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1. INTRODUCTION

I’ll start by telling you the ending of the story that we’ll discuss in this class. In our
story the basic actor is a compact Riemann surface Σ with a fixed complex structure.
(The next step would be to study a family version of the story over the moduli space of
complex structures, but this isn’t understood yet.)

One of the fundamental questions is to understand holomorphic vector bundles F →
Σ. The smooth vector bundles can be understood via characteristic classes, but if we
focus on holomorphic vector bundles then there are many even within a fixed topological
type.

By uniformization we have Σ = H2/Γ where Γ = π1(Σ). If you take any fixed vector
spaceCn and a representationρ : Γ→GL(N ,C), then one can form a line bundle onΣ by
taking the quotient

H2×ρ CN = {(z , v )}/∼,

with equivalence relation (z , v ) ∼ (z ′, v ′) if z ′ = γ(z ) and v ′ = ρ(γ)v for γ ∈ Γ. This is
holomorphic because the transition functions are essentially constant. In fact these are
called “flat” bundles.

Basic Question: Can one “realize” moduli of holomorphic vector bundles via flat
structures (i.e. flat connections)?

This would be a huge win if possible, because the flat structures are essentially just
topological data, as we saw above.

It is a theorem of Narasimhan-Seshadri that this is true with qualifications. First, it
doesn’t work for all vector bundles; you have to restrict your attention to stable holo-
morphic bundles, which have projectively flat unitary connections. (This means that
the curvature tensor is pure trace, so it’s not 0 but “all the interesting parts” are 0.) The
first proof was probably algebraic; I’ve never actually looked. In 1985 Donaldson gave a
revolutionary gauge-theoretic proof (1985).

This course will focus on a 1987 paper of Hitchin, where he considers a slightly differ-
ent starting point: Σ×R2. This is a four-manifold, and you can apply Yang-Mills theory
to it. This means considering anti-self-dual connections on it which are R2-invariant.
Let’s start out thinking purely in local coordinates x1,x2,x3,x4. If A = A1d x1 +A2d x2 +
A3d x3 +A4d x4 where the A i are matrices (properly speaking, valued in the Lie algebra
of the structure group), then the ASD equations are

FA = d A +[A, A]

x FA =−FA .

You should think of these equations as being d A = 0 and d ∗A = 0 to first order, plus some
non-linear junk, which is the “non-abelian” part of "non-abelian Hodge theory”.

Let Φ = A3d x3 + A4d x4. Suppose you have a rank 2 bundle E → Σ. A connection A
on Σ (abusing notation, we mean only the first two components) and we can think of

Φ ∈ C∞(Σ, End(E )⊗
∧i Σ). If you actually write down the conditions for invariance, the
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ASD equations are equivalent to

FA +[Φ∧Φa ] = 0

∂ AΦ= 0.

The second equation says that we have a connection on E , and Φ is a holomorphic sec-
tion. The first equation measures “how non-normal”. These are called the “Hitchin
equations”. Now these are make sense independent of our assumptions on the flat coor-
dinates, and we can globalize them accordingly.

A Higgs pair is (E ,Φ). Higgs showed that stable Higgs pairs are essentially the same as
solutions to Hitchin’s equations modulo gauge transformations. This relates something
purely algebro-geometric (stable Higgs pairs) and something analytic.

{Higgs pairs}↔{Hitchin solutions}/gauge∼ .

There is actually another equivalence, with representations of Γ into (say) SLn (R)mod-
ulo conjugation. This is something a whole different set of people have been interested
in.

{Higgs pairs} {Hitchin solutions}/gauge∼

Rep(Γ, SLn (R))

Strictly speaking we are lying a little bit; the third thing has multiple components, one of
which fits the triangle.

The course will cover the circle of ideas sketched above. Where can one go from there?
You can consider the moduli space ME of objects above. ME carries a natural “Weil-
Petersson” metric g W P .

The metric g W P has nice properties: it is complete (strictly speaking a lie; it depends
on parameters such as the rank, so sometimes has singularities) and is a hyperKähler
metric. This means that g W P has three distinct complex strutures I , J , K which satisfy
I 2 = − Id, J 2 = − Id, K 2 = − Id, and I J = K , J K = I , K I = J (namely the quaternion re-
lations). This is like a “quaternionic manifold” (the precise thing to say is that the holo-
nomy group has reduction to Sp4). In particular, g W P is Ricci-flat.

The geometry and topology of this manifold are (only) somewhat understood. It car-
ries various interesting data. A rough picture is thatME has a natural fibration (G = SL2)
over the holomorphic quadratic differentials of Σ, which is the tangent space to Teich-
muller space.

This is called the “Hitchin fibration” (see Figure 1). The pre-images are tori of dimen-
sion 6g−6 where g is the genus ofΣ, but you move around the tori degenerate (otherwise
the geometry wouldn’t be so interesting!).

2. HOLOMORPHIC LINE BUNDLES

We’re going to cover some background on holomorphic vector bundles. As references
we recommend the books on Riemann surfaces by Gunnings or Donaldson (note that
Gunnings also has unpublished notes on his website).
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FIGURE 1.0.1. Depiction of the moduli space ME . The solutions to the
Hitchin equation are a complicated subset, drawn in red. The action of
the gauge group is depicted in gray.

FIGURE 1.0.2. The Hitchin fibration.

2.1. Sheaf cohomology. As before, fix Σ. Let {Uα} be an open cover of Σ with each Uα
isomorphic to a disk.

Definition 2.1.1. A sheaf S is a topological space equipped with a map π: S → Σ such
that

(1) π is a local homeomorphism,
(2) π−1(p ) is an abelian group,
(3) the group operations are continuous, e.g. multiplication is

S ×πS →S

is continuous.
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FIGURE 2.1.1. Depiction of a skyscraper sheaf.

