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Abstract. We consider the perturbed mKdV equation ∂tu = −∂x(∂2
xu + u3 −

b(x, t)u) where the potential b(x, t) = b0(hx, ht), 0 < h� 1, is slowly varying with

a double soliton initial data. On a dynamically interesting time scale the solution

is O(h2) close in H2 to a double soliton whose position and scale parameters follow

an effective dynamics, a simple system of ordinary differential equations. These

equations are formally obtained as Hamilton’s equations for the restriction of the

mKdV Hamiltonian to the submanifold of solitons. The interplay between algebraic

aspects of complete integrability of the unperturbed equation and the analytic ideas

related to soliton stability is central in the proof.

1. Introduction

We consider 2-soliton solutions of the modified KdV equation with a slowly varying

external potential (1.1). The purpose of the paper is to find minimal exact effective dy-

namics valid for a long time in the semiclassical sense and describing non-perturbative

2-soliton interaction. In standard quantum mechanics the natural long time for which

the semiclassical approximation is valid is the Ehrenfest time, log(1/h)/h – see for

instance [7]. The semiclassical parameter, h, quantifies the slowly varying nature of

the potential.

Unlike in the case of single-particle semiclassical dynamics, that is, for the linear

Schrödinger equation with a slowly varying potential, the exact effective dynamics

valid for such a long time requires h2-size corrections†. Those corrections appeared as

unspecified O(h2) additions to Newton’s equations (which give the usual semiclassi-

cal approximation) in the work of Fröhlich-Gustafson-Jonsson-Sigal [13] on 1-soliton

propagation. That paper and its symplectic point of view were the starting point for

[18, 19].

Following the 1-soliton analysis of [18, 19] the semiclassical dynamics for 2-solitons

considered here is obtained by restricting the Hamiltonian to the symplectic manifold

of 2-solitons and considering the finite dimensional dynamics there. The numerical

experiments [17] show a remarkable agreement with the theorem below. However,

they also reveal an interesting scenario not covered by our theorem: the velocities of

†A compensation for that comes however at having the semiclassical propagation accurate for

larger values of h.
1
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Figure 1. A gallery of numerical experiments showing agreement with

the results of the main theorem (clockwise from the left hand corner)

for the external fields listed in (1.15) with the indicated initial data.

The continuous lines are the numerically computed solutions and the

dotted lines follow the evolution given by (1.4). The main theorem does

not apply to the bottom two figures on the whole interval of time due

to the crossing of cj’s – see Fig.3. In the first figure in the second line,

(1.4) still apply directy, but in the second one further modification is

needed to account for the signs.

the solitons can almost cross within exponentially small width in h and the effective

dynamics remains valid. Any long time analysis involving multiple interactions of

solitons has to explain this avoided crossing which perhaps could be replaced by a

direct crossing in a different parametrization. This seems the most immediate open

problem of phenomenological interest.
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The effective dynamics follows a long tradition of the use of modulation parameters

in soliton propagation – see for instance [8],[25],[26],[30],[32] and the numerous refer-

ences given there. For non-linear dispersive equations with non-constant coefficients

one can consult, in addition to [13], [3],[14],[15],[22], and references given there.

Here we avoid generality and, as described above, the aims are more modest: for the

physically relevant cubic non-linearity we benefit from the completely integrable struc-

ture and using classical methods we can give a remarkably accurate and phenomeno-

logically relevant description of 2-soliton interaction. The equation (1.1) shares many

features with the dynamical Gross-Pitaevskii equation,

i∂tu = −∂2
xu− |u|2u+ V (x)u ,

but is easier to study, mathematically and numerically. In a recent numerical study

Potter [31] showed that the same effective dynamics applies very well to N -soliton

trains in the case of perturbed mKdV and NLS. The soliton matter-wave trains cre-

ated for Bose-Einstein condensates [33] were a good testing ground and our effective

dynamics gives an alternative explanation of the observed phenomena. At the mo-

ment it is not clear how to obtain exact effective dynamics for the perturbed NLS.

The numerical results of [31] also indicate that the errors O(h2) in NLS and mKdV

evolution are optimal. For external potentials with nondegenerate maxima, the lim-

iting Ehrenfest time log(1/h)/h also appears to be optimal as the errors behave like

O(h2 exp(Cht)) – see [31, §4.3] and (1.3) below.

