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Abstract. We consider Vasy’s operator [10] with analytic coefficients. That oper-

ator arises in the study of scattering on asymptotically hyperbolic manifolds and in

general relativity.

1. General assumptions and conjectures

In his investigation of scattering resolvent on asymptotically hyperbolic manifolds,

Vasy [10] introduced a degenerate differential operator switching behaviour from ellip-

tic to hyperbolic along a hypersurface. More general operators with similar properties

appear also in the study the of Kerr–de Sitter wave equation. We refer to [4, Chapter

5],[10],[13] and [14, §3.1] for motivation and general results.

In this note we present some remarks about Vasy’s operator with analytic coef-

ficients: we ask some general questions about propagation of analytic singularities,

prove a conditional analytic hypoellipticity in a model case and give a direct prove of

a Cauchy–Kovalevskaya theorem for this operator. After this note was written, Zuily

[12] showed that by adapting methods of Bolley–Camus [3], conditional analytic hy-

poellipticity holds for all such operators settling [14, Conjecture 2]. The method of

proof in the model case presented in §2 is however very different and might be open

to generalizations.

To introduce Vasy’s operator, suppose that M is a compact analytic manifold and

(−1, 1) 3 x 7→ Q(x, y,Dy) =
∑
|α|≤2

aα(x, y)Dα
y , D := 1

i
∂

is an analytic family of self-adjoint (with respect to a density on M) elliptic second

order differential operators with analytic coefficients.

We are interested in the following family of operators depending on a parameterλ ∈
C:

P (λ) := xD2
x − (λ+ i)Dx + γ(x, y)xDx +Q(x, y,Dy). (1)

This is the operator which plays a role in Vasy’s treatment of scattering on asymptoti-

cally hyperbolic manifolds and is close to the operator eiλt�ge−iλt where g is a Kerr–de

Sitter-like metric.
1
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Here we assume that the coefficients of Q and the function γ are real analytic in a

neighbourhood of (−1, 1)×M ,

aα, γ ∈ Cω([−1, 1]×M).

We denote by WF(u) and WFa(u), C∞ and analytic wave front sets of u ∈ D′((−1, 1)×
M), respectively – see [6, Chapter 8],[8].

We have the following possible analytic regularity statements of increasing strength:

for u ∈ C∞((−1, 1)×M) and λ /∈ −iN∗,

P (λ)u = f ∈ Cω((−1, 1)×M) =⇒ u ∈ Cω((−1, 1)×M); (2)

P (λ)u = f, WFa(f) ∩N∗(M × {0}) = ∅ =⇒WFa(u) ∩N∗(M × {0}) = ∅; (3)

P (λ)u = f ∈ Cω(U), (0, y0) ∈ U ⊂ (−1, 1)×M =⇒ u ∈ Cω(V ), (4)

for some neighbourhood V of (0, y0). Finally,

P (λ)u = f, (0, y0, 1, 0) /∈WFa(f), y0 ∈M =⇒ (0, y0, 1, 0) /∈WFa(u). (5)

In the local versions of the conjecture we can take M = Rn. The implication (2) is

a conditional form of analytic hypoellipticity, that is analytic hypoellipticity under a

regularity assumption.

If we assume that u ∈ Hs+1 for s + 1
2
> − Imλ (rather than u ∈ C∞) then the

statements (2)–(5) hold in the C∞ category, that is for Cω replaced by C∞ and WFa

replaced by WF – see [13, §4] for (2),(3) and [5] for (4),(5). Consequently we expect

(2)–(5) to be valid under that weaker assumption u ∈ Hs+1, s > − Imλ − 1
2

(which

can be further microlocalized).

2. Proof of analytic hypoellipticity in the model case

We will prove (2) in the model case of γ = 0 and Q(x, y,Dy) = −∆M where −∆M

is the Laplacian for a real analytic metric on M . The proof is based on separation of

variables and we will quote some results about Fuchsian differential operators – see §3
– as well as some standard results about Bessel function asymptotics.

It is enough to show that u is analytic in (−ε, ε)×M for some ε > 0 as propagation

of analytic singularities [8] (which is simply ellipticity for x > 0) implies that u is

analytic in (−1, 1)×M .

We first recall the following consequence of [2, Theorem 1]. In §3 we present a

self-contained argument in our special case.

Lemma 2.1. Suppose that λ /∈ −iN∗. There exists ε > 0 such that for any f ∈
Cω((−1, 1)×M)) we can solve P (λ)u = f with u ∈ Cω((−ε, ε)×M).

