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1. INTRODUCTION

I'll start by telling you the ending of the story that we’ll discuss in this class. In our
story the basic actor is a compact Riemann surface ¥ with a fixed complex structure.
(The next step would be to study a family version of the story over the moduli space of
complex structures, but this isn’t understood yet.)

One of the fundamental questions is to understand holomorphic vector bundles F —
3. The smooth vector bundles can be understood via characteristic classes, but if we
focus on holomorphicvector bundles then there are many even within a fixed topological
type.

By uniformization we have ¥ = H?/I" where I = 71(X). If you take any fixed vector
space C" and a representation p: I' — GL(NN, C), then one can form a line bundle on ¥ by
taking the quotient

H? %, CN ={(2, )}/ ~,
with equivalence relation (z,v) ~ (z/,v’) if 2/ = y(z) and v’ = p(y)v for y € I'. This is
holomorphic because the transition functions are essentially constant. In fact these are
called “flat” bundles.

Basic Question: Can one “realize” moduli of holomorphic vector bundles via flat
structures (i.e. flat connections)?

This would be a huge win if possible, because the flat structures are essentially just
topological data, as we saw above.

It is a theorem of Narasimhan-Seshadri that this is true with qualifications. First, it
doesn’t work for all vector bundles; you have to restrict your attention to stable holo-
morphic bundles, which have projectively flat unitary connections. (This means that
the curvature tensor is pure trace, so it’s not 0 but “all the interesting parts” are 0.) The
first proof was probably algebraic; I've never actually looked. In 1985 Donaldson gave a
revolutionary gauge-theoretic proof (1985).

This course will focus on a 1987 paper of Hitchin, where he considers a slightly differ-
ent starting point: 3 x R?. This is a four-manifold, and you can apply Yang-Mills theory
to it. This means considering anti-self-dual connections on it which are R?-invariant.
Let’s start out thinking purely in local coordinates x1, x2, x3,x4. If A= A1dx; + Axdx, +
Asdxs + Asdxs where the A; are matrices (properly speaking, valued in the Lie algebra
of the structure group), then the ASD equations are

Fa=dA+[A A]
xFA = —FA.
You should think of these equations as being d A =0 and d*A = 0 to first order, plus some
non-linear junk, which is the “non-abelian” part of "non-abelian Hodge theory”.
Let ® = Asdx3 4+ Asdx4. Suppose you have a rank 2 bundle E — ¥. A connection A
on ¥ (abusing notation, we mean only the first two components) and we can think of
® e C*(X,End(E)® /\’ >). If you actually write down the conditions for invariance, the
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ASD equations are equivalent to
Ey+[®AD4] =0
040=0.

The second equation says that we have a connection on E, and @ is a holomorphic sec-
tion. The first equation measures “how non-normal”. These are called the “Hitchin
equations”. Now these are make sense independent of our assumptions on the flat coor-
dinates, and we can globalize them accordingly.

A Higgs pair is (E, ®). Higgs showed that stable Higgs pairs are essentially the same as
solutions to Hitchin’s equations modulo gauge transformations. This relates something
purely algebro-geometric (stable Higgs pairs) and something analytic.

{Higgs pairs} «— {Hitchin solutions}/gauge ~ .

There is actually another equivalence, with representations of I into (say) SL,(R) mod-
ulo conjugation. This is something a whole different set of people have been interested
in.

{Higgs pairs} {Hitchin solutions}/gauge ~

\/

Rep(T',SL,(R))

Strictly speaking we are lying a little bit; the third thing has multiple components, one of
which fits the triangle.

The course will cover the circle of ideas sketched above. Where can one go from there?
You can consider the moduli space .# of objects above. .# carries a natural “Weil-
Petersson” metric gy p.

The metric gwp has nice properties: it is complete (strictly speaking a lie; it depends
on parameters such as the rank, so sometimes has singularities) and is a hyperKdhler
metric. This means that gwp has three distinct complex strutures I, J, K which satisfy
I?=-1d,J?=-1d,K?=-1Id,and IJ = K,JK = I,KI = ] (namely the quaternion re-
lations). This is like a “quaternionic manifold” (the precise thing to say is that the holo-
nomy group has reduction to Sp,). In particular, gwp is Ricci-flat.

The geometry and topology of this manifold are (only) somewhat understood. It car-
ries various interesting data. A rough picture is that ./ has a natural fibration (G = SL,)
over the holomorphic quadratic differentials of ¥, which is the tangent space to Teich-
muller space.

This is called the “Hitchin fibration” (see Figure[l). The pre-images are tori of dimen-
sion 6g—6 where g is the genus of %, but you move around the tori degenerate (otherwise
the geometry wouldn't be so interesting!).