To state the exact result we recall the perturbed mKdV equation [10],[11]:

∂tu = −∂x(∂2
xu− b(x, t)u+ 2u3) ,

b(x, t) = b0(hx, ht) , 0 < h� 1 , ∂αb0 ∈ L∞(R2) .
(1.1)

For b ≡ 0 the equation is completely integrable and has a special class of N -soliton

solutions, qN(x, a, c), a ∈ RN , c ∈ RN – see §1.1 and §3 below. For N = 2 we obtain

Theorem. Let δ0 > 0 and ā, c̄ ∈ Rn. Suppose that u(x, t) solves (1.1) with

(1.2) u(x, 0) = q2(x, ā, c̄) , |c̄1 ± c̄2| > 2δ0 > 0 , 2δ0 < |c̄j| < (2δ0)−1 .

Then, for t < T (h)/h,

(1.3) ‖u(·, t)− q2(·, a(t), c(t))‖H2 ≤ Ch2eCht , C = C(δ0, b0) > 0 ,

where a(t) and c(t) evolve according to the effective equations of motion,

ȧj = c2
j − sgn(cj)∂cjB(a, c, t) , ċj = sgn(cj)∂ajB(a, c, t)

B(a, c, t)
def
=

1

2

∫
b(x, t)q2(x, a, c)2 dx .

(1.4)

The upper bound T (h)/h for the validity of (1.3) is given in terms of

(1.5) T (h) = min(δ log(1/h), T0(h)) , δ = δ(δ0, b0) > 0
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where for t < T0(h)/h, |c1(t) ± c2(t)| > δ0 > 0 and δ0 < |cj(t)| < δ−1
0 . Under the

assumption (1.2) on c̄, T0(h) > δ2, where δ2 = δ2(δ0, b0) > 0 is independent of h – see

(1.12).

Remarks. 1. We expect the same result to be true for all N with H2 replaced by

HN . For N = 1 it follows directly from the arguments of [19]. That case is also

implicit in this paper: single soliton dynamics describes the propagation away from

the interaction region.

2. The Ehrenfest time bound, T (h) ≤ δ log(1/h), is probably optimal if we insist on

the agreement with classical equations of motion (1.4). We expect that the solution is

close to a soliton profile q2(x, a, c) for much longer times (h−∞?) but with a modified

evolution for the parameters. One difficulty is the lack of a good description of the

long time behaviour of time dependent linearized evolution with b present – see §8.

However, the modified equations would lack the transparency of (1.4) and would be

harder to implement. The numerical study [31] suggests that for the minimal exact

dynamics the error bound O(h2) in (1.3) is optimal.

3. As shown by the top two plots in Fig.1 the agreement of the approximations given

by (1.4) and numerical solutions of (1.1) is remarkable. The codes are available at

[17], see also §1.4. Experiments support the preceding remark.

4. The condition that |c1(t) ± c2(t)| > δ1, that is, that the perturbed effective

dynamics avoids the lines shown in Fig.2, could most likely be relaxed. Allowing that

provides more interesting dynamics as then the solitons can interact multiple times.

As discussed in §1.2 and Appendix B, we expect avoided crossing after ±cj(t)’s get

within exp(−c/h) of each other – see Fig.3. Examples of such evolution, and the

comparisons with effective dynamics, are shown in the lower two plots in Fig.1. On

closer inspection the agreement between the solutions and solitons moving according

to effective dynamics is not as dramatic as in the case when ±cj’s stay away from

each other but for smaller values of h the result should still hold. We concentrated

on the simpler case at this early stage.

5. The equation (1.1) is globally well-posed in Hk, k ≥ 1 under even milder regularity

hypotheses on b. This can be shown by modifying the techniques of Kenig-Ponce-

Vega [21] – see Appendix A. Although for k ≥ 2 more classical methods are available,

we opt for a self-contained treatment dealing with all Hk’s at once.

