of C`(V ):

E ± = {w ∈ E | Γw =±w }.

Definition 7.9. A polarization of V ⊗C is a subspace P ⊂V ⊗C such that

(1) QC(w , w ) = 0 for all w ∈ P (where QC is the C-bilinear complexification of Q )
(2) V ⊗C∼= P ⊕P .

We’ll use a polarization to build a spinor representation.

Proposition 7.10. If dim V is even, then there exists a unique Cl(V )-module 6S = 6S+⊕6S−
such that

End(6S )∼=C`(V ).

Definition 7.11. This 6S is called the spinor representation of C`(V ).

Proof. Choose P ⊂ V ⊗C a polarization. Let 6S :=
∧•P . Let 6S+ =

∧even P and 6S− =
∧odd P . Then we define the action by

cl(w ) · s =

¨p
2w ∧ s w ∈ P

−
p

2 · ιw s w ∈ P

for w ∈V ⊗C⊂Cl(V )⊗C. Since such w generateC`(V ), that determines the represen-
tation.

Then Cl(V )⊗C∼= End(6S ), and the latter is a simple algebra (this is just a general fact
about matrix algebras). Therefore, it has a unique irreducible module, which is 6S . �

Proposition 7.12. There exists a unique inner product on 6S (up to scalars) making 6S a
self-adjoint C`(V )-module.

Proof. Exercise. �

Proposition 7.13. For dim V even, every Z/2-graded C`(V )module E is isomorphic to
W ⊗6S for W :=Hom(6S , E ).

Proof. We’ve already established that C`(V ) ∼= End(6S ), and the result follows from the
linear algebra fact that any module for a matrix algebra takes this form. (We’re sweeping
theZ/2-graded issue under the rug. That’s why there are subtleties in odd dimensions;
the linear algebra fact is true in general.) �

Definition 7.14. This W is called the twisting space for the C`(V )-module E .

Since Spin(V )⊂C`(V ), we can also view 6S as a Spin(V )-representation.
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7.4. Spinor bundles.

Definition 7.15. The spinor bundle on a manifold M is the associated bundle

6S (M ) := 6SM := Spin(M )⊗Spin(n ) 6S .

From theC`(Rn )-action on 6S , we get a Cl(T M ) action on 6S (M ), so 6S (M ) is a Cl(T M )-
bundle.

Proposition 7.16. If M is an even-dimensional spin manifold, then every Clifford mod-
ule E is a twisted spinor bundle, i.e. E ∼=W ⊗6S for W a Z/2-graded vector bundle.

Proof. Set W =HomCl(T M )(6S , E ). Then the map

HomCl(T ,M )(6S , E )⊗6S → E

taking w ⊗ s 7→w (s ) is an isomorphism. �

Connection on 6S . The connection on 6S comes from the Levi-Civita connection on M .
Conceptually, the Levi-Civita connection on M induces a connection on SO(M ), and
Spin(M ) is a double cover (in particular, a local diffeomorphism) of SO(M ), hence in-
herits this connection. In local coordinates, if

∆LC
i e j =ω

k
i j ek

then

∇6Si = ∂i +
1

2

∑

j ,k

ωk
i j c i c j

where c i = cl(ei ).

Definition 7.17. The Dirac operator 6D is the Dirac operator on Spin(M ) associated to
∇6S .

Exercise 7.18. Check that∇6S is a Clifford superconnection.

7.5. Twisted spinor bundles. Let (W ,AW )be a super vector bundle with super-connection
on a spin manifold M .

Proposition 7.19. A :=AW ⊗1+1⊗∇6S is a Clifford super-connection on W ⊗6S.

Proof. This is just a computation:

[A, cl(a )] = [AW ⊗1+1⊗∇6S , 1⊗ cl(a )]

= 1⊗ [∇6S , cl(a )] = 1⊗ cl(∇6S a )

= cl(∇a ).

�

Facts.

(1) Any Clifford super-connection on 6S⊗W is of this form. Combined with the fact
that all Clifford modules on a spin manifold are of this form, this completely
characterizes Dirac operators coming from Clifford modules on spin manifolds.

(2) For E = 6S⊗W ,A2 =R T M +F E /S and in this case F E /S =R W . In particular, F E /S

of E = 6S vanishes (“the spinor bundle is untwisted”).



20 LECTURES BY DAN BERWICK-EVANS LECTURES NOTES BY TONY FENG

8. DIFFERENTIAL OPERATORS

8.1. Differential operators on vector bundles.

Definition 8.1. We define the space of differential operators D (M , E ) to be the subalge-
bra of End(Γ (E )) generated by Γ (M , End(E )) and∇X for any covariant derivative∇ and
X ∈ Γ (M , T M ).

Here is an equivalent formulation.

Definition 8.2. For E a vector bundle andE its sheaf of sections, D (M , E ) =HomShv(E ,E )
considered in the category of sheaves of vector spaces (rather than sheaves of C∞(M )-
modules).

The equivalence is not obvious; it involves local analysis patched together with par-
titions of unity.

There’s a useful filtration on D (M , E ) according to the number of covariant deriva-
tives.

Di (M , E ) = 〈Γ (M , End(E )){∇1
X1

. . .∇1
X j
| j ≤ i }〉.

We say that D is of order i if D is an i th order differential operator in local coordinates,
i.e. i the smallest integer such that D ∈Di (M , E )⊂D (M , E ). Notice that by the Leibniz
rule, D is of order i if and only if for all f ∈C∞,

(ad( f ))i D = [ f , [ f , . . . , [ f , D ]] . . .]

is of order zero, i.e. C∞(M )-linear.

Proposition 8.3. The associated graded of D (M , E ) is Sym(T M )⊗End(E ).

Definition 8.4. If D has order k , then we define the symbol map

σ :=σk : grk (D (M , E ))→ Symk (T M )⊗End(E )

by

σk (D )(x ,ξ) = lim
t→∞

t −k (e −i t f D e i t f )(x ) ∈ End(E )

for x ∈M , ξ ∈ Tx M and d f (x ) dual to ξ.

Proof. By the Leibniz rule, for D = a∇X1
. . .∇Xk

we have

e −i t f D e i t f = (i t )k 〈X1,ξ〉 . . . 〈Xk ,ξ〉+O (t k−1).

This gives the claimed isomorphism. �

Identify Γ (M , Sym•(T M )⊗End(E ))⊂ Γ (T ∗M ,π∗End(E )) as the sections that are poly-
nomial on fibers ofπ: T ∗M →M . We say that an operator D is elliptic ifσ(D ) ∈ Γ (T ∗M ,π∗End(E ))
is invertible away from the zero section of T ∗M .
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8.2. Generalized Laplacians.

Definition 8.5. A generalized Laplacian is a second-order differential operator H such
that σ(H )(x ,ξ) = |ξ|2 for x ∈M ,ξ ∈ Γ (T M ). (Implicitly, we use a metric to make sense
of the norm, and identify End(E )∼= E ∗⊗E ∗.)

Remark 8.6. Clearly any such H is elliptic.

Here are equivalent formulations of generalized Laplacians.

(1) [[H , f ], f ] =−2|d f |2 for any f ∈C∞(M ).
(2) Locally H looks like

H =−
∑

i , j

g i j

︸︷︷︸

metric tensor

∂i ∂ j + (first-order).

The punchline is that the Dirac operator is a “square root” of the Laplacian.

Laplacian of a connection. Let∆E be the composition

Γ (M , E )
∇E

−→ Γ (M , T ∗M ⊗E )
∇LC⊗∇E

−−−−−→ Γ (M , T ∗M ⊗T ∗M ⊗E )
metric−−−→ Γ (M , E ).

In brief,

(1) ∆E (s ) = −Tr(∇T ∗M⊗E∇E s ). (The negative sign is chosen to make ∆E positive-
definite.)

(2) In a local frame,

∆E =−
∑

i , j

�

∇E
ei
∇E

e j
−∇E

∇LC
ei

e j

�

.

Proposition 8.7. For H a generalized Laplacian on E , there exists∇E such that H −∆E

is 0th order, i.e. H −∆E ∈ Γ (End(E )).

Proof. We need to show that [H −∆E , f ] = 0. See BGV, page 65(ish). �

So any generalized Laplacian H can be written as

H =∆E + F, F ∈ Γ (End(E )).

In summary, generalized Laplacians are given:

(1) a metric g on M which specifies the second-order part,
(2) a connection∇E on E which specifies the first-order piece.
(3) F ∈ Γ (End(E ))which specifies the zeroth-order piece.
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9. DENSITIES AND DIVERGENCES

9.1. Density bundles.

Definition 9.1. The s -density bundle of M is a line bundle associated to the frame bun-
dle via the homomorphism

|det |−s : GL(n ,R)→R>0.

Denote the s -density bundle by |Λ|s . We can integrate 1-densities (just call them
“densities”) without orientations.

Remark 9.2. For this reason, compactly supported 1/2-densities have a canonical inner
product, given by integration.

You can view a choice of orientation as an isomorphism between the top exterior
power of the cotangent bundle and a density bundle.

Definition 9.3. Let D : Γ (M , E1)→ Γ (M , E2) be a differential operator. Its formal adjoint

D ∗ : Γ (M , E ∗2 ⊗ |Λ|)
∗→ Γ (M , E ∗1 ⊗ |Λ|)

is characterized by
∫

M

〈D s1, s2〉=
∫

M

〈s1, D ∗s2〉 for s1 ∈ Γc (M , E1), s2 ∈ Γ (M , E ∗2 ⊗ |Λ|).

where Γc (M , E1)⊂ Γ (M , E1) is the subset of compactly supported functions.

If E1 = E2 = E is hermitian and D acts on Γ (M , E ⊗ |Λ|1/2), then D is symmetric if
D =D ∗. Here we are using the canonical isomorphism (|Λ|s )∗ ∼= |Λ|1−s .

Note that σ(D ∗) = σ(D )∗ ⊗ 1|Λ| where 1 ∈ |Λ|1/2 ⊗ (|Λ|1/2)∗. In particular, D elliptic
implies that D ∗ is elliptic.

Example 9.4. Suppose M is Riemannian and orientable. The exterior derivative d : Ω•(M )→
Ω•+1(M ) induces d • : Γ (

∧•T M ⊗|Λ|)→ Γ (
∧•+1 T M ⊗|Λ|). The metric induces an isomor-

phism T M ∼= T ∗M , which induces
∧•T ∗M ∼=

∧•(T M ⊗ |Λ|). So we get

d ∗ : Ω•(M )→Ω•−1(M ),

and using the volume form this is adjoint to d in the following sense:
∫

M

〈ω, dη〉|d vol |=
∫

M

〈d ∗ω,η〉|d vol |.

9.2. Divergences.

Definition 9.5. For α ∈Ω1(M ), we define the divergence of α to be d ∗α ∈C∞(M ).

Observe that
∫

d ∗α |d x | = 0 if α is compactly supported (this follows from the defi-
nition of the adjoint: 〈d ∗α, 1〉= 〈α, 0〉).

Lemma 9.6. For α ∈Ω1(M ),
d ∗α=− tr(∇LCα)
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In particular, if α ∈Ω1
c (M )we have

∫

M

tr(∇LCα) |d x |= 0.

Proof. In the argument we denote∇=∇LC . For X a vector field on M ,∇X ∈ Γ (M , T ∗M⊗
T ∗M )∼= Γ (M , End(T M )). Since∇ is torsion-free, we have

LX Y = [X , Y ] =∇X Y − (∇X )Y

so LX |d x | = − tr(∇X )|d x | ♠♠♠ TONY: [don't understand what's happening here].
Therefore,

∫

M

LX f |d x |=
∫

M

X ( f )|d x |=−
∫

M

tr(∇X ) f |d x |.