We denote the sections of π over an open subset U ⊂X byS (U ).

Example 2.1.2. If G is an abelian group with the discrete topology, then M ×G with the
natural projection map is a sheaf.

Example 2.1.3. We’ll be interested in sheaves which are “germs of functions”, where
“functions” can mean continuous, smooth, holomorphic, constant. These correspond
toS (U ) being

• C∞(U ),
• π−1(U ) =O (U ),
• O ∗(U ),
• C.

The topology is a bit complicated. In the usual description of sheaves in terms of
sections, a basis of open sets for the associated topological space (“éspace étale”) is the
collection of stalks corresponding to a section over some open subset of M .

Example 2.1.4. For p ∈M , there is a skyscraper sheaf Cp for any p ∈M , which is deter-
mined by the property

Γ(U ,Cp ) =

(

0 p /∈U

C p ∈U

In this case the projection map is an isomorphism away from p , and over p the fiber
is C. The open sets are either lifted from an open subset of M not containing p , or an
open subset containing p plus a single point in the fiber. (See Figure 2.1.4.)

To define the sheaf cohomology group Hq (Σ,S ) we use the Cech formalism. For any
locally finite open cover {Uα}, a cochain c ∈C q ({Uα},S ) associates a q+1-tuple cα0,...,αq ∈
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S (Uα0 ∩ . . .∩Uαq ). The differential δ : C q →C q+1 is

(δc )q0,...,αq+1 =
∑

(−1)j cα0...bαj ...αq+1

and we define the cocyles to be Z q = kerδ and the coboundaries to be Bq = Im δ. This
defines a group Hq ({Uα},S ) with respect to the cover {Uα}. It is an exercise in diagram
chasing to check that refinements of open covers induce maps on cohomology. The Cech
cohomology is the direct limit of Hq ({Uα},S ) over all open covers {Uα}.

Remark 2.1.5. It seems difficult to compute Cech cohomology, since one has to consider
all possible open coverings. In fact, one can show that a covering {Uα} for which each
intersection Uα0 ∩ . . .∩Uαq has vanishing higher cohomology already computes the Cech
cohomology (i.e. no need to take direct limits). For example, if all these intersections
are contractible and S is a sheaf of germs of functions, then such a cover computes the
cohomology.

Example 2.1.6. Consider q = 0. Then c ∈ C 0 is a choice of cα ∈ S (Uα), so (δc )αβ =
cα− cβ = 0. So H 0 (with respect to any open cover!) is simply the global sections ofS .

Example 2.1.7. A c ∈ C 1 is a choice of cαβ for all α,β . The differentials are (δc )αβγ =
cαβ cβγcγα (writing multiplicatively this time) and cαβ cβα. Coboundaries are cocycles of
the form cαβ =bα/bβ . Therefore, the cohomology group consists of (cαβ ) such that

cαβ cβγcγα = 1

cαβ cβα = 1

modulo coboundaries.

2.2. Holomorphic line bundles. We claim that H 1(Σ,O ∗) is the space of line bundles on
Σ modulo isomorphism. To get a line bundle from a cohomology class (cαβ ), take the
trivial line bundles Uα×C and Uβ ×C and glue them over Uα ∩Uβ by (z , v ) ∼ (z , cαβv ).
The cocycle condition ensures compatibility over triple intersections. It is clear that
cαβbαb−1

β would define an equivalent line bundle (changing the local trivializations), so
that the line bundle is really well-defined. Conversely, from a line bundle one forms a
cohomology by reversing this process.

Remark 2.2.1. The space of holomorphic line bundles modulo isomorphism is clearly an
abelian group. The multiplication is ξ,η 7→ ξ⊗η, the inverse is ξ 7→ ξ∗, and the identity
is the trivial bundle.

Let GL (N ,C) be the sheaf of germs of holomorphic maps M → GL(N ,C). Although
we formulated everything only for sheaves of abelian groups, which this certainly isn’t, it
turns out that with some care one can make same of H 1(M ,GL (N ,C)), and show that it
is the space of holomorphic vector bundles modulo isomorphism. However, note that it
is just a set, and not a group.

A key short exact sequence of sheaves that we will use is the so-called exponential
exact sequence

0→Z→O
exp
−→O ×→ 0. (1)
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From a short exact sequence of sheaves we always get a long exact sequence of coho-
mology, which in this case contains

. . . H 1(M ,O )→H 1(M ,O ×)→H 2(M ,Z)→H 2(M ,O )→ . . .

Theorem 2.2.2. For a Riemann surface M , we have Hq (M ,O ) = 0 for q ≥ 2 and H 1(M ,O ) =
Γ(M ,E 0,1)/∂ Γ(M ,E 0,0).

Let’s explain where this comes from. Denote by Ep ,q the sheaf of germs of C∞ sec-
tions of

∧p ,q T ∗M . In local coordinates, a frame for T ∗M consists of d z 1, . . . , d z n and
d z n , . . . , d z n where d z j = d x j + i d y j and d z j = d x j − i d y j . We have d z ∧d z = 0 and

d z ∧d z = 0. The Dolbeault operator is ∂ . In local coordinates, if

ω=
∑

ωI J d z I ∧d z J

then

∂ ω=
∑ ∂ ωI J

∂ z j
d z j ∧ (d z I ∧d z J ).

On a Kähler (or even a complex) manifold, the differential lands

d : ∧p ,q →∧p+1,q +∧p ,q+1.