6. Studies of single solitons for perturbed KdV, mKdV, and their generalizations

were conducted by Dejak-Jonsson [10] and Dejak-Sigal [11]. The perturbative terms,

b(x, t), were assumed to be not only slow varying but also small in size. The mKdV

results of [10] are improved by following [19]. For KdV one does not expect the same

behaviour as for mKdV and the O(h2)-approximation similar to (1.3) is not valid –

see the recent work by Muuñoz [28] and the first author [16] for finer analysis of that

case.
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Figure 2. On the left we show R2 \ C and on the right examples

of double solitons corresponding to (c1, c2) indicated on the left (with

a1 = a2 = 0 in the first figure and a2 = −a1 = 1, in the other two). At

the coordinate axes the double soliton degenerates into a single soliton.

As one approaches the lines c1 = ±c2 the solitons escape to infinities

in opposite direction.

7. The conditions that u(x, 0) = q2(x, ā, c̄) can be relaxed by allowing a small per-

turbation in H2 – see [9] for the adaptation of [19] to that case. Similar statements

are possible here but we prefer the simpler formulation both in the statement of the

theorem and in the proofs.

In the remainder of the introduction we will explain the origins of the effective

dynamics (1.4), outline the proof, and comment on numerical experiments.

1.1. Double solitons for mKdV. The single soliton solutions to mKdV, (1.1) with

b ≡ 0, are described in terms of the profile η(x, a, c) as follows. Let η(x) = sechx so

that −η + η′′ + 2η3 = 0, and let η(x, c, a) = cη(c(x− a)) for a ∈ R, c ∈ R \ 0. Then a

single soliton defined by

u(x, t) = η(x, a+ c2t, c)

is easily verified to be an exact solution to mKdV. Such solitary wave solutions are

available for many nonlinear evolution equations. However, mKdV has richer struc-

ture – it is completely integrable and can be studied using the inverse scattering

method (Miura [27], Wadati [35]). One of the consequences is the availability of

larger families of explicit solutions. In the case of mKdV, we have N-solitons and

breathers. In this paper we confine our attention to the 2-soliton (or double soli-

ton), which is described by the profile q2(x, a, c) defined in (3.2) below. The four real
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parameters, a ∈ R2, and c ∈ R2 \ C,

C def
= {(c1, c2) : c1 = ±c2} ∪ R× {0} ∪ {0} × R ,

describe the position (a) and scale (c) of the double soliton. At the diagonal lines the

parametrization degenerates: for c1 = ±c2, q2 ≡ 0. At the coordinate axes in the c

space, we recover single solitons:

q2(x, a, (c1, 0)) = −c1η(x, a1, c1) , q2(x, a, (0, c2)) = c2η(x, a2, c2) .

Fig.2 shows a few examples.

Solving mKdV with u(x, 0) = q2(x, a, c) gives the solution

u(x, t) = q2(x, a1 + tc2
1, a2 + tc2

2, c) ,

that is, the double soliton solution.

If, say, 0 < c1 < c2, then for |a1 − a2| large,

q(x, a, c) ≈ η(x, a1 + α1, c1) + η(x, a2 + α2, c2)

where αj are shifts defined in terms of c, see Lemma 3.2 for the precise statement.

This means that for large positive and negative times the evolving double soliton is

effectively a sum of single solitons. The decomposition can be made exact preserving

the particle-like nature of single solitons even during the interaction – see (3.11) and

Fig.4.

We consider the set of 2-solitons as a submanifold of H2(R;R) with 8 open com-

ponents corresponding to the components of R2 \ C:

(1.6) M = { q(·, a, c) | a = (a1, a2) ∈ R2 , c = (c1, c2) ∈ R2 \ C } .

As in the case of single solitons this submanifold is symplectic with respect to the

natural structure recalled in the next subsection.

1.2. Dynamical structure and effective equations of motion. The equation

(1.1) is a Hamiltonian equation of evolution for

(1.7) Hb(u) =
1

2

∫
(u2

x − u4 + bu2)dx ,

on the Schwartz space, S(R;R) equipped with the symplectic form

(1.8) ω(u, v) =
1

2

∫ +∞

−∞

∫ x

−∞
(u(x)v(y)− u(y)v(x))dydx .

