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1. OVERVIEW

Let f : G → V be a function from a topological group to a vector space,
which is “nice.” We’ll want f to be invariant on the right by some compact
subgroup K ⊂G , and on the left by some discrete subgroup of G . In this
course, G = SL2 or SO(2, n ). The theory works more generally for any
symplectic or orthogonal varieties. (In those cases, one gets arithmetic
manifolds instead of Shimura varieties, but the theta lifting theory still
works.)

1.1. Theta lifting. We’ll begin with the theta lifting theory. From a representation-
theoretic perspective, this gives a correspondence between the represen-
tation theory of SL2 and of SO(2, n ).

• Howe’s classical theta lifting theory gives a map

�

cusp forms of SL2
	 θ−integral
−−−−−→{automorphic forms on SO(2, n )}.

This works more generally whenever one has a “Howe pair.”
• Borcherds’ singular theta lifting gives a map
¦

singular modular forms
on SL2

© regularized θ -integral
−−−−−−−−−−→

¦

singular automorphic forms
on SO(2,n )

©

exp
−→{automorphic forms

on SO(2,n ) }

In fact, the target has known singularities. One can then exponen-
tiate to get automorphic forms on SO(2, n ).

Under the Langlands decomposition, the representation theory of or-
thogonal groups should decompose into a cuspidal part and a residue
part. Howe’s theory gives the cuspidal part, and Borcherd’s gives the residue
part.

1.2. Applications in Number Theory: Kudla’s Program. Let H be the
upper half plane. Let Γ ⊂ SL2(Z) be a congruence subgroup such that
X = Γ\H∗ an elliptic modular curve. Recall that Heegner points on X are
the image of quadratic imaginary points ofH.

Theorem 1.2.1 (Gross-Kohnen-Zagier). The generating series of the height
of Heegner points is a modular form of weight 3/2.

More generally, let D = G /K where G = SO(2, n ) (when n = 1, we re-
cover the previous case). Let X =Γ\D. In favorable circumstances, this is
a Shimura variety.

Theorem 1.2.2 (Borcherds, generalizing GKZ). The generating series of
Heegner divisors is a (vector-valued) modular form of weight n+2

2
with co-

efficients in the Picard group of X .
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Heegner divisors are “special cycles” on Shimura varieties of orthogo-
nal type. This relates to Kudla’s program, which predicts that the gener-
ating series of special cycles of arithmetic manifolds is a Siegel modular
form. Roughly speaking, in this setting special cycles are special linear
combinations of sub-Shimura varieties of the same type.

• This is known if G = SO(V ) or U (n ) by Kudla-Millson. However,
their method does not give the level of the modular form. In Borcherds’
case, it is known that the modular forms are of full level.
• In his thesis, Wei Zhang obtained modularity for SO(2, n ), with co-

efficients in C H ∗(X ).

1.3. Applications to algebraic geometry.

1.3.1. Picard groups of moduli problems.

Definition 1.3.1. A primitively quasi-polarized K3 surface is a pair (S, L)
where S is a K3 surface and L is a quasi-polarization, i.e. a lind bundle
with L2 > 0 and L ·C ≥ 0 for any curve C , and c1(L) is primitive (not a
multiple of some other class). We say that g := L2

2
+1 is the genus of (S, L).

LetKg be the moduli space of primitively quasi-polarized K 3 surfaces
of genus g ,

Kg = {(S, L) | L2 = 2g −2}.

Think of pairs (S, L) of genus g as being analogous to curves of genus g ,
soKg is analogous toMg . (If L is effective, then the general element of
|L| is a genus g curve.)

Theorem 1.3.2. We have

rank Pic(Kg ) =
31g +24

24
−
αg

4
−
βg

6
−

g−1
∑

k=0

k 2

4g −4
−#

�

k |
k 2

4g −4
∈Z, 0≤ k ≤ g −1

�

.

where

αg =

(

0 2 | g
�

2g−2
2g−3

�

2 - g
and βg =







�

g−1
4g−5

�

−1 3 | g −1,
�

g−1
4g−5

�

+
�

g−1
3

�

3 - g −1.

and
�

a
b

�

is the Jacobi symbol.

This is an analogue of Mumford’s “Picard groups of Moduli Problems”
results in the setting ofKg rather thanMg .

4



Math 245C 2015

1.3.2. Enumerative geometry. There is a correspondence between
¦

intersection numbers
of special cycles

©

=
¦

reduced Gromov-Witten
invariants on hyper-Kählers

©

.

This comes through an interpretation of the left hand side as coefficients
of a modular form.

1.4. Kodaira dimension of Shimura varieties. Let X be a projective va-
riety and KX its canonical bundle.

Definition 1.4.1. We define the Kodaira dimension of X to be

κ(X ) := dim Proj

 

⊕

n≥0

H 0(X , n KX )

!

.

We say that X is of general type if κ(X ) = dim X .

The Kodaira dimension is a birational invariant.

Theorem 1.4.2 (Gritsenko-Hulek-Sankaran). Let G = SO(V ) and D =G /K .

(1) X :=Γ\D is of general type if there exists a characterχ of finite order
and a non-zero cusp form f with weight less than dim X vanishing
along the branch divisor of π: D→X .

(2) K g is of general type when g > 62.

The proof of the second assertion is our goal. We will deduce it from
the first part by using Borcherds’ theory to construct automorphic forms.

5
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2. MODULAR FORMS

We give a very short review of modular forms.

2.1. Classical modular forms. LetΓ⊂ SL(2,Z)be a congruence subgroup.

Definition 2.1.1. A holomorphic function f : H → C is called a weakly
holomorphic modular form of weight k for Γ if:

f (Aτ) = (cτ+d )k f (τ) for all A =
�

a b
c d

�

∈ Γ.

It is called a holomorphic modular form if f (τ) is holomorphic at all cusps
of Γ.

Example 2.1.2. If Γ= SL2(Z), then the cusps of Γ areQ∪{∞}.

Example 2.1.3. We give some examples of modular forms.

(1) Eisenstein series: for q = e 2πiτ,

E2k (q ) =
1

2ζ(2k )

∑

(m ,n )6=(0,0)

1

(m +nτ)2k
.

This is a holomorphic modular form of weight 2k for SL2(Z), when
k ≥ 2. The intuition is that if we want to make a function that
behaves well under the action, then we should just average. You
can compute that this is equal to

1−
4k

B2k

∑

d ,n

n 2k−1q nd .

(2) The discriminant:

∆(q ) =q
∏

n

(1−q n )24.

We define Mk (Γ) to be the space of holomorphic modular forms of
weight k for Γ, andM ∗(Γ) =

⊕

kMk (Γ). If Γ = SL2(Z), then M ∗(Γ) is gen-
erated by E4 and E6.

If Γ< SL2(Z), then we need the “Poincaré series” as well.

Definition 2.1.4. We define the Poincaré series

Pk
m (τ) =

∑

γ∈Γ∞\eΓ

e (mγ(τ)/b )
(cτ+d )k

where e (·) = exp(2πi ·), eΓ=Γ/± I , and Γ∞ = 〈±
�

1 b
0 1

�

〉.

Theorem 2.1.5. Pk
m (τ)∈M k (Γ). Moreover,M k (Γ) is spanned by Pk

m (τ).

♠♠♠ TONY: [is this true?]
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2.2. Vector-valued modular forms.

Definition 2.2.1. We define the metaplectic group

Mp2(Z) =
�

(A,φ(τ)) | A =
�

a b
c d

�

∈ SL2(Z),φ =±
p

cτ+d

�

.

There is an obvious 2 : 1 covering map Mp2(Z) → SL2(Z). So by the
familiar fact about SL2(Z), Mp2(Z) is generated by

T =
��

1 1
0 1

�

, 1

�

S =
��

0 −1
1 0

�

,
p
τ

�

.

(The subgroup generated by these elements obviously surjects onto SL2(Z),
but must have a kernel since Mp2(Z)→ SL2(Z) cannot have a section.)

Definition 2.2.2. Let (ρ, V ) be a finite-dimensional representation of Γ⊂
Mp2(Z) (we will usually be interested in Γ =Mp2(Z)) such that ρ factors
through a finite quotient.

For any k ∈ 1
2
Z, a weakly vector-valued modular form f (τ) of weight k

is a holomorphic function f :H→V such that

f (Aτ) =φ(τ)2kρ(g )( f (τ)) g = (A,φ(τ))∈ Γ.

Example 2.2.3. Let M be an even lattice. Let M ∗ = M ∨/M , the discrim-
inant group of M . Then |M ∗| = det(M ), by which we mean the determi-
nant of the “intersection matrix.” Assume that M has signature (b+,b−).

Definition 2.2.4 (Weil representation). We define the Weil representation
ρM on the group ring C[M ∗] by

ρM (T )eγ = e (〈γ,γ〉)eγ

ρM (S)eγ =

p
i

b−−b+

p

|M ∗|

∑

δ∈M ∗

e (−2〈γ,δ〉)eδ.

Basic properties.

(1) ρM factors through a finite index subgroup of SL2(Z).
(2) ρM =ρM 1 ⊗ρM 2 if M =M 1⊕M 2.
(3) If M is unimodular then ρM is trivial (because M ∗ = 0 and b−−b+

will be divisible by 8).