Hence we can assume that f ≡ 0 and it is enough to show that for P (λ)u = 0 near

x = 0, u(x, y) is analytic in (−ε, ε)×M for some ε > 0. For that it is in fact sufficient
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to show that analyticity holds true in [0, ε)×M for some ε > 0. This follows from the

following observation: a solution analytic in [0, ε) extends to a solution in ũ in (−ε1, ε)
for some ε1 > 0. Hence the difference v := ũ− u is a smooth solution in (−ε1, ε)×M
supported in (−ε1, 0]×M . But then [13, Lemma 1] shows that v ≡ 0 and hence u is

analytic in (−ε1, ε)×M .

Let {uk(y)}∞k=0 be an orthonormal set of eigenfunctions of −∆M :

(−∆M − µ2
k)uk(y) = 0, 〈uk, u`〉L2(M) = δk`.

We then write

u(x, y) =
∞∑
k=1

ak(x)uk(y)

where the coefficients ak(x) are smooth and solve

(∂xx∂x − iλ∂x − µ2
k)ak(x) = 0, |x| < δ. (6)

Let H be the unique solution to

(∂xx∂x − iλ∂x − 1)Hλ(x) = 0, Hλ(0) = 1, λ /∈ −iN∗,

where the uniqueness follows from the indicial equation as in the proof of the following

Lemma 2.2. For x ∈ C with | arg x| < π,

Hλ(x) =
1√
2π

Γ(1− iλ)2iλx
iλ
2
− 1

2 e2
√
x(1 +Oλ(1/|x|)), |x| → ∞. (7)

In addition, for x ∈ C with |x| > 1,

|Hλ(x)| ≤ eCλ
√
|x|. (8)

Proof. If x = 1
4
z2 then (see [13, (2.2)] where the motivation for this change of variables

is also presented)

x(∂xx∂x − iλ∂x − 1) = 1
4
ziλ(z2∂2z + z∂z + λ2 − z2)z−iλ

which is the modified Bessel equation with the parameter α = −iλ. It is solved by

I−iλ(z) =
1

Γ(1− iλ)

(z
2

)−iλ
(1 + z2F (z2)), z → 0+

Hence

Hλ(x) = Γ(1− iλ)x
iλ
2 I−iλ(2

√
x),

and the expansion follows from the standard asymptotic expansion of I−iλ(z) – see

[1, (9.7.1)]. The upper bound (8) is immediate from the recursion relations in the

expansion of Hλ(x):

Hλ(x) =
∞∑
k=0

Hλ,kx
k, Hλ,0 = 1, Hλ,k+1 =

1

(k + 1)(k + 1− iλ)
Hλ,k.
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�

Rescaling (6) by x̃ = µ2
kx we see that

ak(x) = ak(0)Hλ(µ
2
kx). (9)

Since u(x, y) is smooth in x and y it follows that, uniformly for |x| ≤ 1
2
,

ak(x) = 〈u(x, •), uk〉L2(M) = 〈(I −∆M)Nu, (I −∆M)−Nuk〉L2(M)

= ON(〈µk〉−2N),

though we only need the case of N = 0. These two facts and (7) give, for large values

of k,

|ak(0)| = |ak(12)||Hλ(
1
2
µ2
k)|−1 ≤ Cλe

−µk/2.

Using this, (8) and the analyticity of Hλ in (9) give

|∂`xak(x)| ≤ C`+1``e−µk/3, |x| ≤ δ, (10)

where δ depends only on λ.

On the other hand,

|∂αy uk(y)| ≤ C1+|α|µ
n/2
k (µk + |α|)|α|, (11)

see for instance [7] for a self-contained presentation. Putting N(r) = max{k : µk ≤
r} ≤ C0r

n, n = dimM , we obtain

|∂`x∂αy u| ≤ C |α|+`+1``
∞∑
k=0

(µk + |α|)|α|e−µk/4 = C |α|+`+1``
∫ ∞
0

(r + |α|)|α|e−r/4dN(r)

≤ C
|α|+`+1
1 ``|α||α|,

,

since ∫ ∞
0

(r + |α|)|α|e−r/4dN(r) ≤ C0|α|
∫ ∞
0

(1 + r)n(r + |α|)|α|e−r/4dr

≤ C0|α||α|+1

∫ ∞
0

(1 + r)n+|α|e−r/4dr ≤ C
|α|
2 |α||α|.

This completes the proof of (2).

3. A Cauchy–Kovalevskaya theorem for the Vasy operator

We will use the methods of Baouendi–Goulaouic [2] (with simplifications from [9]

and [11]) to show existence of analytic solutions of the Vasy operator (1). One could

simply quote [2] for the main result but since the situation here is simpler we revisit

the approach of [2].