In other words, (1.1) is equivalent to

(1.9) ut = ∂xH
′
b(u) , 〈H ′b(u), ϕ〉 def

=
d

ds
Hb(u+ sϕ)|s=0 ,

and ∂xH
′
b(u) is the Hamilton vector field of Hb, ΞHb , with respect to ω:

ω(ϕ,ΞHb(u)) = 〈H ′b(u), ϕ〉 .
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For b = 0, ΞH0 is tangent to the manifold of solitons (1.6). Also, M is symplectic

with respect to ω, that is, ω is nondegenerate on TuM , u ∈ M . Using the stability

theory for 2-solitons based on the work of Maddocks-Sachs [24], and energy methods

(enhanced and simplified using algebraic identities coming from complete integrability

of mKdV) we will show that the solution to (1.1) with initial data on M stays close

to M for t ≤ log(1/h)/h.

A basic intuition coming from symplectic geometry then indicates that u(t) stays

close to an integral curve on M of the Hamilton vector field (defined using ω|M) of

Hb restricted to M :

Heff(a, c)
def
= Hb|M(a, c) = H0|M(a, c) +

1

2

∫
b(x)q2(x, a, c)2dx ,

H0|M(a, c) = −1

3
(|c1|3 + |c2|3) ,

ω|M = da1 ∧ d|c1|+ da2 ∧ d|c2| ,

ΞHeff
=

2∑
j=1

sgn(cj)(∂ajHeff ∂cj − ∂cjHeff ∂aj) .

(1.10)

The effective equations of motion (1.4) follow. This simple but crucial observation

was made in [18],[19] and it did not seem to be present in earlier mathematical work

on solitons in external fields [13].

The condition made in the theorem, that |c1(t) ± c2(t)| and |cj(t)| are bounded

away from zero for t < T0(h)/h (where T0(h) could be ∞), follows from a condition

involving a simpler system of decoupled h-independent ODEs – see Appendix B. Here

we state a condition which gives an h-independent T0 appearing in (1.5).

Suppose we are given b(x, t) = b0(hx, ht) in (1.1) and the initial condition is given

by q2(x, ā, c̄), ā = (ā1, ā2), c̄ = (c̄1, c̄2), |c̄1 ± c̄2| > δ0, |c̄j| > δ0, We consider an

h-independent system of two decoupled differential equations for

A(T ) = (A1(T ), A2(T )) , C(T ) = (C1(T ), C2(T )) ,

given by

(1.11)

{
∂TAj = C2

j − b0(Aj, T )

∂TCj = Cj∂xb0(Aj, T )
, A(0) = āh , C(0) = c̄ , j = 1, 2 .

Then, for a given δ1 < δ0, T0(h) in (1.5) can be replaced by

(1.12) T0
def
= sup{T : |C1(T )± C2(T )| > δ1 , |Cj(T )| > δ1 , j = 1, 2} .

1.3. Outline of the proof. To obtain the effective dynamics we follow a long tra-

dition (see [13] and references given there) and define the modulation parameters

a(t) = (a1(t), a2(t)) , c(t) = (c1(t), c2(t)) ,
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Figure 3. The plots of c and a for the external potential given by

the last b(x, t) in (1.15), and c̄ = (6, 10), ā = (−1,−2). We see the

avoided crossings near times at which the decoupled dynamics (1.11)

would give a crossing of cj’s (see also Fig.6). The crossings are avoided

with exp(−1/Ch) width and a1 = a2 at the crossings. These cases are

not yet covered by our theory. Of the five crossings of aj’s in the bottom

figure, three do not involve crossings of cj’s are hence the description

by effective dynamics there is covered by our theorem. However, in the

absence of avoided crossing of cj’s the solitons can interact only once.

be demanding that

v(x, t) = u(x, t)− q(x, a(t), c(t)) , q = q2 ,
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satisfies symplectic orthogonality conditions:

ω(v, ∂a1q) = 0 ω(v, ∂a2q) = 0

ω(v, ∂c1q) = 0 ω(v, ∂c2q) = 0

These can be arranged by the implicit function theorem thanks to the nondegeneracy

of ω|M . This makes q the symplectic orthogonal projection of u onto the manifold of

solitons M .

Since u = q + v and u solves mKdV, we have

(1.13) ∂tv = ∂x(Lc,av − 6qv2 − 2v3 + bv)− F0 ,

where

Lc,a = −∂2
x − 6q(x, a, c)2v ,

and F0 results from the perturbation and ∂t landing on the parameters:

F0 =
2∑
j=1

(ȧj − c2
j)∂ajq +

2∑
j=1

ċj∂cjq − ∂x(bq) .