2. HOLOMORPHIC LINE BUNDLES

We're going to cover some background on holomorphic vector bundles. As references
we recommend the books on Riemann surfaces by Gunnings or Donaldson (note that
Gunnings also has unpublished notes on his website).
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FiGure 1.0.1. Depiction of the moduli space .#. The solutions to the
Hitchin equation are a complicated subset, drawn in red. The action of
the gauge group is depicted in gray.

/_\/

FiGure 1.0.2. The Hitchin fibration.

2.1. Sheaf cohomology. As before, fix . Let {U,} be an open cover of 3 with each U,
isomorphic to a disk.

Definition 2.1.1. A sheaf . is a topological space equipped with a map 7: & — X such
that

(1) misalocal homeomorphism,
(2) ©~!(p)is an abelian group,
(3) the group operations are continuous, e.g. multiplication is

S Xg S > S

is continuous.



HIGGS BUNDLES AND NON-ABELIAN HODGE THEORY 5

FiGure 2.1.1. Depiction of a skyscraper sheaf.

We denote the sections of 7 over an open subset U C X by & (U).

Example 2.1.2. If G is an abelian group with the discrete topology, then M x G with the
natural projection map is a sheaf.

Example 2.1.3. We'll be interested in sheaves which are “germs of functions”, where
“functions” can mean continuous, smooth, holomorphic, constant. These correspond
to #(U) being

Cc>(U),

= (U)=0(U),

0*(U),

C.

The topology is a bit complicated. In the usual description of sheaves in terms of
sections, a basis of open sets for the associated topological space (“éspace étale”) is the
collection of stalks corresponding to a section over some open subset of M.

Example 2.1.4. For p € M, there is a skyscraper sheaf C,, for any p € M, which is deter-
mined by the property

0 p¢U

I(U,C,)=
(U, Cp) {(C peU

In this case the projection map is an isomorphism away from p, and over p the fiber
is C. The open sets are either lifted from an open subset of M not containing p, or an
open subset containing p plus a single point in the fiber. (See Figure )

To define the sheaf cohomology group H9(%,.¥) we use the Cech formalism. For any
locally finite open cover {Uy}, a cochain ¢ € C1({U,}, ) associates a g+1-tuple cq,,....a, €

.....
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S (UgyN...NUy,). The differential 5: C7 — C+! is

(6 C)qo,...,aqﬂ = Z(_l)] Cao..ﬁj...aqﬂ

and we define the cocyles to be Z9 = ker 6 and the coboundaries to be B4 =Im 6. This
defines a group H9({U,}, &) with respect to the cover {U,}. It is an exercise in diagram
chasing to check that refinements of open covers induce maps on cohomology. The Cech
cohomology is the direct limit of H9({U,}, %) over all open covers {U,}.

Remark 2.1.5. It seems difficult to compute Cech cohomology, since one has to consider
all possible open coverings. In fact, one can show that a covering {U,} for which each
intersection Uy, N...N Uy, has vanishing higher cohomology already computes the Cech
cohomology (i.e. no need to take direct limits). For example, if all these intersections
are contractible and . is a sheaf of germs of functions, then such a cover computes the
cohomology.

Example 2.1.6. Consider g = 0. Then ¢ € C° is a choice of ¢, € & (Uy), 50 (6¢)ap =
cq —cp =0. So H® (with respect to any open cover!) is simply the global sections of ..

Example 2.1.7. A ¢ € C! is a choice of cqp for all @, 8. The differentials are (6 ¢)qpy =
Cap CpyCyq (Writing multiplicatively this time) and cqpcgq. Coboundaries are cocycles of
the form cq5 = by/bp. Therefore, the cohomology group consists of (cqp) such that

CaBCByCra = 1
CapCha=1
modulo coboundaries.

2.2. Holomorphic line bundles. We claim that H!(%, 0*) is the space of line bundles on
¥~ modulo isomorphism. To get a line bundle from a cohomology class (cqp), take the
trivial line bundles U, x C and Up x C and glue them over U, N Ug by (z,v) ~ (2, cqp V).
The cocycle condition ensures compatibility over triple intersections. It is clear that
Cap bmbg1 would define an equivalent line bundle (changing the local trivializations), so
that the line bundle is really well-defined. Conversely, from a line bundle one forms a
cohomology by reversing this process.

Remark 2.2.1. The space of holomorphic line bundles modulo isomorphism is clearly an
abelian group. The multiplication is £, — & ® n, the inverse is £ — £*, and the identity
is the trivial bundle.

Let ¥.4(N,C) be the sheaf of germs of holomorphic maps M — GL(N, C). Although
we formulated everything only for sheaves of abelian groups, which this certainly isn't, it
turns out that with some care one can make same of H(M, ¥ 4(N,C)), and show that it
is the space of holomorphic vector bundles modulo isomorphism. However, note that it
is just a set, and not a group.