For λ ∈ C we consider the following family of operators:

P (λ) = xD2
x − (λ+ i)Dx + γ(x, y)xDx +Q(x, y,Dy), x ∈ (−1, 1), y ∈ U b Rn,
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where

Q(x, y,Dy) =
∑
|α|≤2

aα(x, y)Dα
y , γ, aα ∈ Cω((−1, 1)× U),

and γ and aα are real analytic in (x, y). There are no further assumption on Q and in

particular ellipticity plays no role here.

Proposition 3.1. Suppose that λ /∈ −iN∗. Then, for any open set V b U there

exists ε > 0 such that for u0 ∈ Cω(U) and f ∈ Cω((−1, 1)× U) there exists a unique

u ∈ Cω((−ε, ε)× V ) satisfying

P (λ)u = f in (−ε, ε)× V , u(0, y) = u0(y), y ∈ V. (12)

We associate to P (λ) an indicial operator

C(λ, x∂x) := −(x∂x)
2 + iλx∂x (13)

and note that

C(λ, s) := x−sC(λ, x∂x)xs = −s(s− iλ). (14)

To construct u(x, y) we write it as follows,

u(x, y) = u0(y) +
K−1∑
k=1

xk

k!
∂kxu(0, y) + xKuK(x, y). (15)

(We will use the same notation for other functions of x: xKuK denotes the remainder

in the K-term Taylor expansion.)

Since xP (λ)u = xf , we have

C(λ, x∂x)u = xf − γx2Dxu− xQ(x, y,Dy)u,

and this gives the following system of equations

1

k!
C(λ, k)∂kxu(0, y) =

1

(k − 1)!
∂k−1x f(0, y) + i

∑
m+`=k−1

1

(m− 1)!`!
∂`xγ(0, y)∂mx u(0, y)

−
∑

m+`=k−1

1

m!`!
∂`xQ(0, y,Dy)∂

m
x u(0, y), 1 ≤ k ≤ K − 1.

(16)

If C(λ, k) 6= 0 for k ∈ N∗ then we can find ∂kxu(0, y) ∈ Cω(U) satisfying (16). In view

of (14) that is precisely the condition that λ /∈ −iN∗.
The equation for uK becomes

xP (λ)xKuK = xKFK(x, y),
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where

FK(x, y) :=fK−1(x, y)− (QK−1(x, y,Dy)− iγK−1(x, y)x∂x)
K−1∑
k=0

xk

k!
∂kxu(0, y)

+ i
∑

m+`>K−2
m<K−1,`<K−1

xm+`−K+1

(m− 1)!`!
∂`xγ(0, y)∂mx u(0, y)

−
∑

m+`>K−2
m<K−1,`<K−1

xm+`−K+1

m!`!
∂`xQ(0, y,Dy)∂

m
x u(0, y)

(17)

(The specific form of FK is of course not important – what matters is that it is con-

structed using ∂kxu(0, y), k ≤ K − 1 and analytic in all variables.)

Since x−KC(λ, x∂x)(xKv) = C(λ, x∂x +K)v, we obtain

PK(λ)uK = FK , (18)

where FK is given by (17) and

PK(λ) =− (x∂x +K)2 + iλ(x∂x +K)

− ixγ(x, y)(x∂x +K) + xQ(x, y,Dy).
(19)

The advantage now lies in the fact that the indicial equation has two roots −K,−K+iλ

and for K > − Imλ, the real parts of both roots are negative.

Proposition 3.2. Suppose that

P := (x∂x − s1)(x∂x − s2) + xb(x, y)(∂xx) + xB(x, y, ∂y),

B(x, y, ∂y) =
∑
|α|≤2 bα(x, y)∂αy , where aj ∈ C, b, bα ∈ Cω([−1, 1]× U) and

Re sj < 0.

Then for any open set V b U there exists ε > 0 such that for f ∈ Cω((−1, 1) × U)

there exists a unique u ∈ Cω((−ε, ε)× V ) solving

Pu = f.

Remarks. 1. This works in much greater generality and in particular we could assume

that sj are analytic functions of y. In our case s1 = −K and s2 = −K+iλ are constant.

2. One can assume continuity of the coefficients and of f in the x variable and still

obtain solutions for which (x∂x)
ku, k ≤ 2 are continuous with values in the spaces of

analytic functions in y – see [2] and [9].

Proof of Proposition 3.2. By passing to a cover (and using a uniqueness argument)

and shifting the origin we can assume that

V b DCn(0, R) ∩ Rn b U, DCn(0, R) := {z ∈ Cn : |zj| < R},
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and that the coefficients of P extend to holomorphic functions in a neighbourhood of

DC(0, δ)×DCn(0, R), δ > 0. For η > 0 sufficiently small we then put

G = {(x, y) ∈ Cn : |x|
1
2/η + |y| < R}, |y| := max |yj|.