We decompose F0 = F‖+F⊥, where F‖ is symplectic projection of F0 onto TqM , and

F⊥ is the symplectic projection onto its symplectic orthogonal (TqM)⊥. As seen in

(5.4), F‖ ≡ 0 is equivalent to the equations of motion (1.4) (we assume in the proof

that c2 > c1 > 0).

Using the properties of q, we show that F⊥ is O(h2). In fact it is important to

obtain a specific form for the O(h2) term so that it is amenable to finding a certain

correction term later – see §6.

The estimates for F‖ are obtained using the symplectic orthogonality properties of

v. For example, 0 = 〈v, ∂−1
x ∂ajq〉 implies

0 = ∂t〈v, ∂−1
x ∂ajq〉 = 〈 ∂tv︸︷︷︸

↑
substitute equation (1.13)

, ∂−1
x ∂ajq〉+ 〈v, ∂t∂−1

x ∂ajq〉 ,

which can be used to show that

(1.14) |F‖| ≤ Ch2‖v‖H2 + ‖v‖2
H2 ,

see §7.

The next step is to estimate v satisfying (1.13) with v(0) = O(h2) (in the theorem

v(0) = 0, but we need this relaxed assumption for the bootstrap argument). We want

to show that on a time interval of length h−1, that v at most doubles. The Lyapunov

functional E(t) that we use to achieve this comes from the variational characterization

of the double soliton (see [23, §2] and Lemma 4.1 below): if

Hc(u) = I5(u) + (c2
1 + c2

2)I3(u) + c2
1c

2
2I1(u) ,
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then

H ′c(q(·, a, c)) = 0 , ∀ a ∈ R2 ,

and

H ′′c (q(·, a, c)) = Kc,a ,
where Kc,a is a fourth order operator given in (4.11) below. Hence

E(t)
def
= Hc(t)(q(•, a(t), c(t)) + v(t))−Hc(t)(q(•, a(t), c(t))) ,

satisfies

E(t) ≈ 〈Kc,av, v〉 ,
and, as in Maddocks-Sachs [24] for KdV, Kc,a has a two dimensional kernel and one

negative eigenvalue. However, the symplectic orthogonality conditions on v imply that

we project far enough away from these eigenspaces and hence we have the coercivity

δ‖v‖2
H2 ≤ E(t) .

To get the upper bound on E(t), we compute

d

dt
E(t) = O(h)‖v(t)‖2

H2 + 〈Kc,av, F‖〉+ 〈Kc,av, F⊥〉 ,

see §9. Using (1.14) we can estimate the second term on the right-hand side but

|F⊥| = O(h2) only. We improve this to h3 using a correction term to v – see §8, and

the comment at the end of this section.

All of this combined gives, on [0, T ],

‖v‖2
H2 . ‖v(0)‖2

H2 + T (|F‖|‖v‖H2 + h2‖v‖H2 + ‖v‖2
H2) ,

|F‖| ≤ Ch2‖v‖H2 + ‖v‖2
H2 ,

which implies

‖v‖H2 . h2 , |F‖| . h4 , on [0, h−1] .

Iterating the argument δ log(1/h) times gives a slightly weaker bound for longer times.

The O(h4) errors in the ODEs can be removed without affecting the bound on v,

proving the theorem.

In the proofs various facts due to complete integrability (such as the miraculous

Lemma 2.1) simplify the arguments, in particular in the above energy estimate.

We conclude with the remark about the correction term added to v in order to

improve the bound on ‖F⊥‖ from h2 to h3. A similar correction term was used in [19]

for NLS 1-solitons. Together with the symplectic projection interpretation, it was the

key to sharpening the results in earlier works. Implementing the same idea in the

setting of 2-solitons is more subtle. The 2-soliton is treated as if it were the sum of

two decoupled 1-solitons, the corrections are introduced for each piece, and the result

is that F⊥ is corrected so that

‖F⊥‖H2 . h3 + h2e−γ|a1−a2|
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That is, when |a1−a2| = O(1), there is no improvement. However, this happens only

on an O(1) time scale and hence does not spoil the long time estimate.