However, in some settings such as an almost complex manifold, we only have a priori
that

d : ∧p ,q →⊕k ∧p+k+1,q−k .

Anyway, the Dolbeault operator globalizes to

∂ : Γ(U ,E 0,0)→ Γ(U ,E 0,1).

We claim that there is an exact sequence

0→O →E 0,0 ∂−→E 0,1→ 0.

The injection and exactness at the middle are clear. The only statement that requires
some nontrivial analysis is showing that any µ ∈ E 0,1(U ) for small enough U is of the

form ∂ f
∂ z . This is what is called “Korn’s Lemma”, and one writes down an explicit f in

terms of integrating µ. From the long exact sequence is

. . .→Hq−1(E 0,0)→Hq−1(E 0,1)→Hq (O )→Hq (E 0,0)→ . . .

To show the claimed isomorphism, we need to show that H i (E 0,0) = 0 for i > 0.

Definition 2.2.3. A sheaf S is called fine if “it has partitions of unity”. More precisely, let
{Uα} be a locally finite open cover. Then there exists a sheaf homomorphism

rα :S →S

such that rα(s ) = 0 if π(s ) /∈Uα and
∑

rα = Id.

Theorem 2.2.4. IfS is fine, then Hq (M ,S ) = 0 if q > i .
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Proof. This is essentially a combinatorial version of Poincaré’s Lemma.
If s ∈Z q is such that s ≡ 0 outside Uβ , then we define a chain homotopy by

sβα0,...,αq−1
(a ) := sβα0...αq−1 (a )

if a ∈Uβ , and extend by 0 (this is where the hypothesis is used). Let’s unravel the condi-
tion δs = 0:

(δs )βα0...αq = sα0...αq −
∑

(−1)j sβα0...αjαj+1...αq

so

s =
∑

(−1)jδs
β
α0...cαj ...αq

.

This expresses s as a coboundary.
In general, we use a partition of unity (ηβ ) to write

s =
∑

ηβ s .

Since by defintion s 7→ ηβ s are sheaf homomorphisms, ηβ s is also coclosed and we can
apply the above argument to each summand. �

So from the exponential exact sequence (1) we get

. . . H 1(M ,O )→H 1(M ,O ×)→H 2(M ,Z)→H 2(M ,O )→ . . .

By our discussion, we get a short exact sequence

0→H 1(M ,O )/H 1(M ,Z)→H 1(M ,O ×) c−→H 2(M ,Z)→ 0.

We know that H 1(M ,O ×) is the space of line bundles modulo isomorphism and H 2(M ,Z)∼=
Z since M is a closed connected manifold. The map c is takes a bundle to its first Chern
class, and this completely classifies the topological information in the bundle. The group
H 1(M ,O )/H 1(M ,Z) is actually a complex torus, denoted Pic0(M ). So we see that even af-
ter fixing a topological type, the space of holomorphic line bundles has interesting mod-
uli.

Lemma 2.2.5. Let ξ∈H 1(M ,O ∗). Then ξ= 1 if and only if there exists s ∈ Γ(M ,O (ξ))with
s 6= 0 on all of M .

Proof. If ξ is trivial, then there is obviously a global section. If s exists, then choose a
locally finite open cover (Uα) for ξ, with transition functions ϕαβ . Then

sα =ϕαβ sβ on Uα ∩Uβ .

By the non-vanishing assumption, sα ∈ O ∗(Uα), so ϕαβ = sα/sβ is an explicit expression
of ϕαβ as a coboundary. �

Example 2.2.6. The same proof implies that the existence of a meromorphic section im-
plies that ϕαβ = 1 in H 1(M ,M ∗)whereM ∗ is the sheaf of germs of nontrivial meromor-
phic functions. This group itself is trivial, so every line bundle admits a meromorphic
section.
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Example 2.2.7. Let T 2 = C/Λ. We can assume that Λ = 〈1,τ〉. The topological line bun-
dles with trivial Chern class are classified by a representation ρ : Λ→ C∗. Indeed, from
such a representation one can form a line bundle by quotientingC×Cby the equivalence
relation (z , v )∼ (z +λ,ρ(λ)v ) for λ∈Λ.

This information is slightly redundant. What does it mean for the bundles obtained
byρ,ρ′ to be isomorphic? It means that there is an isomorphic of the trivial bundles over
C which is equivariant with respect to the two actions of Λ. In other words, that there is
a non-vanishing function f on C such that the diagram commutes:

f (z +λ)ρ(λ) = f (z )ρ′(λ).

By choosing f of the form exp(2πiζ), we see that we can choose ρ so that ρ(1) = 1
(where Λ is generated by 1 and τ). This constrains f to be exp(2πi nz ) for some n , which
means that the only remaining ambiguity is if ρ(z ) = exp(2πi nτ). So we see that an
equivalence for line bundles is represented by choices of ρ(τ) ∈C ∗/qZ ∼=C/〈1,τ〉 where
q = exp(2πi nτ).

Why is the map H 1(M ,O ∗) c−→ H 2(M ,Z) the usual Chern class? Consider the short
exact sequence

0→Z→E 0,0→ (E 0,0)∗→ 0.

The long exact sequence on cohomology contains

H 1(M ,E 0,0)→H 1(M , (E 0,0)∗)→H 2(M ,Z)→H 2(M ,E 0,0)

but both flanking terms vanish since they are higher cohomology of fine sheaves, so the
middle map is an isomorphism. This is the usual Chern class. From the map of short
exact sequences

0 // Z // O //

��

O ∗ //

��

0

0 // Z // E 0,0 // (E 0,0)∗ // 0

we get maps of associated long exact sequences

. . . // H 1(M ,O ∗)

��

c // H 2(M ,Z )

��

// . . .