Exercise 2.2.5. Using this, prove Milgram’s formula
∑

γ∈M ∗

e (γ2/2) =
p

|M ∗|e
�

sign(M )
8

�

where sign(M ) =b−−b+. [Hint: compare the action of (ST )3 and S2.]
7
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We define Mk (ρ) to be the space of vector-valued modular forms of
weight k and type ρ (of full level). Then the generating series of spe-
ical cycles of codimension 1 is an element in M b−+b+

2
(ρ∨M ), where M is the

even lattice of signature (b−,b+ and b− = 2. We can define the associated
Shimura variety in this case, because it’s of type (2,b+).

2.3. Poincaré series. For k ∈ 1
2
Z and f :H→C[M ∗], we define the Peter-

son slash operator |∗k given by

( f |∗k (g ))(τ) =φ(τ)
−2kρM (g )−1 f (Aτ)

where g = (A,φ(τ)).
For all β ∈ M ∗, n ∈ Z− 〈β ,β 〉 we define the (C[M ∗]-valued) Poincaré

series

Pn ,β (τ) =
1

2
−

∑

g∈Γ∞\Mp2(Z)

eβ (nτ)|∗k (g )∈Mk (ρM ).

where Γ∞ = 〈T 〉. It is a fact that Pn ,β ∈Mk (ρM ) and in fact the collection
of Poincaré series spanMk (ρM ).

Why is this interesting? To Pn ,β (τ)one can associate a “Noether-Lefschetz
divisor” N L n ,β ∈ K g . This induces an isomorphism of M k (ρM )with Pic(K g )
modulo the Hodge line bundle.

2.4. Properties of modular forms.

Proposition 2.4.1. Suppose f (τ) =
∑

cnq n is a cusp form (i.e. c0 = 0) of
weight k for some Γ. Then

|cn |=O(n k/2).

Proof. Let g (τ) = | f (τ)|·| Im (τ)|k/2. It is easy to check that this is invariant
under Γ. So it extends to a continuous function on the compact Riemann
surface Γ\H∗, and is therefore bounded. That implies | f (τ)| ≤C (Im τ)−k/2

for some C , hence

|cn |=
1

2h

∫ 2h

0

f (x + i y )e−nπi (x+i y )/h d x

≤C y −k/2e nπy /h .

Taking y = 1/n , we get the result. �

Remark 2.4.2. You can use this to prove any K3 surface has an infinite
family of elliptic curves! More precisely, ifX → B is a family of K3 sur-
faces, then #{Xb is elliptic} =∞ if dim B ≥ 1. The idea is that the gener-
ating series

∑

(NL-divisor)q n is modular.

Proposition 2.4.3. Sk (Γ) admits a Hermitian form.
8
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Proof. We define the Petersson inner product of f , g ∈Sk (Γ) to be

〈 f , g 〉=
∫ ∫

D

f (z )g (z )y k−1d x d y

where D is a fundamental domain for Γ. It is easily checked that this
defines a positive-definite Hermitian form onSk (Γ). �

2.5. Dimension of spaces of modular forms.

2.6. Hecke operators. There is an importantly family of operators {Tm }m≥1

on spaces of modular forms, called the Hecke operators. Let Γ= SL2(Z) for
simplicity. The Hecke operators come from considering the double coset

Γ
�

1 0
0 m

�

Γ.

Let Γm =
�

1 0
0 m

�−1

Γ
�

1 0
0 m

�

. Then there is a bijection

Γ\Γ
�

1 0
0 m

�

Γ↔ Γm\Γ.

Now Γm has finite index in Γ, so we may write

Γ\Γ
�

1 0
0 m

�

Γ=
⋃

i

Γβi for some βi .

Recall the Petersson slash operator

f |k (γ) := (detγ)k/2(cτ+d )−k f (γτ).

Definition 2.6.1. For f ∈Mk (Γ), we define the m th Hecke operator Tm on
Mk by

Tm ( f ) =
∑

i

f |k (βi )∈Mk (Γ).

It easy to check that Tm preserves Sk (Γ). We denote by Tr(Tm ) the cor-
responding action.

Theorem 2.6.2 (Eichler-Selberg trace formula). We have

Tr(Tm ) =−
1

2

∞
∑

t=−∞
Pk (t , m )H (4m − t 2)−

1

2

∑

d d ′=m

min(d , d ′)k−1

where H (n ) is a weighted class number for positive definite binary qua-
dratic forms of discriminant −n (hence H (0) = −1/12 and H (n ) = 0 if

n < 0), and Pk (t , m ) = ρk−1−ρk−1

ρ−ρ for ρ satisfying |ρ|=m and Repρ = t /2.

9
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Example 2.6.3. Since T1 is the identity operator, dimSk = Tr(T1). By the
Eichler-Selberg trace formula, that

dimSk =−
1

4
Pk (0, 1)−

1

3
Pk (1, 1)+

1

12
Pk (2, 1)−

1

2

=−
1

2
+

1

12
(k −1)−

sin(π(k −1)/3)
3 sin(π/3)

−
1

4
sin(π(k −1)/2).

10
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3. BORCHERDS’ SINGULAR THETA LIFT

3.1. Overview. Let M be an even lattice of signature (2, n ) and M ∗ =
|M ∨/M |. (The theory works for more general signature, but the results
are not as nice.) Let (·, ·) denote the interserction form on M .

Definition 3.1.1. We define DM to be the Grassmannian of positive defi-
nite 2-planes in M ⊗R.

The goal is to give a correspondence

{singular modular forms} θ -lift−−→{automorphic functions on DM }.

The great thing about this correspondence is that it gives some very ex-
plicit formulas: you can write down an infinite product expression for
the automorphic forms in terms of the Fourier coefficients of the singu-
lar modular forms,

∑

n

cnq n 7→
∏

λ∈M∨

�

1−exp〈λ, v 〉
�

)cn .

Here n = (λ,λ)
2

. This makes the zeros of these automorphic forms easy to
recognize.

Example 3.1.2. If M has signature (2, 1) then an automorphic form on
DM is η(q ) =q 1/24

∏

n (1−q n 2). This is a θ -lift from the theta series θ (q ) =
1/2+

∑

q n 2 .
If M has signature (2, 3), the automorphic forms are Siegel modular

forms of genus 2.

∑

m ,n

(−1)m+n p m 2
q n 2

r m n =
∑

a+b+c>0

�

1−p a q c r b

1+p a q c r b

�C (a c−b 2

where Ck is the coefficients of 1
∑

(−1)n q n2 = 1+2q +4q 2+8q 3+ . . ..

There are three steps.

(1) Construct Siegel theta functions, and “regularized” theta-integrals.
(2) Analyze singularities of θ -lifts and compute their Fourier coeffi-

cients.
(3) Proof of the infinite product formula.

3.2. Siegel theta functions.

Definition 3.2.1. Let (ρ, V ) be a representation of Mp2(Z). We say that a
real-analytic function f : H → V is a (non-holomorphic) modular func-
tion of weight (m1, m2) if

f (Aτ) = (cτ+d )m1(cτ+d )m2ρ(A) f (τ).
11
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3.2.1. Fourier transform. Let (V, (·, ·)) be a real quadratic space of signa-
ture (b+,b−).

If f : V →R is a function, we define

F f (y ) := bf (y ) :=

∫

V

f (x )e ((x , y ))d x .

F (e−πx 2) = e−πx 2 ♠♠♠ TONY: [for mixed signature? constant factors?]
This implies that

F (e (τx 2
+/2+τx 2

−/2)) = (τ/i )
−b+/2(iτ)−b−/2e (−x 2

+/2τ−x 2
−/2τ).

3.2.2. Poisson summation formula. If V = M ⊗R where M is a lattice,
then

p

|M ∗|
∑

λ∈M

f (λ) =
∑

δ∈M∨

bf (δ).

Definition 3.2.2. For γ∈M ∗, we define the Siegel theta function

θM+γ(τ, v ) =
∑

λ∈M+γ

e (τλ2
v/2+τλ

2
v⊥
/2)

where τ∈H, v ∈DM .

Notation: λ+ =λv is the orthogonal projection to v , and λ− =λv⊥ is the
orthogonal projection to v⊥.

Definition 3.2.3. Let {eγ] be the standard basis of C[M ∗]. Define

ΘM (τ, v ) =
∑

γ∈M ∗

θM+γ(τ, v ) · eγ.

Theorem 3.2.4. We have

ΘM (Aτ, v ) = (cτ+d )(cτ+d )n/2ρM (g )ΘM (τ, v )

where g = (A,
p

cτ+d ) ∈Mp2(Z). Therefore, ΘM is a modular function of
weight (1, n/2).

Proof. We just have to check this for A = T and A =S. For A = T , you can
easily check this by hand.

Let’s check the case A =S. Then the left hand side is
∑

γ∈M ∗

eγθM+γ(−τ−1, v ) =
∑

γ∈M ∗

eγ
∑

λ∈M+v

e (−λ2
+/2τ−λ

2
−/2τ)

while the right hand side is

τ ·τn/2 (
p

i )n−2

p

|M ∗|

∑

γ∈M ∗

eγ
∑

δ∈M ∗

e (−(δ,γ))θM+δ.

12
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Comparing, it suffices to show that
p

|M ∗|θM+γ(−1/τ, v ) =−τ ·τn/2(
p

i )n
∑

δ∈M ∗

e (−(γ,δ))θM+δ(τ, v ).

We’re just going to check the case γ= 0.