1.4. Numerical experiments. Unlike NLS, KdV is a very friendly equation from

the numerical point of view and MATLAB is sufficient for producing good results.

We first describe the simple codes on which our experiments are based. Instead of

considering (1.1) on the line, we consider it on the circle identified with [−π, π). To

solve it numerically we adapt the code given in [34, Chapter 10] which is based on

the Fast Fourier Transform in x, the method of integrating factor for the −uxxx 7→
−ik3û(k) term, and the fourth-order Runge-Kutta formula for the resulting ODE in

time. Unless the amplitude of the solution gets large (which results in large terms in

the equation due to the u3 term) it suffices to take 2N , N = 8, discretization points

in x.

For X ∈ [−π, π) we consider B(X,T ) periodic in X, and compute U(X,T ) satis-

fying

∂TU = −∂X(∂2
XU + 2U3 −B(X,T )U) , U(π, T ) = U(−π, T ) .

A simple rescaling,

u(x, t) = αU(αx, α3t) , b(x, t) = α2B(αx, α3t) ,

gives a solution of (1.1) on [−π/α, π/α] with periodic boundary conditions. When α

is small this is a good approximation of the equation on the line. If we use U(X,T )

in our numerical calculations with the initial data q2(X,A,C), A ∈ R2, C ∈ R2 \ C,
the initial condition on for u(x, t) is given by

u(x, 0) = q2(x,A/α, αC) .

If we want c̄ = αC to satisfy the assumptions (1.2), the effective small constant h

becomes h = α and b0 in (1.1) becomes

b0(x, t) = h2B(x, h2t) .

In principle we have three scales: size of B, size of ∂xB, and size of ∂tB, which

should correspond to three small parameters h. For simplicity we just use one scale

h in the Theorem.

Figure 1 shows four examples of evolution and comparison with effective dynamics

computed using the MATLAB codes available at [17]. The external potentials used are

given by

B(x, t) = 100 cos2(x− 103t)− 50 sin(2x+ 103t) ,

B(x, t) = 100 cos2(x− 103t) + 50 sin(2x+ 103t) ,

B(x, t) = 60 cos2(x+ 1− 102t) + 40 sin(2x+ 2 + 102t) ,

B(x, t) = 40 cos(2x+ 3− 102t) + 30 sin(x+ 1 + 102t) .

(1.15)
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The rescaling the fixed size potential used in the theorem, b0(x, t) = h2B(x, h2t),

means that our h satisfies h ' 1/5 in the last two examples. In the first two examples

the scales in x are different than the ones in t: the potential is not slowly varying

in t if h ' 1/10. The agreement with the main theorem is very good in all cases.

However, the theorem in the current version does not apply to the two bottom figures

since the condition in (1.12) is not satisfied for the full time of the experiment. See

also Fig. 3 and Appendix B.

We have not exploited numerical experiments in a fully systematic way but the

following conclusions can be deduced:

• For the case covered by our theorem the agreement with the numerical solution

is remarkably close; the same thing is true for times longer than T0/h, with

T0 defined by (1.12) despite the crossings of Cj’s (resulting in the avoided

crossing of cj’s) The agreement is weaker but the experiments involve only

relatively large value of h.

• The soliton profile persists for long times but we see a deviation from the

effective dynamics. This suggest the optimality of the bound log(1/h)/h in

(1.3).

• The slow variation in t required in the theorem can probably be relaxed.

For instance, in the top plots in Fig.1 max |∂tb0|/max |∂xb0| ∼ 10, while the

agreement with the effective dynamics is excellent. For longer times it does

break down as can be seen using the Bmovie.m code presented in [17, §3]. An

indication that slow variation in time might be removable also comes from [2].

• When the decoupled equations (1.11) predict crossing of Cj’s, we observe an

avoided crossing of cj’s – see Fig.3 and Fig.6 – with exponentially small width,

exp(−1/Ch). At such times we also see the crossing of aj’s, though it really

corresponds to solitons changing their scale constants – see Fig.7. To have

multiple interactions of a pair of solitons, this type of crossing has to occur,

and it needs to be investigated further.
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DMS-0654436.