0 // H 1(M , (E 0,0)∗) ∼=
// H 2(M ,Z) // 0

The bottom map is an isomorphism.

2.3. Divisors.

Definition 2.3.1. A divisor λ on a Riemann surface M is a finite formal sum λ=
∑

n i ·p i

for p i ∈M , n i ∈Z.

Example 2.3.2. If f is a meromorphic function then we can produce an associated divisor

λ( f ) =
∑

(order zero)p i −
∑

(order pole)qi .
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We can generalize this construction to f ∈ H 0(M ,M (ξ)), using local coordinates fα =
φαβ fβ .

LetD be the sheaf of germs of divisors, i.e. Γ(U ,D) is the divisors overU

Exercise 2.3.3. Show thatD is a fine sheaf.

The association of a divisor to a meromorphic function leads to a short exact sequence

0→O ∗→M ∗→D→ 0.

The associated long exact sequence is

0→ Γ(M ,O ∗)→ Γ(M ,M ∗)→ Γ(M ,D)→H 1(M ,O ∗)→H 1(M ,M ∗)→ 0.

From this we get a short exact sequence

0→ Γ(M ,D)/Γ(M ,M ∗)→H 1(M ,O ∗)→H 1(M ,M ∗)→ 0.

This gives another description of the space of line bundles.

Example 2.3.4. Let p ∈ M . We claim that there exists a bundle ξp which has a global
section sp vanishing precisely at p (to order 1). Choose U0 = M \ {p} and U1 = D(p ),
a disc around p . Then U0 ∩U1 = D∗ = {z : 0 < |z | < 1}, a punctured disc about p . The
transition function is simply ϕ01(z ) = z .

A global section is described by two compatible local sections s0, s1. Since this is so
canonical, we had better take s0 ≡ 1 and s1 = z , and indeed this fits the bill.

Given any divisor λ=
∑

n i p i , we can construct a line bundle

ξλ := ξn 1
p1
· . . . ·ξn k

pk
.

Remark 2.3.5. It is a fact that every line bundle arises from a divisor if and only if H 1(M ,M ∗) =
0. We have asserted above that this is true; we will prove it eventually.

2.4. The Chern class.

Theorem 2.4.1. For f ∈H 0(M ,M (ξ)) and λ f = ( f ) a divisor associated to f , c (ξ) = degλ.

Proof. We’ll check this for ξ = ξλ. Since the Chern class is a homomorphism, it suffices
to check that c (ξp ) = 1 for all p ∈M .

Introduce a Hermitian metric onξ. For a good open cover Uα, this is simply the choice
of a positive real number hα > 0 on each Uα, satisfying the overlap condition

hα = |ϕαβ |2hβ .

(This is a glimpse of one of the big themes of the course, namely how to do choose the
best Hermitian metric. For line bundles there is not much subtlety, but for higher di-
mensional vector bundles we will see that there are tensions between different choices.)

Consider the local form ∂ (log hα). A priori this depend on our choice of coordinates,
but using the overlap condition we check that:

∂ ∂ (log hα) = ∂ ∂ (log |ϕαβ |2+ log hβ )

= ∂ ∂ (logϕαβ + logϕαβ + log hβ )

= ∂ ∂ log hα.



HIGGS BUNDLES AND NON-ABELIAN HODGE THEORY 11

The upshot is that γ := ∂ ∂ log hα is well-defined globally on M .

Theorem 2.4.2. We have
1

2πi

∫

M

γ= c (ξ) for any h.

Proof. First we check independence of h. Given any other kα = |ϕαβ |2kβ , we have kα =
µhα for all α for some µ∈C∞(M )with µ> 0. Then kα/hα = kβ/hβ for all α,β , so

∂ ∂ log kα = ∂ ∂ logµ+ ∂ ∂ log hα.

Noting that ∂ ∂ f = d ∂ f for any f , the integral of ∂ ∂ logµ vanishes by Stokes’ Theorem.
Now choose f ∈ Γ(M ,M (ξ)) and set hα = | fα|2 away from the zeros and poles. We can

choose the open cover Uα so that every zero and pole is in exactly one of our open sets.
We then extend our choice of hα > 0 on the open sets Vα containing a zero or pole. Then
the integral of ∂ ∂ log hα vanishes away from Vα1 ∪ . . .∪Vαk .

Now it only remains to examine what happens on some Vαj . There hα is | fα|2 near
∂ Vαj and is positive inside. (See Figure 2.4.)

Then
∫

Vαj

∂ ∂ log hα =

∫

∂ Vαj

∂ log | fα|2 =
∫

∂ Vαj

∂ log fα = 2πi n j .

It’s not obvious from the formula that this really is the usual definition of the first
Chern class. This requires a diagram chase, but we’ll skip it. The cleanest method is a
hypercohomology spectral sequence relating the Cech and de Rham theorems.

�

This shows that for ξ= ξp and sp , the section with λsp = 1 ·p , we have c (ξp ) = 1. �

Corollary 2.4.3. If ξ,η are two line bundles then c (ξ⊗η) = c (ξ)+ c (η).



12 LECTURES BY RAFE MAZZEO, NOTES BY TONY FENG

Proof. This is clear from the fact that a logarithm of a product is the sum of the loga-
rithms. (Of course, it also follows formally from the fact that the Chern class is a group
homomorphism.) �

This is the beginning of the Chern-Weil theory, which represents characteristic classes
by integrals of differential forms.