Write f (λ) =−τ−1(
p

τ/i )−n e (−λ2
+/2τ−λ2

−/2τ). Then by definition
p

|M ∗|OM (−1/τ, v ) =−ττn/2(
p

i )n
p

|M |∗
∑

λ∈M

f (λ)

=−ττn/2(
p

i )n
∑

δ∈M∨

bf (δ)

=−ττn/2(
p

i )n
∑

δ∈M ∗

∑

λ∈M

bf (λ+δ)

=−ττn/2(
p

i )n
∑

δ∈M ∗

θM+δ.

�

3.3. Borcherds’ theta lift. We will use Borcherds’ theta functions to de-
fine the theta lift, which is a map

§

f ∈MρM (1−
m

2
)
ª

→
¦

Θ f : singular aut. forms on Dm

©

defined as follows. Given f ∈M1−n/2(SL2), we define

Φ f (v ) =

∫

D

f (τ) ·ΘM (τ, v )
d x d y

y

where D is a fundamental domain for SL2 \H.

Remark 3.3.1. Conjugation on C[M ∗] is eγ = e−γ. The product of vectors
is given by (eα, e−β ) =δαβ .

The final goal is to show that the generating series of special cycles is
an element inMρ∨M

(1+ m
2
), which by Serre duality related to the left hand

side because weight two cusp forms are the canonical bundle.

Informal discussion. Our problem is that the integral diverges if one of
the two integrand forms is not cuspidal. Using the definition ofΘM (τ, v ),
the expansion of Φ f looks approximately like a sum of things of the form

∫

|x |≤1/2,y≥C

exp(2πi k x +2π|k |y − Ly )d x d y

If 2π|k | − L < 0, then the integral converges. But if this quantity is non-
negative, then it diverges.

13
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If k 6= 0, then we can handle this by (integrating over x first, and then y )
defining it to be 0. If k = 0 and L > 0, then everything is fine, as discussed.
The problem is if k = 0, L = 0. Here we use the Harvey-Moore method to
define it as follows.

Definition 3.3.2. Let Fw = {τ∈H: |τ| ≥ 1, |x | ≤ 1/2, y ≤w }. Suppose

lim
w→∞

∫

Fw

F (τ)y −s d x d y

y

exists for Rep s � 0, (in terms of earlier notation, F = f Θ) and can be
continued to a meromorphic function G (s ) for all s ∈C. Then

Φ f (v ) :=

∫

SL2(Z)\H

F (τ)
d x d y

y

is the constant term of G (s ) at s = 0.

So we have to study the singularities of Φ f .

Definition 3.3.3. A function f has a singularity of type g if f − g can be
redefined on a set of codimension≥ 1 so that f − g is a real analytic near
that point.

Theorem 3.3.4. Near a point v0 ∈DM , Φ f (v ) has a singularity of type
∑

λ∈M∨∩v⊥0

−cλ(λ2/2) log(λ2
+).

Here f (τ) =
∑

γ∈M ∗ cγ(n )q n , λ+ is the projection of λ to v and λ− is the
projection of λ to v⊥.

The singular locus is the locus where λ+ = 0, which is a locally finite set
of codimension 2 sub Grassmannian of DM of the form λ⊥, i.e.

Sing(Φ f ) =
⋃

λ∈M∨∩v⊥0

λ⊥

where λ⊥ = {(w ,λ) = 0 |w ∈DM }. (Codimension is in the real sense.)

Proof. We have

Φ f (v ) =

∫

y>0

∫

|x |≤1/2,x 2+y 2≥1

Θ(τ, v ) f (τ)
d x d y

y

14
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Then substitute θM+β =
∑

λ∈M+β q−λ2/2|q |λ2
+ (where as usual q = e (τ))

above, and the Fourier expansion f (τ) =
∑

γ∈M ∗ cγ(n )q n . So we get (af-
ter some work)

Φ f ≈
∑

γ∈M ∗

∑

λ∈M+γ

cγ(n )

∫

y≥1,|x |≤1/2

q n−λ2/2|q |λ2
+

d x d y

y
.

First we carry out the x -integral. It’s 0 unless n =λ2/2, so we get
∫

y≥1

c0(0)
d y

y
+

∑

λ∈M∨,λ6=0

cλ(λ2/2)

∫

y≥1

exp(−2πyλ2)d y .

We can throw away the first term, because it doesn’t depend on v . So we
are interested in

∑

λ∈M∨,λ6=0

cλ(λ2/2)

∫

y≥1

exp(−2πyλ2
+)d y .

The assertion then follows from the following result.

Lemma 3.3.5. The function

f (r ) =

∫ ∞

1

e−γ
2y y s−1 d y = |r |−2sΓ(s , r 2) s > 0

has a singularity at r = 0 of type |r |−2sΓ(s ), and type (−1)s+1r−2s log(r 2)/(−s )
if s ≤ 0.

Apply this with r = λ+ (we are in the second case). The difficult with
working more general stuff is that you get polynomial singularity instead
of log singularity.

�

3.4. Exponentiation. If M is an even lattice of signature (b+,b−), then
the definition of ΘM remains valid: for τ ∈ H and v ∈ Gr(M ), the set of
b+-dimensional positive-definite subspaces of M ⊗R, we define

ΘM (τ, v ) =
∑

λ∈M

exp(τ(λv )2/2+τ(λ2
v⊥
)/2)

if M ∗ =M ∨/M = {0}. This is modular of weight (b+
2

, b−
2
). So

ΘM (Aτ, v ) = (cτ+d )b+/2(cτ+d )b−/2ΘM (τ, v )

(maybe with a character too.)
If f ∈M(b+−b−)/2(ρM ), the set of modular forms of weight b+−b−

2
and type

ρM (the Weil representation), we can define

Φ f =

∫

SL2(Z)\H

f (τ)ΘM (τ, v )
d x d y

y b+/2
.

15



Math 245C 2015

This is an “automorphic function” on DM minues some hyperplanes.

Remark 3.4.1. When b+ = 2, we define Heegner divisors as follows. For
n ∈Q,β ∈M ∗, we define

Hn ,β =
∐

λ≡β (mod M )
(λ,λ)/2=n

(λ⊥)

where λ⊥ = {v ∈ DM | (v,λ) = 0}. This has (real) codimension 2, and in
general the codimension is b+.

Fact: if one takes f (τ) = Pn ,β (the Poincaré series defined earlier),

Φn ,β :=ΦPn ,β

is real-analytic on DM −Hn ,β . Since these span the space of modular
forms, their singularities determine the singularities of everything.

The main result on singularities of Φ f , which we discussed last time, is
the following: if f =

∑

γ∈M ∗

∑

n∈Z−γ2/2 cγ(n )q n eγ has a singularity of type
∑

λ∈M∨ cγ(γ2/2) log(2πλ2
v ) for some λ if

Actually, Φ f is of type −
∑

cγ(γ2/2)(2πλ2
v )

1−b+/2 times some constant.

Remark 3.4.2. If b+ = 1, then Φ f is a polynomial (actually, a polyomial
on each “Weyl chamber,” and there is a “wall-crossing formula” to get
between these.

Ideas. (for b+ = 2) Φ f = − log(Ψ f ) + (analytic stuff) where Ψ f is a mero-
morphic automorphic function on DM . This implies that Ψ f has an infi-
nite product expression. The singularities of Φ f , which are the Heegner
divisors, are the zeros/poles of Ψ f .

Why do we fail to get a theorem when b+ > 2? Using this machinery
you always get Φ f , whose singularities have codimension b+, which can’t
come from a single function.

Theorem 3.4.3. Let M be a lattice of signature (2, m ). Let f ∈M1−m/2(ρM )
have Fourier expansion

f (τ) =
∑

γ∈M ∗

∑

n

cγ(n )q n eγ.

Assume that cγ(n )∈Zwhen n ≤ 0. Then there exists a meromorphic auto-
morphic function Ψ f on DM , satisfying:

(1) The zeros or poles of Ψ f lie on λ⊥ for λ ∈M ,λ2 < 0, and has order
∑

x>0,xλ∈M∨ exλ(x 2λ2/2).

(2) logΨ f = −
Φ f

4
− c0(0)

2
(log(yv ) + const) (where yv is the “imaginary

part” of v = x + i y )
(3) Ψ f = e ((ρ, v ))

∏

γ∈M
(γ,v0)>0

(1− e ((γ, v )))cγ((γ,γ)/2).

16



Math 245C 2015

This last part describes the zeros/poles and their multiplicities.
The idea is that

Φ f =ÝΦK +(Integral part)
where K ⊂M is a sublattice of signature (1, m −1). Think of K as coming
from a parabolic subgroup. Why is this true? ΘM can be expressed in
terms of ΘK (they are on different spaces, but their Fourier coefficients
are related) and ÝΦK is some kind of pullback of ΦK .

Example 3.4.4. If z 2 = 0, then K = (M ∩z⊥)/z so any λ∈M can be written
as λ=λk + z + z ′.

3.5. Coefficients. Recall that given f =
∑

γ∈M ∗

∑

n∈Z− γ
2

2

cγ(n )q n eγ ∈M1−m
2
(ρM )

(ρM the Weil representation), we defined Φ f as the constant term of
∫

SL2(Z)\H

f (τ) ·ΘM (τ)
d x d y

y 1+s

at s = 0. This is a meromorphic function in s , so it has a Laurent expan-
sion at 0. It is called a regularized integral.
Φ f is real analytic on DM − sub-Grassmannians. The goal is to show

that
Φ f =−4 log(Ψ f )+ (analytic functions).