A key short exact sequence of sheaves that we will use is the so-called exponential
exact sequence

0-7Z—022 0% 5o, )
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From a short exact sequence of sheaves we always get a long exact sequence of coho-
mology, which in this case contains
...H'(M,0)— H'(M,0”)— H*(M,Z)— H*(M, 0) - ...
Theorem 2.2.2. Fora Riemann surface M, we have H1(M, 0) =0 forq >2 and H'(M, 0) =
(M, &%1)/01(M, £99).

Let’s explain where this comes from. Denote by §7:9 the sheaf of germs of C* sec-
tions of /\p'q T*M. In local coordinates, a frame for T*M consists of dz!,...,dz" and
dz",...,dz" where dzj=dxj+idy; and dz; =dx; — idy;. We have dz Adz =0 and
dz Adz =0. The Dolbeault operator is . In local coordinates, if

w=Za)Udzl/\dE]

then

— 2 wry _
Jo=) 5z dz;Adz' AdZ)).
On a Kidhler (or even a complex) manifold, the differential lands
d: AT — APFTLA 4 AP

However, in some settings such as an almost complex manifold, we only have a priori
that

d: AP — @y \PTHRFLIE
Anyway, the Dolbeault operator globalizes to
2:T(U, ") -1 (U, &M).

We claim that there is an exact sequence

00— &%, 801 0.

The injection and exactness at the middle are clear. The only statement that requires
some nontrivial analysis is showing that any u € £%(U) for small enough U is of the

form Z—Q This is what is called “Korn’s Lemma”, and one writes down an explicit f in
terms of integrating u. From the long exact sequence is

... = HI7(£%0) - HI7Y(&%) - HI(0) — HI(§%0) — ...
To show the claimed isomorphism, we need to show that H!(§%%) =0 for i > 0.

Definition 2.2.3. A sheaf .7 is called fineif “it has partitions of unity”. More precisely, let
{U,} be alocally finite open cover. Then there exists a sheaf homomorphism

Ig: S >
such that r,(s)=0if 7(s) ¢ U, and Y 1, =1d.
Theorem 2.2.4. If. is fine, then HI(M,)=0ifq > i.
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Proof. This is essentially a combinatorial version of Poincaré’s Lemma.
If s € Z49 is such that s = 0 outside Up, then we define a chain homotopy by

350,...,%,1(“) = SBag...ay(A)

if a € Up, and extend by 0 (this is where the hypothesis is used). Let’s unravel the condi-
tion 65 =0:

(55)/3010..,0(‘, =Sag..ag — Z(_l)j SBag...ajaji...aq
SO
_ _NisB
S _Z( 1) 58(10...&7.‘.01,,'

This expresses s as a coboundary.
In general, we use a partition of unity (1) to write

s:Znﬁs.

Since by defintion s — 155 are sheaf homomorphisms, gs is also coclosed and we can
apply the above argument to each summand. O

So from the exponential exact sequence (I) we get
...H'(M,0)— H'(M, 0*)— H*(M,Z)— H*(M,0)— ...
By our discussion, we get a short exact sequence
0— H\(M,0)/H\(M,Z) — H'(M, 0*) = H*(M,Z) — 0.

We know that H!(M, 0) s the space of line bundles modulo isomorphism and H%(M, Z) =
Z since M is a closed connected manifold. The map c is takes a bundle to its first Chern
class, and this completely classifies the topological information in the bundle. The group
HY(M,0)/H'(M,Z)is actually a complex torus, denoted Pic’(M). So we see that even af-
ter fixing a topological type, the space of holomorphic line bundles has interesting mod-
uli.

Lemma 2.2.5. Let& € H'(M, 0*). Then & =1 ifand only if there exists s €T (M, 0(&)) with
s#0onallof M.

Proof. If £ is trivial, then there is obviously a global section. If s exists, then choose a
locally finite open cover (Uy) for £, with transition functions ¢4g. Then

Sa=papsp on U, NUpg.

By the non-vanishing assumption, s, € 0*(Uy), S0 pap = Sa/Sp is an explicit expression
of p4p as a coboundary. U

Example2.2.6. The same proof implies that the existence of a meromorphic section im-
plies that g =11in H'(M, #*) where _#* is the sheaf of germs of nontrivial meromor-
phic functions. This group itself is trivial, so every line bundle admits a meromorphic
section.
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Example 2.2.7. Let T?> = C/A. We can assume that A = (1, 7). The topological line bun-
dles with trivial Chern class are classified by a representation p: A — C*. Indeed, from
such a representation one can form a line bundle by quotienting C x C by the equivalence
relation (z,v) ~(z + A, p(A)v) for A€ A.

This information is slightly redundant. What does it mean for the bundles obtained
by p, p’ to be isomorphic? It means that there is an isomorphic of the trivial bundles over
C which is equivariant with respect to the two actions of A. In other words, that there is
a non-vanishing function f on C such that the diagram commutes:

fz+2p) = f(2)p’(A).