2.5. Serre duality.

Definition 2.5.1. The canonical line bundle K is the holomorphic line bundle on M as-
sociated to the local sections d z .

Theorem 2.5.2 (Serre duality). For E → M any holomorphic vector bundle, we have a
canonical isomorphism

H 1(M ,O (E ))∼=H 0(M ,O (E ∗⊗K ))∗.

These cohomology groups are all de Rham type cohomology groups, hence can be
identified with kernels/cokernels of operators. This (combined with analytic properties
of elliptic operators) is what underlies the analytic proofs.

Proof. We have a bilinear pairing

H 0(M ,O (K ⊗E ∗))×H 0(M ,E 0,1(E ))→C

defined as follows. Forσ ∈H 0(M ,O (E ∗⊗K )) and τ∈C∞(M , K ⊗E ), we have that (σ,τ)∈
H 0(M ,E 1,1) under the pairing of E and E ∗, so we can define

〈σ,τ〉=
∫

M

(σ,τ).

A general observation is that if F : H 0(M ,E 0,1(E ))→ C and F |∂H 0(M ,E 0,0(E )) = 0 then F is

given by integrating against some distribution φ which is in the kernel of ∂
∗
, and hence

by elliptic regularity is holomorphic. The short exact sequence

0→O →E 0,0 ∂−→E 0,1→ 0

induces as part of the long exact sequence an isomorphism

H 0(M ,E 0,1(E ))/∂H 0(M ,E 0,0(E ))∼=H 1(M ,O )→ 0.

Therefore, F descends to eF : H 1(M ,O (E ))→C.
This defines a pairing

H 0(M ,O (E ∗⊗K ))×H 1(M ,O (E ))→C

which is non-degenerate by formal properties of Fredholm operators and linear algebra.
�
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2.6. Riemann-Roch.

Theorem 2.6.1 (Riemann-Roch). We have

dim H 0(M ,O (ξ))−dim H 1(M ,O (ξ)) = c (ξ)+1− g

where g is the genus of M .

Remark 2.6.2. The quantity dim H 0(M ,O (ξ))−dim H 1(M ,O (ξ)) is the index of a certain
operator, while the right hand side is something topological. This is a feature of index
formulas, fitting into the story of the Atiyah-Singer Index Theorem. The pattern of proof
for these types of formulas is that they are so stable, you can reduce them to very simple
cases.

Proof. First we check this for ξ trivial. The left hand side is 1−dim H 0(M ,O (K )) by Serre
duality. Therefore, we simply want to show that

g ′ := dim H 0(M ,O (K )) = g

where g is the genus of the underlying surface. Well, consider the short exact sequence

0→C→O d−→O (K )→ 0.

(The substance of exactness is surjectivity, which follows from a variant of the Poincaré
lemma.) Note that we have a decomposition d f = ∂ f + ∂ f . In the long exact sequence,
we have

0→H 0(M ,C)→H 0(M ,O )→H 0(M ,O (K ))

→H 1(M ,C)→H 1(M ,O )→H 1(M ,O (K ))

→H 2(M ,C)→ 0.

By Serre duality, H 1(M ,O ) ∼= H 0(M ,O (K ))∗ and H 1(M ,O (K )) ∼= H 0(M ,O )∗. In any long
exact sequence the Euler characteristic is 0, which gives

1−1+ g ′−2g + g ′−1+1= 0.

This shows that g = g ′, as desired.

Next, we check that the statement for ξ is equivalent to the statement for ξ⊗ξp . We
have a short exact sequence

0→O (ξ)
×sp
−→O (ξ⊗ξp )→Sp → 0.

The Sp is a skyscraper sheaf of degree 1 supported at p . The long exact sequence on
cohomology is

0→H 0(M ,O (ξ))→H 0(M ,O (ξ⊗ξp ))→H 0(M ,Sp )

→H 1(M ,O (ξ))→H 1(M ,O (ξ⊗ξp ))→ 0

since the higher cohomology of skyscraper sheaves vanishes. The vanishing of the Euler
characteristic implies that

χ(ξ)−χ(ξξp )+1= 0.
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We also have that c (ξ)− c (ξξp ) = 1, so indeed the formula changes compatibly.

Finally, we have to check that every line bundle is of the form ξλ.

0→O (ξ)
s n

p
−→O (ξξn

p )→Sp ,n → 0.

From the long exact sequence we find that

dim H 0(M ,O (ξξn
p )) = n +dim H 0(M ,O (ξ))−dim H 1(M ,O (ξ))+dim H 1(M ,O (ξξn

p )).

We don’t know what the last term is, but it’s at least non-negative. So for large enough n ,
the left hand side is positive. That means that there is an s ∈H 0(M ,O (ξξn

p )). So

(s ) =
∑

n j p j .

Then (ξ⊗ξn
p )ξ

−n 1
p1 . . .ξ−n k

pk has the section s s−n 1
p1 . . . s−n k

pk whose divisor is empty. But then
the bundle is necessarily trivial, i.e.

ξ⊗ξn
p
∼= ξ−n 1

p1
. . .ξ−n k

pk
.

�

Remark 2.6.3. Let L be an elliptic operator. Then L : C∞(M , E )→C∞(M , F ) is Fredholm.
Actually, C∞ spaces are terrible to work with, because they are only Frechet. It is better
to work with L2(M , E ). However, L is not defined on L2C∞(M , E ), since an L2-function
need not be derivative (or square-integrable even if it is), so one has to regard L as an
unbounded operator, meaning that it’s only defined on a Sobolev subspace. By Fredholm
theory, the kernel is finite-dimensional, so it is interesting to consider

ind L = dim ker L−dim ker L∗.