Say X 7→α under T M ∼= T ∗M . Then
∫

M

〈α, d f 〉 |d x |=
∫

M

X ( f ) |d x |=−
∫

M

tr(∇α) f |d x |

and the left hand side is
∫

〈d ∗α, f 〉| |d x |. Hence d ∗α=− tr(∇LCα). �

Proposition 9.7. If ι : Γ (M , T ∗M ⊗
∧•T ∗M ) → Γ (M ,

∧•T ∗M ) denotes the contraction
operator, then we have

d ∗ =−ι ◦∇T M .

Proof. Using the torsion-freeness of d =∧◦∇T M ♠♠♠ TONY: [what is this?]

〈∧ ◦∇T Mα,β 〉+ 〈α, ι ◦∇T Mβ 〉= Tr(∇γ)

where γ(X ) = 〈α, ιX β 〉. Now integration kills the right hand side, so the formal adjoint
is as claimed. �

Definition 9.8. For A = ∇+ω, define A∗ : ∇∗ +ω∗ where ω∗ = (−1)i (i+1)/2ω†
i (where †

means the adjoint on the endomorphism part) forωi ∈Ωi (M , End(E )).

Proposition 9.9. For A a Clifford superconnection, (DA)∗ =DA∗ .

Proof. Consider
〈DAs1, s2〉+ 〈s1, DA∗ s2〉.

By the signs inω∗i , the contribution from the differential form part of D drops out im-
mediately for purely formal reasons, so this is equal to

〈DAs1, s2〉+ 〈s1, DA∗ s2〉= 〈D∇s1, s2〉+ 〈s1, D∇∗ s2〉.

Let X be a vector field such that for α ∈Ω1(M ),

α(X ) = 〈s1, cl(α)s2〉.

Then♠♠♠ TONY: [why???]

〈D∇s1, s2〉+ 〈s1, D∇∗ s2〉= tr(∇X ).

The latter integrates to 0 on M , which is what we wanted (so (D∇)∗ =D∇∗ too).
�
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Now we study the formal adjoint of∇E .

Proposition 9.10. For s1 ∈ Γc (E ⊗ |Λ|1/2) and s2 ∈ Γc (E ∗⊗ |Λ|1/2), we have
∫

M

〈∇E⊗|Λ|1/2 s1, s2〉=
∫

M

〈s1,∇E ∗⊗|Λ|1/2 s2〉=
∫

M

tr(〈∇E⊗|Λ|1/2 s1,∇E⊗|Λ|1/2 s2〉).

Proof. Exercise. �

Remark 9.11. Here we are using the existence of a connection on |Λ|s coming from Levi-
Civita such that |d x |s is parallel for all s (applied to s = 1

2 ). In the equation above, the
pairing is between forms valued in End(E )⊗|Λ|1, and then the trace is a density, which
you can integrate.

Corollary 9.12. If ∇E is compatible with a hermitian structure on E (which we use to
identify E ∼= E ∗ and the corresponding connections), then∇E⊗|Λ|1/2 is symmetric.

Example 9.13. For E =C and∇= d ,
∫

M

〈∆ f , f 〉=
∫

〈d f , d f 〉 =⇒ ∆= d ∗d .

This confirms what we expect from the classical cases.
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Part 2. Towards the Index Theorem

10. HEAT KERNELS

10.1. The big picture. Here is a vague overview of the proof of the Atiyah-Singer index
theorem via heat kernels. We’ll study the operator e −t H for H = D 2. In the limit as
t →∞, e −t H = e −t D 2

=: Pt will be a projection onto ker H = ker D 2, which coincides
with ker D if D is self-adjoint. In particular, its supertrace is the superdimension of
ker D , so by Lemma 6.7 we have

str(e −t D 2
) = ind(D ).

The idea of the proof is to carry out the following two steps:

(1) show that str(e −t D 2
) is independent of t ,

(2) analyze str(e −t D 2
) in the limit of small t , using an asymptotic expansion. We’ll

show that str is an integral of a differential form, which gives the right hand side
of the index theorem.

The main tool used in proving the Index Theorem is analyzing the heat kernel on
generalized Laplacians.

10.2. Heat kernel on R. On Rn the Laplacian is ∆ = − d
d x 2 . We define its associated

heat kernel to be

qt (x , y ) = (4πt )−1/2e −(x−y )2/4t .

This satisfies the heat equation in the following sense:

(∂t +∆x )qt (x , y ) = 0.

You can use this kernel to cook up general solutions to the heat equation with boundary
conditions. We’ll approach this in a way that generalizes well to manifolds.

Definition 10.1. Let C `(R) be the space of C ` functions on Rwith the norm

||φ||` := sup
k≤`

sup
x∈R

�

�

�

�

d k

d x k
φ

�

�

�

�

.

Define the operator

Qt (φ)(x ) =

∫

R
qt (x , y )φ(y )d y .

The point is that Qt (φ)(x ) should give solutions to the heat equation with initial condi-
tionφ. To this end, we have the following quantitative estimate:

Proposition 10.2. Let ` ∈ 2Z andφ ∈C `+1(R)with ||φ||`+1 <∞ . Then

||Qtφ−
`/2
∑

k=0

(−1)k

k !
∆kφ|| ≤O (t `/2+1).

Roughly speaking, Qtφ ≈ e −t∆φ for small t .

Remark 10.3. This Q shows up in quantum physics.

Proof. Just a computation, using Taylor’s theorem. �
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10.3. Kernels. For C `-sections Γ `(M , E ) with a C ` norm, denote the topological dual
by Γ−`(M , E ). In particular, Γ−∞(M , E ) is dual to Γ∞(M , E ) := Γ (M , E ).

Remark 10.4. We construct a norm on M by partitions of unity. The norm is not canon-
ical, but the topology is if M is compact.

Definition 10.5. For E1, E2→M , the exterior tensor product of E1 and E2 is

E1�E2 := p ∗1 E1⊗p ∗2 E2,

a bundle on M ×M .

Definition 10.6. A section p ∈ Γ (M ×M , (F ⊗|Λ|1/2)�(E ∗⊗|Λ|1/2)) is a kernel. Given such
a kernel p , define an operator

P : Γ−∞(M , E ⊗ |Λ|1/2)→ Γ (M , F ⊗ |Λ|1/2)

by

P (s )(x ) =

∫

M

p (x , y )s (y )d y

Linear maps P : Γ−∞(M , E ⊗|Λ|1/2)→ Γ (M , F ⊗|Λ|1/2) are called smoothing operators.
If P1 and P2 have kernels p1 and p2, then P1 ◦P2 has kernel

p12(x , y ) =

∫

M

p1(x , z )p2(z , y )d z .

Theorem 10.7 (Schwartz). The assignment p (x , y ) 7→ P from kernels to smoothing op-
erators is an isomorphism between smooth kernels and bounded linear operators.

This is a remarkable fact!
Since this field is highly intertwined with physics, we’ll use the Dirac notation:

p (x , y ) = 〈x | P | y 〉

so

(Pφ)(x ) =

∫

Y ∈M

〈x | P | y 〉φ(y )d y .

There are two approaches to analyzing generalized Laplacians:

(1) Given a symmetric H , find a self-adjoint extension H on some L 2 completion
of sections, apply the spectral theorem and use the theory of elliptic operators
to analyze the kernel of H .

(2) Find a smooth kernel for H and analyze it.

10.4. Heat kernels in general.

Definition 10.8. Let H be a generalized Laplacian on E ⊗|Λ|1/2. A heat kernel for H is a
continuous section pt (x , y ) of (E ⊗ |Λ|1/2)� (E ∗⊗ |Λ|1/2) over R>0×M ×M such that

(1) ∂ pt (x ,y )
∂ t is continuous (i.e. pt (x , y ) is C 1 in t ),

(2) ∂ 2pt (x ,y )
∂ x i ∂ x j is continuous (i.e. pt (x , y ) is C 2 in x ∈M ),

(3) (∂t +Hx )pt (x , y ) = 0,
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(4) For s ∈ Γ (E ⊗ |Λ|1/2) and

(Pt s )(x ) :=

∫

y ∈M

pt (x , y )s (y ),

we have lim
t→0

Pt s = s for the limit in the sup norm:

||s ||0 = sup
x∈M
||s (x )||E .

Goal. Figure out when heat kernels exist and when they are unique.

We will tackle uniqueness first.

Lemma 10.9 (Uniqueness of homogeneous solution). Assume H ∗ has heat kernel p ∗t .
Let s (x , t ): R>0→C 0(E ⊗ |Λ|1/2) be a 1-parameter family of sections such that

(1) st is C 1 in t ,
(2) st (x ) is C 2 in x ,
(3) (∂t +H ∗)st = 0,
(4) limt→0 st = 0.

Then st ≡ 0.

Proof. For a test section u ∈ Γc (E ⊗ |Λ|1/2), define

ft (θ ) =

∫

(x ,y )∈M×M

〈sθ (x ), p ∗t−θ (x , y )u (y )〉.

Differentiating with respect to θ , and using (3) in the assumptions, one gets that ft is
constant in θ . Now taking the limit as θ → t , we find that

∫

x∈M

〈st (x ), u (x )〉 ≡ constant.

Taking t → 0, we find that the constant is 0. Since this holds for all u , st (x )≡ 0. �

Exercise 10.10. Start with the usual energy estimate for uniqueness of solutions to the
heat equation and try to derive this argument.

Proposition 10.11. Suppose there exists a heat kernel p ∗t for H ∗. Then there exists at
most one heat kernel for H , which is described by (p ∗t (x , y ))∗ = pt (x , y ).

Proof. Let

f (θ ) =

∫

M

〈(Pθ s )(x ), (P ∗t−θu )(x )〉

for 0 < θ < t and s , u ∈ Γ (M , E ⊗ |Λ|1/2). We claim that this is independent of θ , and
〈Pt s , u〉= 〈s , P ∗t u〉. This implies uniqueness and the formula. �
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10.5. Construction of the heat kernel. We now go into the construction of the heat
kernel. As a first guess, one might try to construct a heat kernel by patching together
local heat kernels. This doesn’t quite work; it only produces an approximation. One
can prove, with some effort, that these approximations converge to the right thing in
some appropriate setting.

Warm-up: the finite-dimensional case. Let V be a finite-dimensional vector space.
(Later, we’ll want to take V = Γ (M , E ⊗ |Λ|1/2), which is not finite-dimensional.) Let
H ∈ End(V ) (later H =∆E⊗|Λ|1/2 + F ).

Suppose we are given “approximation” solutions Kt : R>0 → End(V ) with “remain-
der” Rt , i.e.

Rt =
d Kt

d t
+H Kt =O (t α) α> 0

with K0 = 1. We want to give a recipe for e −t H by approximation in terms of these Kt .

In the finite-dimensional case, formally we have e −t H =
∑

k
(−t H )k

k ! . The Kt will be
something like the finite truncations of this power series.

Definition 10.12. The k -simplex∆k ⊂Rk is

{(t0, . . . , tk ) | 0≤ t1 ≤ . . .≤ tk ≤ 1}.

Useful coordinates are σ1 = t1,σi = ti − ti−1. These make it clear that vol(∆k ) = 1
k ! .

Write t ·∆k for the rescaled k -simplex with

0≤ t1 ≤ t2 ≤ . . .≤ t .

Then vol(t ·∆k ) = t k

k ! .

Proposition 10.13. Let Q k
t : R>0→ End(V ) be defined by

Q k
t =

∫

t∆k

Kt−tk
Rtk−tk−1

. . . Rt2−t1
Rt1

d t1 . . . d tk .

In particular, Q 0
t = Kt . Then

∑

k≥0

(−1)kQ k
t = e −t H =: Pt

where Pt = Kt +O (t α+1).

Remark 10.14. Q k
t is something like a path integral.

