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Abstract. We show directly that the fractal uncertainty principle of Bourgain–

Dyatlov [BD16] implies that there exists σ > 0 for which the Selberg zeta func-

tion (1.2) for a convex co-compact hyperbolic surface has only finitely many zeros

with Re s ≥ 1
2 − σ. That eliminates advanced microlocal techniques of Dyatlov–

Zahl [DZ16] though we stress that these techniques are still needed for resolvent

bounds and for possible generalizations to the case of non-constant curvature.

The purpose of this note is to give a new explanation of the connection between

the fractal uncertainty principle, which is a statement in harmonic analysis, and the

existence of zero free strips for Selberg zeta functions, which is a statement in geometric

spectral theory/dynamical systems. The connection is proved via the transfer operator

which is a well known object in thermodynamical formalism of chaotic dynamics.

To explain the fractal uncertainty principle we start with its flat version, given

by (1.1) below. Let X ⊂ [−1, 1] be a δ-regular set in the following sense: there exists

a Borel measure µ supported on X and a constant CR such that for each interval I

centered on X of size |I| ≤ 1, we have C−1
R |I|δ ≤ µ(I) ≤ CR|I|δ.

Bourgain–Dyatlov [BD16, Theorem 4] proved that when δ < 1, there exist β > 0

and C1 depending only on δ, CR such that for all f ∈ L2(R)

suppFhf ⊂ X(h) =⇒ ‖f‖L2(X(h)) ≤ C1h
β‖f‖L2(R), (1.1)

where Fhf := f̂(ξ/h) is the semiclassical Fourier transform (2.25) and

X(h) := X + [−h, h]

denotes the h-neighborhood of X. Roughly speaking, (1.1) quantifies the statement

that a function and its Fourier transform cannot both concentrate on a fractal set.

To explain the spectral geometry side, let M = Γ\H2 be a convex co-compact

hyperbolic surface, that is, a non-compact hyperbolic surface with a finite number of

funnel ends and no cusps – see [Bo16, §2.4]. The Selberg zeta function is defined by

ZM(s) =
∏
`∈LM

∞∏
k=0

(
1− e−(s+k)`

)
, Re s� 1, (1.2)

and it continues as an entire function to C. Here LM denotes the set of lengths

of primitive closed geodesics on M with multiplicity – see [Bo16, Chapter 10]. The
1
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zeros of ZM enjoy many interpretations, in particular as quantum resonances of the

Laplacian on M – see [Zw17] for a general introduction and references. In particular,

finding resonance free regions has a long tradition and applications in many settings.

The limit set, ΛΓ, is defined as the set of accumulation points of orbits of Γ acting

on H2, see also (2.6). It is a subset of the boundary of H2 at infinity, so in the Poincaré

disk model of H2 we have ΛΓ ⊂ S1. The set ΛΓ is δ-regular where δ ∈ [0, 1) is the

exponent of convergence of Poincaré series, see [Bo16, Lemma 14.13].

The hyperbolic version of fractal uncertainty principle was formulated by Dyatlov–

Zahl [DZ16, Definition 1.1]. Define the operator Bχ = Bχ(h) on L2(S1) by

Bχ(h)f(y) = (2πh)−1/2

∫
S1

|y − y′|−2i/hχ(y, y′)f(y′) dy′, (1.3)

where |y − y′| is the Euclidean distance between y, y′ ∈ S1 ⊂ R2.† Here

χ ∈ C∞c (S1
∆), S1

∆ := {(y, y′) ∈ S1 × S1 | y 6= y′}. (1.4)

We say that ΛΓ satisfies (hyperbolic) fractal uncertainty principle with exponent β ≥ 0

if for each ε > 0 there exists ρ < 1 such that for all C0 > 0, χ ∈ C∞c (S1
∆) we have

‖ 1lΛΓ(C0hρ) Bχ(h) 1lΛΓ(C0hρ) ‖L2(S1)→L2(S1) = O(hβ−ε) as h→ 0. (1.5)

This hyperbolic fractal uncertainty principle with β = β(Γ) > 0 was established for

arbitrary convex co-compact groups by Bourgain–Dyatlov [BD16] by proving the flat

version (1.1) and showing that it implies (1.5). It followed earlier partial results of

Dyatlov–Zahl [DZ16].

With this in place we can now state our main result:

Theorem. Assume that M = Γ\H2 is a convex co-compact hyperbolic surface and the

limit set ΛΓ satisfies fractal uncertainty principle with exponent β in the sense of (1.5).

Then M has an essential spectral gap of size β−, that is for each ε > 0 the Selberg

zeta function of M has only finitely many zeroes in {Re s ≥ 1
2
− β + ε}.

Remark. Bourgain–Dyatlov [BD17] showed that when δ > 0, the set ΛΓ also satisfies

the fractal uncertainty principle with exponent β > 1
2
−δ which only depends on δ. The

resulting essential spectral gap is an improvement over the earlier work of Naud [Na05]

which gave a gap of size β > 1
2
−δ which also depends on the surface. See also Dyatlov–

Jin [DJ17].

A stronger theorem was proved in [DZ16] using fine microlocal methods which

included second microlocalization and Vasy’s method for meromorphic continuation

(see [Zw17, §3.1] and references given there). In addition to showing a zero free strip,

it provided a bound on the scattering resolvent, see [DZ16, Theorem 3]. Having such

bounds is essential to applications – see [Zw17, §3.2]. It would be interesting to see if

†Note the sign change from [DZ16, (1.6)]. It is convenient for us and it does not change the norm.
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Figure 1. The disks D1, D2 and the transformation γ in the trivial case (1.7).

one can use the methods of this paper to obtain bounds on the scattering resolvent.

However, generalizations to non-constant curvature are likely to be based on the mi-

crolocal techniques of [DZ16]. The result of [DZ16] also applies to higher-dimensional

hyperbolic quotients. The proof of the present paper can be adapted to higher dimen-

sional cases where the limit set is totally discontinuous (such as Schottky quotients).

The present paper instead uses transfer operators – see the outline below and §2.3.

The identification of M with a quotient by a Schottky group – see §2.1 – allows to

combine simple semiclassical insights with the combinatorial structure of the Schottky

data.

Outline of the proof. The proof is based on a well known identification of zeros of

ZM(s) with the values of s at which the Ruelle transfer operator, Ls, has eigenvalue 1

– see (2.13). Referring to §2.3 and [Bo16, §15.3] for precise definitions, we have

Lsu(z) =
∑

w : Bw=z

B′(w)−su(w), (1.6)

where B is an expanding Bowen–Series map and u is a holomorphic function on a

family of disjoint disks symmetric with respect to the real axis.

We outline the idea of the proof in the trivial case (the zeros of ZM(s) can be

computed explicitly – see [Bo16, (10.32)]) when there are only two disks D1, D2 and

γ ∈ SL(2,R), a linear fractional transformation preserving the upper half plane, maps

one disk onto the complement of the other disk, see Figure 1:‡

D2 = Ċ \ γ−1(D◦1), B(z) =

{
γ−1(z), z ∈ D1;

γ(z), z ∈ D2.
(1.7)

‡This trivial case can be reduced to γ(z) = kz, k > 1, but we do not want to stress that point.
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Denote Ij := Dj ∩R. In the case (1.7) the limit set ΛΓ consists of the fixed points of γ,

ΛΓ = {x1, x2} ⊂ Ṙ, xj ∈ Ij, γ(xj) = xj,

and the fractal uncertainty principle (1.5) holds with β = 1
2

by a trivial volume bound :

‖ 1lΛΓ(C0hρ) Bχ(h) 1lΛΓ(C0hρ) ‖L2→L2

≤ ‖ 1lΛΓ(C0hρ) ‖L∞→L2‖Bχ(h)‖L1→L∞‖ 1lΛΓ(C0hρ) ‖L2→L1

≤ Ch
ρ
2 × h−

1
2 × h

ρ
2 = O(h

1
2
−ε), ε = 1− ρ.