By choosing f of the form exp(27i{), we see that we can choose p so that p(1) =1
(where A is generated by 1 and 7). This constrains f to be exp(27inz) for some n, which
means that the only remaining ambiguity is if p(z) = exp(2nint). So we see that an
equivalence for line bundles is represented by choices of p(7) € C*/g% = C/(1, ) where
qg=exp(2minTt).

Why is the map HY(M, 0*) N H?(M,7) the usual Chern class? Consider the short
exact sequence
0—-Z— &% — (") —o0.

The long exact sequence on cohomology contains
H'(M,8%%)— H'(M,(6°°)) - H*(M, Z) — H*(M, 6°°)

but both flanking terms vanish since they are higher cohomology of fine sheaves, so the
middle map is an isomorphism. This is the usual Chern class. From the map of short
exact sequences

0 Z o o 0
0 Z £00 (£00) —0

we get maps of associated long exact sequences
..— HY(M, 0%) —— H?>(M,Z) — ...
0 —— H'(M,(§°°)) — H*(M,Z) —0
The bottom map is an isomorphism.
2.3. Divisors.

Definition 2.3.1. A divisor A on a Riemann surface M is a finite formal sum A = Z n;-pi
forp;eM,n; eZ.

Example2.3.2. If f isameromorphic function then we can produce an associated divisor

AMf)= Z (order zero)p; — Z (order pole)g;.
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We can generalize this construction to f € H'(M, .#(&)), using local coordinates f, =
Papfp-

Let 2 be the sheaf of germs of divisors, i.e. ['(U, 2) is the divisors over %
Exercise2.3.3. Show that 9 is a fine sheaf.

The association of a divisor to a meromorphic function leads to a short exact sequence

0> 0 "> M —9—0.
The associated long exact sequence is
0—I(M,0%) =T (M, £*)—T(M,2)— H'(M, 0*)— H\(M, #*)— 0.
From this we get a short exact sequence
0—-T(M,2)/T(M, #*)— H'(M,0*)— H' (M, #*)— 0.

This gives another description of the space of line bundles.

Example 2.3.4. Let p € M. We claim that there exists a bundle £, which has a global
section s, vanishing precisely at p (to order 1). Choose Uy = M\ {p} and U; = D(p),
a disc around p. Then UyNU; = D* = {z: 0 < |z| < 1}, a punctured disc about p. The
transition function is simply ¢g:(z) = z.

A global section is described by two compatible local sections sy, s;. Since this is so
canonical, we had better take sy =1 and s; = z, and indeed this fits the bill.

Given any divisor A =) n;p;, we can construct a line bundle
& :=§Zl1 5;1’5
Remark2.3.5. Itis a fact that every line bundle arises from a divisor if and only if H' (M, .#*) =
0. We have asserted above that this is true; we will prove it eventually.
2.4. The Chern class.
Theorem 2.4.1. For f € H'(M, /(&) and Ay =(f) a divisor associated to f, c(£) = degA.

Proof. We'll check this for £ = £;. Since the Chern class is a homomorphism, it suffices
to check that ¢(£,)=1forall p e M.

Introduce a Hermitian metric on &. For a good open cover Uy, this is simply the choice
of a positive real number &, > 0 on each Uy, satisfying the overlap condition

ha=|¢apl*hp.
(This is a glimpse of one of the big themes of the course, namely how to do choose the
best Hermitian metric. For line bundles there is not much subtlety, but for higher di-
mensional vector bundles we will see that there are tensions between different choices.)

Consider the local form 5(log hg). A priori this depend on our choice of coordinates,
but using the overlap condition we check that:

22(loghy)=20(10g|¢apl> +log p)
= 58(log Yap +logpep +loghp)
=00loghy.
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0o

The upshot is that y := 22 log h,, is well-defined globally on M.

Theorem 2.4.2. We have

1
%JMY: c(&) for any h.

Proof. First we check independence of h. Given any other kq = |¢qp[°kp, we have k, =
phy for all a for some u € C*°(M) with u > 0. Then ko /hy = kg /hg forall a, B, so

d0logky =003 logu+ 33 logh,.

Noting that 90 f = d @ f for any f, the integral of 8 log u vanishes by Stokes’ Theorem.

Now choose f €I'(M, . #(&)) and set h, = | f,|*> away from the zeros and poles. We can
choose the open cover Uy, so that every zero and pole is in exactly one of our open sets.
We then extend our choice of &, > 0 on the open sets V,, containing a zero or pole. Then
the integral of 33 log h,, vanishes away from Vo U .UV,

Now it only remains to examine what happens on some V;;. There hy is |fal? near
2 Va, and is positive inside. (See Figure )

Then

J?@logha:f c’?loglfalzzf dlog fy=2min;.
Vo 3Vaj 6Vaj

It’s not obvious from the formula that this really is the usual definition of the first
Chern class. This requires a diagram chase, but we’ll skip it. The cleanest method is a
hypercohomology spectral sequence relating the Cech and de Rham theorems.