The basic idea is that this is so stable, you can wiggle the space around topologically
and it should stay the same. Therefore, it should be expressible topologically. The origi-
nal proof worked by showing that the formula was bordism invariant, and so one could
replace M by simpler manifolds.

2.7. What have we achieved?

(1) We saw that

H 1(M ,M ∗) = 0 ⇐⇒ every ξ= ξn 1
p1

. . .ξn k
pk

⇐⇒ H 1(M ,O ∗) =:A (M ) =H 0(M ,D)/H 0(M ,M ∗)

(2) A special case of Riemann-Roch is that χ(K ) = c (K ) + 1− g . But χ(K ) = g − 1,
so c (K ) = 2g −2. This has the following nice consequence. An extremely impor-
tant class of objects on any Riemann surface is the quadratic differentials, which
comprise the line bundle O (K 2). Then we know that deg K 2 = 4g −4 (and we can
usually predict its dimension).

(3) We have a short exact sequence

0→H 1(M ,O )/H 1(M ,Z)→H 1(M ,O ∗)→H 2(M ,Z)→ 0



HIGGS BUNDLES AND NON-ABELIAN HODGE THEORY 15

which gives a picture of holomorphic line bundles as being parametrized by a
discrete invariant (corresponding to the underlying topological structure) and a
space with the structure of a complex torus.

2.8. Flat connections. Can we find a “best” Hermitian metric on ξ?
The claim is that we can, and it is the one for which the associated Chern connection

is flat. Let’s recall this story.
For any hermitian metric H , we have a Chern connection

∇H : C∞(M ,ξ)→C∞(M ,ξ⊗T ∗M ).

Then

(∇H )2 : C∞(M ,ξ)→C∞(M ,ξ⊗ (T ∗M )2)
turns out quite remarkably to be an endomorphism (i.e. C∞-linear). This is the curvature
F H ∈C∞(M , End(ξ,ξ⊗∧2T ∗M )).

Theorem 2.8.1. Given ξ, there is a unique H such that

F H = iλω

whereω is the Kähler form on M , and

1

2πi

∫

Tr F H = c (ξ).

This is called a “Hermitian-Einstein Yang-Mills equation”.

Remark 2.8.2. Since F H ∈ End(ξ,ξ⊗∧2T ∗M ) it has a trace in ∧2T M . For line bundles,
this turns out to simply be ∂ ∂ h.

First, let’s review the definition of the Chern connection∇H . Fix the hermitian metric
H .

Definition 2.8.3. We say that a∇ is compatible with H if

d H (σ,τ) =H (∇σ,τ)+H (σ,∇τ).

The splitting T ∗M = T 1,0M ⊕T 0,1M induces∇=∇1,0⊕∇0,1 via

∇: C∞(M ,ξ)→C∞(M ,ξ⊗T ∗M )∼=C∞(M ,ξ⊗T 1,0M )⊕C∞(M ,ξ⊗T 0,1M )

Since ξ is holomorphic, if s is any section then ∂ s ∈C∞(M ,ξ⊗T 0,1). The point is that if
s = fαsα = fβ sβ , then ∂ s = (∂ fα)sβ = (∂ fβ )sβ = (∂ fα)ϕαβ sβ .

Definition 2.8.4. We say that∇H is compatible with the holomorphic strcture if∇0,1 = ∂ .

Proposition 2.8.5. Fixing H, there exists a unique connection∇which is compatible with
H and the holomorphic structure.

Proof. Since the uniqueness lets us patch, it suffices to work in a local holomorphic
chart. For a holomorphic function f , we have in local coordinates

∇= d +A, A ∈C∞(M , T ∗M ).
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Then∇s = d s +As . This means that if s = f sα, then∇s = (d f +A f )sα. Now what are the
constraints? We have

d H ( f 1sα, f 2sα) = d (hα f 1 f 2)

= d hα+ f 1 f 2+hα( f 2d f 1+ f 1d f 2)

On the other hand, the compatibility condition with H forces

d H ( f 1sα, f 2sα) =H ((d f 1+A f 1)sα, f 2sα)+H ( f 1sα, (d f 2+ f 2A)sα).

Equating these boils down to the equation

d hα = Ahα+Ahα.

We also have compatibility with the holomorphic structure:

∇= d +A = (∂ +A1,0)+ (∂ +A0,1) =⇒ A0,1 = 0.

Thus ∂ hα = Ahα, so A = (∂ hα)h−1
α = ∂ log hα. (It was important to work with holomor-

phic frame instead of unitary; unitary would kill the hα but the ∂ sα would be nontrivial).
Thus,∇H = d +(∂ log hα). �

Example 2.8.6. What’s the curvature of the Chern form?

∇H ◦∇H = (∂ + ∂ log hα+ ∂ )(∂ + ∂ log hα+ ∂ )

= ∂ (∂ log hα)+ ∂ log hα ∧ ∂

= ∂ ∂ log hα.

Theorem 2.8.7. Given H and ξ, there exists Kµ = eµH such that F Kµ = iλω.

Proof. Just write down the equations we need. We have log kα = log hα+µ. Then

∂ ∂ log kµ = ∂ ∂ log hµ+ ∂ ∂ µ.

Now fix the metric, and contract withω. Write Λγ= 〈γ,ω〉. The contraction of the metric
against ∂ ∂ µ is the Laplacian, so we find that

ΛF Kµ =ΛF H +∆µ.

Integrating, we find that
∫

∆µ+ΛF H =

∫

ΛF Kµ = c (ξ)2πi .