Proof. Observe the elementary identity

d

d t

∫ t

0

a (t − s )b (s )d s = a (0)b (t ) +

∫ t

0

d a

d t
(t − s )b (s )d s .

Applying this with a (s ) = Ks and b (s ) =R (k )s with

R (k )s =

∫

s∆k−1

Rs−tk−1
. . . Rt2−t1

Rt1
d t1 . . . d tk−1
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and noting that K0 = 1, we get

(∂t +H )Q k
t =R (k+1)

t +R (k )t .

Then the point is that
∑

k≥0(−1)kQ k
t telescopes after applying ∂t +H , hence is formally

a solution to the heat equation.
We need to show that the sum also converges, and to prove the estimate on Pt −

Kt . For small t , we have uniform bounds on t∆k : |Kt−tk
| ≤ C0 and |Rti+1−ti

| ≤ C t α by
assumption. Therefore, by the volume estimate

|Q k
t | ≤C0C k t k ·α t k

k !
so the sum converges with the claimed estimate. �

Example 10.15. A special case is the Volterra series. Let H = H0 +H1, so we know that
the solution is “e −t (H0+H1). Suppose we take Kt = e −t H0 . Then Rt = H1e −t H0 , and the
recipe gives

e −t (H0+H1) = e −t H0 +
∞
∑

k=1

(−1)k Ik

where

Ik =

∫

t∆k

e −(t−tk )H0H1e −(tk−tK −1)H0 . . . H1e −t1 .

Example 10.16. For a smooth, one-parameter family of operators Hz and

H1 = ε
d Hz

d z
we get

d

d z
(e −t Hz ) =

∫ t

0

e −(t−s )Hz
d Hz

d z
e −s Hz d z .

This kind of formula is important once we start considering deforming our Laplacians.

The plan is to generalize what we did above to infinite-dimensional spaces. We pro-
ceed as follows.

(1) Construct an approximate solution Kt (x , y ) to the heat equation and study the
remainder rt (x , y ) = (∂t +Hx )Kt (x , y ),

(2) Prove the convergence of
∞
∑

k=0

(−1)k
∫

t∆k

∫

M k

Kt−tk
(x , zk )rtk−tk−1

(zk , zk−1) . . . rt1
(z , x ).

Theorem 10.17. For every N > 0, there exists K N
t (x , y ) such that for all `, the following

three conditions are met:

(1) for all T , there exists a uniform bound on the operators K N
t ∈L (Γ

`(M , E ⊗|Λ|1/2))
for 0< t < T , and

(2) for every s ∈ Γ `(M , E ⊗ |Λ|1/2) we have limt→0 Kt s = s with respect to the || − ||`-
norm,
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(3) rt (x , y ) = (∂t +Hx )K N
t (x , y ) satisfies ||rk ||` ≤C (`)t (N−n/2)−`/2.

For now, let’s just accept this and move on to complete the construction assuming
it.

Fix N and write Kt for K N
t . Consider the operator

Q i
t =

∫

t∆i

Kt−ti
Rti−ti−1

. . . Rt1

with kernel

q i
t (x , y ) =

∫

t∆i

∫

M k

Kt−ti
(x , zi )rti−ti−1

(zi , zi−1) . . . rt1
(z1, y ).

For sufficiently large N , we want to show that this integral converges and q i
t is differ-

entiable up to a degree depending on N .

Estimates. We use the following estimates:

(1) (Remainder estimate) Let

r i+1
t =

∫

t∆i

∫

M i

rt−ti
(x , zi )rti−ti−1

(zi , zi−1) . . . rt1
(z , y ).

For N > n+`
2 , r i+1

t is C ` with respect to x , y and

||r i+1
t ||` ≤C i+1t (i+1)(N−n/2)−`/2 vol(M )i

t i

i !
.

(2) Let N > n+`
2 and `≥ 1. Then:

• q i
t (x , y ) is C ` with respect to x , y and there exists a constant eC such that

||q i
t ||` < eC C i vol(M )i−1t (N−n/2)i−`/2t i /(i −1)!

• q i
t (x , y ) is C 1 in t and

(∂t +Hx )q
i
t (x , y ) = r i+1

t (x , y ) + r i
t (x , y ).

Theorem 10.18. Assume that K N
t (x , y ) satisfies the conditions of Theorem 10.17 with

N > n/2+1. Then:

(1) For all ` such that N > (n + `+1)/2,

Pt (x , y ) =
∞
∑

k=0

(−1)i q i
t (x , y ),

converges in the || · ||`+1-norm over M ×M , and defines a C 1 map

R>0→ Γ `(M ×M , (E ⊗ |Λ|1/2)� (E ∗⊗ |Λ|1/2))

with (∂t +Hx )Pt (x , y ) = 0.
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(2) K N
t approximates Pt :

|∂ i
t (Pt −K N

t )||` =O (t (N−n/2)−i−`/2+1)

as t → 0.
(3) Pt is a heat kernel for H .

Proof Sketch. The estimate on ||q i
t (x , y )||`+1 proves the convergence of the series in (1).

That this satisfies the heat equation follows from telescoping plus the estimate.
(2) follows from the estimates.
(3) only requires that Pt has the right initial condition, since K N

t has the correct initial
condition and the estimate in (2) gives the same for Pt .

�

Now we embark on the proof of Theorem 10.17. To get K N
t , we’ll construct a “formal”

solution to the heat equation. Roughly, we locally set

Kt (x , y ) = qt (x , y )
∞
∑

i=0

t iΦi (x , y , H )

where qt is the Euclidean heat kernel

qt (x , y ) = (4πt )−n/2e −||x ||
2/4t |d x |1/2

and Φi ∈ Γ (E � E ∗) are sections defined only on a neighborhood of the diagonal in
M ×M .

Riemann normal coordinates. The exponential map Tx0
M →M restricts to a diffeo-

morphism onto its image

Bε(0)
exp
−→M

for some ε> 0. This gives local coordinates on M , with the special property that if

g i j (x ) =δi j −
1

3

∑

k ,`

Ri j k`(x0)x
k x `+ (higher-order terms)

are the coordinates of the metric, then the first derivatives of g i j vanish at the origin.
Let j (x ) be the Jacobian of expx , i.e.

exp∗x d volM = j (x )d volRn = det(g i j (x ))
1/2d volRn .

Let R be the radial vector field R =
∑

i x i ∂xi
.

Proposition 10.19. In Riemann normal coordinates,

(1) For f ∈C∞(M ),

∇( f |d x |1/2) = (d f −
1

2
f d log( j ))|d x |1/2.

(2) For f ∈C∞(M ),

∆( f |d x |1/2) = ( j 1/2 ◦∆ ◦ j−1/2)( f )|d x |1/2

where on the right hand side f is regarded as a function on Rn via Riemann
normal coordinates.
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(3) ∆(||x ||2) =−2(n +R log j ).
(4) For qt (x ) = (4πt )−n/2e −||||

2/4t |d x |1/2,

[∂t +∆− j 1/2(∆ · j−1/2)]qt = 0.

Let’s rephrase. For y ∈M and v ∈Rn ∼= Ty M set x = expy (v ) ∈M ). Then we have

qt (x , y ) = (4πt )−n/2e −||v ||
2/4t |d v |1/2

= (4πt )−n/2e −d (x ,y )/4t j (v )−1/2|d x |1/2.

Let j 1/2 denote the function on M (in a neighborhood of fixed y ∈M ) given by j 1/2(x ) :=
j 1/2(v ) for x = expy (v ).

Fix y ∈M and define qt ∈ Γ (|Λ|1/2) by x 7→ qt (x , y ), which is a section of some open
neighborhood of y .

Proposition 10.20. Define an operator B on Γ (E ) in a neighborhood of y by

B := ( j−1/2|d x |−1/2) ◦H ◦ ( j 1/2|d x |1/2).

Then for st ∈ Γ (E ) depending smoothly on t ,

(∂t +H )(st qt ) = ((∂t + t −1∇E
R +B )st )qt

where R is the radial vector field in Riemann normal coordinates.

Remark 10.21. The B is basically the “transport” of H to Rn , and then the equation
expresses the “correction” relating the heat kernel on Rn with that on M .

Definition 10.22. Let
∑∞

i=0 t iΦi (x , y ) be a formal power series in t whose coefficients
are smooth sections of E �E ∗ defined in a neighborhood of the diagonal in M ×M . We
say that qt (x , y )

∑∞
i=0 t iΦi (x , y )|d y |1/2 is a formal solution of the heat equation near y

if the local section (x 7→
∑

t iΦi (x , y )) ∈ Γ (End⊗E ∗y ) in a neighborhood of y satisfies

(∂t + t −1∇E
R +B )

∑

i

t iΦi (−, y ) = 0.

Theorem 10.23. There exists a unique formal solution

kt (x , y ) = qt (x , y )
∞
∑

i=0

t iΦi (x , y , H )|d y |1/2

such thatΦ0(y , y , H ) = Id ∈ End(Ey )∼= E ∗y⊗Ey . MoreoverΦ0(x , y , H ) satisfiesΦ0(x , y , H ) =
Par(x , y ) : Ey → Ex , parallel transport using∇E along the unique geodesic from y to x .

Remark 10.24. There are “explicit formulas” for the Φi .

Proof Sketch. From (∂t + t −1∇E
R +B )

∑

i t iΦi (−, y ) = 0, we get:

(1) ∇RΦ0 = 0,
(2) (∇R + i )Φi =−BΦi−1 for i > 0,

Together with Φ0(y , y ) = Id, the first condition implies that Φ0 is parallel transport.
For higher i , use existence and uniqueness for solutions to ODE. �



THE ATIYAH-SINGER INDEX THEOREM 33

Letψε : R>0→ [0, 1] be a smooth function satisfying
¨

ψε(s ) = 1 s < ε2

4 ,

ψε(s ) = 0 s >ε2.

This is a cutoff function we’ll use to patch solutions. For ε smaller than the injectivity
radius of exp, define

k N
t (x , y ) =ψε(d (x , y )2)qt (x , y )

N
∑

i=0

t iΦi (x , y , H )|d y |1/2.

Theorem 10.25. Let ` be an even, positive integer. Then

(1) For any T > 0, the kernels k N
t for 0≤ t ≤ T define a uniformly bounded family of

operators K N
t on Γ `(M , E ⊗ |Λ|1/2), and

lim
t→0
||K N

t s − s ||` = 0.

(2) For all j , there exist differential operators Dk of order≤ 2k such that D0 = Id and
for all s ∈ Γ `+1(M , E ⊗ |Λ|1/2),

||K N
t s −

`/2− j
∑

k=0

Dk s ||2 j =O (t (`+1)/2− j ).

(3) The kernel r N
t (x , y ) = (∂t +Hx )k N

t (x , y ) satisfies

||∂ k
t r N

t ||<C (`, k )t (N−n/2)−k−`/2.

Proof Sketch. (1) follows from chasing definitions.
(2) follows from Taylor’s remainder theorem.
(3) follows from using features of formal solutionsto the heat equation. �

Using the “path integral” trick, we can use k N
t (x , y ) to build the heat kernel for H ,

which is a priori C `. But by uniqueness, these must agree for all `, so k N
t (x , y ) is actu-

ally C∞. Call this smooth kernel pt (x , y ).

Summary. Let pt (x , y ) be the heat kernel of H = ∆E⊗|Λ|1/2 + F . There exist smooth
sectionsΦi ∈ Γ (M ×M , E �E ∗) such that for all N > dim M

2 , the kernel k N
t (x , y , H )defined

by

(4πt )−n/2e −d (x ,y )2/4t + (d (x , y )2)
N
∑

i=0

t iΦi (x , y , H ) j (x , y )−1/2|d x |1/2⊗ |d y |1/2

is asymptotic to pt (x , y , H ):

||∂ k
t (pt (x , y , H )−k N

t (x , y , H )||=O (t N−n/2−`/2−k ).