O

This shows that for £ =&, and s, the section with A5, =1-p, we have ¢(£,)=1. [

Corollary 2.4.3. If&,n are two line bundles then c(£ ® n) = c(&)+ c(n).
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Proof. This is clear from the fact that a logarithm of a product is the sum of the loga-
rithms. (Of course, it also follows formally from the fact that the Chern class is a group
homomorphism.) ([l

This is the beginning of the Chern-Weil theory, which represents characteristic classes
by integrals of differential forms.

2.5. Serre duality.

Definition 2.5.1. The canonical line bundle K is the holomorphic line bundle on M as-
sociated to the local sections d z.

Theorem 2.5.2 (Serre duality). For E — M any holomorphic vector bundle, we have a
canonical isomorphism

HY(M, 0(E))= H(M, 0(E*® K))*.

These cohomology groups are all de Rham type cohomology groups, hence can be
identified with kernels/cokernels of operators. This (combined with analytic properties
of elliptic operators) is what underlies the analytic proofs.

Proof. We have a bilinear pairing
H(M,0(K® E*)) x H'(M, 8% (E)) - C

defined as follows. For o € H(M, 0(E*® K)) and T € C*(M, K ® E), we have that (o, 7) €
HO(M, &Y1) under the pairing of E and E*, so we can define

(o,7) :f (o, 7).
M

A general observation is that if F: HY(M,§%(E)) — C and F |5H0(M, soo(gy = 0 then F is

given by integrating against some distribution ¢ which is in the kernel of 2", and hence
by elliptic regularity is holomorphic. The short exact sequence

00— 8% 2601 0
induces as part of the long exact sequence an isomorphism
H(M, &%(E))/o H (M, §*°(E))= H'(M, 0)— 0.

Therefore, F descends to F: H\(M, 0(E))— C.
This defines a pairing

H(M,O0(E*® K))x H' (M, 0(E)) - C

which is non-degenerate by formal properties of Fredholm operators and linear algebra.
O
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2.6. Riemann-Roch.

Theorem 2.6.1 (Riemann-Roch). We have
dim H'(M, 0(&)) - dimH'(M, 0(£)) = c(£)+1—g
where g is the genus of M.

Remark 2.6.2. The quantity dim H(M, 0(&)) —dim HY(M, 0(£)) is the index of a certain
operator, while the right hand side is something topological. This is a feature of index
formulas, fitting into the story of the Atiyah-Singer Index Theorem. The pattern of proof
for these types of formulas is that they are so stable, you can reduce them to very simple
cases.

Proof. First we check this for £ trivial. The left hand side is 1 — dim H%(M, 0(K)) by Serre
duality. Therefore, we simply want to show that

g :=dimH(M,0(K))=g
where g is the genus of the underlying surface. Well, consider the short exact sequence

0-C—0-%6(K)—o0.

(The substance of exactness is surjectivity, which follows from a variant of the Poincaré

lemma.) Note that we have a decomposition d f = 8 f + @ f. In the long exact sequence,
we have

0— H(M,C)— H°(M, 0)— H°(M, 0(K))
— HYM,C)— H'(M, 0)— HY(M, 0(K))
— H*(M,C)—0.

By Serre duality, H'(M, 0) = H°(M, 0(K))* and H'(M, 0(K)) = H°(M, 0)*. In any long
exact sequence the Euler characteristic is 0, which gives

1-1+g'—2g+g —1+1=0.
This shows that g = g7, as desired.

Next, we check that the statement for £ is equivalent to the statement for £ ® £,,. We
have a short exact sequence
)
0—0(8) =5 0(E®E,)— S, —0.

The 7, is a skyscraper sheaf of degree 1 supported at p. The long exact sequence on
cohomology is

0—H(M,0(&)— H' (M, 0(£® &) — H(M, S,)
—H'(M,0(£))— H'(M,0(E®&,))—0

since the higher cohomology of skyscraper sheaves vanishes. The vanishing of the Euler
characteristic implies that

(&)= x(Ep)+1=0.
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We also have that ¢(£) — ¢(£€,) =1, so indeed the formula changes compatibly.
Finally, we have to check that every line bundle is of the form &;.

sﬂ
0—0(8) - ﬁ(&&;) - <Sﬂp,n —0.
From the long exact sequence we find that
dim H(M, 0(E&})=n+dim H(M, 0(8))—dim H' (M, 0(&)) +dim H' (M, O(EEN)).

We don’t know what the last term is, but it’s at least non-negative. So for large enough n,
the left hand side is positive. That means that there is an s € HO(M, 0(£& Z))' So

(S):Z”jpj-

Then (£ ® 5;)5;1”1 ... 5;,?" has the section ss;{“ .. .s;k"" whose divisor is empty. But then
the bundle is necessarily trivial, i.e.