Borcherds showed this by giving a very detailed computation of the Fourier
coefficients of Φ f as integrals. We’ll give as simplified version of his re-
sult/computation.

Theorem 3.5.1. Let

• z be a primitive norm 0 vector, i.e. z 2 = 0 and z ′ ∈M ∨, i.e. (z , z ′) =

1. (So the intersection matrix is

�

0 1
1 0

�

).

• z± be the projection of z onto v, v⊥.
• w± be the orthogonal complement of z± in v and v⊥.
• K = (M ∨ ∩ z⊥)/z , a lattice of signature (1, m −1).
• µ= . . .

Then Φ f (v ) is the constant term of the following integral

1
p

2|z+|
φK+

p
2

|z+|
·
∑

n>0

∑

λ∈K ∨

e ((nλ,µ))·
∑

σ∈M ∗
σ|L=λ

e (n (σ, z ′))

∫

y>0

cσ(λ2/2)exp(−
πn 2

2y z 2
+

−2πyλ2
w+)y

−s−3/2 d y .

What does this mean? φK is the theta lift of f to K . This is piecewise-
linear, since for signature (1, ?) you get locally polynomial plus some wall-
crossing formula. So this part is analytic, which is fine.

The integral is some coefficient which can be expressed in terms of Γ
functions and Bessel functions.

17
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Assume that M , K are unimodular. Then the nasty eqquation simpli-
fies. In this case, f (τ) =

∑

k C (k )q k , and we get that it equals

1
p

2|z+|
φK+

p
2

|z+|

∑

n>0

·
∑

λ∈K ∨

e ((nλ,µ))

∫

y>0

cσ(λ∗2/2)exp(−
πn 2

2y z 2
+

−2πyλ2
w+)y

−s−3/2 d y .

Sketch. Write ΘM in terms of ΘK . This requires another theorem, which
is itself quite involved.

Theorem 3.5.2.

ΘM =
1

p

2y |z+|

∑

λ∈M/z

∑

n∈Z

e (τλ2
w+/2+τλ

2
w−/2−n (λ, (z+−z−))/2z 2

+−
|(λ, z )τ+n |2

4i y z 2
+

).

Proof. The idea is to write an element of M as a sum of elements in K , z , z ′

and apply standard lattice theorems. �

Then, insert this formula into the definition of Φ f , and you get thatp
2|z+|φ f (v ) is the constant term of

φK +

∫

SL2 \H

1
p

y

∑

(c ,d )6=(0,0)

e

�

−|cτ+d |2

4i y z 2
+

�

ΘK (τ,µd ,−cµ) f (τ)
d x d y

y 1+s
.

Let’s ignore the first term because it’s nice. It’s the integral that we want
to study. We divide the sum into multiples (nc , nd ) over (c , d ) primitive:
∫

SL2(Z)\H

∑

(c ,d ) coprime

∑

n>0

e

�

−|cτ+d |2

4i y z 2
+

�

ΘK (τ, nµd ,−ncµ) f (τ)
d x d y

y 1+s
.

Why is that useful anyway? The idea is to integrate first over x , then y .
Now the point is that f (τ) has a modular transformation property, f (τ) =
(cτ+d )1−

m
2 f (Aτ), so we can rewrite the above as

∫

SL2(Z)\H

∑

n>0

∑

A∈SL2(Z)/Z

ΘK (Aτ, nµ, 0) f (Aτ) Im (Aτ)−1/2 exp(−
−πn 2

2 Im (Aτ)z 2
+

).

(Here the Z action on SL2(Z) is by translation). Now the point is to inter-
change the integral over SL2(Z)\H and summation over SL2(Z)/Z, so we
get

∫

Z\H

ΘK (τ) f (τ)exp

�

−
πn 2

2y z 2
+

�

d x d y

y 1+s
.

Now you just plug in the Fourier coefficients of f (τ) =
∑

c (k )q k , and
write the integral as

∫

y

∫

x
. The point was that the fundamental domain

has been changed to something nice. �
18
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Lemma 3.5.3. The integral
∫

y>0

exp

�

−
πn 2

2y z 2
+

−2πyλ2
w+

�

c (λ2/2)y −z/2−s d y

at s = 0 is equal to:

c (λ2/2)
|z+|

n
exp(−2πn |λw+ |/|z+|) if λw+ 6= 0,

and

c (λ2/2)(
πn 2

2|z+|2
)−1/2Γ(1/2) if λw+ = 0.

3.6. Borcherds infinite products. For v ∈DM , let XM , YM be an orthogo-
nal basis for v . Since M has signature (2, m ), the a priori real Grassman-
nian DM has a complex structure, and we may set ZM =XM + i YM .

Another perspective on the complex structure is that DM = {v ∈P(M ⊗
C) | (v, v ) = 0, (v, v ) > 0}. The complex structure on DM comes from that
of P(M ⊗C).

DM parametrizes Hodge structures of type (1, m , 1).
Let K , z , z ′ be as before: K = (M ∩ z⊥)/z , i.e. K :=M− hyperbolic. The

relations are z 2 = 0, (z , z ′) = 1.
Parametrize (λ, k ,`) :=λ+k z ′+ `z ∈M where λ∈ k .

Definition 3.6.1. (Weyl vector) Let f ∈ M1−m
2
(ρM ), φk ( f ) be the lift to

functions on DK . This is a piecewise-linear function, linear on the Weyl
chambers.

Let W be a Weyl chamber of φK ( f ), i.e. φK ( f ) is linear on W . There is
a unique vector ρ(W )with the property that

|w |φK ( f )|W (
W

|W |
) = 8

p
2(ρ(W ), W ).

Weyl chambers are defined by this linearity.
For different Weyl chambers, you get a different vector ρ(W ).
Recall that in the theory of automorphic forms, one usually considers

Γ\DM for Γ⊂Aut(M ⊗Q).

Theorem 3.6.2. Let f ∈M1−m
2
(ρM ). Then there exist a meromorphic func-

tionψM on DM satisfying the following properties:

(1) ψM is automorphic of weight c0(0)/2 for Aut(M ).
(2) log |ψ(ZM )|=−φM ( f )

4
− c0(0)

2
(log |YM |+?+ log(

p
2π),

(3) For each Weyl chamber of φK ( f ), ψM has an infinite product ex-
pression. When M is unimodular,

ψM = e ((ρ(W ),ZM ))
∏

λ∈K ,(λ,W )>0

(1− (e (λ,ZM ))c (λ
2/2)
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if f =
∑

c (n )q n .

Remark 3.6.3. The original theta lift was not defined on all of DM (it was
defined away from complex codimension 1 Heegner divisors), butψM is.

Proof Sketch. We assume the simpler case where M , K are unimodular,
which implies that there exists a norm 0 vector, which is not necessarily
true for some even latttices, so we can choose z 2 = (z ′)2 = 0. We will
perform the following steps.

(1) φM ( f ) is the constant term of the following integral at s = 0:

1
p

2z+
φK ( f )+

p
2

|z+|

∑∑

e (. . .)s

∫

y>0

c (
λ2

2
)exp(−

πn 2

2y z 2
+

−2πyλ2
+)y

−s−3/2 d y .

(2) Similarly use Γ functions: the integral equals

8π(YM ,ρ(W ))+2
∑

n>0

�

πn 2

2z 2
+

�−s−1/2

c (0)Γ(s+
1

2
)+2

∑

λ6=0∈K ,n>0

e (. . .)
c (λ2/2

n
exp(−2πn |(λ, YM )|).

Using a Taylor series expansion, this is

4
∑

λ6=0∈K

−c (λ2/2) log(1− e (λ, XM )+ i |(λ, YM )|).

Div(ψM ) =
∑

λ2/2≤0 c (λ2/2)Hλ2/2 whereHλ2/2 is the Heegner divisor
⋃

`∈M ,`2/2=λ2/2 `
⊥.

Remark 3.6.4. This is an infinite union of hyperplanes, but actually we
should have been talking about Pic(DM/Aut(M )) to make it algebraic (DM

is not), and so the infinite things occupy only finitely many orbits here,
so we’re good.

Using this theorem gives a map M1−m/2(ρM ) to Heegner divisors on
DM , by

f 7→
∑

λ2/2

c (λ2/2)Hλ2/2.

If M has no norm 0 vector (which never happens if rank M ≥ 5), then
this strategy doesn’t work. Borcherds uses a trick to handle this case.

Remark 3.6.5. This ≥ 5 result implies that if Pic(S) has ρ(S) ≥ 5, then S
is an elliptic fibration, S a K3 surface. Basically, if the Picard lattice has a
norm zero vector, then it must be an elliptic curve.

Lemma 3.6.6. φM ( f ) can be written as a linear combination of functions,
each the restriction to DM of a function of the formφM⊕M j (F )−singularities
where M j is unimodular.
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Here F is related to f , and is also obtained by a theta lift. The idea here
is that we’re just adding a unimodular lattice to get int he situation we
want.

Concretely,φM ( f ) =φM⊕A⊕8
3
|DM −φM⊕A2

2
|DM . �

Next time, we can prove: if β ∈M ∗, eβ ∈C[M ∗] then
∑

n

∑

β

eβq nHn ,β ∈ Pic(DM/Aut(M ))⊗C[M ∗][[q ]].
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4. GENERALIZED GKZ THEOREM

4.1. Heegner divisors. Let M be a lattice of signature (2, m ). We identify

DM
∼= {w ∈P(M ⊗C) | 〈w , w 〉= 0, 〈w , w 〉> 0}.