The leading termΦ0(x , y , H ) is parallel transport in E via∇E along the unique geodesic
from y to x .
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For s ∈ Γ (M , E ⊗ |Λ|1/2),

(Pt s )(x ) =

∫

pt (x , y , H )s (y )

with asymptotic expansion

||Pt s −
k
∑

j=0

(−t H ) j

j !
s ||=O (t k+1)

so Pt ∼ e −t H .
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11. SOME HARMONIC ANALYSIS

11.1. Operators on Hilbert space. As outlined earlier, the general plan of proof of the
Index Theorem is as follows: we’ll want to calculate str(e −t H ) in two ways, where H =
∆E⊗|Λ|1/2 + F is a generalized Laplacian, and then prove that the two are equal.

In the limit of large t , the super-trace measures the index. In the small t limit, we
will use the asymptotic expansion.

For the rest of this section, we assume that M is a compact manifold.

Definition 11.1. LetH be a Hilbert space. For B a linear operator onH , we define the
operator norm of B to be

||B ||= inf{C ≥ 0: ||B v || ≤C ||v || for all v ∈H }
LetB (H ) denote the space of bounded linear operators on a Hilbert spaceH .

Definition 11.2. A bounded operator is Hilbert-Schmidt if

||A||2H S :=
∑

||Aei ||2 = Tr(A∗A) =
∑

i , j

|〈Aei , e j 〉|

is finite (intuitively, this is the “matrix norm”). The set of Hilbert-Schmidt operators
forms a Hilbert space, with inner product

〈A, B 〉= Tr(A∗B ) =
∑

i , j

〈Aei , B e j 〉.

Let ΓL 2 (M , E ⊗ |Λ|1/2) be the Hilbert space of square integrable sections of E ⊗ |Λ|1/2
for a choice of hermitian inner product on E , i.e. the completion of Γc (M , E ⊗ |Λ|1/2)
with respect to the induced inner product.

Proposition 11.3. The topological vector space underlying the Hilbert space ΓL 2 (M , E ⊗
|Λ|1/2) is independent of a choice of hermitian structure on E .

Proof. Let h1, h2 be two such hermitian pairings on E . Then there exists A ∈ Γ (M , End(E ))
invertible with

h1(s , s ) = h2(As , As ).
Then A determines a bounded operator on ΓL 2 (M , E ⊗ |Λ|1/2) with inverse given by the
bounded (because M is compact!) operator A−1. �

Example 11.4. For an operator K determined by a kernel k (x , y ) in ΓL 2 (M ×M , (E ⊗
|Λ|1/2)� (E ∗⊗ |Λ|1/2)), we have

||K ||H S =

∫

M×M

Tr(k (x , y )∗k (x , y )).

As this is finite, K is Hilbert-Schmidt.

Definition 11.5. An operator K is trace class if it can be written as K = AB for Hilbert-
Schmidt operators A, B . For such a K , we can define the trace Tr(K ) = Tr(AB ). Then
∑

i 〈K ei , ei 〉 is absolutely summable so Tr K =
∑

i 〈K ei , ei 〉 is well-defined.
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Example 11.6. The inclusions of operators on Hilbert spaces

{trace class} ⊂ {Hilbert Schmidt} ⊂ {compact} ⊂ {bounded}

is analogous to the inclusion for sequence spaces

`1 ⊂ `2 ⊂ c0 ⊂ `∞

and the norm on trace class is ||A||= Tr(AA∗)1/2.

The restriction of k (x , y ) to the diagonal M
∆−→M ×M gives a section of End(E )⊗|Λ|.

Then taking the trace gives a section Tr k (x , x ) ∈ Γ (M , |Λ|).

Proposition 11.7. Let pt be the heat kernel of a generalized Laplacian on M and Pt the
corresponding operator. Then Pt is trace class with trace

Tr(Pt ) =

∫

M

Tr(pt (x , x )).

Proof. To show that Pt is trace class, we use the semigroup property

Pt ◦Ps = Pt+s .

Then we can write Pt = Pt /2◦Pt /2, and each Pt /2 is Hilbert-Schmidt (since it has a smooth
kernel as constructed in the previous section), Pt is trace class.

For the second part,

Tr Pt = 〈Pt /2, P ∗t /2〉H S

=

∫

(x ,y )∈M 2

Tr(pt /2(x , y )pt /2(y , x ))

=

∫

M

Tr(pt (x , x ))

�

11.2. Unbounded operators. One of the “problems” with the Laplace operator is that
it is unbounded. We’ll sketch how to work around this.

Definition 11.8. An unbounded operator H on H is a subspace V ⊂ H and a map
V →H .

Example 11.9. The model to keep in mind is where V is the subspace of differentiable
functions of L2(M ), and the map is differentiation.

A formal adjoint of H is another unbounded operator H ∗ (implicitly, with the same
domain) such that

〈H ∗v, w 〉= 〈v, H w 〉.
Our case of interest is the unbounded operator H = ∆E⊗|Λ|1/2 + F on ΓL 2 (M , E ⊗ |Λ|1/2)
with domain Γ (M , E⊗|Λ|1/2) (smooth sections). Its formal adjoint has the same domain.
When H is symmetric, there exist a unique self-adjoint extension of H to ΓL 2 (M , E ⊗
|Λ|1/2), which we’ll call H , or just H when context makes it clear.
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From now on, assume that H is symmetric. Then Pt ◦Ps = Pt+s = Ps+t = Ps ◦Pt , so
we can simultaneously diagonalize Pt for all t (noting that Pt is Hilbert-Schmidt, hence
compact, hence diagonalizable). We get eigensectionsφi with Ptφi = e −tλiφi for some
λi .

Facts.

• φi are smooth sections,
• λi are bounded below, because the Pt are bounded
• Ptφi satisfies the heat equation, so Hφi =λiφi

•
∑

i e −tλi is finite for all t > 0

Proposition 11.10. If H is a symmetric generalized Laplacian, then H has discrete spec-
trum, bounded below, and each eigenspace is finite-dimensional with eigenvectors given
by smooth sections of E ⊗ |Λ|1/2.

It follows from the spectral theorem that

pt (x , y ) =
∑

j

e −tλ jφi (x )⊗φ j (y ).

11.3. Green operators.

Definition 11.11. The Green operator of a positive Laplacian H is the L 2-inverse of H ,
denoted G .

Remark 11.12. G is bounded.

Proposition 11.13. We have the integral formula

G k =
1

(t −1)!

∫ ∞

0

e −t H t k−1 d t .

Proof. Letφ be an eigenvector of H with eigenavlue λ. Then

G kφ =
1

(k −1)!

∫ ∞

0

e −tλt k−1d tφ =λ−kφ.

It remains to show that

g k (x , y ) =
1

(k −1)!

∫ ∞

0

pt (x , x )t k−1 d t

converges and defines a kernel that is the kernel of G k . For large t , this is an eigenvalue
estimate, and for small t one uses the asymptotic expansion for pt . �

From the proof, we get an estimate on the smoothness of g k (x , x ): it’s C ` for ` ≤
2k −dim M −1.

For non-positive H , define G to be the inverse of H on (ker H )⊥. Then if H has eigen-
values λ−m ≤ . . .≤λ−1 ≤ 0, we have

G k =
1

(k −1)!

∫ ∞

0

P(0,∞)e
−t H t k−1 d t +

m
∑

i=1

(λ−i )
−k P−λi

.



38 LECTURES BY DAN BERWICK-EVANS LECTURES NOTES BY TONY FENG

Here the P? are the projections to various eigenspaces. ♠♠♠ TONY: [I don't see why
there would be only �nitely many negative eigenvalues]

Corollary 11.14 (Elliptic regularity). Let H be a generalized Laplacian.

(1) If s ∈ ΓL 2 (M , E ⊗ |Λ|1/2) has H k s is in L 2 for all k , then s is smooth.
(2) If A commutes with H and is bounded on ΓL 2 and s ∈ Γ (M , E ⊗ |Λ|) is smooth,

then A(s ) is smooth.

♠♠♠ TONY: [something doesn't make sense; isn't H supposed L 2 → L 2 and in-
vertible?]

Proof. Without loss of generality H is positive (otherwise add a large constant to H ).
Then Id = G k ◦H k = H k ◦G k , so s = G k ◦H k s . Since G k smooths, we get that s ∈ C `

for `≤ 2k −dim M −1. So as k →∞we get (1).
(2) is similar: As = (G k ◦H k )As =G k (H k As ) =G k A(H k s ), and then apply the same

argument as in (1). �

11.4. “Can you hear the shape of a drum?” Kac raised this queston in ’66, basically
asking if you can detect the “geometry” of a manifold from the analytic data of its Lapla-
cian.

We know that

Tr(e −t∆) =

∫

M

Tr(pt (x , x ))∼ (4πt )−n/2
∑

i

t i

∫

M

Tr(Φi (x , x , H ))d x .

We know that Φ0(x , x , H ) = IdE .

Theorem 11.15 (Weyl). As t → 0,

Tr(e −t∆)∼
∑

i

e −tλi (4πt )−n/2 rank(E )vol(M ) +O (t −n/2+1).

Remark 11.16. In two dimensions, for H =∆ a scalar Laplacian the integral
∫

TrΦ1(x , x , H )

becomes
1

6

∫

k (x )d x

where k (x ) is the curvature. So by Gauss-Bonnet,∆has the information of the topology
of M .

Theorem 11.17 (Karamata, Weyl). If N (λ) is the number of eigenvalues of H less than
λ, then

N (λ)∼
rank(E )vol(M )
(4π)n/2Γ (n/2+1)

λn/2.
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12. PROOF OF THE INDEX THEOREM

12.1. The McKean-Singer Formula.

Proposition 12.1. If D is a Dirac operator on E and f ∈C∞(M ), then there is an equality
of operators

[D , f ] = cl(d f ).

Proof. Recall that D is the composition

Γ (E )
A−→ Γ (E )⊗

•
∧

T ∗M
cl−→ Γ (E ).

By the Leibniz rule for A, we basically get the formula immediately: if we try to com-
mute multiplication by f withA, the part left is the “connection part” of D , giving d f ,
and then we compose with cl. �

Corollary 12.2. The operator D is first-order elliptic. The operator D 2 has symbol cl(d f )2 =
−||d f ||2, so D 2 is a generalized Laplacian.

Theorem 12.3 (McKean-Singer, 1967). Let 〈x | e −t D 2 | y 〉 be the heat kernel for D 2. Then
for t > 0,

ind(D ) = str(e −t D 2
) =

∫

M

str(〈x | e −t D 2
| x 〉)d x .

Proof. The trick is to use that D 2 has a square root! We can write

str(t D 2) =
∑

λ∈R
(n+λ −n−λ )e

−tλ2
n

where n±λ = dimH ±
λ , the dimension of the odd/even pieces of the λ-eigenspace ofH .

We are crucially using that D 2 is even, hence “commutes” with the grading!
For λ > 0, using that D is odd (by the definition of Dirac operator) we have the iso-

morphism

H +
Λ

D−→H −
λ

so n+λ = n−λ for λ > 0. (This is called “supersymmetric cancellation.”) That means that
contributions from non-zero λ all cancel out, and we get

∑

n+0 −n−0 = ind(D ). �

Remark 12.4. Since e −t D 2
is trace class (hence compact), its 1-eigenspace (which is the

kernel of D ) is finite-dimensional.

Let M be compact and H z a family of generalized Laplacians, and suppose we have

(1) gz a smooth family of metrics, for z ∈R,
(2) ∇z =∇+ωz a smooth family of connections,
(3) a smooth family F z ∈ Γ (M , End(E )). (H =∆E + F , so F is the order 0 part.)