(1.8)

The operator (1.6) splits as a direct sum over operators on the two disks and hence we

only need to consider a simplified transfer operator

Lsu(z) = γ′(z)su(γ(z)), u ∈ H(D1), (1.9)

where H(D1) is the Bergman space of holomorphic functions in L2(D1).

Given (1.8) we want to show, in a complicated way which generalizes, that the

equation Lsu = u, u ∈ H(D1), has no non-trivial solutions for

s = 1
2
− ν + ih−1 with ν < 1

2
− ε.

Thus assume that for such an s, Lsu = u. The first observation is that u|R is semi-

classicaly localized to bounded frequencies: that means that for all χ ∈ C∞c (I1),

Fh(χu)(ξ) = O(h∞|ξ|−∞) for |ξ| ≥ C. (1.10)

It is here that holomorphy of u is used: using the maximum principle we show that

supD1
|u| ≤ eC/h supI1 |u| and derive the Fourier transform bound from this. See Lem-

mas 3.2 and 3.3.

From now on we work only on the real axis. In the outline we will use concepts

from semiclassical analysis but we stress that the actual proofs in the paper are self-

contained.

To connect the model used here to Bχ(h), which acts on S1, we identify S1 with the

extended real axis Ṙ – see §2.5. Transplanted to Ṙ, Bχ(h) is a semiclassical Fourier

integral operator with the phase Φ(x, x′) defined in (2.24) and hence associated to the

canonical transformation

κ : T ∗Ṙ→ T ∗Ṙ, κ : (x′,−∂x′Φ) 7→ (x, ∂xΦ).

We stress that κ is a global diffeomorphism and for (x, ξ) = κ(x′, ξ′) we have x 6= x′.

That means that for the action on compactly microlocalized functions, the singularity

removed by the cutoff (1.4) is irrelevant and we can consider a simpler operator B(s)

defined by, essentially, removing χ. In the circle model it has the form

B(s)f(y) = (2πh)−1/2

∫
S1

|y − y′|−2sf(y′)dy′.
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See §2.5 for details. This operator has a nice equivariance property which is particularly

simple for the operator (1.9): denoting 〈x〉 :=
√

1 + x2 we have

L̃sB(s) = B(s)L̃1−s where L̃s := 〈x〉2sLs〈x〉−2s : L2(Ṙ)→ L2(Ṙ). (1.11)

See Lemma 2.5 for the general version. Here we only say that what lies behind this

identity is the following formula valid for linear fractional transformations ϕ:

|ϕ(x)− ϕ(y)|−2|ϕ′(x)| = |x− y|−2|ϕ′(y)|−1. (1.12)

To use (1.11), we put γN := γN , the Nth iterate where N ∼ log(1/h) is chosen so

that |γN(I1)| ∼ hρ. Then

u(x) = LNs u(x) = γ′N(x)su(γN(x)), x ∈ I1.

Choose a cutoff function χN ∈ C∞c ((x1 − C1h
ρ, x1 + C1h

ρ)) which is equal to 1 in a

neighbourhood of γN(I1). We then put uN := 〈x〉2sχNu, so that 〈x〉2su = L̃Ns uN on I1.

Since ρ < 1, uN remains compactly microlocalized in the sense of (1.10) but in

addition it is concentrated at x = x1:

WFh(uN) ⊂ {x = x1, |ξ| ≤ C}.

The operator B(s) is elliptic and we denote its microlocal inverse by B(s)−1 noting

that it is a Fourier integral operator associated to κ−1. Hence,

uN = B(s)vN +O(h∞), vN := B(s)−1uN ,

WFh(vN) ⊂ κ−1(WFh(uN)) ⊂ {x 6= x1}.

Therefore, changing vN by O(h∞), we may assume that supp vN ⊂ J ⊂ Ṙ where J is

a fixed ‘interval’ on Ṙ ' S1 and x1 /∈ J .

Now we use the equivariance property (1.11): modulo an O(h∞) error, we have

〈x〉2su = L̃Ns uN = L̃Ns B(s)vN = B(s)wN on I1,

wN := L̃N1−svN , suppwN ⊂ J̃ := γ−N(J).

Since J lies a fixed distance away from x1, J̃ = γ−N(J) lies in an hρ sized interval

centered at the repelling point, x2, of the transformation γ. The change of variables

in the integrals shows that

‖wN‖L2 ∼ h−ρν‖vN‖L2 ∼ h−ρν‖uN‖L2 .

Now we have

uN = χNB(s) 1lJ̃ wN +O(h∞)

so the fractal uncertainty principle (1.8) gives

‖uN‖L2 ≤ ‖χNB(s) 1lJ̃ ‖L2→L2‖wN‖L2 ≤ Ch1/2−ε−ρν‖uN‖L2 +O(h∞).
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Since ν < 1
2
− ε and we can take ρ = 1 − ε, we obtain uN ≡ 0 if h is small enough,

thus u ≡ 0 and the proof is finished.

In the case of non-trivial Schottky groups similar ideas work but with combinatorial

complications. We only make a general comment that for iterates γN (or more generally

iterates γa – see §2.1), ∂x log |γ′N(x)| for x in a small h-independent neighbourhood of x1

is essentially equal to −2∂x log |x − γ−1
N (x0)|, x0 6= x1. This follows from (1.12) with

y := γ−1
N (x0), ϕ := γN . Any generalization of our method has to replace this explicit

formula by writing ∂x log |γ′N(x)| approximately as ∂xΦ(x, y), y = γ−1
N (x0), x0 6= x1,

with Φ generating a canonical tranformation.

Notation: We write f = O(g)H for ‖f‖H ≤ g. In particular, f = O(h∞)H means

that for any N there exists CN such that ‖f‖H ≤ CNh
N . The norm ‖ • ‖ refers to the

L2 norm but different L2 norms are used (L2(R), L2(S1), L2(Ω)) and they are either

specified or clear from the context. With some of abuse of notation, CΓ denotes large

constants which only depend on a fixed Schottky data of Γ (see §2.1) and whose exact

value may vary from place to place. We denote 〈x〉 :=
√

1 + x2.
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to improve the manuscript. This research was conducted during the period SD served

as a Clay Research Fellow. MZ was supported by the National Science Foundation
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2. Ingredients

2.1. Schottky groups. In this section we briefly review properties of Schottky groups,

referring the reader to [Bo16, §15.1] for more details. We use notation similar to [BD17,

§2.1].

The group SL(2,R) acts on the extended complex plane Ċ := C ∪ {∞} by Möbius

transformations:

γ =

(
a b

c d

)
∈ SL(2,R), z ∈ Ċ =⇒ γ(z) =

az + b

cz + d
.

Denote by H2 ⊂ C the upper half-plane model of the hyperbolic plane. Then SL(2,R)

acts on H2 by isometries.

A Schottky group is a convex co-compact subgroup Γ ⊂ SL(2,R) constructed in the

following way (see Figure 2):

• Fix r ∈ N and nonintersecting closed disks D1, . . . , D2r ⊂ C centered on the

real line.
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Figure 2. A Schottky structure with r = 2. The real line is dashed.

The solid intervals are I ′1, I
′
3, I
′
2, I
′
4.

• Define the alphabet A = {1, . . . , 2r} and for each a ∈ A, denote

a :=

{
a+ r, 1 ≤ a ≤ r;

a− r, r + 1 ≤ a ≤ 2r.