2. Hamiltonian structure and conserved quantities

The symplectic form, at first defined on S(R;R) is given by

(2.1) ω(u, v)
def
= 〈u, ∂−1

x v〉 , 〈f, g〉 =

∫
fg ,
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where

∂−1f(x)
def
=

1

2

(∫ x

−∞
−
∫ +∞

x

)
f(y) dy

Then the mKdV (equation (1.1) with b ≡ 0) is the Hamiltonian flow ∂tu = ∂xH
′
0(u)

and (1.1) is the Hamiltonian flow ∂tu = ∂xH
′
b(u), where

H0 =
1

2

∫
(u2

x − u4) Hb =
1

2

∫
(u2

x − u4 + bu2)

Solutions to mKdV have infinitely many conserved integrals and the first four are

given by

I0(u) =

∫
u dx ,

I1(u) =

∫
u2 dx ,

I3(u) =

∫
(u2

x − u4) dx ,

I5(u) =

∫
(u2

xx − 10u2
xu

2 + 2u6) dx ,

which are the mass, momentum, energy, and second energy, respectively. In this

paper we will only use these particular conserved quantities.

We write Ij(u) =
∫
Aj(u), which means that Aj(u) denotes the j-th Hamiltonian

density.

For future reference, we record the expressions appearing in the Taylor expansions

of these densities,

(2.2) Aj(q + v) = Aj(q) + A′j(q)(v) +
1

2
A′′(q)(v, v) +O(v3) ,

A′1(q)(v) = 2qv ,

A′3(q)(v) = 2qxvx − 4q3v ,

A′5(q)(v) = 2qxxvxx − 20qxq
2vx − 20q2

xqv + 12q5v ,

and

A′′1(q)(v, v) = 2v2 ,

A′′3(q)(v, v) = 2v2
x − 12q2v2 ,

A′′5(q)(v, v) = 2v2
xx − 20q2v2

x − 20q2
xv

2 − 80qqxvvx + 60q4v2 .

The differentials, I ′j(q), are identified with functions by writing:

〈I ′j(q), v〉 =

∫
A′j(q)(v) .
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It is useful to record a formal expression for I ′j(q)’s valid when Aj(q)’s are polynomials

in ∂`xq:

(2.3) I ′j(q) =
∑
`≥0

(−∂x)`
∂Aj(q)

∂q
(`)
x

, q(`)
x = ∂`xq .

The Hessians, I ′′j (q), are the (self-adjoint) operators given by

〈I ′′j (q)v, v〉 =

∫
A′′j (q)(v, v) .

One way to generate the mKdV energies is as follows (see Olver [29]). Let us put

Λ(u) = −∂2
x − 4u2 − 4ux∂

−1
x u ,

and recall that Λ(u)∂x is skew-adjoint:

Λ(u)∂x = −∂3
x − 4u2∂x − 4ux∂

−1
x u∂x

= −∂3
x − 4u2∂x − 4uxu+ 4ux∂

−1
x ux ,

where we used the formal integration by parts ∂−1
x (ufx) = −∂−1

x (uxf) + uf .

With this notation we have the fundamental recursive identity:

(2.4) ∂xI
′
2k+1(u) = Λ(u)∂xI

′
2k−1(u) ,

which together with skew-adjointness of Λ(u)∂x shows that

〈I ′j(u), ∂xI
′
k(u)〉 = 〈I ′j−2(u), ∂xI

′
k+2(u)〉 ,

for j and k odd (if we use (2.4) with m even the choice I2m(u) = 0, for m > 0 is

consistent). By iteration this shows that

(2.5) 〈I ′j(u), ∂xI
′
k(u)〉 = 0 , ∀ j , k .

In fact, since j and k are odd we can iterate all the way down to j = 1 and apply

(2.3):

〈I ′1(u), ∂xI
′
k+j−1(u)〉 = −〈∂xu(`)

x ,
∑
`≥0

∂Aj+k−1(u)/∂u(`)
x 〉

= −
∫
∂x(Aj+k−1(u))dx = 0 .

If u solves mKdV, then ∂tu = 1
2
∂xI

′
3(u) and hence by (2.5) we obtain

∂tIj(u) = 〈I ′j(u), ∂tu〉 =
1

2
〈I ′j(u), ∂xI

′
3(u)〉 = 0 .