We want to choose µ so that ΛF Kµ =Λ(iλω) = iλ is constant, which amounts to solving

∆µ=− f +λ.

The obstruction to a solution to this Laplace equation is that the right hand side has
integral 0. So we need to set λ=

∫

f /
∫

1. �

There is an alternate point of view on the preceding discussion. We adopted a fixed
metric and holomorphic structure as our starting point, and thought of the connection
as the variable. We could instead fix the the hermitian metric H and the connection A,
and considering varying the holomorphic structure.
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To dive into the details, our condition for A to be compatible with the holomorphic
structure was ξwas that if

∇A = (∇A )1,0+(∇A )0,1

then (∇A )0,1 = ∂ . Alternatively, we could view A as a connection on a smooth vector
bundle ξ, and define (∇A )0,1 to be be ∂ . One obstructionto this is that

∂ ◦ ∂ = ((∇A )0,1)2 = 0.

Note that this is always satisfied on a Riemann surface, but is a genuine obstruction in
higher dimensions. In order that (∇A )0,1 define a holomorphic structure, we need that
there exist s 6= 0 solving (∇A )0,1s = 0. This is a differential equation. Locally we can write
∇A = d +A, where A is a complex-valued one-form. In this case

(∇A )0,1 = ∂ +A0,1

and we can reformulate our equation as

∂ log s =−A0,1.

2.9. The gauge group. Now what if we let the gauge group act? Fix H and A.

Definition 2.9.1. The gauge group (for unitary line bundles) is

G :=C∞(M , U(1)).

The complexified gauge group (for line bundles) is

G c :=C∞(M ,C∗).

In general, a gauge group is the group of automorphisms of a principal G -bundles
P→M (lying over the identity in M ). In particular, a GL(n ) bundle (resp. U(n ) bundle) is
equivalent to a vector bundles (resp. unitary vector bundle), by using the same transition
functions. The automorphism bundle Aut(P) is also a G -bundle over M with the same
transitions acting by conjugation, rather than translation.

For line bundles elements of the gauge group are just function, but for more compli-
cated bundles they are sections of nontrivial bundles. Explicitly, for s ∈ C∞(M ,ξ) and
g ∈G , g · s is the section of C∞(M )which takes the value g (p )s (p ) at p .

In particular, the gauge group acts on connections. For g ∈G , we define g ·∇A by the
diagram

C∞(M ,ξ) ∇A
//

g

��

C∞(M ,ξ⊗T ∗)

g

��
C∞(M ,ξ)

∇g ·A
// C∞(M ,ξ⊗T ∗)

In other words,
(g ·∇A )s = (g ◦∇A ◦ g −1)s =∇A s −d g ⊗ g −1s .

Let’s see what this comes out in local coordinates. In a local frame, we can write ∇A =
d +Aα, so that

∇A ( f sα) = (d f +Aα f )sα.
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Then we have in general

∇g ·A = d + g Aαg −1−d g ⊗ g −1

but in the abelian case (e.g. for line bundles) we have g Aαg −1 = Aα, so we can write

g ·A = A −d (log g ).

The action of the complexified gauge group is different. To express it pick a local holo-
morphic frame sα. By our assumption of compatibility with the holomorphic structure,

A = A1,0 =⇒ ∇A = A1,0+ ∂ .

Then the action of g ∈G c is
g · ∂ = g ◦ ∂ ◦ g −1

or alternatively
g · ∂ = ∂ − (∂ g · g −1).

This defines an action of G c on the space of holomorphic line structures, because the
square of g ◦ ∂ ◦ g −1 is still zero!

Remark 2.9.2. Why the difference between these two cases? For g ∈ G , the action on
connection is A 7→ g A g −1 − d g · g −1 =: A g . You can check that if A was unitary then
A g is still unitary, essentially because the logarithm maps unitary matrices to their Lie
algebra.

On the other hand, if g ∈ G c is not unitary then A g is not unitary. So the reason for
modifying the action is to ensure that its acts on unitary matrices.

What is the associated action on unitary connections? By definition

A0,1 7→ A0,1− ∂ g · g −1

but what about A1,0? You can compute the action by considering the compatibility con-
dition

d H ( f sα, k sα) = d ( f k Hα)

=H ((d f +Aα f )sα, (d k +Aαk )sα)

=Hα〈d f +Aα f , d k +Aαk 〉

Exercise 2.9.3. Complete the computation.

After some work you find an answer of

A1,0 7→ g ∗ ◦ ∂A ◦ (g ∗)−1 = g ◦ ∂A ◦ g −1

(here g ∗ is the conjugate transpose). So

A1,0
g = g A1,0 g −1− (∂ g ) · g −1 = A1,0− (∂ g ) · g −1.

The conclusion is that G c acts onA , the space of unitary connections.
In general, the curvature of A will be non-zero:

F A =∇A ◦∇A 6= 0.

(Suppose for simplicity that degξ = 0, so it is reasonable to look for flat connections.)
Can we modify it by some g ∈ G c such that F A g = 0? (Why do we have to pass to the
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complexified Gauge group? The action of the real Gauge group on the curvature is by
conjugation, F A g = g F a g −1 = F A , and in this case of line bundles is therefore trivial.)
You can compute that for g ∈G c ,

F A g = Fa − ∂ A∂ A log(|g |2)

(in higher rank |g |2 is replaced by g g ∗). Now this is essentially the Laplace equation, so
we can solve it to find some g that works.

2.10. Summary. We showed that there are correspondences

Pic0(M ) =H 1(M ,O ∗)

Hom(π1(M ), U(1)) {flat unitary connections}.