• Fix group elements γ1, . . . , γ2r ∈ SL(2,R) such that for all a ∈ A

γa(Ċ \D◦a) = Da, γa = γ−1
a . (2.1)

(In the notation of [Bo16, §15.1] we have γa = S−1
a .)

• Let Γ ⊂ SL(2,R) be the group generated by γ1, . . . , γr; it is a free group on r

generators [Bo16, Lemma 15.2].

Every convex co-compact hyperbolic surface M can be viewed as the quotient of H2

by a Schottky group Γ, see for instance [Bo16, Theorem 15.3]. Note that the comple-

ment of
⊔
aDa in H2 is a fundamental domain. We fix a Schottky representation for a

given hyperbolic surface M and refer to D1, . . . , D2r and γ1, . . . , γ2r as Schottky data.

In several places we will use results of [BD17, §2] which can be read independently

of the rest of [BD17]. In particular, we use combinatorial notation for indexing the

words in the free group Γ and the corresponding disks:

• For n ∈ N0, define Wn, the set of words of length n, as follows:

Wn := {a1 . . . an | a1, . . . , an ∈ A, aj+1 6= aj for j = 1, . . . , n− 1}. (2.2)

• Denote byW :=
⋃
nWn the set of all words. For a ∈ Wn, put |a| := n. Denote

the empty word by ∅ and put W◦ :=W \ {∅}.
• For a = a1 . . . an ∈ W , put a := an . . . a1 ∈ W . For a set Z ⊂ W , put

Z := {a | a ∈ Z}. (2.3)

• For a = a1 . . . an ∈ W◦, put a′ := a1 . . . an−1 ∈ W . Note that W forms a tree

with root ∅ and each a ∈ W◦ having parent a′.
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• For a = a1 . . . an,b = b1 . . . bm ∈ W , we write a→ b if either a = ∅, or b = ∅,
or an 6= b1. Under this condition the concatenation ab is a word. We write

a b if a,b ∈ W◦ and an = b1. In the latter case a′b ∈ W .

• For a,b ∈ W , we write a ≺ b if a is a prefix of b, i.e. b = ac for some c ∈ W .

• Define the following one-to-one correspondence between W and the group Γ:

W 3 a1 . . . an = a 7−→ γa := γa1 · · · γan ∈ Γ.

Note that γab = γaγb when a→ b, γa = γ−1
a , and γ∅ is the identity.

• For a = a1 . . . an ∈ W◦, define the disk centered on the real line (see Figure 2)

Da := γa′(Dan) ⊂ C.

If a ≺ b, then Db ⊂ Da. On the other hand, if a 6≺ b and b 6≺ a, then

Da ∩Db = ∅. Define the interval

Ia := Da ∩ R

and denote by |Ia| its length (which is equal to the diameter of Da).

• For a ∈ A, define the interval I ′a ⊂ I◦a as the convex hull of the union⊔
b∈A, a→b Iab, see Figure 2. More generally, for a = a1 . . . an ∈ W◦ define

I ′a := γa′(I
′
an) ⊂ I◦a. (2.4)

Note that I ′a ⊃ Ib for any b ∈ W◦ such that a ≺ b, a 6= b.

• Denote

D :=
⊔
a∈A

Da ⊂ C, I :=
⊔
a∈A

Ia = D ∩ R, I′ :=
⊔
a∈A

I ′a ⊂ I◦. (2.5)

• The limit set is given by

ΛΓ :=
⋂
n≥1

⊔
a∈Wn

Da ⊂ R. (2.6)

The fact that ΛΓ ⊂ R follows from the contraction property [BD17, §2.1]

|Ia| ≤ CΓ(1− C−1
Γ )|a| for all a ∈ W◦. (2.7)

We finish this section with a few estimates. We start with the following derivative

bound which is the complex version of [BD17, Lemma 2.5]:

Lemma 2.1. For all a = a1 . . . an ∈ W◦ and z ∈ Dan we have

C−1
Γ |Ia| ≤ |γ

′
a′(z)| ≤ CΓ|Ia|. (2.8)

Proof. Define the intervals I := Ian , J := Ia = γa′(I). Let γI , γJ ∈ SL(2,R) be the

unique affine transformations such that γI([0, 1]) = I, γJ([0, 1]) = J . Following [BD17,

§2.2], we write

γa′ = γJγαγ
−1
I , γα =

(
eα/2 0

eα/2 − e−α/2 e−α/2

)
∈ SL(2,R),
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where α ∈ R and |α| ≤ CΓ by [BD17, Lemma 2.4]. For z ∈ Dan we have

γa′(z) =
|J |
|I|
γ′α(w), w = γ−1

I (z) ∈
{∣∣∣w − 1

2

∣∣∣ ≤ 1

2

}
.

We compute

|γ′α(w)| = eα

|(eα − 1)w + 1|2
∈ [C−1

Γ , CΓ].

Since C−1
Γ |Ia| ≤ |J |/|I| ≤ CΓ|Ia|, (2.8) follows. �

The next lemma bounds the number of intervals Ia of comparable sizes which can

contain a given point:

Lemma 2.2. For all C1 ≥ 2 and τ > 0, we have

sup
x∈R

#{a ∈ W◦ : τ ≤ |Ia| ≤ C1τ, x ∈ Ia} ≤ CΓ logC1. (2.9)

Proof. Fix x ∈ R. We have

{a ∈ W◦ : τ ≤ |Ia| ≤ C1τ, x ∈ Ia} = {a1, . . . , aN}

for some a1, . . . , aN ∈ W◦ such that a1 ≺ a2 ≺ · · · ≺ aN . We have |Iaj+1
| ≤ (1 −

C−1
Γ )|Iaj |, see [BD17, §2.1], and (2.9) follows. �

2.2. Functional spaces. For any open Ω ⊂ C, let H(Ω) be the Bergman space on Ω,

consisting of holomorphic functions f : Ω → C such that f ∈ L2(Ω) (with respect

to the Lebesgue measure). Endowing H(Ω) with the L2 norm, we obtain a separable

Hilbert space. For general Ω ⊂ C, we put H(Ω) := H(Ω◦).

Denote

D2 :=
⊔
a∈W
|a|=2

Da ⊂ D◦ (2.10)

and let D± := D ∩ {± Im z ≥ 0}, D±2 := D2 ∩ {± Im z ≥ 0}. See Figure 3.

The following basic estimate is needed for the a priori bounds in §3.1 below:

Lemma 2.3. There exists c ∈ (0, 1] such that for all f ∈ H(D±) ∩ C(D±),

sup
D±2

|f | ≤
(

sup
I
|f |
)c(

sup
D±
|f |
)1−c

. (2.11)

Proof. The boundary of D± consists of I and a union of half-circles, which we denote

S±. Let F± : (D±)◦ → [0, 1] be the harmonic function with boundary values

F±|I ≡ 1, F±|S± ≡ 0.
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D1 D3

D2

D4

I1 I3 I2 I4

Figure 3. An illustration of Lemma 2.3. The lighter shaded region

is D+ and the darker region is D+
2 . The union of the thick lines is I.

Since F± is positive in (D±)◦ and D±2 lies away from S±, the infimum of F± on D±2 is

positive. Denote this infimum by c := infD±2 F
± ∈ (0, 1]. Since log |f | is subharmonic

in D± and

log |f | ≤
(

sup
I

log |f |
)
F± +

(
sup
D±

log |f |
)
(1− F±) on ∂D±,

the maximum principle implies that for z ∈ D±2 ,

log |f(z)| ≤ sup
D±

log |f | − F±(z)
(

sup
D±

log |f | − sup
I

log |f |
)

≤ sup
D±

log |f | − c
(

sup
D±

log |f | − sup
I

log |f |
)
.

