Fractal Weyl laws for resonances of open quantum maps

SCATT05 Dresden

Stéphane Nonnenmacher (Saclay)
and
Maciej Zworski (Berkeley)
March 11, 2005

Open Baker Relation

A Baker relation (as opposed to a map) is defined on a phase space torus, $0<q<1,0<p<1$:

$$
\begin{gathered}
0<q<1 / 3 \Longrightarrow B(q, p)=\left(3 q, \frac{p}{3}\right) \\
2 / 3<q<1 \Longrightarrow B(q, p)=\left(3 q-2, \frac{p+2}{3}\right)
\end{gathered}
$$

All other points are sent to infinity
Or, we can say that they are not in relation with any other points, $(p, q) \sim B(p, q)$.

We have the outgoing (unstable +) and incoming (stable -) tails defined in the usual fashion:

$$
\begin{aligned}
& (q, p) \in \Gamma_{-} \Longleftrightarrow\left(p_{1}, q_{1}\right)=B(q, p), \quad\left(p_{j+1}, q_{j+1}\right)=B\left(p_{j}, q_{j}\right), \\
& (q, p) \in \Gamma_{+} \Longleftrightarrow(q, p)=B\left(p_{1}, q_{1}\right), \quad\left(p_{j}, q_{j}\right)=B\left(p_{j+1}, q_{j+1}\right),
\end{aligned}
$$

Here are $\Gamma_{ \pm}$and the trapped set $K=\Gamma_{+} \cap \Gamma_{-}$in the case of a flow.

Here is how they look like:

$$
\Gamma_{+}=\bigcap_{N \geq 0} B^{N}\left(\mathbf{T}^{2}\right) \subset B\left(\mathbb{T}^{2}\right)
$$

Here is how they look like:

$$
\Gamma_{+}=\bigcap_{N \geq 0} B^{N}\left(\mathbf{T}^{2}\right) \subset \bigcap_{N=0,1}\left(B^{N}\right)\left(\mathrm{T}^{2}\right)
$$

Here is how they look like:

$$
\Gamma_{+}=\bigcap_{N \geq 0} B^{N}\left(\mathbf{T}^{2}\right) \subset \bigcap_{N=0,1,3}\left(B^{N}\right)\left(T^{2}\right)
$$

Now for the incoming (stable) tail, Γ_{-}:

$$
\Gamma_{-}=\bigcap_{N \geq 0} B^{-N}\left(\mathbf{T}^{2}\right) \subset B^{-1}\left(\mathrm{~T}^{2}\right)
$$

Now for the incoming (stable) tail, Γ_{-}:

$$
\Gamma_{-}=\bigcap_{N \geq 0} B^{-N}\left(\mathbf{T}^{2}\right) \subset \bigcap_{N=0,1} B^{-N}\left(\mathrm{~T}^{2}\right)
$$

Now for the incoming (stable) tail, Γ_{-}:

$$
\Gamma_{-}=\bigcap_{N \geq 0} B^{-N}\left(\mathbf{T}^{2}\right) \subset \bigcap_{N=0,1,2} B^{-N}\left(\mathrm{~T}^{2}\right)
$$

And, finally the "trapped set" $K=\Gamma_{+} \cap \Gamma_{-}$:

$$
K=\Gamma_{+} \cap \Gamma_{-}=\bigcap_{N \in \mathbf{Z}} \pi_{L}\left(B^{N}\right) \subset \bigcap_{|N|=1,2,3} \pi_{L}\left(B^{N}\right)
$$

And, finally the "trapped set" $K=\Gamma_{+} \cap \Gamma_{-}$:

Rectangular Smale horse shoe structure.

$$
\operatorname{dim} K=2 \operatorname{dim}\left(\Gamma_{-} \cap W_{\mathrm{u}}\right)=2 \frac{\log 2}{\log 3} .
$$

Quantization of the open Baker relation (Balazs-Voros, Saraceno-Vallejos).