[It parametrizes the Hodge Structures on M of type (1, m , 1).] To a 2-
plane, you form the XM + i YM from last time.
ΓM := {g ∈Aut(M ) | g acts trivially on M ∗ =M ∨/M }.
ThenXM :=ΓM\DM is an irreducible, quasiprojective variety of dimen-

sion m , with at worst quotient singularities. This means in particular that
Pic(XM )⊗Q=Cl(XM )⊗Q, i.e. XM is aQ-factorial variety.

Definition 4.1.1. Given a pair n ∈Q<0 and γ∈M ∗, we define

Yn ,γ =ΓM\Hn ,γ =







∑

(v,v )/2=n ,v≡γ (mod M )

v⊥






/ΓM

where v⊥ = {w ∈Dm | 〈v, w 〉= 0}.

In general,Yn ,γ is not irreducible. It is called a Heegner divisor onXM .

Example 4.1.2. (Degenerate case). We take Y0,0 as a Q-Cartier divisor to
be O (1)/ΓM . (Equivalently, it’s the Hodge line bundle onXM ). This is the
“constant term” of a modular form. If γ 6= 0, then n > 0 by convention.

Theorem 4.1.3 (GKZ). The generating series

~Φ(q ) =
∑

γ∈M ∗

∑

n∈Q≥0

y−n ,γeγq
n

is an element of PicQ(XM )⊗QM1+m/2(ρ∗M ) whereM1+m/2(ρ∗M ) is the space
of vector-valued modular forms of weight 1+m/2 and type ρ∗M .

4.2. Serre duality on modular curves. The idea of the proof is an appli-
cation of Serre duality.

LetMk (ρ) be the space of global sections of the vector bundle

Ek ,ρ =Γ\Mp2(R)×V /K

where (ρ, V ) is a representation of Mp2(R) and K is the pre-image of SO(2)
in Mp2(R), so Mp2(R)/K =H.

In other words,Mk (ρ) is H 0 of some vector bundle on a modular curve,
and Serre duality relates it to some H 1 group.

Suppose Γ has only one cusp at∞ (for us, Γ= SL2(Z)).
Set:

• q to be the uniformizing parameter of Γ at∞,
• Pow(Γ,ρ) =C[[q ]]⊗V ,
• Laur(Γ,ρ) =C[[q ]][q−1]⊗V
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• Sing(Γ,ρ) = Laur(Γ,ρ)/q ·Pow(Γ,ρ), the space of singularities and
constant terms of terms of Laurent series at∞.

There is a natural pairing

〈−,−〉: Pow(Γ,ρ∨)×Sing(Γ,ρ)→C

where 〈 f ,φ〉 = Resq=0( f φq−1d q ) (using the pairing of ρ and ρ∨). This is
the residue of f φ at∞, also the constant term of f φ about q = 0.

Recall that we have a map α:Mk (ρ)→ Pow(Γ,ρ).

Theorem 4.2.1. Let Obsk (Γ,ρ) = Sing(Γ,ρ)/α(Modk (Γ,ρ)). Then Obs2−k (Γ,ρ)
is finite-dimensional and dual toMk (Γ,ρ∨) under the pairing 〈−,−〉. In
other words,

α(Modk (Γ,ρ)) =α(Mk (Γ,ρ∨))⊥.

Proof. First, let us assume thatρ is 1-dimensional and acts trivially. Then
Γ acts freely onH. In this case,Lk = Ek ,ρ is the line bundle with H 0(Lk ) =
Mk (Γ).

Let Lcusp be the union of the cusps of X , which we think of as a line
bundle or element of Pic(X ).

ThenωX :=L2⊗L ∗cusp, since holomorphic 1-forms correspond to cusp
forms of weight 2. By Serre duality,

H 0(Lk ) =H 1(ωX ⊗L ∗k ) =H 1(L2−k ⊗L ∗cusp).

The pairing here is just the pairing we defined previously.
Now, H 1(L ) on a Riemann surface is precisely the obstruction of find-

ing a meromorphic section of L with given singularities at some fixed
point, and holomorphic elsewhere. Applying this to L = L2−k ⊗L ∗cusp,
we find that

H 1(L2−k ⊗L ∗cusp) =Obs2−k (Γ, k ) = Sing(Γ,ρ)/α(Mod2−k (Γ,ρ)).

That was the case of the trivial representation. In general, we can choose
a finite index subgroup Γ′ ⊂ Γ such that ρ is trivial on Γ′ and Γ′ acts freely
onH. To get back, the quotient is a finite group so you can quotient nicely.

�

Now, in order to prove that ~Φ(q ) ∈M1+m/2(ρ∨M )⊗Pic(XM )Q, it suffices
to show that ~Φ(q ) is perpendicular to the elements of in the obstruction
space Obs−1−m/2(ρM ) =Obs1−m/2(ρM )∨. You can check this explicitly; it is
just multiplication of power series.

Proof of GKZ Theorem. There is a mapξ: Mod(Γm , 1−m
2

,ρM )→Heegner(XM )
sending q n eγ 7→Yn ,γ if n ≤ 0, and crushing all holomorphic (q ≥ 0) terms.
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Given f =
∑

γ

∑

n cn (γ)q n eγ ∈Mod(ΓM , 1− m
2

,ρM ), Borcherds’ Infinite
Product Theorem gives a singular lifting: there existsΨ f onXM such that
Div(Ψ f ) =

∑

n≤0 cn (γ)Yn ,γ. This gives a relation in Pic(XM ).
Using the pairing 〈−,−〉we have for any f ∈Mod(ΓM , 1− m

2
,ρM ):

〈 f ,~Φ〉= constant term of ( f · ~Φ). =
∑

γ,n

cn (γ)eγq n ·
∑

γ,n

Y−n ,γq
n eγ

=
∑

γ,n

cn (γ)Yn ,γ

which is 0 as we just saw. Therefore, ~Φ is orthogonal to Mod(Γ, 1− m
2

,ρM ),
so it lies in Pic(XM )⊗M1+m

2
(ρ∨M ).

As we saw, the key input was the explicit expression for Div(Ψ f ). �
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5. THE THETA CORRESPONDENCE

The goal is to prove the Kudla-Millson theorem. Recall that the Kudla
program predicts that the generating series of special cycles on arith-
metic manifolds is an automorphic form.

Let G be a reductive Lie group, K a maximal compact subgroup, and
D = G /K , a symmetric space. Let Γ ⊂ G be a discrete subgroup, and
XΓ =Γ\D.

In the case G = SO(V ) for some quadratic space V , Kudla-Millson prove
that the generating series of special cycles is a Siegel modular form. Note
that this applies for arbitrary signature, and in that sense is stronger than
Borcherds’ theorem.

Example 5.0.2. (Appliction to enumerative geometry)
Suppose V has signature (2, m ) (i.e. we are in the Shimura case). The

result can be applied to reduced Gromov-Witten invariants on K3 sur-
faces (if m = 19). The reason is that the Hodge structure is (1, 19, 1), so D
is the period domain.

If V has sign (p ,q ) with p > 2, e.g. (p ,q ) = (4, 28) then it can be ap-
plied to Noether-Lefschetz theory on elliptic surfaces. Here the Hodge
structure o fan elliptic surface is (2, 28, 2).

5.1. Heisenberg algebra and Weil representation. Let V be a quadratic
space over F (we have in mind F = Q,Qp ,A) or some totally real exten-
sion) of dimension m . Let W be a symplectic space over F of dimension
2n .

The goal is to construct a unitary representation on O(V )×ãSp(W ) (here
ãSp(W ) is the double cover of Sp(W ). This is called theWeil representation.

Local Weil representation. Here we take F =Qp orR (though the discus-
sion applies to any local field or finite field of characteristic not equal to
2.) Let W be a symplectic space over F of dimension 2n .

Definition 5.1.1. The Heisenberg group associated to W is

H (W ) =W ⊕ F

with multiplication using the symplectic form on W :

(w1, t1)(w2, t2) = (w1+w2, t1+ t2+
1

2
〈w1, w2〉).

Then Sp(W ) acts on H (W ) by g · (w , t ) = (w g , t ), with the action on the
center Z (H (W ))∼= F being trivial.

Remark 5.1.2. H (W ) is a central extension of W by F :

0→ F →H (W )→W → 0
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corresponding to the cocycle (w1, w2) 7→ 1
2
〈w1, w2〉. ♠♠♠ TONY: [what if

you get rid of the 1/2?]

Here is the most important result in the representation theory of the
Heisenberg group.

Theorem 5.1.3 (Stone, von Neumann). Let ψ: Z (H (W )) ∼= F → C be an
additive character. Then there exists a unique irreducible representation
(ρψ,S) of H (W )with central characterψ, i.e.

ρψ((0, t )) =ψ(t ) · IdS .

Example 5.1.4. If dim W = 2 (so Sp(W )∼= SL2), then we have

H (W )∼=













1 a c
0 1 b
0 0 1






| a ,b , c ∈ F







.

Under this isomorphism, a and b are coordinates for a choice of isotropic
subspaces of W . Indeed, identifying W ∼= F ⊕ F with the pairing matrix
�

0 1
−1 0

�

, we have

((a ,b ), t )↔







1 a 1
2

ab
0 1 b
0 0 1







♠♠♠ TONY: [this doesn’t seem to be correct] For an additive character
ψ: F → C×, we can realize the representation (ρψ,S) with S = L2(F ) and
ρψ acting on f ∈S by







1 a c
0 1 b
0 0 1






· f (x ) =ψ(−bx + c ) f (x −a ).