Exponentiating this we obtain (2.11). �

2.3. Transfer operators and resonances. The zeros of the Selberg zeta function,

that is the resonances of M = Γ\H2, are characterized using a dynamical transfer

operator, also called the Ruelle operator. Here we follow [Bo16, §15.3],[GLZ04] and

consider these operators on Bergman spaces defined in §2.2. We refer to [Ba16] for

other approaches to transfer operators and for historical background.

Here, for s ∈ C we define the transfer operator Ls : H(D)→ H(D) as follows:

Lsf(z) =
∑
a∈A
a→b

γ′a(z)sf(γa(z)), z ∈ Db, b ∈ A. (2.12)

(We note that in the notation of [Bo16, (15.11)], Si = γ−1
i .) This is the same as (1.6)

if we define Bz = γ−1
a (z) for z ∈ Da.

The derivative satisfies γ′a(z) > 0 for z ∈ Ib and γ′a(z)s is uniquely defined and

holomorphic for z ∈ Db and s ∈ C such that γ′a(z)s > 0 when z ∈ Ib, s ∈ R. Since γa
takes real values on R, the expression (2.12) additionally gives an operator on L2(I),

also denoted Ls. The operators Ls are of trace class (see [Bo16, Lemma 15.7]) and

depend holomorphically on s ∈ C. Hence the determinant det(I−Ls) defines an entire

function of s ∈ C. The connection to the Selberg zeta function defined in (1.2) is a

special case of Ruelle theory and and can be found in [Bo16, Theorem 15.10]:

ZM(s) = det(I − Ls).
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It also follows that I − Ls is a Fredholm operator of index 0 and its invertibility is

equivalent to ker(I − Ls) = {0}. Hence,

ZM(s) = det(I − Ls) = 0 ⇐⇒ ∃u ∈ H(D), u 6≡ 0, u = Lsu, (2.13)

see [Bo16, Theorem A.34].

2.4. Partitions and refined transfer operators. Our proof uses refined transfer

operators which are generalizations of powers of the standard transfer operator Ls
given by (2.12). To introduce these we use the notion of a partition:

• A finite set Z ⊂ W◦ is called a partition if there exists N such that for each

a ∈ W with |a| ≥ N , there exists unique b ∈ Z such that b ≺ a. See Figure 4.

In terms of the limit set, this means that

ΛΓ =
⊔
b∈Z

(Ib ∩ ΛΓ). (2.14)

• The alphabet A is a partition, as is the set Wn of words of length n ≥ 1.

Another important example is the set of words discretizing to some resolution

τ > 0:

Z(τ) :=
{
a ∈ W◦ : |Ia| ≤ τ < |Ia′ |

}
(2.15)

where we put |I∅| :=∞. The set Z(τ) is a partition due to (2.7).

• Note however that if Z is a partition, this does not imply that the set Z defined

in (2.3) is a partition.

If Z ⊂ W◦ is a finite set, we define the refined transfer operator LZ,s : H(D)→ H(D)

as follows:

LZ,sf(z) =
∑
a∈Z
a b

γ′a′(z)sf(γa′(z)), z ∈ Db, b ∈ A. (2.16)

As in the case of Ls, we can also consider LZ,s as an operator on L2(I).

Here are some basic examples of refined transfer operators:

• If Z = A then LZ,s is the identity operator.

• If Z =W2, the set of words of length 2, then LZ,s = Ls, the standard transfer

operator defined in (2.12).

• More generally if Z =WN for some N ≥ 1, then LZ,s = LN−1
s .

Lemma 2.4. Assume that Z is a partition; define Z by (2.3). Then for all u ∈ H(D)

and s ∈ C
Lsu = u =⇒ LZ,su = u. (2.17)

Proof. We argue by induction on
∑

b∈Z |b|. If Z = A then LZ,s is the identity operator

so (2.17) holds. Assume that Z 6= A. Choose a longest word dc ∈ Z, where d ∈ W◦
and c ∈ A. Then Z has the form (see Figure 4)
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∅

1 2 3 4

12 34 4411 14 21 22 23 33 41 43

121 122 123 321 322 323 341 343 344 441 443 444

32

Figure 4. An example of a partition Z, with elements of Z shaded grey

in the tree of words. The solid black word is one possible choice of d in

the proof of Lemma 2.4.

Z =
(
Z ′ \ {d}

)
t {da | a ∈ A, d→ a}

where Z ′ is a partition containing d. By the inductive hypothesis we have LZ′,su = u,

thus is remains to prove that

Lsu = u =⇒ LZ′,su = LZ,su. (2.18)

We write for each z ∈ Db, b ∈ A

LZ,su(z) =
∑
a∈Z
a b

γ′a′(z)su(γa′(z))

and similarly for Z ′. The condition a  b simply means b = a1 where a1 is the first

letter of a.

For b 6= d1 the expressions for LZ,su(z) and LZ′,su(z) are identical. Assume now

that b = d1. Removing identical terms from the conclusion of (2.18) and using that

da
′
= ad

′
we reduce (2.18) to

γ′
d
′(z)su(γ

d
′(z)) =

∑
a∈A
d→a

γ′
ad
′(z)su(γ

ad
′(z)) for all z ∈ Dd1

.

Using the chain rule and dividing by γ′
d
′(z)s this reduces to

u(γ
d
′(z)) =

∑
a∈A
a→d

γ′a(γd′(z))su(γa(γd′(z))) for all z ∈ Dd1
.

The latter follows from the equality Lsu(w) = u(w) where w := γ
d
′(z) ∈ Dd. �

2.5. An integral operator. We now introduce an integral operator B(s) similar to

Bχ(h) from (1.3). That operator has a simpler definition than Bχ(h) but one pays by

introducing singularities.

In our approach we use the upper half plane model while Bχ(h) acts on functions

on a circle rather than a line. Hence, we will use the extended real line Ṙ = R ∪ {∞}
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which is identified with the circle S1 ⊂ C by the map

x ∈ Ṙ 7→ y =
i− x
i+ x

∈ S1. (2.19)

The standard volume form on S1, pulled back by (2.19), is

dP (x) = 2〈x〉−2 dx.

Denote L2(Ṙ) := L2(Ṙ, dP ) ' L2(S1). For x, x′ ∈ Ṙ, let |x − x′|S be the Euclidean

distance between y(x) and y(x′), namely

|x− x′|S =
2|x− x′|
〈x〉〈x′〉

.

With this notation in place we define the operator B(s), depending on s ∈ C: for

Re s < 1
2
, it is a bounded operator on L2(Ṙ) given by the formula

B(s)f(x) =
∣∣∣Im s

2π

∣∣∣1/2 ∫
Ṙ
|x− x′|−2s

S f(x′) dP (x′). (2.20)

For general s the integral in (2.20) may diverge however

χ1B(s)χ2 : L2(Ṙ)→ L2(Ṙ), χ1, χ2 ∈ C∞(Ṙ), suppχ1 ∩ suppχ2 = ∅, (2.21)

is well defined. In other words, B(s)f can be defined outside of supp f .

The following equivariance property of B(s) will be used in the proof of the main

theorem in §3.3:

Lemma 2.5. Let γ ∈ SL(2,R), s ∈ C, and consider the operator

Tγ,s : L2(Ṙ)→ L2(Ṙ), Tγ,sf(x) := |γ′(x)|sSf(γ(x)). (2.22)

Here |γ′(x)|S = 〈x〉2〈γ(x)〉−2γ′(x) is the derivative of the action of γ on the circle

defined using (2.19). Then

Tγ,sB(s) = B(s)Tγ,1−s. (2.23)

Proof. Take f ∈ L2(Ṙ). We need to show that

Tγ,sB(s)f(x) = B(s)Tγ,1−sf(x)

for all x when Re s < 1
2

and for all x /∈ γ−1(supp f) otherwise. This is equivalent to∫
Ṙ
|γ′(x)|sS · |γ(x)− x′|−2s

S f(x′) dP (x′) =

∫
Ṙ
|x− x′′|−2s

S · |γ′(x′′)|1−sS f(γ(x′′)) dP (x′′).