Then we get:

Theorem 12.5. For t > 0, we have a smooth family of heat kernels pt (x , y , z ) for H z , and

∂

∂ z
pt (x , y , z ) =−

∫ t

0

�

∫

y ∈M

pt−s (x , y , z )∂z H z ps (x , y , z )

�

d x .
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or in terms of operators:

∂

∂ z
e −t H z

=−
∫ t

0

e −(t−s )H z
∂z H z e −s H z

d s .

Recall that we made choices (metric, connection) in defining the Laplacian.

Theorem 12.6. The quantity ind(D ) is independent of the metric on M and the metric
and connection on E .

Proof. We just proved the McKean-Singer formula

ind(D z ) =

∫

M

str pt (x , x )d x .

Since p z
t (x , y ) depends smoothly on z , this equation implies that the index must also

vary smoothly with z , but ind(D z ) ∈Z so it must be constant. �

Corollary 12.7. The quantity ind(6D ) for a Dirac operator 6D on a spin manifold is actu-
ally an invariant of the spin manifold. The quantity ind(d +d ∗) on an oriented manifold
is actually an invariant of that manifold.

Theorem 12.8 (Lichnerowicz). We have

D 2
A =∇

A+ cl(F E /S ) +
rM

4
.

where rM is the scalar curvature of M .

Proof. A computation. Omitted. �

Corollary 12.9. For a compact spin manifold with non-negative scalar curvature and
positive scalar curvature at some point, ind(6D ) = 0.

So if you know that the index is non-zero, you know that there can’t be a metric with
positive curvature.

Proof. In the spin case we have

6D 2 =∆6S +
rM

4
≥ 0

so the kernel of 6D 2 is zero-dimensional, so sdim(ker6D 2) = 0= ind(6D ). �

12.2. Asymptotic expansion. Now that we have established the McKean-Singer for-
mula

ind(D ) = str(e −t D 2
) =

∫

M

str(Kt (x , x ))d x

it remains to study the expansion of the right hand side for t → 0, using the asymptotic
expansion.

We will use the proof of Getzler. The original proofs (e.g. of Atiyah-Singer) used that
this is not only a topological invariant but an cobordism invariant, combined with ex-
plicit knowledge of the cobordism ring.
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The main insight is that there is a filtration that divides this up into nice parts. We’ll
use the filtration on End(E ) induced by the isomorphism

End(E )∼=Cl(T M )⊗EndCl(T M )(E ),

i.e. obtained from the old filtration on Cl(T M ) with EndCl(T M )(E ) in the zeroth level
of the filtration. Then we have a symbol map induced from the one on the Clifford
algebra:

σ : End(E )∼=
•
∧

T ∗M ⊗EndCl(T M )(E ).

Theorem 12.10 (Getzler). Consider the asymptotic expansion of kt (x , x ):

kt (x , x )∼ (4πt )−n/2
∞
∑

i=0

t i ki (x )

for ki (x ) ∈ Γ (M , Cl(T M )⊗EndCl(T M )(E )).
(1) Then ki (x ) ∈ Γ (M , Cl2i (T M )⊗EndCl(T M )(E )).
(2) Letσ(K ) =

∑n/2
i=0σ2i (Ki ) ∈Ω•(M , EndCl(T M )(E )). Then

σ(K ) = det 1/2
�

R/2

sinh(R/2)

�

·exp(−F E /S ).

Proof Sketch. We compute using a clever rescaling. Roughly, this rescaling is (t , x ) 7→
(u t , u 1/2 x )which takesω ∈Ωk (M ) 7→ u−k/2 ·ω. This is the big insight of Getzler.

Let U ⊂ X be an open set over which E is trivial. Then

Γ (U , End(E ))∼=C∞(U , End(Ex0
))∼=C∞(U ,

•
∧

Rn ⊗EndCl(n )(Ex0
)).

For a ∈ Γ (U , End(E )) and t ∈R+, define the operator

(δu a )(t , v ) =
n
∑

i=0

u−i/2a (u t , u 1/2v )i .

The restatement of the theorem for k (t , v ) := kt (x0, expx0
(v )) is:

�

lim
u→0

u n/2δu K (t , v )
�

|(t ,v )=(1,0) = (4π)
−n/2

bA(M )exp(−F E /S ).

This rescaling is the crucial insight of Getzler, which makes the analysis tractable.
We’ll then show that the rescaled heat kernel satisfies a “rescaled” the heat equation:

(∂t +H )kt (x , y ) = 0.

Recall Lichnerewicz’s formula

H =∆E +
rM

4
+ F E /S .

Finally, we’ll compute that the rescaled heat equation, in the limit u → 0, approaches
a “heat equation associated to a harmonic oscillator,” which is something very specific
for which we can write down the kernel explicitly. So using this expression for H and
some facts about “harmonic oscillator” heat kernels, we’ll be able to compute the u→ 0
limit. �
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12.3. Harmonic oscillator. The classical (one-dimensional) harmonic oscillator cor-
responds to the differential operator H =− d 2

d x 2 + x 2 on R.

Lemma 12.11 (Mehler’s formula). The kernel associated to H is

pt (x , y ) = (2πsinh(2t ))−1/2 exp(−
1

2
(coth(2t )(x 2+ y 2)−2 cosech(2t )x y )).

Proof. Exercise (just a computation). �

From a change of variables, we get that

pt (x , r, f ) = (4πt )−1/2
�

t r /2

sinh(t r /2)

�1/2

exp(−
t r

2
coth(t r /2)

x 2

4t
− t f )

is the kernel for (∂t − d 2

d x 2 +
r 2 x 2

16 + f )p = 0. This looks like the local coordinate expression
for the heat kernel, using the Lichnerewicz formula. The point is that as u→ 0, the term

− t r
2 coth(t r /2) x 2

4t − t f will die.

Definition 12.12. For R an n × n antisymmetric matrix and F an N ×N matrix with
coefficients in Ω•(Rn ), the generalized harmonic operator is

H =−
∑

i

(∂i +
1

4

∑

j

Ri j x j )
2+ F

acting on Ω•(Rn )⊗End(CN ).

We’ll use formal techniques and estimates to construct the heat kernel of H .

Theorem 12.13. For any “initial condition” a0 ∈Ω•(U )⊗End(CN ), there exists a unique
formal solution pt (x , R , F, a0) of the heat equation of the form

pt (x ) = qt (x )
∞
∑

k=0

t kΦk (x )

such that
Φ0(0) = a0

and explicitly,

pt (x , R , F, a0) = (4πt )−n/2 j−1/2(t R )
︸ ︷︷ ︸

�

sinh(t R/2)
t R/2

�−1/2

exp(−
1

45
〈x |

t R

2
coth(

t R

2
) | x 〉)exp(−t F )a0.

Staring with our original D 2 and rescaling by u to get a family D 2
u , we’ll show as u→ 0

that D 2
u =H +O (u 1/2).

Clifford supertraces. Suppose that E = W ⊗6S (this is at always true locally for E a
Clifford module). Then for a ∈ Γ (M , End(W ))∼= Γ (M , EndCl(M )(E )),

strW (a ) = 2−n/2 strE (γ ·a )
whereγ ∈ Γ (M , Cl(T M )) is the chirality operator, equal to i n/2e1 . . . en (if n is even, which
we are assuming it is). While the left hand side only makes sense when E has a spin
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structure, the right hand side always makes sense. Therefore, when we don’t have such
a decomposition of E , we will use the right hand side to define the objects.

From this we define the relative Clifford trace:

strE /S (a ) := 2−n/2 strE (γ ·a ).
Similarly for a Clifford superconnection, we define the relative Chern character

ch (E /S ) = strE /S (exp(−F E /S )).

Then we have
strE (Kn/2 x ) = (2i )n/2 strE /S (σn (Kn/2(x ))).

Outline of the rest of the proof.

(1) First we show that we can rescale the heat kernel so that as u → 0, we get the
right hand side of the index theorem.

(2) Then we show that the rescaled heat kernel satisfies a rescaled heat equation.
(3) Computing the rescaled heat operator in the limit u → 0, we get the harmonic

operator.
(4) Conclude that as u → 0, the heat kernel approaches a form given by Mehler’s

formula.
(5) Plug in and deduce the theorem, using McKean-Singer.

The rescaling for α ∈C∞(R+×U ,
∧

V ∗⊗End(W )) is

(δuα)(t , x ) =
n
∑

i=0

u−i/2α(u · t , u 1/2 · x )[i ].

Then we define the rescaled heat kernel:

r (u , t , x ) = u n/2(δu k )(t , x ).

Observations:

(1) the Euclidean heat kernel

(4πt )−n/2e −|x |
2/4t

is invariant under rescaling,
(2) limu→0 r (u , t = 1, x = 0) = limu→0

∑n
i=0 u (n−i )/2ku (x0, x0)[i ] and we want to check

that this is ( R/2
sinh(R/2) )

1/2e −F E /S
.

The rescaled heat eqwuation is

(∂t +u ·δu D 2δ−1
u )r (u , t , x ) = 0.

Lemma 12.14.

lim
u→0

uδu D 2δ−1
u =−

∑

i

(∂i −
1

4
Ri j x j )

2+ F E /S .

Proof. A computation. Using Lichnerewicz, the key step is that

∇E
∂i
= ∂i +

1

4

∑

j ,k ,c ,`

Rk`i j x j c k c `+O (|x |2)

where c k = εk + ιk , and the ε sticks around while the ι gets killed. �
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So as u → 0, the kernel of the rescaled equation looks like the term of a harmonic
oscillator equation. Therefore, in the limit u→ 0 r (u , t , x ) approaches the kernel of the
harmonic operator, with

−
∑

i

(∂i −
1

4
Ri j x j )

2+ F E /S +O (u 1/2)

From last time,

lim
u→0

r (u , t , x ) = (4πt )−n/2 det 1/2
�

t R/2

sinh(t R/2)

�

exp
�

−
1

4t
〈x |

t R

2
coth

t R

2
|x 〉− t F E /S

�

.

Finally, setting t = 1, x = 0 we get

lim
u→0

r (u , t , x ) = (4π)−n/2 det 1/2
�

R/2

sinh(R/2)

�

exp(−F E /S ).

Theorem 12.15 (Atiyah-Singer).

ind(D ) =

∫

M

bA(M )ch (E/S ).

Proof. By McKean-Singer,

ind(D ) = str(e −t D 2
) =

∫

M

str(kt (x , x ))d x .

By Getzler, the right hand side is

(4π)−n/2

∫

M

det 1/2
�

R/2

sinh(R/2)

�

exp(−F E /S ).

�

Remark 12.16. This factor (4π)−n/2 is sometimes included in the normalization of the
characteristic classes.
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Part 3. Applications

13. CHERN-GAUSS-BONNET AND HIRZEBRUCH SIGNATURE THEOREM

We will now realize the Chern-Gauss-Bonnet Theorem and Hirzebruch Signature
Theorem as consequences of the Atiyah-Singer index theorem. Since they are basically
the same framework, we will do them both at once.

We take E =
∧•T ∗M and ∇E to be the Levi-Civita connection. As we saw before,

d +d ∗ is a Dirac operator. There are two possible gradings, and hence two supertraces,
two consider.

13.1. Linear algebra background. Let V be a quadratic space, Cl(V ) the associated
Clifford algebra, and

∧•V the associated Clifford module. If S is a spinor representa-
tion, then

S ∗⊗S ∼= End(S )∼=Cl(V )⊗RC
σ−→∧•VC.

We always take S to have the ordinary Z/2 grading. However, we have two options for
the grading on S ∗. We can take the Z/2-grading, or the trivial grading. (Moral: “spin
structure is a square root of the exterior algebra,” although it is not quite true on the
nose.)

So what are the two relative supertraces?