We define the Banach space X = Xη,p of functions holomorphic in G with the norm

‖u‖η,p := sup
(x,y)∈G

(R− |y| − |x|
1
2/η)p|u(x, y)|, p > 1.

We put P2 := (x∂x − s1)(x∂x − s2) and define

Hg(x, y) :=

∫ 1

0

∫ 1

0

ξ−1−s11 ξ−1−s22 g(ξ1ξ2x, y)dξ1dξ2,

so that P2Hg = g. We also define

Hmg(x, y) :=

∫ 1

0

· · ·
∫ 1

0

g(ξ1 · · · ξmx, y)dξ1 · · · dξm,

which solves (∂xx)mHmg = g.

Following [9] we now look for a solution of the form u = H2g, that is a solution to

P2H2g = f − xb(∂xx)H2g − xB(x, y, ∂y)H2g.

That means we are looking for a fixed point of T which is defined as

T g := (∂xx)2H (f − xbH1g − xB(x, y, ∂y)H2g) ,

and we want to show that, for η small enough, T is a contraction on X .

We need to show that T : X →X and we first note that

‖(∂xx)2Hu‖η,p ≤ Cs‖u‖η,p. (20)

In fact,

x∂xHu(x, y) =

∫ 1

0

∫ 1

0

ξ−s11 ξ−s2−12 ∂ξ1 [u(ξ1ξ2x, y)]dξ1dξ2

= s1Hu(x, y) +

∫ 1

0

ξ−s2−12 u(ξ2x, y)dξ2,

and hence x∂xH = Os(1)X→X . Writing (∂xx)2 using P2 and x∂x− sj then shows (20).

Similarly,

‖Hmg‖η,p ≤ ‖g‖η,p. (21)

We now have to estimate ‖x∂αyH2g‖η,p for |α| = 1, 2 and the key component is

Nagumo’s Lemma: for g ∈X ,

|∂yjg(x, y)| ≤ (p+ 1)e(R− |y| − |x|
1
2/η)−p−1‖g‖η,p, j = 1, · · · , n. (22)

This follows from a one dimensional inequality: for f holomorphic in |z| < r, z ∈ C,

|f(z)| ≤ C(r − |z|)−p −→ |∂zf(z)| ≤ C(p+ 1)(1 + p−1)p(r − |z|)−p−1,



8 GILLES LEBEAU AND MACIEJ ZWORSKI

which in turn follows from Cauchy’s inequality |∂zf(z)| ≤ ρ−1 max|z−w|=ρ |f(w)| ≤
Cρ−1(r − ρ− |z|)−p and optimization in ρ.

We claim that

‖x
|α|
2 ∂αyH|α|g‖η,p ≤ Cη|α|‖g‖η,p, |α| ≤ 2. (23)

We first consider the case of |α| = 1. Using (22) we see that

|x|
1
2 |∂yjH1g(x, y)| ≤ C‖g‖η,p

∫ 1

0

|x| 12
(R− |y| − |ξx| 12/η)p+1

dξ

≤ C‖g‖η,p η2|x|−
1
2

∫ |x|/η2
0

(R− |y| − s
1
2 )−p−1ds

≤ Cp η ‖g‖η,p (R− |y| − |x|
1
2/η)−p.

(24)

Here we used the inequality∫ r

0

(ρ− s
1
2 )−p−1ds ≤ Cpr

1
2 (ρ− r

1
2 )−p, 0 ≤ r < ρ, p > 1,

which follows from differentiating both sides in r (and the fact that the inequality is

valid for r = 0). This proves (23) for |α| = 1. For |α| = 2 we again use (22) and obtain

|x||∂yj∂ykH2g(x, y)| ≤ ‖g‖η,p
∫ 1

0

∫ 1

0

|x|(R− |y| − |ξ1ξ2x|
1
2/η)−p−2dξ1dξ2

≤ ‖g‖η,p
2∏
j=1

∫ 1

0

|x|
1
2 (R− |y| − |ξjx|

1
2/η)−p/2−1dξj.

We now argue as in (24) for each term and obtain (23).

From (23) we obtain

‖x∂αyH2g‖η,p ≤ Cpη‖g‖η,p, |α| ≤ 2. (25)

Combining this with (20) and (21) and using the fact that |x| < Rη2 we see that for

η sufficiently small T : X → X is indeed a contraction and that gives solution to

Pu = f holomorphic in G. The uniqueness and globalization are standard. �
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