The latter follows by the change of variables x′ = γ(x′′) using the identity

|γ(x)− γ(x′′)|2S = |x− x′′|2S · |γ′(x)|S · |γ′(x′′)|S. �
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We now discuss the properties of B(s) in the semiclassical limit which means that

we put s := 1
2
−ν+ ih−1, where ν is bounded and 0 < h� 1. In the notation of (2.21)

we obtain an oscillatory integral representation:

χ1B(s)χ2f(x) = (2πh)−1/2

∫
Ṙ
e
i
h

Φ(x,x′)χ1(x)χ2(x′)|x− x′|2ν−1
S f(x′) dP (x′)

where the phase function Φ is defined by

Φ(x, x′) := −2 log |x− x′|S = −2 log |x− x′|+ 2 log〈x〉+ 2 log〈x′〉 − log 4. (2.24)

Thus χ1B(s)χ2 is a semiclassical Fourier integral operator, see for instance [DZ16,

§2.2].

The next two lemmas can be derived from the theory of these operators but we

present self-contained proofs in the Appendix, applying the method of stationary phase

directly. That first gives

Lemma 2.6 (Boundedness of B(s)). Let χ1, χ2 ∈ C∞(Ṙ) satisfy suppχ1∩suppχ2 = ∅.
Then there exists C depending only on ν, χ1, χ2 such that

‖χ1B(s)χ2‖L2(Ṙ)→L2(Ṙ) ≤ C.

The next lemma gives partial invertibility of B(s). To state it we recall the definition

of semiclassical Fourier transform,

Fhf(ξ) :=

∫
R
f(x)e−

i
h
xξdx, (2.25)

see [Zw12, §3.3] for basic properties. We say that an h-dependent family of functions

f = f(h) is semiclassically localized to frequencies |ξ| ≤M if for every N ,

|Fhf(ξ)| ≤ CNh
N |ξ|−N when |ξ| ≥M. (2.26)

We also recall semiclassical quantization a 7→ Oph(a) = a(x, hDx), Dx := 1
i
∂x

Oph(a)u(x) :=
1

2πh

∫
R
e
i
h

(x−y)ξa(x, ξ)u(y) dydξ, (2.27)

stressing that only elementary properties from [Zw12, §§4.2,4.3] will be used.

The partial invertibility of B(s) means that for f ∈ L2(R) which is supported in

an interval I and semiclassically localized to frequencies |ξ| ≤ (5|I|)−1, we have f =

B(s)g +O(h∞) on I for some g which is supported away from I:

Lemma 2.7 (Partial invertibility of B(s)). Let I ⊂ R be an interval and K ≥ 10

satisfy 10K|I| ≤ 1. Assume that

A = Oph(a), a(x, ξ) ∈ C∞c (R2), supp a ⊂ {x ∈ I◦, |ξ| < 2K}.

Then for all ψI ∈ C∞c (I◦) and ωI ∈ C∞c (Ṙ \ I) satisfying

supp a ⊂ {ψI(x) = 1}, supp(1− ωI) ⊂ I +
[
− 1

10K
, 1

10K

]
, (2.28)
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there exists an operator QI(s) : L2(R)→ L2(Ṙ) uniformly bounded in h, such that

A = ψIB(s)ωIQI(s) +O(h∞)L2(R)→L2(R).

We recall that the proofs of both lemmas are given in the Appendix.

3. Proof of the main theorem

We recall that M = Γ\H2 is a convex co-compact hyperbolic quotient and that we

fix a Schottky representation for Γ as in §2.1. Finally we assume that the limit set ΛΓ

satisfies fractal uncertainty principle with exponent β ≥ 0 in the sense of (1.5).

As seen in (2.13), the main theorem follows from showing that for

s :=
1

2
− ν +

i

h
, 0 ≤ ν ≤ β − 2ε (3.1)

we have

u ∈ H(D), Lsu = u =⇒ u ≡ 0. (3.2)

That follows from progressively obtaining more and more bounds on solutions to the

equation Lsu = u, until we can use the fractal uncertainty principle (1.5) to show that

u ≡ 0.

As shown in [DZ16, §5.1], we always have β ≤ 1
2
. This implies the inequality Re s ≥ 0

which we occasionally use below.

3.1. A priori bounds. We first use the equation in (3.2) to establish some a pri-

ori bounds on u. Note that u = Lsu implies that u extends holomorphically to a

neighbourhood of D and in particular is smooth up to the boundary of D.

The prefactors γ′a(z)s in (2.12) are exponentially large in h when z is not on the real

line. To balance this growth we introduce the weight

wK : C→ (0,∞), wK(z) = e−K| Im z|/h.

The constant K is chosen so that a sufficiently high power of the transfer operator Ls
is bounded uniformly in h on the weighted space induced by wK :

Lemma 3.1. There exist K ≥ 10 and n0 ∈ N depending only on the Schottky data so

that, with D2 ⊂ D◦ defined in (2.10),

sup
D
|wKLn0

s f | ≤ CΓ sup
D2

|wKf | for all f ∈ H(D). (3.3)

Proof. Using Lemma 2.1 and the contraction property (2.7), we choose n0 such that

sup
Db

|γ′a| ≤ 1
2

for all a ∈ Wn0 , a→ b ∈ A.
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(See (2.2) for definitions.) In particular, since γa maps the real line to itself, we have

| Im γa(z)| ≤ 1
2
| Im z| for all a ∈ Wn0 , a→ b ∈ A, z ∈ Db.

Take z ∈ Db for some b ∈ A. Then

|wKLn0
s f(z)| ≤

∑
a∈Wn0
a→b

wK(z)
∣∣γ′a(z)sf(γa(z))

∣∣ ≤ ∑
a∈Wn0
a→b

wK(z)|γ′a(z)s|
wK(γa(z))

sup
D2

|wKf |

≤ CΓ

∑
a∈Wn0
a→b

e−(K| Im z|+2 arg γ′a(z))/2h sup
D2

|wKf |

where in the last inequality we use the bound |γ′a(z)s| ≤ CΓe
− arg γ′a(z)/h. It remains to

choose K large enough so that

− arg γ′a(z) ≤ 1
2
K| Im z| for all a ∈ Wn0 , a→ b ∈ A, z ∈ Db

which is possible since arg γ′a(z) = 0 when z ∈ R. �

We next show that for u satisfying (3.2), the norm of u on D is controlled by its

norm on I = D ∩ R:

Lemma 3.2. We have

sup
D
|wKu| ≤ CΓ sup

I
|u|. (3.4)

Proof. Let n0 come from Lemma 3.1. Since u = Ln0
s u, (3.3) shows

sup
D
|wKu| ≤ CΓ sup

D2

|wKu|. (3.5)

Applying Lemma 2.3 to the functions exp(±iKz/h)u(z) in D±, we get for some c ∈
(0, 1] depending only on the Schottky data

sup
D2

|wKu| ≤
(

sup
I
|u|
)c(

sup
D
|wKu|

)1−c
. (3.6)

Together (3.5) and (3.6) imply (3.4). �

3.2. Cutoffs and microlocalization. Let Z(hρ) ⊂ W◦ be the partition defined

in (2.15), where ρ ∈ (0, 1) is fixed as in (1.5). By Lemma 2.4

Ls(hρ)u = u where Ls(hρ) := LZ(hρ),s. (3.7)