(1) If we take the Z/2-grading on S ∗, then we obtain the Euler supertrace

strχ (a ) = str∧V (γ ·a )

where γ is the chirality operator defined earlier.
(2) If we take the trivial grading on S ∗, then we obtain

strσ(a ) = 2−n/2 Tr∧V (a ).

Choose an orthonormal basis e i of V . Define

c i = ε(e i )− ι(e i )

and
b i = ε(e i ) + ι(e i ).

where ε and ι are the wedge and contraction operators. Then

[c i , c j ] =−2δi j

[b i , b j ] = 2δi j

[c i , b j ] = 0.

Identify Cl2(V )∼=
∧2 V via the symbol mapσ. For

a =
∑

i< j

ai j e i e j ∈∧2V ai j skew,

b (a ) =
∑

i< j

ai j b i b j ∈ EndCl(V )(∧•V )

we have
strχ (e

b (a )) = (−2i )n/2 det(sinh(a/2))1/2Pf(a )
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and

strσ(e
b (a )) = 2n/2 det(cosh(a/2))1/2.

If T : V →V ∗ is skew, corresponding toωT ∈
∧2 V ∗, then

Pf(T ) =
1

(dim V /2)!
ωdim V /2

T ∈
top
∧

V ∗.

Globalizing. Now back to M :

(∇E )2 =
∑

i , j ,k ,`

Ri j k`ε
i ι j e k ∧ e `

=−
1

4

∑

Ri j k`(c
i c j − b i b j )e k ∧ e `.

Then F E /S =− 1
4

∑

i , j 〈R (ei ), e j 〉b i b j .

13.2. Chern-Gauss-Bonnet. We want to prove that

χ(M ) = ind(d +d ∗) = (2π)−n/2

∫

M

Pf(−R ).

By Atiyah-Singer,

ind(d +d ∗) = (4π)−n/2

∫

M

bA(M )exp(−F E /S )

= (2π)−n/2

∫

M

bA(M )
bA(M )

Pf(−R )

= (2π)−n/2

∫

M

Pf(−R ).

13.3. Hirzebruch Signature.

σ(M ) = ind(d +d ∗)

= (2πi )−n/2

∫

M

bA(M )exp(−F E /S )

= (πi )−n/2

∫

M

det
�

R/2

sinh(R/2)
cosh(R/2)

�1/2

= (πi )−n/2

∫

M

L (M )

We have omitted some ork to identify the gradings, chirality operator and Hodge ∗.
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13.4. Hirzebruch Genera. The Hirzebruch signature theorem actually says something
stronger, namely that the signature is even a cobordism invariant. We take a detour to
see how this fits with our framework.

Definition 13.1. Fix a ring R . An R -valued genus is an assignment φ to each oriented
manifold such that

(1) φ(X
∐

Y ) =φ(X ) +φ(Y ),
(2) φ(X ×Y ) =φ(X ) ·φ(Y ),
(3) φ(∂W ) = 0.

Write ΩSO for the set of oriented manifolds modulo oriented cobordism.

Theorem 13.2. (ΩSO,
∐

,×) is a ring.

So an R -valued genus is the same as a map ΩSO→R .

Example 13.3. L-genus, bA-genus, Todd genus (stably complex cobordism).

In order to characterize these invariants, we should try to characterize the cobordism
ring. Rationally, we get a very nice answer.

Theorem 13.4. ΩSO⊗Q∼=Q[CP2,CP4,CP6, . . .].

Theorem 13.5 (Thom). Two manifolds represent the same class in oriented cobordism
if and only if their Pontrjagin numbers agree.

This allows us to get genera from power series in the following manner: if

Q (x ) = 1+a2 x 2+a4 x 4+ . . . ∈R [[x 2]]

then we define polynomials K1, K2, . . . by

Q (x1) . . .Q (xn ) = 1+a2K1(p1) +K2(p1, p2) + . . .

where the pi are the elementary symmetric polynomials in the xi . Then we define the
genusφQ by

φQ (M
n ) = 〈Kn (T M ), [M ]〉 ∈R .

Thom’s theorem says that this process produces all genera.

Corollary 13.6. The Hirzebruch signature ind(d +d ∗) =σ(M ) is a cobordism invariant.

Warning: the Euler characteristic χ(M ) = Ind(d + d ∗) is not a cobordism invariant,
e.g. χ(S 2) =χ(∂ D 3) = 2 6= 0.

If M is a compact spin manifold and 6D the Dirac operator, then we have

ind(6D ) =
∫

M

bA(M )

because F E /S vanishes for the spinor bundle itself.

Corollary 13.7. (1) ind(6D ) is independent of the spin structure and is a cobordism
invariant.

(2) If
∫

M
bA(M ) /∈Z, then M has no spin structure.

(3) If M is spin and RM > 0, bA(M ) = 0 by the Lichnerewicz formula.
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For (3), recall Corollary 12.9.

Remark 13.8. (1) applies for spin and oriented cobordisms, if the manifolds are spin
(which is necessary to make sense of ind(6D ) in the first place).

We have a diagram

Ωspinind(6D ) //

��

Z

��
ΩSO bA // Q

This diagram is realized as a diagram of coefficients in the family index theorem for
some cohomology theories. Namely,ΩSpin is the coefficients for the cohomology theory
MSpin (manifolds over X , with cobordisms over X ) and ΩSO is the coefficient ring for
MSO. Then these fit into a diagram

MSpin(X ) α //

��

KO(X )

ch
��

MSO(X ) // H(X ;Q)

The special case X = pt recovers the previous diagram. The bottom map is “fiberwise
integration.”

13.5. Hirzebruch-Riemann-Roch. Let M be a Kähler manifold, W a holomorphic vec-
tor bundle with holomorphic connection and hermitian metric. Let E =

∧•(T 0,1M )∗⊗
W ) be the Clifford module with connection coming from the Levi-Civita connection
and connection on W .

The Clifford action is determined by the rule that for v ∈ Ω1
C(M ), v = v 1,0 + v 0,1 on

s ∈ Γ (M ,
∧

(T 0,1)∗⊗W ) is

cl(v ) · s =
p

2(ε(v 1,0)− ι(v 0,1))s .

You have to check that this is self-adjoint, but this is at least plausible: the adjoint in-
terchanges ε and ι and v 1,0 and v 0,1.

The Dirac operator associated to this Clifford action is D =
p

2(∂ + ∂
∗
).

Exercise 13.9. Check this.

Theorem 13.10 (Hirzebruch-Riemann-Roch).

χhol(W ) = ind(
p

2(∂ + ∂
∗
)) = (2π)−n/2

∫

M

Td(M )ch (E ).

Proof. We first show that χhol(W ) = ind(
p

2(∂ + ∂
∗
)). Since the operator is self-adjoint,

its kernel is the same as that of its square, which is the space of holomorphic sections.
Now to understand the right hand side of Atiyah-Singer, we first compute the twist-

ing curvature of E . We start with E =
∧•(T 0,1M )∗ with Lev-Civicta connection. Then

(∇E )2 =
∑

k ,`

R (wk , wk )ε(w
`s )ι(w k )
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for wk a basis of T 0,1M and w k its dual basis. Next we have to calculate

R E =
1

4

∑

k ,`

〈R wk , w`〉cl(w k )cl(w `)

+
1

4

∑

k ,`

〈R wk , w`〉cl(w k )cl(w `).

By inspection,

(∇E )2 =R E +
1

2

∑

k

〈R wk , w k 〉.

So in this special case,

F E /S =
1

2

∑

k

〈R wk , w k 〉.

More generally, if E =
∧•(T 0,1M )•⊗W , then

F E /S =
1

2

∑

k

〈R wk , wk 〉+ F W

because curvature simply adds under tensor product. We can rewrite this as

F E /S =
1

2
tr(R+) + F W

where R+ is the curvature of the Levi-Civita connection on T 0,1M . Since

T M ⊗R C∼= T 1,0M ⊕T 0,1M

we have

bA(M ) = det
�

R+

e R+/2− e −R+/2

�

.

Putting this together,

ind(
p

2(∂ + ∂
∗
)) = (2π)−n/2

∫

M

det
�

R+

e R+/2− e −R+/2

�

tr exp(−[
1

2
tr(R+) + F W ])

= (2πi )−n/2

∫

M

Td(M ) tr exp(−F W )

where

Td(M ) = det
�

R+

e R+ −1

�

= det
�

R+

e R+/2− e −R+/2

�

exp
�

−
1

2
tr(R+)

�

.

�

Example 13.11. Let M be a Riemann surface and W = L a line bundle on M . We
have R+ ∈ Ω2(M ) and F L ∈ Ω2(M ). Then Td(M ) = 1−R+/2 and ch (L ) = 1− F L , so
Hirzebruch-Riemann-Roch says

ind(∂ L ) = dim H 0(L )−dim H 1(L ) =
−1

4πi

∫

(R++2F ).
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ForL =C the trivial line bundle, we find that

dim H 0−dim H 1 = 1− g =−
1

4πi

∫

M

R+

where g = dim H 1,0(M ) = dim H 0,1(M ) = 1
2 dim H 1(M ). If we define deg(L ) =− 1

2πi

∫

M
F ,

then we recover the familiar equation

χ(L ) = 1− g +degL .
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14. K -THEORY

14.1. Bott Periodicity. In this section we assume that X is reasonably “nice” (a com-
pact manifold or finite CW complex).

Definition 14.1. Two complex vector bundles E1, E2 on X are stably isomorphic if there
exist m , n such that E1⊕Cm ∼= E2⊕Cn .

Define the set eK (X ) to consist of complex vector bundles on X modulo stable iso-
morphism. Define K (X ) as formal differences of isomorphism classes of vector bun-
dles, i.e. [V ]− [W ]. These form a ring under ⊕ and ⊗. This is the K -group of X .

If we choose a basepoint of X , then we get K (X )→ K (pt)whose kernel is ÒK (X ). This
is called the reduced K -group of X .

Definition 14.2. We define ÒK −n (X ) = K (S n ∧X ) = ÒKcvs(Rn ×X )where cvs means “com-
pact vertical support”.

Theorem 14.3 (Bott). There exists a “Bott class” β ∈ K −2(pt) with the property that the
map K (X )→ K −2(X ) given by α 7→α^β is an isomorphism.

Alternatively, K (X ) = [X , BU ×Z], and Ω2BU ∼= BU .

Proof. Kc s (R2) ∼= Kc s (C) ∼= ÒK (CP1). We want to define a map eK (CP1)→ K (pt) which is
inverse to^β . First, we say that β = [C]− [H ], where H is the tautological bundle on
CP1.

The inverse map in question is π!(W ) := ind(∂ W ) ∈ Z ∼= K (pt). Then one shows that
ind(∂ β ) = 1 ∈ Z because H doesn’t have holomorphic sections, so it’s at least a one-
sided inverse to the Bott map. Atiyah shows that this is enough to deduce that the Bott
map is an isomorphism.

�

Periodicity allows us to define K n (X ) for n ∈ Z, which fit into a cohomology theory
X 7→ K •(X ), meaning that there are Mayer-Vietoris sequences.

There is also a story for real vector bundles, leading to K O -theory which is 8-fold
periodic (alternatively, Ω8B O ∼= B O ).

One way to realize the periodicities is through Clifford algebras. The complex Clif-
ford algebras have a 2-fold periodicity with respect to Morita equivalence, and the real
Clifford algebras have an 8-fold periodicity. This crucially depends on theZ/2-grading.

14.2. A different description. There is a different description of K −n (X ) as bundles of
Z/2-graded C`n -modules mod bundles where the action can be extended to C`n+1.
The idea here is that K 0(M ) areZ/2-gradedC`0

∼=C-modules up to equivalence, which
areZ/2-graded complex vector bundles up to equivalence. The map from aZ/2-graded
complex vector bundles to virtual vector bundles is given by [V ] 7→ [V 0]− [V 1].