Schrödinger model. In general, (ρψ,S) can be realized as follows. Write
W = X ⊕ Y where X , Y are maximal isotropic subspaces of W . Let S =
S (X ) be the space of C-valued Schwartz functions. This means more
concretely

S (X ) =

(

C-valued locally constant compactly supported functions F =Qp

Schwartz functions F =R

For ϕ ∈S (X ), the action is defined by

ρψ(x + y , t )ϕ(x ′) =ψ(t + 〈x ′, y 〉+
1

2
〈x , y 〉)ϕ(x +x ′).

Projective representation on Sp(W ). For all g ∈ Sp(W ), we can form a
new representation ρg

ψ(h) = ρψ(g · h), which also has central character
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ψ. By the theorem of Stone and von Neumann, there exists A(g ) ∈ Aut(S)
such that A(g )−1ρ(h)A(g ) =ρ(g ·h) for all h ∈H (W ).

This defines a projective representationωψ : Sp(W )→GL(S)/C× send-
ing g 7→ A(g ), because A(g ) is only defined up to scalars.

This isn’t quite what we wanted - we wanted a linear representation.
We basically accomplish this by lifting to the universal cover:

ãSp(W )ψ

��

// GL(S)

��
Sp(W ) // GL(S)/C×

Here ãSp(W )ψ is a central extension:

1→C×→ãSp(W )ψ→ Sp(W )→ 1

We emphasize that ãSp(W )ψ depends on a choice of ψ, but they are all
canonically isomorphic.

Then we can liftω to a linear representationωψ,W of ãSp(W )ψ.

Fact: take ãSp(W ) to be the double cover of Sp(W ), corresponding to

1→µ2→fSp(W )→ Sp(W )→ 1.

ThenÞSpψ(W ) =fSp(W )×µ2 C×. Now restrictωψ,W to fSp(W ). Thenωϕ,W is
given by

�

A 0
0 t A−1

�

ϕ(v ) = |det A |ϕ(t Av )
�

I B
0 I

�

ϕ(v ) =ψ(
tv Bv

2
)ϕ(v )

�

0 −I
−I 0

�

ϕ(v ) = ν bϕ(v )

where bϕ is the Fourier transform.
Now we define a representation O(V )×fSp(W ). We have a map

O(V )×fSp(W )→fSp(W ⊗V ).

In this case, S =S (V n )where 2n = dim W .
Pull back the Weil representation to O(V )×fSp(W ) and call it eω∨ψ,W , so

eω∨ψ,W (g , 1)(ϕ(x )) =ϕ(g −1x ) for g ∈O(V ).

and eω∨ψ,W (1, g ′)(ϕ(x )) acts as the pullback ofωψ,W⊗V of fSp(W ⊗V ) via the

inclusion map fSp(W ⊗V ).
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On fSp(W ), the restriction of eω∨ψ,W to µ2 acts as z m · Id for z ∈µ2, where
m = dim V . In particular, if m is even then it factors through Sp(W ). In
summary, eω∨ψ,W factors through O(V )×Sp(W ) if m is even. So let

Mp(W ) :=

(

Sp(W ) m odd,

Sp(W ) m even.

Anyway, we’ve constructed a representation eωW
ψ,V on O(V )×Mp(W ).

Now that we have a representation, we can define theta functions.

θψ,ϕ(g , g ′) =
∑

ξ∈V n (F )

eωW
ψ,V (g , g ′)(ϕ)(ξ)

where ϕ ∈S (V n ) and F is a number field.
The Kudla-Millson theorem syas that there exists a very special ϕ =:

ϕK MS (V n )⊗A (XM ), such that θψ,ϕK M is the generating series of special
cycles. That gives modularity, since θ is evidently invariant. What we
have to do is compute the Fourier coefficients of this theta function.

5.2. Theta correspondence. Anyway, using the representationω :=ωW
ψ,V

on O(V )×Mp(W ), we define a theta correspondence between automor-
phic representations. The idea is to lift a modular form on Mp(W ) to an
automorphic form on the product.

Notation: A is the ring of adeles of Q, G is reductive group over Q,
and G (A) its adelic points. For us, G = O(V ) or Mp(W ), so for instance
G (Qp ) =SO(V ⊗QQp ).

Recall thatωwas a representation on the sapceS (V n ).

Definition 5.2.1. On O(V )×Mp(W ),

θφ(g , g ′) =
∑

ξ∈V n (Q)

ω(g , g ′)(φ)(ξ)

This is invariant under O(V ) and Mp(W ) (the latter by Poisson summa-
tion).

Notation: L2(G (Q)\G (A)) is the space of square-integrable functions
on G (Q)\G (A). [Assume for now that G has no center.] Then by Lang-
lands, L2(G (Q)\G (A)) = L2

disc ⊕ L2
cont. There is a further decomposition

of the discrete part into L2
cusp ⊕ L2

residue. The cuspidal part is “filled out”
by the cuspidal automorphic forms, and the residue part is filled out by
Eisenstein series.

These correspond to automorphic forms onΓ\G (R)/K (R). If K f ⊂G (A f )
and Γ= K ∩G (Q), then Γ\G (R)/K (R) ·K (R).
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Now for the theta correspondence. LetAcusp(G ) = {irreducible representations in L2
cusp}.

These are called cuspidal automorphic representations. We define a map

ΘV
W :Acusp(Mp(W ))→Acusp(O(V )).

For (τ, H )∈Acusp(Mp(W )), we denote θ (τ)∈Acusp(O(V )) the representa-
tion

Θ(τ) = {θ f (g ) :=

∫

Mp(Q)\M p (A)

θφ(g , g ′) · f (g ′)d g ′∀ f ∈H}.

Notice the similarity to Borcherds’ theta lifting. Here, convergence is ok
because we are working with cusp forms, and Mp(Q)\Mp(A) has finite
volume.

Remark: θ (τ) is not necessarily cuspidal.
Similarly, there is ΘW

V :Acusp(O(V ))→Acusp(Mp(W )).

Example 5.2.2. φ(v ) =
∏

i e−(vi ,vi ) gives the classical theta functions.

Remark 5.2.3. (1) When does θ f exist and θ (τ) 6= 0? [Moeglon, Wee
Teck Gan, Takeda] It only depends on the pole of the L-function
of τ.

(2) If θ (τ) 6= 0 and it is cuspidal (which also depends on the L-function),
then θ (τ) is irreducible.

(3) If θ (τ) is cuspidal, then ΘW
V ◦ΘV

W (τ) =τ (up to a character).
(4) If τ ∈ Acusp(Mp(W )), for any V we have ΘV

W (τ). Then we have
the following Ralli Tower property. Suppose for some Vc , ΘVc

W (τ)
is cuspidal. Then choosing subquadratic space V ′ ⊂ Vc , we have

ΘV ′
W (τ) = 0, andΘ

Vc⊕







0 1
1 0







W (τ). In other words, the first occurence
of non-zero theta lifting is cuspidal.

Note that this is again similar to Borcherds’ proof, lifting from sublat-
tices.

Next time, we’ll show that if θφ(g , g ′) is a theta function, for allφ Schwartz,
there exists a special Schwartz form,φ ∈S (V n )⊗C∞(X ) then θφ(g , g ′) is
a theta form, and the Fourier expansion is a generating series for special
cycles.
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6. GEOMETRY AND COHOMOLOGY ON ARITHMETIC MANIFOLDS

Let G be a Lie group and K a maximal compact subgroup of G . Then
D =G /K is a symmetric space. Let Γ⊂G is a discrete subgroup.

(1) Connection between H ∗(Γ\D,C) and relative Lie algebra coho-
mology. (Matsushima formula)

(2) (g, K )-cohomology.

Because D is contractible, H ∗(Γ;C)∼=H ∗(Γ\D;C) as Γ\D is contractible.

6.1. (g, K )-modules. Let g = Lie(G ). Given a representation (π, V ) of G ,
we associate a representation of g as follows.

Definition 6.1.1. An element v ∈V is smooth if for X ∈ g,

X ·v := lim
t→0

exp(t X ) ·v −v

t
exists.

Remark 6.1.2. This is only interesting when dim V =∞; when dim V <∞
then all vectors are smooth.

Definition 6.1.3. v ∈V is K -finite if dim K ·v is finite.

The idea is that if we view (π, V ) as a representation of K , we have V =
⊕

Vi as a K -representation (because K is compact). Decomposing into
irreducible classes, we have V ∼=

⊕

V ⊕m i
i . Then K -finite is equivalent to

m i being finite for all i .

Definition 6.1.4. A (g, K )-module is a C-vector space V together with a
representation of g on V and a continuous action of K on V such that

(1) every vector in V is K -finite,
(2) d

d t
|t=0(exp t Y ) ·v ) = Y ·v , for v ∈V and Y ∈ Lie(K ).

(3) k · (X ·v ) =Ad(k )X · (k ·v ) for all v ∈V, k ∈ K , X ∈ g.

Facts: for all unitary representation (π, V ) of G , one can associate a
(g, K )-module by taking

V∞f := {k −finite smooth vectors on V } ⊂V.

Theorem: if (π, V )∼= (π′, V ′) is an isomorphism of unitary representations,
V∞f
∼= (V ′f )∞.

