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A simple model of classical chaotic dynamics

Open Baker Relation

A Baker relation (as opposed to a map) is defined on a

phase space torus, 0 < q < 1, 0 < p < 1:

0 < q < 1/3 =⇒ B(q, p) =

(
3q,

p

3

)

2/3 < q < 1 =⇒ B(q, p) =

(
3q − 2,

p + 2

3

)
All other points are sent to infinity

Or, we can say that they are not in relation with any other

points, (p, q) ∼ B(p, q).



We have the outgoing (unstable +) and incoming (stable -)

tails defined in the usual fashion:

(q, p) ∈ Γ− ⇐⇒ (p1, q1) = B(q, p) , (pj+1, qj+1) = B(pj , qj) ,

(q, p) ∈ Γ+ ⇐⇒ (q, p) = B(p1, q1) , (pj , qj) = B(pj+1, qj+1) ,

Here are Γ± and the trapped set K = Γ+ ∩Γ− in the case of

a flow.



Here is how they look like:

Γ+ =
⋂

N≥0

BN(T2)⊂ B(T2)
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Now for the incoming (stable) tail, Γ−:

Γ− =
⋂

N≥0

B−N(T2)⊂ B−1(T2)
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Now for the incoming (stable) tail, Γ−:

Γ− =
⋂

N≥0

B−N(T2)⊂
⋂

N=0,1,2

B−N(T2)



And, finally the “trapped set” K = Γ+ ∩ Γ−:

K = Γ+ ∩ Γ− =
⋂

N∈Z

πL(BN)⊂
⋂

|N |=1,2,3

πL(BN)



And, finally the “trapped set” K = Γ+ ∩ Γ−:

Rectangular Smale horse shoe structure.

dim K = 2dim (Γ− ∩Wu) = 2
log 2

log 3
.



Quantization of the open Baker relation (Balazs-Voros,

Saraceno-Vallejos).

BN = F∗N


FN/3 0 0

0 0 0

0 0 FN/3

 .

where FM is the discrete Fourier transform:

(FM)kl = M−1
2 exp(2πikl/M) , 0 ≤ k, l ≤ M − 1 .

There is a precise (mathematically rigorous) way of stating

what it means to quantize a general symplectic relation.



h → 0 N →∞

exp(−it(−h2∆ + V )/h) Bt
N , t = 0, 1, · · ·

e−itz/h λt

z a resonance of H λ an eigenvalue of BN

z ∈ [E − h, E + h]− i[0, γh] |λ| > ρ > 0

#{z ∈ [E − h, E + h]− i[0, γh]} #{λ, |λ| > ρ}

' C(γ)h−µE ' C(ρ)N
log 2
log 3

BN = F∗N


FN/3 0 0

0 0 0

0 0 FN/3

 , 2µE + 1 = dimKE .



Conjectural Fractal Weyl Law

]{resonances of −h2∆ + V in D(E, rh) } ∼ C(r)h−µE ,

dimKE = 2µE + 1 .

Here the potential is assumed to have a hyperbolic classical

flow near energy E, for instance

and KE is the trapped set at that energy.



Conjectural Fractal Weyl Law

]{resonances of −h2∆ + V in D(E, rh)} ∼ C(r)h−µE ,

dimKE = 2µE + 1 .

Weyl Law for closed systems

]{resonances of −h2∆ + V in D(E, rh)} =

1

(2πh)n

∫
|p−E|≤rh

dxdξ + o(h−n+1) ∼ C(r)h−n+1 .

When everything is trapped

dim KE = dim(energy surface) = 2(n− 1) + 1 .



Mathematical results:

Precise upper bounds (without good estimates on C(r)):

Guillopé-Lin-Zworski 2003, Sjöstrand-Zworski 2005 (earlier

work by Sjöstrand 1991 and Zworski 1999).

Numerical results:

Lin (J. Comp. Phys. 2002), Lin-Zworski (Chem. Phys.