E@EnZEM. g
O

Remark 2.6.3. Let L be an elliptic operator. Then L: C*(M, E) — C®(M, F) is Fredholm.
Actually, C*® spaces are terrible to work with, because they are only Frechet. It is better
to work with L%(M, E). However, L is not defined on L2C*®(M, E), since an L?-function
need not be derivative (or square-integrable even if it is), so one has to regard L as an
unbounded operator, meaning that it’s only defined on a Sobolev subspace. By Fredholm
theory, the kernel is finite-dimensional, so it is interesting to consider

ind L =dimker L —dimker L*.

The basic idea is that this is so stable, you can wiggle the space around topologically
and it should stay the same. Therefore, it should be expressible topologically. The origi-
nal proof worked by showing that the formula was bordism invariant, and so one could
replace M by simpler manifolds.

2.7. What have we achieved?
(1) We saw that
HY (M, #*)=0 <> every & = §Zi ...i;’k‘
< H'M,0%) =: .o/(M)=H"(M,2)/H"(M, #*)

(2) A special case of Riemann-Roch is that y(K)=c(K)+1—g. But y(K)=g -1,
so ¢(K)=2g — 2. This has the following nice consequence. An extremely impor-
tant class of objects on any Riemann surface is the quadratic differentials, which
comprise the line bundle 0(K?). Then we know that deg K? =4g —4 (and we can

usually predict its dimension).
(3) We have a short exact sequence

0— H'(M,0)/H'(M,Z)— H'(M, 0*)— H*(M,Z)— 0



HIGGS BUNDLES AND NON-ABELIAN HODGE THEORY 15

which gives a picture of holomorphic line bundles as being parametrized by a
discrete invariant (corresponding to the underlying topological structure) and a
space with the structure of a complex torus.

2.8. Flat connections. Can we find a “best” Hermitian metric on £?

The claim is that we can, and it is the one for which the associated Chern connection
is flat. Let’s recall this story.

For any hermitian metric H, we have a Chern connection

vV C®(M, &) — C¥(M, £ ® T*M).
Then
(V)2 C2(M, &) > CX(M, E®(T*M)*)
turns out quite remarkably to be an endomorphism (i.e. C*®-linear). This is the curvature
FH e C®(M,End(&, &£ ® A2 T*M)).

Theorem 2.8.1. Given &, there is a unique H such that
Fr=ijw

where w is the Kéhler form on M, and

1
—— | TrFH =¢(&).
27l

This is called a “Hermitian-Einstein Yang-Mills equation”.

Remark 2.8.2. Since FH e End(&,¢® A2T*M) it has a trace in A2TM. For line bundles,
this turns out to simply be 00 h.

First, let’s review the definition of the Chern connection V. Fix the hermitian metric
H.

Definition 2.8.3. We say that a V is compatible with H if
dH(o,7)=H(Vo,t)+ H(o,VT).
The splitting T*M = T'OM & T®' M induces V=V10 & V0! via
V:C®(M,E)— C®(M,EQT*M)= C®(M,EQ TV M)® C®(M, E® T M)
Since ¢ is holomorphic, if s is any section then 5£ € C®(M, & ® T*!). The point is that if
s=fuSa=[fpsp, thends=(0 fo)sg = (0 fp)sp =(2 fo)papSp-
Definition 2.8.4. We say that VH is compatible with the holomorphic strctureif Vo1 = 2.

Proposition 2.8.5. Fixing H, there exists a unique connectionV which is compatible with
H and the holomorphic structure.

Proof. Since the uniqueness lets us patch, it suffices to work in a local holomorphic
chart. For a holomorphic function f, we have in local coordinates

V=d+A, AeC™M,T*M).
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Then Vs = ds+As. This means thatif s = fs,, then Vs =(d f + Af)s,. Now what are the
constraints? We have

dH(fi5a f25)=d(haf1f2)

=dho+ fif+ha(f2d fi+ frd )

On the other hand, the compatibility condition with H forces
AH(f15a, f2Sa) = H((d f1 + Af1)Sa, f2Sa) + H(f15a,(d f2 + [2A)Sa).

Equating these boils down to the equation

dhy=Ahg+Ah,.
We also have compatibility with the holomorphic structure:

V=d+A=(0+A")+(0+A"") = A" =0.

Thus dhy = Ahy, s0 A=(0 ho[)h;1 = Jlogh,. (It was important to work with holomor-
phic frame instead of unitary; unitary would kill the h, but the J s, would be nontrivial).
Thus, VH =d + (9 log hy). O

Example 2.8.6. What'’s the curvature of the Chern form?
VA ovH =(8+3loghy+3)(0+2dloghy+0)
=03(0loghy)+3loghy A0
=00loghg.
Theorem 2.8.7. Given H and &, there exists K, = e*H such that F Ki =jdow.
Proof. Just write down the equations we need. We have log k, =logh, + u. Then
ddlogk,=023loghy,+30p.

Now fix the metric, and contract with w. Write Ay = (y, ). The contraction of the metric
against 0 0 u is the Laplacian, so we find that

AFRe = AFP + Ap.
Integrating, we find that

JA,u+AFH :J<AFK/‘ =c(&)2mi.