Example 6.1.5. The Weil representation (ω,S (X )). Its (g, K ) = (sp,àU(n )) is
on S∞f = {ϕ0(x )p} where p is a polynomial on X and ϕ0(x ) = exp(−(x ,x ))
[note that this is G -invariant]. ♠♠♠ TONY: [There was some confusion
why not to allow other Gaussians - not totally satisfied. Perhaps involves
the discrete guy Γ]
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6.2. Relative Lie algebra cohomology. Given a (g, K )-module, let (π, V )
we can define the cohomology H ∗(g, K ; V ) to be the cohomology of the
complex Homg(

∧•
p, V )where g= k+p is the Cartan decomposition. The

differentials: if f :
∧k

p → V , then d f (x1 ∧ . . . ∧ xk+1) =
∑

k (−1)k x i f ( bx i ).
♠♠♠ TONY: [check this]

We say that (π, V ) is cohomological if H ∗(g, K ; V ) 6= 0.

Example 6.2.1. If G =O(p ,q ), then Lie(G ) = {
�

∗ 0
0 ∗

�

+
�

0 X
t X 0

�

)}.

Example 6.2.2. If G = K is compact, then H ∗(G ,C) = H ∗(G,C∞(G )). This
is de Rham’s Theorem. Why is it true?
{k − forms on G } = Hom(

∧k
g,C∞(G )). For ω, and X ∈ g viewed as a

left-invariant vector field, we getω(X1, . . . , Xk )∈C∞(G ).

Recall that: if (π, V ) is a representation of a reductive Lie group G , we
can associate a (g, K )-module

V∞f = { smooth, K -finite vectors in V }.

We introduced this in order to connect the cohomology of arithmetic
groups with Lie algebra cohomology.

Suppose (ρ, V∞) is a (g, K )-module. Then H ∗(g, K ; V∞) :=H ∗(Hom(
∧•

P, V∞))
where g= k⊕P is the Cartan decomposition.

Example 6.2.3. When G is compact, we g= k= P . Then

H ∗(g,C∞(G ))∼=H ∗
dR(G ,C).

This is essentially because there is a bijection

{k − forms on G }↔{Hom(
k
∧

g,C∞(G ))}

sendingω 7→ω(X1, . . . , Xk )⊂C∞(G )where the X i are left-invariant vector
fields.

6.3. L2-cohomology. Let Y = Γ\D and D =G /K , Γ a torsion-free arith-
metic subgroup of D. We produce now a non-smooth analogue of de
Rham cohomology which will be better suited for noncompact spaces.

Definition 6.3.1. Let Ω•(Y ) be the de Rham complex on Y . Define the L2-
complex on Y

Ωi
(2)(Y ) = {C−valued smooth square-integrable i -forms, whose d is still L2}.

This forms a complex under exterior derivative, and we define

H ∗
(2)(Y ,C) :=H ∗(Ωi

(2)(Y ), d ).
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The point of this is that it allows us to imitate Hodge theory for com-
pact manifolds. By Hodge theory,

H ∗
(2)(Y ,C)∼=H (Y ) = {L2−harmonic forms on Y }

if H ∗
(2)(Y ,C) is finite-dimensional (it often is not).

Remark 6.3.2. This isomorphism actually factors through H
∗
2(Y ,C), called

the “reduced L2-cohomology,” which is always isomorphic toH ∗(Y ).
In general, the mapH (Y )→ H ∗

(2)(Y ,C) is neither surjective nor injec-
tive.

H ∗
(2)(Y ,C) is not preserved by homeomorphisms, unlike de Rham co-

homology. So it’s really not a topological invariant.
When Y is complete (every geodesic is global), H

∗
(2)(Y ,C)∼=H ∗

(2)(Y ,C) if
the latter is finite-dimensional. Fortunately, all arithmetic manifolds are
complete because there is a group action.

By work of Zueker and Borel: for G = SO(2, n ) and Y =Γ\D,

H ∗
(2)(Y ,C)∼=H ∗(Y ,C)when i < n .

Corollary 6.3.3. H i (Y ,C) has a pure Hodge structure when i < n.

In general, for noncompact manifolds (even “nice” ones like hypersur-
faces) you can only expect a mixed Hodge structure.

6.4. Matsushima formula.

Theorem 6.4.1 (Borel, Casselman). If the spaces are finite-dimensional,
then

H ∗(g, K ; L2
disc(Γ\G ))∼=H ∗

(2)(Y ,C).

This implies that

H ∗
(2)(Y ,C) =

⊕

π irred.

mπH ∗(g, K ,π∞).

There is a map
H ∗(g, K ; L2

disc(Γ\G )→H ∗(Y ,C).

Remark 6.4.2. We have H ∗
(2)(Γ,C)∼=H ∗(g, K , L2

disc(Γ\G )
For example, if G = SO(2, n ) the Vogan-Zvekerman says H i (g, K ;π) = 0

if i < n/2 and i is odd. Thus we get this vanishing for H i
(2)(Γ,C).

Application: H 1(Y ,Q) = 0 if Y is a connected Shimura variety of (real)
dimension at least 3, hence Y has trivial Albanese.

(2) Consider {special cycles of codimension i } ⊂H 2i (Y ,C). For i small
enough, this decomposes as

⊕

π

mπH 2i (g, K ;π∞)
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where π comes from the theta correspondence (recent result of Li, Mill-
son, Reregeron, Moeglin). So checking classes coming from special cycles
is equivalent to checking representations coming from the theta corre-
spondence!
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7. KUDLA-MILLSON SPECIAL THETA LIFTING

Observation:
H ∗(Y ,C)∼=H ∗(g, K ;SV n ))

where G = SO(p ,q ) = SO(V ), K = S(O(p )×O(q ), and S(V n ) are Schwartz
functions on V n (in particular, lying in L2), andS (V n ) is the Fock space.
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8. MODULARITY OF GENERATING SERIES OF SPECIAL CYCLES

8.1. Construction of special cycles. Let V be a quadratic space overQ of
signature (p ,q ), G = SO(V )0, and g = Lie(G (R)). The Cartan decomposi-
tion is g= p+ k, where

p∼=
��

0 X
X t 0

�

: X ∈M p ,q

�

∼=M p ,q .

This has a natural basis Xα,ν where 1≤α≤ n and p +1≤µ≤m = p +q .
As usual, we set D =G (R)/K (R)where K (R)∼= SO(p )×SO(q ) is a maxi-

mal compact subgroup of G (R). Then D can be identified with the Grass-
mannian of q-planes in V ⊗R, by the usual presentation of the Grass-
mannian as a quotient of a Stiefel manifold. Then for z ∈D, we have

T ∗z (D)
∼= p∗ = {ωα,µ :=X ∗α,µ}

Definition 8.1.1. Let k be a positive integer. For v ∈ V ⊕k , we define U =
U (v ) to be theQ-subspace of V spanned by the components of v . Let

Dv = {z ∈D | z ⊥U}

identifying D as the Grassmannian of q-planes in V ⊗R.
Note that if r = rankU , then Dv

∼= SO(p − r,q ) has codimension rq . In
particular, generically rankU = k so C (U ) := ΓU\Dv is a codimension kq
cycle. Here Γ is a congruence subgroup of G , and ΓU is the stabilizer of U
in Γ, which admits a natural inclusion into Y =Γ\D.

For any β a k ×k symmetric matrix overQ, we set

Ωβ =
n

v ∈V k |
1
2 〈v,v 〉=β as matrices

dimU (v )=rankβ

o

.

♠♠♠ TONY: [is the second condition redundant?]

Definition 8.1.2. Let β be as above. Define the codimension q · rank(β )-
cycle Z (β ) =

∑

v∈Γ\Ωβ C (U (v )) in Y =Γ\D.

♠♠♠ TONY: [why finite?]
However, at this point Y is not a Shimura variety, so we want to put

some extra cycle on it. ♠♠♠ TONY: [don’t understand this “philosophy”]

Definition 8.1.3. The Euler form eq ∈Ωq (D) is defined as follows: eq = 0 if
q is odd, and otherwise

eq =
�

−
1

4π

�` 1

`!

∑

σ∈Sq

sgn(σ)Ωσ(1)σ(2) ∧Ωσ(3)σ(4) . . .∧ωσ(q−1)σ(q )

where q = 2`, Ωi j =
∑

αωαi ∧ωαj , andωαi ∈ p∗ = T ∗D as before.
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Remark 8.1.4. When q = 2, eq is the Chern class of the Hodge line bundle
on Y . When q = 2, D parametrizes Hodge structures of type (1, p , 1), and
the Hodge bundle is the line bundle L→D whose fiber over z ∈D is the
H 2,0 of the corresponding Hodge structure.

Let t = rank(β ). We define

[zβ ] := [Z (β )]∧ e k−t
q ∈H kq (Y ,C).

Here the class [z (β )]∈H t q (Y ,C) is defined by the usual Poincaré duality:

η 7→
∫

z (β )

η for η∈H pq−t q
c (Y ,C)

where we have used that eq is Γ-invariant, because it comes from the
Hodge bundle and Γ doesn’t affect the Hodge structure.

Remark 8.1.5. A related fact used often in analysis is that we can just take
η a closed pq − t q form rapidly decreasing. This is equivalent because
every closed, rapidly decreasing form differs from a compactly supported
form by something exact.