That is,

u(x) = Ls(hρ)u(x) =
∑

a∈Z(hρ)
a b

γ′a′(x)su(γa′(x)), x ∈ Ib, b ∈ A. (3.8)
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From [BD17, Lemma 2.10] and Lemma 2.1, we have for all a = a1 . . . an ∈ Z(hρ)

C−1
Γ hρ ≤ |Ia| ≤ hρ, (3.9)

C−1
Γ hρ ≤ |Ia| ≤ CΓh

ρ, (3.10)

C−1
Γ hρ ≤ γ′a′ ≤ CΓh

ρ on Ia1 . (3.11)

Let I′ be defined by (2.5); recall also the definition (2.4) of I ′a. Since Re s ≥ 0, (3.8)

gives

sup
I
|u| ≤ CΓ sup

I′
|u| ≤ CΓ

∑
a∈Z(hρ)

sup
I′a

|u| (3.12)

where for the first inequality we used u = Lsu. That is, the behavior of u on I (and thus

by Lemma 3.2, on D) is controlled by its behavior on the intervals I ′a for a ∈ Z(hρ).

We now define pieces of u localized to each interval Ia. To that aim, for each

a ∈ Z(hρ) we choose a cutoff function

χa ∈ C∞c (I◦a; [0, 1]), supp(1− χa) ∩ I ′a = ∅, sup |∂jxχa| ≤ CΓ,jh
−ρj. (3.13)

This is possible since dR(I ′a,R \ Ia) ≥ C−1
Γ hρ by (3.11). We then define

ua := 〈x〉2sχau ∈ C∞c (I◦a), a ∈ Z(hρ). (3.14)

Equation (3.8) implies that, with Tγ,s given by (2.22),

〈x〉2su(x) =
∑

a∈Z(hρ)
a b

Tγa′ ,sua(x), x ∈ I ′b, b ∈ A. (3.15)

The next lemma shows that ua’s are semiclassically localized to a bounded set in ξ.

This is where we use that ρ < 1: if we instead put ρ = 1 then multiplication by χa

would inevitably blur the support of the semiclassical Fourier transform.

Lemma 3.3. Let K ≥ 10 be chosen in Lemma 3.1. Then for each a ∈ Z(hρ), ua is

semiclassically localized to frequencies |ξ| ≤ 3K
2

. More precisely, for all N ,

|Fhua(ξ)| ≤ CΓ,Nh
N |ξ|−N sup

I
|u| when |ξ| ≥ 3K

2
. (3.16)

Remark. A finer compact microlocalization statement can be given using the FBI

transform – see [Ji17, Proposition 2.2].

Proof. For each a ∈ Z(hρ), let χ̃a ∈ C∞c (D◦a) be an almost analytic extension of χa,

more precisely for each N

χ̃a|R = χa, hρ|∂̄zχ̃a(z)| ≤ CΓ,N

(
h−ρ| Im z|

)N
.

See for instance [Zw12, Theorem 3.6] for a construction of such extension; here we map

Da to the unit disk and use the derivative bounds (3.13). Let 〈z〉2s := (1 + z2)s be the

holomorphic extension of 〈x〉2s to Da. We note that

|〈z〉2s| ≤ CΓ exp(2| Im z|/h), z ∈ Da.
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Since u is holomorphic in Da, we have

Fhua(ξ) =

∫
R
u(x)〈x〉2se−

i
h
ξxχ̃a(x) dx

= −(sgn ξ)

∫
Da∩{(sgn ξ) Im z≤0}

u(z)〈z〉2se−
i
h
ξz∂̄zχ̃a(z) dz̄ ∧ dz.

Using Lemma 3.2 and the fact that |ξ| ≥ 3K/2 we estimate for all N ,

|Fhua(ξ)| ≤ CΓ,N sup
I
|u|
∫ ∞

0

(h−ρy)Ne(K−|ξ|+2)y/h dy

≤ CΓ,N sup
I
|u|
∫ ∞

0

(h−ρy)Ne−|ξ|y/5h dy ≤ CΓ,Nh
1+N(1−ρ)|ξ|−1−N sup

I
|u|.

Since ρ < 1 and N can be chosen arbitrary, (3.16) follows. �

Lemma 3.3 implies that the sup-norm of ua can be estimated by its L2 norm:

Lemma 3.4. We have for all N and a ∈ Z(hρ),

sup |ua| ≤ CΓh
−1/2‖ua‖+ CΓ,Nh

N sup
I
|u|. (3.17)

Proof. We use the Fourier inversion formula: ua(x) = (2πh)−1
∫
R e

ixξ/hFhua(ξ) dξ.

We split this integral into two parts. The first one is the integral over {|ξ| ≤ 3K
2
},

which is bounded by CΓh
−1‖Fhua‖ = CΓh

−1/2‖ua‖. The second one, the integral over

{|ξ| ≥ 3K
2
}, is bounded by CΓ,Nh

N supI |u| by Lemma 3.3. �

Since the intervals Ia, a ∈ Z(hρ), do not intersect and are contained in I, we have

#(Z(hρ)) ≤ CΓh
−1. Combining this with (3.12) and (3.17), we get the following bound:

sup
I
|u| ≤ CΓ

∑
a∈Z(hρ)

sup |ua| ≤ CΓh
−1

( ∑
a∈Z(hρ)

‖ua‖2

)1/2

. (3.18)

3.3. End of the proof. We use (3.15) together with equivariance of the operator B(s)

(Lemma 2.5) to obtain a formula for u in terms of B(s), see (3.26) below. Together

with the fractal uncertainty bound (1.5) this will give u ≡ 0.

In order to take advantage of the equivariance of B(s), we approximate ua’s ap-

pearing in (3.15) by functions in the range of B(s). For that, let K be chosen from

Lemma 3.1. Define the partition Z( 1
10K

) by (2.15). Since h is small and by (3.10),

∀ a ∈ Z(hρ) ∃! ã ∈ Z
(

1
10K

)
: ã ≺ a, ã 6= a. (3.19)

We stress that 10K|Iã| ≤ 1 and that ã lies in Z( 1
10K

) which is a finite h-independent

set. Choose h-independent cutoff functions (see (2.4))

χã ∈ C∞c (I◦ã), supp(1− χã) ∩ I ′ã = ∅;
χK ∈ C∞c ((−2K, 2K)), supp(1− χK) ∩

[
− 3K

2
, 3K

2

]
= ∅
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γa− = γ−1
a′

 Iã

ua vava

wa

Ia−

Figure 5. The supports of ua, va, wa (shaded) and the intervals Iã, Ia−

(marked by endpoints). The top picture is mapped to the bottom one

by γa− . The supports of ua, wa have size ∼ hρ.

and consider semiclassical pseudodifferential operators

Aã := χã(x)χK(hDx) = Oph
(
χã(x)χK(ξ)

)
.