We want to choose u so that AFX« = A(i Aw) = i A is constant, which amounts to solving

Au=—f+2A.
The obstruction to a solution to this Laplace equation is that the right hand side has
integral 0. So we need to set A = f f/f 1. t

There is an alternate point of view on the preceding discussion. We adopted a fixed
metric and holomorphic structure as our starting point, and thought of the connection
as the variable. We could instead fix the the hermitian metric H and the connection A,
and considering varying the holomorphic structure.



HIGGS BUNDLES AND NON-ABELIAN HODGE THEORY 17

To dive into the details, our condition for A to be compatible with the holomorphic
structure was £ was that if
VA — (VA)I,O + (VA)O,I
then (VA)®1 = 3. Alternatively, we could view A as a connection on a smooth vector
bundle &, and define (VA)*! to be be 8. One obstructionto this is that

d0d=((VH*)?=o.

Note that this is always satisfied on a Riemann surface, but is a genuine obstruction in
higher dimensions. In order that (V4)%! define a holomorphic structure, we need that
there exist s # 0 solving (V4)%1s = 0. This is a differential equation. Locally we can write
VA =d + A, where A is a complex-valued one-form. In this case

(VAL =3 + A0

and we can reformulate our equation as
dlogs=—-A%".

2.9. The gauge group. Now what if we let the gauge group act? Fix H and A.
Definition 2.9.1. The gauge group (for unitary line bundles) is

¢ :=C™(M,U(1)).
The complexified gauge group (for line bundles) is

9 :=C™(M,C").

In general, a gauge group is the group of automorphisms of a principal G-bundles
P — M (lying over the identity in M). In particular, a GL(#n) bundle (resp. U(n) bundle) is
equivalent to a vector bundles (resp. unitary vector bundle), by using the same transition
functions. The automorphism bundle Aut(P) is also a G-bundle over M with the same
transitions acting by conjugation, rather than translation.

For line bundles elements of the gauge group are just function, but for more compli-
cated bundles they are sections of nontrivial bundles. Explicitly, for s € C*(M, ) and
g €Y, g-sisthesection of C*°(M) which takes the value g(p)s(p) at p.

In particular, the gauge group acts on connections. For g € ¢, we define g - V4 by the
diagram

Co(M, ) —— = C(M, £ ® T)
8 g
C>®(M, £) = CX(M,E® TY)

In other words,
(g-VYs=(goVAog Ns=Vis—dgegls.
Let’s see what this comes out in local coordinates. In a local frame, we can write VA =
d + Ag, so that
VA(fSa) =(df+Auf)sa
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Then we have in general
VEA=d+gA,g ' —dgeg™!
but in the abelian case (e.g. for line bundles) we have gA,g~! = A, so we can write
g-A=A—-d(logg).

The action of the complexified gauge group is different. To express it pick a local holo-
morphic frame s,. By our assumption of compatibility with the holomorphic structure,

A=A = vA=A"10.
Then the action of g € ¥°¢ is .
g-0=godog
or alternatively
g-0=0-(0g-g™").
This defines an action of 4¢ on the space of holomorphic line structures, because the
square of g o d o g~ is still zero!

Remark 2.9.2. Why the difference between these two cases? For g € ¥, the action on
connection is A — gAg~! —dg-g~! =t Ag. You can check that if A was unitary then
Ag is still unitary, essentially because the logarithm maps unitary matrices to their Lie
algebra.

On the other hand, if g € 9¢ is not unitary then Ag is not unitary. So the reason for
modifying the action is to ensure that its acts on unitary matrices.

What is the associated action on unitary connections? By definition
APl A0 G gl
but what about A2 You can compute the action by considering the compatibility con-
dition
dH(fsq ksa)=d(fkHg)
=H(df+Auf)Sa,(dk+Ayxk)sq)
=Hy(df+Aqf,dk+ALk)
Exercise2.9.3. Complete the computation.
After some work you find an answer of
Al g% 0040(g") I =g ods08
(here g* is the conjugate transpose). So
AL =gA0g ! - (07)-g ' =A - (07)-F "
The conclusion is that ¢¢ acts on .</, the space of unitary connections.
In general, the curvature of A will be non-zero:
FA=v4ov4-£o.
(Suppose for simplicity that degé = 0, so it is reasonable to look for flat connections.)
Can we modify it by some g € ¥¢ such that F4¢ = 0? (Why do we have to pass to the
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complexified Gauge group? The action of the real Gauge group on the curvature is by
conjugation, F4s = gF¢g~! = FA, and in this case of line bundles is therefore trivial.)
You can compute that for g € ¥¢,

FAs =F,—3,0lo0g(/g)

(in higher rank |g|? is replaced by g g*). Now this is essentially the Laplace equation, so
we can solve it to find some g that works.