$$
B_{N}=\mathcal{F}_{N}^{*}\left(\begin{array}{ccc}
\mathcal{F}_{N / 3} & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & \mathcal{F}_{N / 3}
\end{array}\right)
$$

where \mathcal{F}_{M} is the discrete Fourier transform:

$$
\left(\mathcal{F}_{M}\right)_{k l}=M^{-\frac{1}{2}} \exp (2 \pi i k l / M), \quad 0 \leq k, l \leq M-1 .
$$

There is a precise (mathematically rigorous) way of stating what it means to quantize a general symplectic relation.

$$
\begin{array}{l|l}
h \rightarrow 0 & N \rightarrow \infty \\
\hline \exp \left(-i t\left(-h^{2} \Delta+V\right) / h\right) & B_{N}^{t}, \quad t=0,1, \cdots \\
\hline e^{-i t z / h} & \lambda^{t} \\
z \text { a resonance of } H & \lambda \text { an eigenvalue of } B_{N} \\
\hline z \in[E-h, E+h]-i[0, \gamma h] & |\lambda|>\rho>0 \\
\hline \#\{z \in[E-h, E+h]-i[0, \gamma h]\} & \#\{\lambda,|\lambda|>\rho\} \\
\simeq C(\gamma) h^{-\mu_{E}} & \simeq C(\rho) N^{\frac{\log 2}{\log 3}} \\
\hline
\end{array}
$$

$$
B_{N}=\mathcal{F}_{N}^{*}\left(\begin{array}{ccc}
\mathcal{F}_{N / 3} & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & \mathcal{F}_{N / 3}
\end{array}\right), \quad 2 \mu_{E}+1=\operatorname{dim} K_{E}
$$

Conjectural Fractal Weyl Law

$$
\begin{gathered}
\sharp\left\{\text { resonances of }-h^{2} \Delta+V \text { in } D(E, r h)\right\} \sim C(r) h^{-\mu_{E}}, \\
\operatorname{dim} K_{E}=2 \mu_{E}+1 .
\end{gathered}
$$

Here the potential is assumed to have a hyperbolic classical flow near energy E, for instance

and K_{E} is the trapped set at that energy.
$\sharp\left\{\right.$ resonances of $-h^{2} \Delta+V$ in $\left.D(E, r h)\right\} \sim C(r) h^{-\mu_{E}}$,

$$
\operatorname{dim} K_{E}=2 \mu_{E}+1
$$

Weyl Law for closed systems
$\sharp\left\{\right.$ resonances of $-h^{2} \Delta+V$ in $\left.D(E, r h)\right\}=$

$$
\frac{1}{(2 \pi h)^{n}} \int_{|p-E| \leq r h} d x d \xi+o\left(h^{-n+1}\right) \sim C(r) h^{-n+1} .
$$

When everything is trapped $\operatorname{dim} K_{E}=\operatorname{dim}($ energy surface $)=2(n-1)+1$.

Mathematical results:
Precise upper bounds (without good estimates on $C(r)$): Guillopé-Lin-Zworski 2003, Sjöstrand-Zworski 2005 (earlier work by Sjöstrand 1991 and Zworski 1999).

Numerical results:
Lin (J. Comp. Phys. 2002), Lin-Zworski (Chem. Phys. Lett. 2002): Quantum resonances for the three bumps potential.

Lu-Sridhar-Zworski (Phys. Rev. Lett. 2003). Resonances for three discs computed using the semi-classical zeta function (Cvitanovič, Eckhardt, Gaspard...).

Strain-Zworski (Nonlinearity 2004) Resonances for $z \mapsto z^{2}+c, c<-2$ computed using a new method based on the upper bounds technology for zeta functions.

For B_{N} the Fractal Weyl law says:
$\sharp\left\{\right.$ eigenvalues of B_{N} with $\left.|\lambda|>r\right\} \sim C(r) N^{\mu}$.

$$
\mu=\frac{1}{2} \operatorname{dim} K=\operatorname{dim}\left(\Gamma_{-} \cap W_{\mathrm{u}}\right)=\frac{\log 2}{\log 3} .
$$

Numerical evidence supports this conjecture.
Similar evidence was recently obtained by
Schomerus-Tworzydło (Phys. Rev. Lett. 2004) for the open quantum kicked rotor.

To illustrate our data we follow Schomerus-Tworzydło:

On the right we see (?) the hypothetical function $C(r)$.