If V = V 0 ⊕ V 1 represents zero in the “old” description of K -theory, then we have
V 0 ∼=V 1 via maps e 0 : V 0→V 1, e 1 : V 1→V 0, so an odd map e : V →V which generates
the action of C`−1

∼=C[e ].
We get K O n (X ) using the real Clifford algebra where Cl−n uses the negative-definite

quadratic form on Rn .
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In this formulation, Bott periodicity corresponds to the Morita equivalences of Clif-
ford algebras: C`n is Morita equivalent to C`n+2, and Cln is Morita equialent to Cln+8.

Recall that we say that R and S are Morita equivalent rings if R −Mod ∼= S −Mod. A
Morita equivalence is a module S PR such that

P ⊗R −: R −Mod↔ S −Mod: Hom(S P,−)

Note that the important thing is the Z/2 grading on Clifford modules, as without this
they are Morita equivalent to their centers ♠♠♠ TONY: [why?!], which is just the
ground field. For Clifford algebras,

C`n
∼=C`⊗n ,C`2

∼= End(C1|1)

Here C1|1 =Ceven⊕Codd. So

C`2
PC :=C1|1

and Cl8
∼= End(R8|8), so we get

Cl8
PR =R8|8.

Then by definition in this formulation of K -theory, we have

K n (X )∼= K n+2(X )

and

K O n (X )∼= K O n+8(X ).

The coefficients for complex K -theory are

K 0(pt) Z
K 1(pt) 0

The coefficients for real K -theory are

K O 0(pt) Z
K O 1(pt) Z/2
K O 2(pt) Z/2
K O 3(pt) 0
K O 4(pt) Z
K O 5(pt) 0
K O 6(pt) 0
K O 7(pt) 0

14.3. Chern character. There is a map

K 0(X )→H P 0(X ) =
⊕

i∈2Z
H i (X ;C).

Then [V ]− [W ] 7→ [ch (V )]− [ch (W )].

Theorem 14.4 (Chern). The Chern character gives an isomorphism

K 0(X )⊗ZC∼=H P 0(X ).

Remark 14.5. This is also true overQ instead of C.
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Similarly, the Pontrjagin classes are encoded in a map

K O 0(X )→H P 0(X ) :=
⊕

i∈4Z
H i (X ,C).

Remark 14.6. One way to imagine proving this: every rational spectrum is a wedge of
Eilenberg-Maclane spaces, so it suffices to check their homotopy groups, so it suffices
to check the case where X is a sphere.

14.4. Index as a pushforward in K -theory. Let M be a compact spin manifold of even
dimension. For [V ] ∈ K 0(M ), we get an “analytic pushfoward” πan

! to K 0(pt) 3 [ind(6D ⊗
V )] (as a virtual vector space).

On the other hand, we have a map H P 0(M )→H P 0(pt) given by integration of forms.
Thus the following diagram encodes the index theorem:

K 0(M ) ch //

πan
!
��

H P 0(M )
∫

M
bA(M )∧−

��
K 0(pt) ch // H P 0(pt)

i.e.

ind(6D ⊗V ) =

∫

M

bA(M )∧ ch (V ).

Thus suggestions some generalizations. One is to replace the point by a manifold (which
is Grothendieck’s relativization of Hirzebruch-Riemann-Roch to Grothendieck-Riemann-
Roch). In this version, we have a map M →N viewed as a family of spin manifolds with
even-dimensional fibers, and a commuting diagram

K 0(M ) ch //

πan
!
��

H P 0(M )
∫

bA(M /N )∧−
��

K 0(N )
ch
// H P 0(N )

Note that there are two notions of pushforward in cohomology. One is by integration
(say with real coefficients) which we might call “analytic”, and the other is by relating to
homology via Poincaré duality, which we might call “topological.” These are the same
maps on cohomology.

We’ve defined an analytic pushforward in K -theory via the index. There is also a
pushforwardπtop

! : K 0(M )→ K 0(pt) that uses the Thom isomorphism /Poincaré duality
for K -theory, where the analog of an orientation is a spin structure. There’s a K -theory
version of the index theorem that says

πan
! =π

top
! : K 0(M )→ K 0(pt).

So last time we interpreted K O n (X ) as Cl−n -modules modulo the ones that extend to
Cl−(n+1)-modules. If X is spin, then we can form the vector bundle Pspin×Spin(n )Cln (here
Pspin is the principal spin bundle of X ). The associated Dirac operator is Cln -linear, so
ker D 2 is a Cln -module.



54 LECTURES BY DAN BERWICK-EVANS LECTURES NOTES BY TONY FENG

This gives a map

K O (X )

��

[V ]

��
K O i−n (pt) ker(D ⊗V )

Then you see the index theorem by applying the Chern characer. From this, we get
some mod 2 invariants of, e.g. 4k +2 or 4k +1-dimensional manifolds.

14.5. SpinC structures. We’ll see that there is a way to do this even without a spin struc-
ture. Think to orientations: you can always integrate sections of the orientation line.
Analogously, you can always push forward Clifford modules, and if you have an actual
spin structure then you can “untwist” back to a Cln -module.

Definition 14.7. We define the group SpinC ⊂Cl(V )⊗C to be generated by Spin(V ) and
U(1)⊂C. Alternatively,

SpinC ∼= Spin(V )×Z/2 U(1)

where Z/2 is generated by (−1,−1).

A “U (1)-structure” is a line bundle, so a spinC structure combines a spin structure
with a line bundle (when the line bundle is trivial, you recover the usual notion). There’s
an obvious map SpinC→ SO(V )×U(1).

Definition 14.8. A spinC-structure on X is a line bundle L → X and a lift of its unitary
structure to a fiber bundle with fibers SpinC:

SpinC //

��

SO(n )×U(1)

��
PSpinC (X , L ) //

$$

PSO(n )(X )×PL

yy
X

Here PSO(X ) is a principal SO(n ) bundle and PL is the principal U (1)-bundle corre-
sponding to L .

The obstruction to a spinC-structure on (X , L ) is w2(X ) + c1(L ) (mod 2).

Facts.

(1) If X is spin, then X is spinC with L trivial.
(2) If X is an almost complex manifold, then X is spinC with L =

∧n
CT X .

(3) SpinC→C`(V ) so we get a spinor representation and spinor bundle for spinC-
manifolds.

If X is complex, then 6S ∼=
∧0,•T ∗X and the Dirac operator is ∂ + ∂

∗
. (From a spinC-

structure, we can form a spinor bundle, which has a Clifford module, which has a Dirac
operator).
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From this, we get for any spinC-manifold a map

K 0(X )

π!

��

[V ]

��

K 0(pt) [ker(6D spinC )⊗V ]

14.6. Orientations and spin structures. Denote the orientation bundle over X byPO (1)(X )
(a principalZ/2-bundle). Then we have a map H (X ;PO (1)(X ))→H (pt), which is an iso-
morphism.

Analogously, Cl(T X ) admits a pushfoward π! to K 0(pt). So Clifford modules are like
orientations for K -theory.

A choice of orientation is a choice of isomorphism H (X ;PO (1)(X ))∼=H (X ). Similarly,
a choice of spin structure (as a Cl(T X )−Cl(n ) bimodule) is a choice of isomorphism

Cl(T X )−mod∼=Cl(n )−mod∼= K n (X )

14.7. Fredholm operators. Let T : V →W be a linear operator between Banach spaces.

Definition 14.9. We say that T is Fredholm if ker T and coker T are finite-dimensional.

The main example is 6D + : Γ (6S+)→ Γ (6S−).
It is a fact that for a separable Hilbert spaceH (say `2) the space of Fredholm oper-

ators Fred(H ) represents K -theory, i.e.

K 0(X )∼= [X , Fred(H )].

Note that this implies that Fred(H ) = BU ×Z.

14.8. Thom spectra. There are maps MSpin→ K O and MSpinC→ K obtained by tak-
ing the (family version ) index. There are also topological definitions of these maps,
and the miracle of the index theorem is that they coincide.
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15. SEIBERG-WITTEN THEORY

15.1. Outline. Let X 4 be a spinC 4-manifold (it turns out that every 4-manifold admits
a spinC-structure). Let C be the space of configurations (A,φ) where A is a Clifford
connection and φ is a spinor. There is a “Seiberg-Witten map” SW :C →B , whereB
will be described later. HereC is a Banach manifold, an infinite-dimensional analogue
of manifolds.

This is nice in many ways. One is that there is a good notion of implicit/inverse func-
tion theorems. Roughly, by the Sard-Smale theorem and implicit function theorem for
Banach spaces, SW −1(q ) is a smooth submanifold of C , with dimension computed
from a Fredholm index. (The conditions that you need on a general map on Banach
manifolds is that the differential is Fredholm). Think of these as moduli spaces for some
decoration.

15.2. spinC-structures on 4-manifolds. Every oriented (closed) 4-manifold X has a
spinC-structure. From this we get a spinor bundle W =W + ⊕W − (with dim W ± = 2).
Let

ρ : T ∗X → End(W )

be the Clifford module structure, whereρ(α)2 =−|α|2. Locally for a frame e1, e2, e3, e4 of
T ∗X , using Spin(4)∼= SU(2)×SU(2)we have

W ±
ρ
∼=H= {x0+ I x1+ J x2+K x3}

and

ρ(e1) =
�

0 1
−1 0

�

ρ(e2) =
�

0 I
I 0

�

ρ(e3) =
�

0 J
J 0

�

ρ(e4) =
�

0 K
K 0

�

.

Recall that we have an action by complex line bundles on SpinC structures. In terms of
W ± and ρ, this action is

(W +, W −,ρ) 7→ (W +⊗ L , W −⊗ L , eρ)

where eρ : T ∗X → End(W ⊗ L )∼= End(W ) (using that L ⊗ L∨ is trivial) is the same as ρ.

Relation to self-dual 2-forms. What makes the theory of higher-dimensional mani-
folds “easier” is that you can do the Whitney trick, h-cobordism, etc. The problem with
4-manifolds is that “2+2= 4,” i.e. disks intersect. We have a decomposition

∧2
T ∗M ∼=

∧+
⊕
∧−
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into self-dual and anti-self dual 2-forms, i.e. the eigenspaces for the Hodge ∗. An ex-
plicit basis for

∧+ is

{e1 ∧ e2+ e3 ∧ e4, e1 ∧ e3− e2 ∧ e4, e1 ∧ e4+ e2 ∧ e3}.

Now,

ρ(e1 ∧ e2+ e3 ∧ e4) =
�

2I 0
0 0

�

and more generally, the self-dual 2-forms act on
∧+ while the anti-self-dual ones act

on W −: ρ(
∧+)⊂ SU(W +) and ρ(

∧−)⊂ SU(W −).

15.3. Seiberg-Witten map. Now, we have a Clifford connection A on a SpinC spinor
bundle. The set of all such A form an affine space. To describe one, we only have to
specify a connection on a line bundle, since the connection on Spin is determined by
Levi-Civita. Therefore, these form an affine space for imaginary 1-forms. ♠♠♠ TONY:
[why imaginary? some unitarity conditon?]

The Dirac operator is then

Γ (W +)
A−→ Γ (T ∗X ⊗W +)

ρ
−→ Γ (W −).

Now we can define the Seiberg-Witten map. LetAW be the space of Clifford connec-
tions andC :=AW × Γ (W +). Define

SW :C → i · su(W +)× Γ (W −)

taking

SW (A,φ) = (ρ(F +Aτ )− (φ⊗φ
∗)0, DAφ)

where F +Aτ is the self-dual part of the curvature of the determinant line bundle associ-
ated to the spinor bundle♠♠♠ TONY: [needs some motivation...], Aτ is the connec-
tion on det W coming from the Clifford connection A, and (φ⊗φ∗)0 is the traceless part

of the endomorphismφ⊗φ∗: locally, ifφ =
�

φ1

φ2

�

, then

φ⊗φ∗ =
�

|φ1|2 φ1φ2

φ2φ1 |φ2|2

�

so

(φ⊗φ∗)0 =φ⊗φ∗−
|φ|2

2
Id .

♠♠♠ TONY: [what does this setup look like if you take the Z/2-graded Dirac oper-
ator?]