(Normally we would have to consider homomorphisms π1(M )→ U(1) up to conjugacy
in the bottom left, but no need in the abelian case.) Now, Pic0(M ) is the space of holo-
morphic line bundles of degree 0. The space of the flat unitary connections can also be
thought of as

Hom(Γ,U (1)) =H 1(M ,S1) =H 1(M ,R)/H 1(M ,Z).

Remark 2.10.1. To get a correspondence beyond degree 0, we should replace by “Her-
mitian Einstein Yang-Mills”.

The map from a line bundle of degree 0 to a flat unitary connection is by solving the
differential equation discussed above. Conversely, given a flat unitary connection on
a smooth line bundle one can find a holomorphic structure by take the 0, 1 part and
showing that it has enough holomorphic sections.

To go from a flat unitary connection to a representation of the fundamental group, we
want to solve a differential equation

∇H s = 0.

We get local solutions, but they may not be monodromy invariant. However, they do
patch to a well-defined solution over the universal cover of M . That is, given∇H we find
a nonzero parallel section s which is locally constant. This extends globally on fM =H2

to a nonvanishing section, so π∗ξ is holomorphically trivial. So we have an action of Γ
onH2×C,

(z , v ) 7→ (γz ,ρ(γ)v ).
This furnishes a representation of the fundamental group onC, which is unitary because
∇H is.

To finish off, we do one last computation with short exact sequence of sheaves. Recall
that H 1(M ,O ∗) =H 1(M ,O )/H 1(M ,Z), coming from

0→Z→O →O ∗→ 0.

This presents Pic0 as Cg /Λ2g .
We also have a short exact sequence

0→C→O →O (K )→ 0.
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From the associated long exact sequence, we have

0→ Γ(M ,O (K ))→H 1(M ,C)→H 1(M ,O )→ 0.

This is compatible with what we got above:

0 // Γ(M ,O (K )) // H 1(M ,C) // H 1(M ,O ) // 0

H 1(M ,Z)
?�

OO

// H 1(M ,O ) // 0

Therefore,
H 1(M ,O ) =H 1(M ,C)/δΓ(M ,O (K )).

This gives

H 1(M ,O ∗) =H 1(M ,O )/H 1(M ,Z) =H 1(M ,C)/(δH 1(M ,O (K ))+H 1(M ,Z)).

What is the map δ? Take γ ∈ Γ(M ,O (K )). Locally γα = fαd z = d kα. We know that
d (kα−kβ ) = 0, so kα−kβ ∈C. That define a one-cycle valued inC, which represents δγ.

Finally, we have a short exact sequence

0→C∗→O ∗→O (K )→ 0.

The right map is f 7→ 1
2πi d log f . This induces

0→ Γ(M ,O (M ))→H 1(M ,C∗)→H 1(M ,O ∗)→Z→ 0.

Then Pic0 =H 1(M ,C∗)/Γ(M ,O (K )), which can be thought of as the space of flat bundles
modulo the natural equivalence relation of flat bundles.

3. HOLOMORPHIC VECTOR BUNDLES

3.1. Definitions. Let E →M be a holomorphic vector bundle. Let (Uα, sα) be a trivializ-
ing cover. On Uα ∩Uβ , we have sα =ϕαβ sβ , for some holomorphic maps

ϕαβ : Uα ∩Uβ →GL(n ,C).

Remark 3.1.1. If we fix a trivialization of det E := ∧n E then the structure group might
instead be SL(n ,C).

We can generalize the usual multilinear algebra operations: E , F   E ⊕ F, E ⊗ F , etc.
Given

0→ E ′→ F → E ′′→ 0

the sheaves of sections E :=O (E ), etc. fit into

0→E ′→F →E ′′→ 0.

What is different from the C∞ situation? In the smooth case, any short exact sequence
has a splitting. Why? You can put a hermitian metric on F , and take an orthogonal com-
plement. This defines a vector subbundle of F that maps isomorphically to E ′′. This is
a very nonholomorphic construction, so it is not surprising that short exact sequences
of holomorphic vector bundles don’t split. To what extent can we measure this nonsplit-
ting?
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Assume n = 2, and we have

0→ E ′→ F → E ′′→ 0

where E ′′ and E ′ are line bundles, inducing

0→E ′→F →E ′′→ 0.

This is called an extension of E ′′ by E ′.

Theorem 3.1.2. The space of extensions of E ′′ by E ′ modulo equivalence is isomorphic to
H 1(M ,O (E ′)⊗ (E ′′)−1).

Note: H 1(M ,O (ξ1ξ
−1
2 )) =H 0(M ,O (K ξ−1

1 ξ2))∗. This vanishes if deg K ξ−1
1 ξ2 < 0, or

2g −2− c1(ξ1)+ c1(ξ2)< 0.

Proof. Take transition functions ϕjαβ for ξj , j = 1, 2. We have

0→ ξ1→ E → ξ2→ 0.

The transition functions of E are of the form

Φαβ =
�

ϕ1αβ λαβ
ϕ2αβ

�

.

The λαβ are measuring the nontriviality of the extension.
What is equivalence?

0 // ξ1
// E //

Θ
��

ξ2
// 0

0 // ξ1
// E ′ // ξ′2

// 0

The equivalence is exactly that
Φ′αβΘβ =ΘαΦαβ .

If Θα = 1 on ξ1 and 1 on ξ2, then

Θα =
�

1 hα
1

�

.

What we need is then
ϕ1αβhβ +λ′αβ =λαβ +hαϕ2αβ .

�
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