For η a rapidly decreasing pq −kq form, we write

〈zβ ,η〉=
∫

z (β )

η∧ e k−t
q .

Theorem 8.1.6 (Kudla-Millson). The generating series

P(τ,η) =
k
∑

t=0

∑

β∈M n×n (Q)
β symmetric, rank n

〈[zβ ],η〉exp(2πi tr(βτ))

is a Siegel modular form of weight m/2 for some congruence subgroup in
Sp(W ). Here we view τ as an element of the Siegel upper half-planeH2n ,
so βτ is a product of matrices.

When q is odd, the only non-zero term comes from β with rank k be-
cause there is no eq , hence P(τ,η) is in face a cusp form. When q is even,
P(τ,η) is Eisenstein series (this case is more interesting because q = 2 is
the Shimura case. Recall from Borcherds’ setting that this case gave the
Hodge line bundle.)

Example 8.1.7. For p = 2, Y =Γ\D is a connected Shimura variety (parametriz-
ing Hodge structures of K3 surfaces). This recovers Borcherds’ GKZ The-
orem.
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For p = 1, Y is a hyperbolic manifold and the special cycles are “to-
tally geodesic submanifolds,” so this tells us that the generating series of
totally geodesic submanifolds is a Siegel modular form.

Idea of Proof. P(τ,η) is the Fourier expansion of the theta series defined
previously.

8.2. Theta functions and theta forms. Recall that we have a Weil repre-
sentationω on G ×G ′, where G = SO(V ) (signature p ,q )and G ′ =Mp(W )
(the symplectic group of W if p+q is even, and a double cover if it’s odd).

Definition 8.2.1. Viewω as a representation on G (A)×G ′(A) (via work of
Weil). G ×G ′ acts on S(V n (A)), the space of Schwartz functions. Given
ϕ ∈S(V n (A)), we define

θϕ(g , g ′) =
∑

x∈V n (Q)

ω(g , g ′) ·ϕ(x )

Note that ω = ωψ depends on a choice of additive character, which we
suppress.

Example 8.2.2. If ϕ = e− tr(x ,x ) then one gets something looking like the
classical theta functions.

To remind you of the representationω(g , g ′), the above is
∑

x∈V nQ

ω(g ′)(ϕ)(g −1x ).

The idea is that if we choose a Schwartz function ϕ which is K × K ′-
invariant, where K is the maximal compact of G (R) and K ′ is a maximal
compact of G ′(R), then θϕ descends to a function on G (Q)\G (A)/K , and
if you then quotient by some level you get Γ\D.

More generally, we can choose some “Schwartz form”, i.e. an element
ofS (V n (A))⊗Ωi (D). Similarly, we define the theta function

θϕ(g , g ′) =
∑

x∈V n (Q)

ω(g , g ′)(ϕ)(x ).

For fixed g ′, this is a differential form on Γ\D. Then you view this as a
function on G ′, and show that you get a modular form.

Let us take K -invariant Schwartz functions/forms:

S(V n (R))K ∼←− [S(V n (R))⊗C∞(D)]G (R)

by evaluation at a base point of D. Then for ϕ = ϕ f ⊗ϕ∞, where ϕ∞ ∈
[S(V n (R))]K , θϕ(g , g ′) descends to a function on D.

Similarly,

[S(V n (R))⊗Ωi (D)]G (R) ∼= [S(V n (R))⊗∧ip∗]K
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where Lie(G ) = Lie(K ) ⊕ p. For ϕ = ϕ f ⊗ ϕ∞ where ϕ∞ ∈ [S(V n (R)) ⊗
∧i (p∗)]K , θϕ(g , g ′) descends to a differential i -form on D.

We want g ′ also to descend to some function on G ′/K ′. More precisely,
the hope is that θϕ(g , g ′) descends to a (holomorphic) section of some
line bundle on G ′(R)/K ′. This is basically the Siegei upper half space h2n .
That is exactly the notion of Siegel modular form! So if we can prove this,
then we will have that θϕ(g , g ′) is a Siegel modular form as a function of
g ′.

The point is then that a clever choice of ϕ will turns θϕ(g , g ′) into the
generating series for special cycles.

Differentials. Fromω, we get a Lie(G )×Lie(G ′) action on the Fock space
S (V n (A)) ⊂ S(V n (A)) ♠♠♠ TONY: [gah] which was the subspace of
functions of the form {p (x1, . . . ,xn )ϕ0(x )} where p is any polynomial and
ϕ0 is exp(− tr(x ,x )).

Definition 8.2.3. Let C i ,j = [
∧i

p⊗
∧j (l−)⊗S (V n (R))⊗Cχm ]K×K ′ , where

Lie(G ′) = Lie(K ′)⊕ l (Cartan decomposition), and l= l+⊕ l− via the com-
plex structure. Here χm is the character g ′ 7→ (det g ′)m/2.

So the above is smooth i -forms on D and antiholomorphic J -forms on
D ′ =G ′/K ′. It forms a double complex with d and ∂ . Here d comes from
the exterior derivative Ω•(D)→ Ω•+1(D), so d : C i ,j →C i+1,j . On the other
hand, ∂ comes from the differential operator Ω•(D ′)→Ω•+1(D ′).

Using the theta correspondence, we can construct a correspondence
between differential forms on D and holomorphic forms on D ′. With j =
0, we get holomorphic functions. So this is a correspondence between
two Shimura varieties.

Let S(V n (A)) be the space of adelic Schwartz-Bruhat functions. Forϕ ∈
S(V n (A)), we writeϕ =ϕ f ⊗ϕ∞ whereϕ∞ ∈S(V n (R)) andϕ f ∈S(V n (A f )).

By abuse of notation, we consider ϕ∞ ∈ C i ,j (a Schwartz function ten-
sored with forms). We say that it is holomorphic if ∂ ϕ∞ = 0 in the d -
cohomology of the double complex, i.e. this is dψ for ψ ∈ C i−1,j+1. We
say that ϕ∞ is closed if dϕ∞ = 0.

Definition 8.2.4. For a rapidly decreasing closed pq − i form η on Y , we
define

θϕ(η) =

∫

Y

η∧θϕ(g , g ′)

where ϕ =ϕ f ⊗ϕ∞ and ϕ∞ ∈C i ,0.
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The goal is to show that for some ϕ,

θϕ(η) = P(η,τ).

Proposition 8.2.5 (Kudla-Millson). If ϕ∞ ∈ C i ,0 is closed and holomor-
phic, then θϕ(η) is a holomorphic section ofLm :=G ′×Cχm /K ′.

Note that θϕ(η) is a section of Lm because ϕ∞ ∈ [(
∧i

p)⊗S (V n (R))⊗
Cχm ]K×K ′ because k ′ ·ϕ∞ = (det k ′)m/2ϕ∞.

To show that θϕ(η) is actually holomorphic, we need to check that ∂ θϕ(η) =
0. By definition, and using that ∂ is only on the metaplectic half,

∂ θϕ(η) = ∂

∫

Y

η∧θϕ(g , g ′)

=

∫

Y

∂ (η∧θϕ(g , g ′))

=

∫

Y

η∧ ∂ (θϕ(g , g ′))

=

∫

Y

η∧θ∂ ϕ(g , g ′)

=

∫

Y

η∧θdψ(g , g ′)

=

∫

Y

η∧d (θψ(g , g ′))

=

∫

Y

d (η∧θψ(g , g ′))

= 0

because η∧θψ(g , g ′) is rapidly decreasing. We need the following:

(1) find ϕ∞ ∈C nq ,0 which is holomorphic and closed.
(2) Prove θϕ(τ) = P(τ,η).

If (1) is true then θϕ(η) is a holomorphic Siegel modular form of weight
m by the previous theorem.

You basically choose the finite part ϕ f ∈ S(V n (A f ))L arbitrarily. If you
don’t get something invariant on Y = Γ\D but on eY = eΓ\D where eΓ is a
finite index subgroup, then you can take invariants to get something on
Y .

39



Math 245C 2015

Construction of (1). (This is called the Kudla-Millson special Schwartz
form) I will construct

ϕK M ∈ [S(V n (R))⊗Ωnq (D)]G = (S (V n (R))⊗
q
∧

(p∗)]K .

Note that this is not C nq ,0 because there is no character, but we will prove
that it our ϕK M does lie there.

(1) Define a Howe operator

∆:S (V (R))⊗
•
∧

p∗→S (V (R))⊗
•+q
∧

p∗

defined by

∆=
1

2
·

p+q
∏

µ=p+1





 

p
∑

α=1

xα−
1

2π

∂

∂ xα

!

⊗Aαµ





where (x1, . . . ,xp+q ) are the coordinates on V (R), Aα,µ is the left
multiplication byωαµ, which was dual to Xαµ.

(2) ϕq =∆(ϕ0), where ϕ0 is the standard Gaussian

ϕ0 = exp(−2πi tr(x ,x )).

Then ϕq ∈ [S (V (R))⊗Ωq (D)]G . Then finally

ϕK M =ϕq ∧ϕq ∧ . . .∧ϕq ∈ [S (V (R))⊗Ωnq (D)]G .

Remark 8.2.6. S (V n (R)) = {p (v1, . . . , vn )ϕ0}. There’s an intertwining op-
erator with P(Cm n ) = P(zαµ) taking ϕ0 7→ 1. Then

L

 

p
∑

α=1

xα−
1

2π

∂

∂ xα

!

L−1 =
1

2πi
zαi

40