By Lemma 3.3 and since suppua ⊂ Ia ⊂ I ′ã, we have for all a ∈ Z(hρ) and all N

‖ua − Aãua‖ ≤ CΓ,Nh
N sup

I
|u|. (3.20)

We now apply Lemma 2.7 with I := Iã and A := Aã to write

Aã = ψãB(s)ωãQã +O(h∞)L2(R)→L2(R) (3.21)

where Qã : L2(R)→ L2(Ṙ) is bounded uniformly in h and

ψã ∈ C∞c (I◦ã), suppχã ⊂ {ψã = 1}, ωã ∈ C∞(Ṙ \ Iã). (3.22)

Define (see Figure 5)

va := ωãQãua ∈ L2(Ṙ), ‖va‖L2(Ṙ) ≤ CΓ‖ua‖L2(R). (3.23)

Then (3.20) and (3.21) imply that for all N ,

‖ua − ψãB(s)va‖ ≤ CΓ,Nh
N sup

I
|u|. (3.24)

To approximate u by an element of the image of B(s) we use the equation (3.15)

and the equivariance property (2.23). Let a ∈ Z(hρ), b ∈ A, a  b. By (3.22), we

have ψã = 1 on γa′(Ib) = Ia ⊂ I ′ã. Thus by (2.23)

Tγa′ ,sψãB(s)va = B(s)Tγa′ ,1−sva on Ib. (3.25)

Substituting (3.24) into (3.15) and using (3.25), we obtain the following approximate

formula for u, true for each N and b ∈ A:∥∥∥〈x〉2su− B(s)
∑

a∈Z(hρ)
a b

wa

∥∥∥
L2(I′b)

≤ CΓ,Nh
N sup

I
|u| (3.26)
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where

wa := Tγa′ ,1−sva ∈ L
2(Ṙ). (3.27)

We now establish a few properties of wa, starting with its support:

Lemma 3.5. Let a = a1 . . . an ∈ Z(hρ) and put a− := a2 . . . an ∈ W◦. Then

suppwa ⊂ Ia−(CΓh
ρ) (3.28)

where I(τ) = I + [−τ, τ ] denotes the τ -neighbourhood of I.

Proof. From the definition of wa and (3.22) we have (see Figure 5)

suppwa ⊂ γ−1
a′ (supp va) ⊂ γa−(Ṙ \ Iã).

Recall that ã ≺ a, thus ã = an an−1 . . . an−m for some m ≤ CΓ, in particular m � n.

Then by (2.1) we have γan−m(Ṙ \ Ian−m) = I◦an−m and thus

γa−(Ṙ \ Iã) = γa2 · · · γan−m(Ṙ \ Ian−m) = I◦a2...an−m .

We have Ia2...an−m ⊃ Ia− and by [BD17, Lemma 2.7] we have |Ia2...an−m| ≤ CΓ|Ia−| ≤
CΓh

ρ. Therefore Ia2...an−m ⊂ Ia−(CΓh
ρ), finishing the proof. �

We next estimate the norm of wa. This is where the value of the parameter ν

from (3.1) enters the argument.

Lemma 3.6. We have

‖wa‖ ≤ CΓh
−ρν‖ua‖. (3.29)

Proof. The definition (3.27) of wa gives (recalling (2.22)) wa(x) = |γ′a′(x)|1−sS va(γa′(x))

for x ∈ Ṙ. Using the notation of the proof of Lemma 3.5, we can restrict to x ∈
Ia2...an−m . Since m ≤ CΓ we have

C−1
Γ |γ

′
an−m−1...a2

(x)|S ≤ |γ′a′(x)|S ≤ CΓ|γ′an−m−1...a2
(x)|S.

We have for x ∈ Ia2...an−m

|γ′an−m−1...a2
(x)|S = |γ′a2...an−m−1

(x′)|−1
S , x′ := γan−m−1...a2(x) ∈ Ian−m .

By Lemma 2.1 and [BD17, Lemma 2.7] we have

C−1
Γ hρ ≤ |γ′a2...an−m−1

(x′)|S ≤ CΓh
ρ,

therefore

C−1
Γ h−ρ ≤ |γ′a′(x)|S ≤ CΓh

−ρ, x ∈ Ia2...an−m ,

which using the change of variables formula and (3.1) implies

‖wa‖L2(R) ≤ CΓh
−ρν‖va‖L2(Ṙ).

Together with (3.23) this gives (3.29). �
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We next rewrite the formula (3.26) in terms of the operator Bχ(h) defined in (1.3).

Let χ0 ∈ C∞(Ṙ× Ṙ) be such that

suppχ0 ∩ {(x, x) | x ∈ Ṙ} = ∅

and

a, b ∈ A, a 6= b =⇒ supp(1− χ0) ∩ (Ia × Ib) = ∅.
Put

χ(x, x′) := |x− x′|2ν−1
S χ0(x, x′). (3.30)

For each b ∈ A define the following compactly supported function

w(b) :=
∑

a∈Z(hρ)
a b

wa ∈ L2(R).

Then by (3.28) we have (identifying Ṙ with S1 using (2.19))

Bχ(h)w(b) = B(s)
∑

a∈Z(hρ)
a b

wa on Ib.

Thus (3.26) implies ∥∥〈x〉2su− Bχ(h)w(b)
∥∥
L2(I′b)

≤ CΓ,Nh
N sup

I
|u|. (3.31)

The supports of wa, as well as the supports of ua, lie in a CΓh
ρ neighbourhood of the

limit set and have bounded overlaps. Analysing this closely will give us

Lemma 3.7. Denote by ΛΓ(τ) = ΛΓ + [−τ, τ ] the τ -neighbourhood of the limit set

ΛΓ ⊂ R. Then ⋃
b∈A

suppw(b) ⊂ ΛΓ(CΓh
ρ), (3.32)

max
b∈A
‖w(b)‖2 ≤ CΓ

∑
a∈Z(hρ)

‖wa‖2, (3.33)

∑
a∈Z(hρ)

‖ua‖2 ≤ CΓ‖ 1lΛΓ(CΓhρ)〈x〉2su‖2. (3.34)

Proof. By Lemma 3.5, for each a ∈ Z(hρ) we have suppwa ⊂ Ia−(CΓh
ρ). By [BD17,

Lemma 2.7] the interval Ia− has length ≤ CΓh
ρ and it intersects the limit set, therefore

suppwa ⊂ ΛΓ(CΓh
ρ). This proves (3.32).

Next, we have the following multiplicity estimates:

sup
x∈R

#{a ∈ Z(hρ) | x ∈ suppwa} ≤ CΓ, (3.35)

sup
x∈R

#{a ∈ Z(hρ) | x ∈ suppχa} ≤ CΓ. (3.36)
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Both of these follow from Lemma 2.2. Indeed, from the proof of Lemma 3.5 we

see that for a = a1 . . . an ∈ Z(hρ), we have suppwa ⊂ Ia2...an−m where m is fixed

large enough depending only on the Schottky data. By [BD17, Lemma 2.7] we have

C−1
Γ hρ ≤ |Ia2...an−m| ≤ CΓh

ρ. Therefore, the number of intervals Ia2...an−m containing a

given point x is bounded, which gives (3.35). To prove (3.36), we use that suppχa ⊂ Ia
by (3.13) and C−1

Γ hρ ≤ |Ia| ≤ CΓh
ρ by (3.10).

Now, (3.35) immediately gives (3.33):

max
b∈A
‖w(b)‖2

L2(R) ≤
∫
R

( ∑
a∈Z(hρ)

|wa(x)|
)2

dx ≤ CΓ

∫
R

∑
a∈Z(hρ)

|wa(x)|2 dx.

To show (3.34), we first note that for all a ∈ Z(hρ) we have suppχa ⊂ Ia ⊂ ΛΓ(CΓh
ρ),

since Ia is an interval of size ≤ CΓh
ρ intersecting the limit set. We now recall (3.14):∑

a∈Z(hρ)

‖ua‖2
L2(R) =

∫
ΛΓ(CΓhρ)

∑
a∈Z(hρ)

|χa(x)|2 · |〈x〉2su(x)|2 dx

≤ CΓ

∫
ΛΓ(CΓhρ)

|〈x〉2su(x)|2 dx

where in the last inequality we used (3.36). �

We are now ready to prove (3.2) and hence finish the proof of the main theorem.