We form a matrix \widetilde{B}_{N} by keeping the "most significant elements" of B_{N} :

$$
\widetilde{B}_{9}=\frac{1}{\sqrt{3}}\left(\begin{array}{ccccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & \omega & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & \omega^{2} & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & \omega & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & \omega^{2} & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & \omega \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & \omega^{2}
\end{array}\right), \omega=e^{2 \pi i / 3}
$$

A computable Toy Model

We form a matrix \widetilde{B}_{N} by keeping the "most significant elements" of B_{N} :

\widetilde{B}_{N} has been proposed before as a "toy quantization" of the open Baker map (Schack-Caves, Saraceno). It also appears in the study of quantum binary graphs (Tanner). It is perhaps a bit surprising that \widetilde{B}_{N} is a quantization of a more complicated classical relation and one for which we still have dim $\Gamma_{-} \cap W_{\mathrm{u}}=\log 2 / \log 3$.

The Fractal Weyl law holds exactly for the toy model when $N=3^{k}$:
$\sharp\left\{\right.$ eigenvalues of $B_{3^{k}}$ with $\left.|\lambda|>r\right\}=(C(r)+O(1 / k)) 2^{k}$.

Why can we compute it (almost) exactly?

$$
\widetilde{B}_{3^{k}}=W_{k}^{*}\left(\begin{array}{ccc}
W_{k-1} & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & W_{k-1}
\end{array}\right)
$$

where W_{k} is the Walsh Fourier transform which is the Fourier transform on the group $\left(\mathbf{Z}_{3}\right)^{k}$, rather than, as $\mathcal{F}_{3^{k}}$, on $\mathrm{Z}_{3^{k}}$.
Functions on $\left(Z_{3}\right)^{k}$ (our Hilbert space of dimension 3^{k}) are identified with $\left(\mathbf{C}^{3}\right)^{\otimes k}$ and the action of W_{k} is very simple:

$$
\begin{aligned}
W_{k}\left(v_{1} \otimes \cdots \otimes v_{k}\right) & =\left(W_{1} v_{k} \otimes \cdots \otimes W_{1} v_{1}\right) \\
\widetilde{B}_{3^{k}}\left(v_{1} \otimes \cdots \otimes v_{k}\right) & =\left(v_{2} \otimes \cdots \otimes v_{k} \otimes W_{1} v_{1}\right) .
\end{aligned}
$$

The toy model can be used to compute other quantities:

Closed vs. open quantum cavity (dot)

23
The scattering matrix is given by Miller's formula:

$$
S_{N}(\theta)=\left(\pi_{1}+\pi_{2}\right) \sum_{k \geq 0}\left(e^{-i \theta} U\left(I-\pi_{1}-\pi_{2}\right)\right)^{k} e^{i \theta} U\left(\pi_{1}+\pi_{2}\right)
$$

Transmission part of S :

$$
t_{12}(\theta)=\pi_{1} \sum_{k \geq 0}\left(e^{-i \theta} U\left(I-\pi_{1}-\pi_{2}\right)\right)^{k} e^{i \theta} U \pi_{2}
$$

Conductance $\sim \operatorname{tr} t_{12} t_{12}^{*}$

$$
\text { Shot Noise } \sim \operatorname{tr} t_{12} t_{12}^{*}\left(I-t_{12} t_{12}^{*}\right)
$$

Weidenmüller, Blümel-Smilansky, Beenakker...

In the toy model:

$$
\begin{gathered}
\operatorname{tr} t_{12} t_{12}^{*}=\frac{4^{k-1}}{2}\left(1+2^{-\alpha k}\right) \\
\operatorname{tr} t_{12} t_{12}^{*}\left(I-t_{12} t_{12}^{*}\right)=2^{k-1} \frac{11}{80}\left(1+2^{-\alpha k}\right)
\end{gathered}
$$

The last expression indicates that the "fractal Weyl law" appears in the shot noise, $2^{k-1}=N^{\mu} / 2$.

The random matrix theory prediction (Beenakker et al), once corrected by the fractal Weyl Iaw gives the factor $1 / 8 \simeq 11 / 80$.

Even in a computable non-generic model this seems remarkably close!