Lett. 2002): Quantum resonances for the three bumps

potential.

Lu-Sridhar-Zworski (Phys. Rev. Lett. 2003). Resonances

for three discs computed using the semi-classical zeta

function (Cvitanovič, Eckhardt, Gaspard...).

Strain-Zworski (Nonlinearity 2004) Resonances for

z 7→ z2 + c, c < −2 computed using a new method based on

the upper bounds technology for zeta functions.



For BN the Fractal Weyl law says:

]{eigenvalues of BN with |λ| > r} ∼ C(r)Nµ .

µ =
1

2
dim K = dim (Γ− ∩Wu) =

log 2

log 3
.

Numerical evidence supports this conjecture.

Similar evidence was recently obtained by

Schomerus-Tworzyd lo (Phys. Rev. Lett. 2004) for the

open quantum kicked rotor.



To illustrate our data we follow Schomerus-Tworzyd lo:
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On the right we see (?) the hypothetical function C(r).



Computable Toy Model

We form a matrix B̃N by keeping the “most significant

elements” of BN :

B̃9 =
1
√

3



1 0 0 0 0 0 1 0 0

1 0 0 0 0 0 ω 0 0

1 0 0 0 0 0 ω2 0 0

0 1 0 0 0 0 0 1 0

0 1 0 0 0 0 0 ω 0

0 1 0 0 0 0 0 ω2 0

0 0 1 0 0 0 0 0 1

0 0 1 0 0 0 0 0 ω

0 0 1 0 0 0 0 0 ω2



, ω = e2πi/3



A computable Toy Model

We form a matrix B̃N by keeping the “most significant

elements” of BN :

B̃N has been proposed before as a “toy quantization” of

the open Baker map (Schack-Caves, Saraceno). It also

appears in the study of quantum binary graphs (Tanner).

It is perhaps a bit surprising that B̃N is a quantization of a

more complicated classical relation and one for which we

still have dim Γ− ∩Wu = log 2/ log 3.



The Fractal Weyl law holds exactly for the toy model when

N = 3k:

]{eigenvalues of B3k with |λ| > r} = (C(r) + O(1/k))2k .
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Why can we compute it (almost) exactly?

B̃3k = W ∗
k


Wk−1 0 0

0 0 0

0 0 Wk−1

 ,

where Wk is the Walsh Fourier transform which is the

Fourier transform on the group (Z3)k, rather than, as F3k ,

on Z3k .

Functions on (Z3)k (our Hilbert space of dimension 3k) are

identified with (C3)⊗k and the action of Wk is very simple:

Wk(v1 ⊗ · · · ⊗ vk) = (W1vk ⊗ · · · ⊗W1v1) ,

B̃3k(v1 ⊗ · · · ⊗ vk) = (v2 ⊗ · · · ⊗ vk ⊗W1v1) .



The toy model can be used to compute other quantities:

The scattering matrix is given by Miller’s formula:

SN(θ) = (π1 + π2)
∑
k≥0

(e−iθU(I − π1 − π2))keiθU(π1 + π2) .



Transmission part of S:

t12(θ) = π1

∑
k≥0

(e−iθU(I − π1 − π2))keiθUπ2 .

Conductance ∼ tr t12t∗12

Shot Noise ∼ tr t12t∗12(I − t12t∗12)

Weidenmüller, Blümel-Smilansky, Beenakker...



In the toy model:

tr t12t∗12 =
4k−1

2
(1 + 2−αk)

tr t12t∗12(I − t12t∗12) = 2k−1 11

80
(1 + 2−αk) .

The last expression indicates that the “fractal Weyl law”

appears in the shot noise, 2k−1 = Nµ/2.

The random matrix theory prediction (Beenakker et al),

once corrected by the fractal Weyl law gives the factor

1/8 ' 11/80.

Even in a computable non-generic model this seems

remarkably close!