2.10. Summary. We showed that there are correspondences
Pic’(M)= H(M, 0%)

T

Hom(7,(M),U(1)) {flat unitary connections}.

(Normally we would have to consider homomorphisms 7t;(M) — U(1) up to conjugacy
in the bottom left, but no need in the abelian case.) Now, Pic’(M) is the space of holo-
morphic line bundles of degree 0. The space of the flat unitary connections can also be
thought of as

Hom(T, U(1))= H'(M,S")= H'(M,R)/H (M, Z.).

Remark 2.10.1. To get a correspondence beyond degree 0, we should replace by “Her-
mitian Einstein Yang-Mills”.

The map from a line bundle of degree 0 to a flat unitary connection is by solving the
differential equation discussed above. Conversely, given a flat unitary connection on
a smooth line bundle one can find a holomorphic structure by take the 0,1 part and
showing that it has enough holomorphic sections.

To go from a flat unitary connection to a representation of the fundamental group, we
want to solve a differential equation

vis=0.
We get local solutions, but they may not be monodromy invariant. However, they do
patch to a well-defined solution over the universal cover of M. That is, given V we find
a nonzero parallel section s which is locally constant. This extends globally on M = H?
to a nonvanishing section, so 7*& is holomorphically trivial. So we have an action of I'
on H2 x C,
(z,v) = (rz, p(y)v).

This furnishes a representation of the fundamental group on C, which is unitary because
VH is.

To finish off, we do one last computation with short exact sequence of sheaves. Recall
that H'(M, 0*)= HY(M, 0)/H'(M, Z), coming from

0-Z—0—0"—0.

This presents Pic® as C&/A,g.
We also have a short exact sequence

0—-C—0—0(K)—0.
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From the associated long exact sequence, we have
0—TI(M,0(K))— H'(M,C)— H'(M,0)— 0.
This is compatible with what we got above:

0——T(M,0(K)) — H'(M,C) —— H'(M,0) —=0

HY(M,Z) —— HY(M,0) —=0
Therefore,
HYM,0)=HYM,C)/6T (M, 0(K)).
This gives
H'(M,0")=H'(M,0)/H'(M,2)=H'(M,C)/(6 H'(M, 0(K))+ H'(M, Z)).
What is the map 6? Take y € I'(M, 0(K)). Locally v, = fodz = dk,. We know that
d(kq—kp)=0,s0 kg — kp € C. That define a one-cycle valued in C, which represents 67y.
Finally, we have a short exact sequence
0—-C*—>0"— 0(K)—0.
The right map is f — 5-dlog f. This induces

27l
0—I(M,0(M))— H\(M,C")— H (M, 0*)—Z — 0.

Then Pic® = H(M,C*)/T(M, 0(K)), which can be thought of as the space of flat bundles
modulo the natural equivalence relation of flat bundles.

3. HOLOMORPHIC VECTOR BUNDLES

3.1. Definitions. Let E — M be a holomorphic vector bundle. Let (Uy, s¢) be a trivializ-
ing cover. On U, NUg, we have s, = pqp5g, for some holomorphic maps

Yap:UagNUp — GL(n,C).

Remark 3.1.1. If we fix a trivialization of det E := A" E then the structure group might
instead be SL(#n, C).

We can generalize the usual multilinear algebra operations: E,F -~ E® FEEQ®F, etc.
Given
0—-FE —->F—E'"—0

the sheaves of sections & := 0(E), etc. fitinto
08 ->F -8 —0.

What is different from the C* situation? In the smooth case, any short exact sequence
has a splitting. Why? You can put a hermitian metric on F, and take an orthogonal com-
plement. This defines a vector subbundle of F that maps isomorphically to E”. This is
a very nonholomorphic construction, so it is not surprising that short exact sequences
of holomorphic vector bundles don't split. To what extent can we measure this nonsplit-
ting?
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Assume n =2, and we have
0—-E —-F—E'"—0
where E” and E’ are line bundles, inducing
0—-&—>F—-&"—0.
This is called an extension of E” by E’.

Theorem 3.1.2. The space of extensions of E” by E’ modulo equivalence is isomorphic to
HY(M,O0(E")®(E")™).
Note: H'(M, 0(&1&,1)) = HY(M, 6(KE'E2))*. This vanishes if deg K&, <0, or
2g-2-ca(é)+alé)<0.
Proof. Take transition functions ¢jqp for &, j =1,2. We have
0-&—>E—&—0.

The transition functions of E are of the form
Dqp = (wlaﬁ Aap ) .
$2ap
The A,p are measuring the nontriviality of the extension.
What is equivalence?

0 &1 E &2 0
| o ]
0 £ £’ g 0

The equivalence is exactly that
(I)/aﬁ@ﬁ =0gPyp.

@a: (1 hla) .

galaﬁh/j +)L:1/3 =Aaﬁ + haSOZaﬁ-

IfO,=10on¢&; and 1on &y, then

What we need is then
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