From (3.31) and the fact that ΛΓ(CΓh
ρ) ⊂

⋃
b∈A I

′
b we obtain

‖ 1lΛΓ(CΓhρ)〈x〉2su‖2 ≤ CΓ max
b∈A
‖ 1lΛΓ(CΓhρ) Bχ(h)w(b)‖2 +O(h∞) sup

I
|u|2. (3.37)

The fractal uncertainty bound (1.5) and the support property (3.32) show that

max
b∈A
‖ 1lΛΓ(CΓhρ) Bχ(h)w(b)‖2 ≤ CΓh

2(β−ε) max
b∈A
‖w(b)‖2. (3.38)

The estimate (3.33) and Lemma 3.6 give

h2(β−ε) max
b∈A
‖w(b)‖2 ≤ CΓh

2(β−ε−ρν)
∑

a∈Z(hρ)

‖ua‖2. (3.39)

Due to (3.34), the left hand side of (3.37) bounds the sum on the right hand side

of (3.39). Putting (3.37), (3.38), and (3.39) together and using (3.18) to remove

O(h∞) supI |u|2, we obtain for h small enough∑
a∈Z(hρ)

‖ua‖2 ≤ CΓh
2(β−ε−ρν)

∑
a∈Z(hρ)

‖ua‖2. (3.40)

From (3.1) we have 2(β − ε− ρν) > 0, thus (3.40) implies that
∑

a∈Z(hρ) ‖ua‖2 = 0 if

h is small enough. Recalling (3.14), analyticity of u shows that u ≡ 0.
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Appendix

We give proofs of the two lemmas about the operator B(s) introduced in §2.5.

Proof of Lemma 2.6. For simplicity we assume that suppχ1, suppχ2 ⊂ R; same proof

applies to the general case, identifying Ṙ with the circle by (2.19). The operator

(χ1B(s)χ2)∗χ1B(s)χ2 has integral kernel

K(x, x′′) = (2πh)−1

∫
Ṙ
e
i
h

(Φ(x′,x′′)−Φ(x′,x))|x− x′|2ν−1
S |x′ − x′′|2ν−1

S

|χ1(x′)|2χ2(x)χ2(x′′) dP (x′).

(A.1)

We have ∂x′Φ(x′, x) = 2(x− x′)−1 + 2x′〈x′〉−2, thus∣∣∂x′(Φ(x′, x′′)− Φ(x′, x)
)∣∣ ≥ |x− x′′|/C for x, x′′ ∈ suppχ2, x

′ ∈ suppχ1.

Integrating by parts N times in (A.1) we see that |K(x, x′′)| ≤ CNh
N−1|x − x′′|−N .

Therefore supx
∫
Ṙ |K(x, x′′)| dP (x′′) ≤ C. (Here we use the case N = 0 for |x−x′′| ≤ h

and the case N = 2 for |x−x′′| ≥ h.) By Schur’s Lemma (see for instance [Zw12, Proof

of Theorem 4.21]) we see that the operator (χ1B(s)χ2)∗χ1B(s)χ2, and thus χ1B(s)χ2,

is bounded on L2(Ṙ) uniformly in h. �

The following technical lemma is useful to establish invertibility of B(s) in Lemma 2.7.

To state it we use the standard (left) quantization procedure (2.27).

Lemma A.1. Assume that χ1, χ3 ∈ C∞c (R) and χ2 ∈ C∞(Ṙ) satisfy

suppχ1 ∩ suppχ2 = suppχ2 ∩ suppχ3 = ∅.

Let q(x, ξ) ∈ C∞c (R2). Define the operator

B = χ1B(s)χ2B(1− s)χ3 Oph(q) : L2(R)→ L2(R).

Then B = Oph(b) where b(x, ξ;h) ∈ S (R2) (uniformly in h) admits an asymptotic

expansion:

b(x, ξ;h) ∼ χ1(x)
∞∑
j=0

hjLj
(
χ2(x′)χ3(x)q(x, ξ)

)∣∣
x′=x′(x,ξ)

,

x′(x, ξ) := x+
2〈x〉2

〈x〉2ξ − 2x
∈ Ṙ,

(A.2)

where Lj is an order 2j differential operator on Rx × Ṙx′ with coefficients depending

on x, ξ, ν, and L0 = 1/2.

Proof. For simplicity we assume that suppχ2 ⊂ R. The general case is handled simi-

larly, identifying Ṙ with the circle.
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For ξ ∈ R, define the function eξ(x) = exp(ixξ/h). By oscillatory testing [Zw12,

Theorem 4.19], we have B = Oph(b) where b is defined by the formula

(Beξ)(x) = b(x, ξ;h)eξ(x).

It remains to show that b ∈ S and had the expansion (A.2). We compute

b(x, ξ;h) = (2πh)−1

∫
R2

e
i
h

Ψ(x′,x′′;x,ξ)p(x′, x′′;x, ξ) dx′dx′′

where

Ψ = Φ(x, x′)− Φ(x′, x′′) + (x′′ − x)ξ,

p = 4χ1(x)χ2(x′)χ3(x′′)q(x′′, ξ)|x− x′|2ν−1
S |x′ − x′′|−2ν−1

S 〈x′〉−2〈x′′〉−2.

We have

∂x′Ψ =
2(x′′ − x)

(x− x′)(x′′ − x′)
, ∂x′′Ψ = ξ − 2x′′

〈x′′〉2
+

2

x′′ − x′
.

It follows that Ψ is a Morse function on {x′ 6= x, x′ 6= x′′} with the unique critical

point given by x′′ = x, x′ = x′(x, ξ) where x′(x, ξ) is defined in (A.2).

We have supp b ⊂ {x ∈ suppχ1}. Next, for (x′, x′′) ∈ supp p and large |ξ|, we

have |∂x′′Ψ| ≥ 1
2
|ξ|. Therefore, repeated integration by parts in x′′ shows that b =

O(h∞)S (R2) when |x| + |ξ| is large. The expansion (A.2) follows from the method of

stationary phase. To compute L0 we use that the Hessian of Ψ at the critical point

has signature 0 and determinant 4(x− x′(x, ξ))−4. �

Proof of Lemma 2.7. Choose ψI , ωI satisfying the conditions in the statement of the

lemma. It follows from the definition of x′(x, ξ) in (A.2) that |x−x′(x, ξ)| ≥ 2/(1 + |ξ|).
Since 10K|I| ≤ 1 we have

x′(x, ξ) /∈ supp(1− ωI) for all x ∈ I, |ξ| ≤ 2K. (A.3)

We now put

QI(s) := ωIB(1− s)ψI Oph(q) : L2(R)→ L2(Ṙ)

where q(x, ξ;h) ∈ C∞c (R2), to be chosen later, satisfies the support condition

supp q ⊂ supp a ⊂ {ψI(x) = 1, |ξ| ≤ 2K}

and has an asymptotic expansion

q(x, ξ;h) ∼
∞∑
j=0

hjqj(x, ξ) as h→ 0.

The L2 boundedness of QI(s) follows from Lemma 2.6, whose proof applies to B(1−s).
By Lemma A.1, we have ψIB(s)ωIQI(s) = Oph(b) where the symbol b satisfies

b(x, ξ;h) ∼
∞∑
j=0

hjbj(x, ξ), bj(x, ξ) =
1

2
qj(x, ξ) + . . .
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and ‘. . . ’ denotes terms depending on q0, . . . , qj−1 according to (A.2), and in particular

supported in supp a. Here we use that on supp qj ⊂ supp a we have ψI(x) = 1 and

ωI(x
′(x, ξ)) = 1 by (A.3). We can now iteratively construct q0, q1, . . . such that b =

a+O(h∞)S (R2), finishing the proof. �
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