Remark 15.1. What’s the motivation for this? It’s basically an easier version of Donald-
son theory. There is also some physical motivation. The important part is the quadratic
term (φ⊗φ∗)0, because that’s non-linear.

Remark 15.2. We can deform SW by adding a specified self-dual 2-formσ, to get SWσ.
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Symmetries. G :=Map(X ,S 1) acts onC and i · su(W +)× Γ (W −). For g ∈ G , the action
on (A,φ) ∈C is described by

g ·A = A− g d g −1 ·1W

and g ·φ = gφ (viewing S 1 =U (1) ⊂ C), and the action on the target is g ·w = g w for
w ∈ i · su(W +) and g ·ψ= gψ forψ ∈ Γ (W −).

You can check by explicit computation that SW is equivariant with respect to this
action. ♠♠♠ TONY: [does it though? 1. g d g −1 doens't seem to be an imaginary
1-form, and 2. the map SW seems to be quadratic in the φ argument]

We want to understand SW −1(0)/G . Let’s start withC /G . For X connected, we can
understand stabilizers completely: we claim that the stabilizer of (A,φ) is trivial unless
φ = 0 in which case the stabilizer is S 1 ⊂Map(X ,S 1) (embedded via constant maps).

Proof. Fixing A requires that d g = 0, i.e. g is constant. Fixing non-zero φ, g must be
trivial, unlessφ = 0, in which case g could be any constant map. �

Slice forG0-action. Choose a “base” connection A0 so that

C = {(A0− i a ,φ) | a ∈Ω1(X ,R),φ ∈ Γ (W +)}.

The G -action is then explicitly

(A0− i a ,φ) 7→ (A0− i a + g d g −1, gφ).

We then define the based Gauge transformations

G0 = {g ∈G | g (p0) = 1}

for p0 ∈ X a basepoint.

Proposition 15.3. For 1-connected X , each base point of C /G0 has a unique represen-
tative of the form (A0− i a ,φ) for a satisfying d ∗a = 0.

Sketch. From the 1-connectedness, g = e i u for some u : X →R. Then the G0-action is
a 7→ a + d u . We want to show that there exists a unique u such that d ∗(a + d u ) = 0.
This is basically the Poisson equation, and follows from Hodge theory. �

Let (C /G0)∗ denote the complement of “reducible solutions”, i.e. where φ = 0. We
claim that (C /G )∗ ∼= K (H 1(X ,Z), 1)×CP∞. Why?

The configuration space C is affine hence contractible, and C ∗ is also affine ♠♠♠
TONY: [eh? what's a�ne mean?] and thus contractible. When you mod out by
Map(X ,S 1), whose identity component is S 1 ♠♠♠ TONY: [why is that true, by the
way?], you get the BS 1 ∼= CP∞. The space of connected components, i.e. homotopy
classes of maps to S 1, is described by H 1(X ;Z) = π0(Map(X ,S 1)) since S 1 is a K (1,Z).
There’s a fiber sequence G0 ,→ G

evx0−−→ S 1, so the quotient map C ∗/G0 → C ∗/G is an
S 1-bundle, with total space

K (H 1(X ,Z), 1)×LHopf→ K (H 1(X ,Z), 1)×CP∞.
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15.4. Transversality. We want to study SW −1(0)/G ⊂ C /G . There’s a good theory for
submanifolds F −1(q ) for F : M →N a Fredholm map between Banach manifolds.

Definition 15.4. A map F : M →N between Banach spaces is Fredholm if d Fp is Fred-
holm for each p ∈M .

Remark 15.5. Our Banach manifolds will always be embedded in honest Banach spaces,
so the notion of tangent spaces and differentials are easy.

Fact. If q ∈N is a regular value, then F −1(q ) is a smooth manifold of dimension Ind(d Fp ).
This is a Banach version of the implicit function theorem.

Theorem 15.6 (Sard-Smale). Regular values are generic.

We’ll use this to show that (generically) the SW moduli space is a smooth manifold,
and we’ll compute its dimension using Atiyah-Singer.

15.5. Perturbed Seiberg-Witten map. Recall that we defined the perturbed Seiberg-
Witten map

SWφ :C ×Ω2
+(M )→ Γ (W

−)×Ω2
+(M )

sending (A,ψ,φ) 7→ (DAψ, F +A − (ψ⊗ψ
∗)0−φ). When the context is clear, we may omit

theφ.
Then we claim that

d SWφ(A,ψ,φ)(a ,ψ′,φ′) = (DAψ
′− (i a ) ·ψ, (d a )+− ∂ (ψ⊗ (ψ′)∗)0−φ′).

Why? We’re deforming the map infinitesimally. The tangent space to Clifford connec-
tions is purely imaginary one-form, which is parametrized by a ∈ Ω1(X ,R), a spinor
ψ′ ∈ Γ (W −), and φ′ ∈ Ω2

+(M
′). So the differential measures the effect of the perturba-

tion A 7→ A+a ,ψ 7→ψ+ψ′,φ 7→φ+φ′, which unravels to the above equation.
We claim that for A,ψ,φ with SWφ(A,ψ,φ) = 0 such that ψ 6= 0, the differential

d SWφ(A,ψ,φ) is surjective. We’ll skip this; the proof uses nontrivial elliptic operator
theory.

Define N = F −1(0, 0). The tangent space at (A,ψ,φ) ∈N is

T(A,ψ,φ)N = {(a ,ψ′,φ′) | L (a ,ψ′) = (0, 0,φ′)}

where L : Γ (W +)⊗Ω1(M )→ Γ (W −)⊕ eΩ0(M )⊕Ω2
+(M ) is defined by

L (a ,ψ′) = (DAψ
′− i a ·ψ, d ∗a , (d a )+−2(ψ⊗ (ψ′)∗)0).

Recall that L (a ,ψ′) furnished some gauge slicing, so this a is uniquely determined by
the requirement that d ∗a = 0.

Proposition 15.7. The projection map π: N → Ω2
+(M ) sending (A,ψ,φ) 7→ φ is Fred-

holm.

Sketch. We have ker(dπ) = ker L and Im dπ = Im L ∩ (0, 0,Ω2
+(M )). But L is Fredholm

because it is a “0th order perturbation” of a Fredholm operator (namely the Dirac op-
erator). �
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15.6. Expected dimension. Forφ ∈Ω2
+(M ) a regular value ofπ, F −1(φ)⊂N is a smooth

submanifold. Then dim F −1(φ) is the (real) index of L , which is the index of L0 =DA ⊕
d ∗⊕d+ ♠♠♠ TONY: [why??]. So we just need to compute that index.

So how do we compute the index? The kernel of L consists of a with (d a )+ = 0,
throwing away the 0th order deformationof ψ, which implies d a = 0 ♠♠♠ TONY:
[unclear why]. So that means the kernel consists of harmonic forms.

The cokernel is dual to the kernel of the adjoint map which is d ∗ : Ω2
+(M )→ Ω

1(M )
gives a contribution of b+2 , since d ∗a = 0 and a self-dual implies d a = 0, i.e. a har-
monic.
♠♠♠ TONY: [ehhh]
Now we focus on the index of DA . By Atiyah-Singer, the complex index is

indC(DA) = (?)

∫

bAe −c1(L )/2

= (?)

∫

M

−
p1(M )

24
+

c1(L )2

4

=−
σ(M )

8
+

c1(L )2

4
.

We need to double things to get the real index, so we seem to be missing a factor of 2:

it should be σ(M )−c1(L )2
4 . The last line used the Hirzebruch Signature Theorem.

Corollary 15.8 (Rochlin). Thus the signature of a 4-manifold is divisible by 8 (in fact
divisible by 16, because of some extra structure).

Now, the complex index is ind(DA) =
c1(L )−σ(X )

8 , so the real index is twice this:

ind(L0) = 2 indC(DA) +1− b1+ b+2 =
c1(L )2−σ(X )

4
+1− b1+ b+2 .

By some fiddling around, you see that this is 2χ(X ) + 3σ(X )− c1(L )2
4 . This is the “ex-

pected” dimension of the SW moduli space.
Using that χ(M ) = b0− b1+ b2− b3+ b4 = 2−2b1+ b+2 + b−2 .

Theorem 15.9. Given a Riemannian metric on an oriented 4-manifold X 4, there are
finitely many spinC structures up to isomorphism for which the SW moduli space is
non-empty (for a generic perturbation). (Equivalently, there are finitely many spinC-
structures for which the expected dimension is non-negative.)

Main tool: (analogue of Lichnerewicz formula)

(1) DA ◦DA =∇∗A∇A +
s

4
+

FA

4
.

where s is the scalar curvature of X .

Lemma 15.10. If (A,ψ) is a solution to the SW equations, then

||∇Aψ||2L 2 +
s

4
〈ψ,ψ〉L 2 +

||ψ||4L 4

4
= 0.
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♠♠♠ TONY: [haven't actually de�ned what it means to be a �solution to the SW
equations�]

Proof. By the definition of being a solution to the SW equation, DAψ= 0. Hence by (1),

∇∗A∇Aψ+
s

4
ψ+

FA

4
ψ= 0.

The fact thatψ is a +-spinor implies that FAψ= F +A ψ. Then

0=∇∗A∇Aψ+
s

4
ψ+

1

2

�

ψ⊗ψ∗−
|ψ|2

2
Id

�

ψ

=∇∗A∇Aψ+
s

4
ψ+

|ψ|2

4
ψ.

Taking the inner product withψ gives the result.

♠♠♠ TONY: [We skipped a computation that FA =
1
2

�

ψ⊗ψ∗− |ψ|
2

2 Id
�

ψ?] �

Corollary 15.11. Setting s−X =maxx∈X {0,−s (x )}, we have

s−X ||ψ||
2
L 2 ≤ ||ψ||4L 4 .

Proof. Immediately from applying the above because ||∇Aψ||2L 2 ≥ 0. �

Corollary 15.12. If X has non-negative scalar curvature, then all solutions to the SW
equation haveψ= 0.

Remark 15.13. Every solution to the SW equations is gauge equivalent to a C∞ solution.
(There was some completion that we brushed under the rug when discussing Banach
manifolds, etc. which left the smooth world.)

Corollary 15.14. Let X 4 be compact and oriented and (A,ψ) a solution to the SW equa-
tions. Then |ψ(x )|2 ≤ s−X .

Proof. Let x0 be the point in X where |ψ(x0)|2 is maximal. We’ll show that at x0,

|ψ(x0)
2| ≤ s−X .

In the proof of Lemma 15.10 we found that

〈∇∗A∇Aψ(x ),ψ(x )〉+
s (x )

4
|ψ(x )|2+

|ψ(x )|4

4
= 0.

Since the first term is non-negative,

s (x0)
4
|ψ(x0)|2+

|ψ(x0)|4

4
≤ 0.

Eitherψ(x0) = 0, henceψ(x )≡ 0, or |ψ(x0)|2 ≤ s−(x0)where s−(x0) =max{0,−s (x0)}. �

Corollary 15.15. Let (A,ψ) be a solution to the SW equations. Then

|F +A (x )| ≤
s−X
2

.
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Proof. We have F +A =ψ⊗ψ
∗− |ψ|

2

2 Id, so

|F +A (x )|=
|ψ(x )|2

2
.

Then we apply the bound from Corollary 15.15. �
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