The following identities related to the conservation laws will be needed in §9. Re-

calling the definition (2.2) of Aj, we have:
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Lemma 2.1. For any function u ∈ S, and for b ∈ C∞ ∩ S ′, we have

〈I ′1(u), (bu)x〉 = 〈bx, A1(u)〉
〈I ′3(u), (bu)x〉 = 3〈bx, A3(u)〉 − 〈bxxx, A1(u)〉
〈I ′5(u), (bu)x〉 = 5〈bx, A5(u)〉 − 5〈bxxx, A3(u)〉+ 〈bxxxxx, A1(u)〉

Proof. By taking arbitrary b ∈ S, we see that the claimed formulae are equivalent to

u∂xI
′
1(u) = ∂xA1(u) ,

u∂xI
′
3(u) = 3∂xA3(u)− ∂3

xA1(u) ,

u∂xI
′
5(u) = 5∂xA5(u)− 5∂3

xA3(u) + ∂5
xA1(u) ,

and these can be checked by direct computation. �

Lemma 2.2. For any function u, q ∈ S, and for b ∈ C∞ ∩ S ′, we have

〈I ′′1 (q)v, (bq)x〉 − 〈∂xI ′1(q), bv〉 = 〈bx, A′1(q)(v)〉
〈I ′′3 (q)v, (bq)x〉 − 〈∂xI ′3(q), bv〉 = 3〈bx, A′3(q)(v)〉 − 〈bxxx, A′1(q)(v)〉
〈I ′′5 (q)v, (bq)x〉 − 〈∂xI ′5(q), bv〉 = 5〈bx, A′5(q)(v)〉 − 5〈bxxx, A′3(q)(v)〉

+ 〈bxxxxx, A′1(q)(v)〉

Proof. Differentiate the formulæ in Lemma 2.1 with respect to u at q in the direction

of v. �

3. Double soliton profile and properties

Here we record some properties of mKdV and its double soliton solutions. The

parametrization of the family of double solitons follows the presentation for NLS in

Faddeev–Takhtajan [12].

The double-soliton is defined in terms of the profile q(x, a, c), where

a = (a1, a2) ∈ R2 , c = (c1, c2) ∈ R2 \ C ,

C def
= {(c1, c2) : c1 = ±c2} ∪ R× {0} ∪ {0} × R .

(3.1)

The profile q = q2 (from now on we drop the subscript 2) is defined by

(3.2) q(x, a, c) =
detM1

detM

where

M = [Mij]1≤i,j≤2 , Mij =
1 + γiγj
ci + cj

, M1 =

 M
γ1

γ2

1 1 0


and

γj = (−1)j−1 exp(−cj(x− aj)), j = 1, 2 .
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For conveninece we will consider the

0 < c1 < c2

connected component of R2 \ C throughout the paper. Since

q(x, a1, a2, c1, c2) = −q(x, a2, a1, c2, c1) ,

q(x, a1, a2,−c1,−c2) = −q(−x,−a1,−a2, c1, c2) ,

the only other component to consider would be, say, 0 < −c1 < c2 (see Fig.2), and

the analysis is similar.

We should however mention that in numerical experiments it is more useful to

introduce a phase parameter ε = (ε1, ε2), εj = ±1, and define q̃(x, a, c, ε) by (3.2) but

with γj’s replaced by

γ̃j = (−1)j−1εj exp(−cj(x− aj)), j = 1, 2 .

We can then check that

q̃(x, a, c, ε) = q(x, a, (ε1c1, ε2c2)) ,

but q̃ seems more stable in numerical calculations.

The corresponding double-soliton

(3.3) u(x, t) = q(x, a1 + c2
1t, a2 + c2

2t, c1, c2)

is an exact solution to mKdV. For the double soliton this can be checked by an explicit

calculation but it is a consequence of the inverse scattering method. This is the only

place in this paper where we appeal directly to the inverse scattering method. Fig. 4

illustrates some aspects of this evolution.

The scaling properties of mKdV imply that

q(x+ t, a+ (t, t), c) = q(x, a, c) ,

q(tx, ta, c/t) = q(x, a, c)/t .
(3.4)

Both properties also follow from the formula for q, with the second one being slightly

less obvious:

q(tx, ta, c/t) =
1

det tM
det

 tM
γ1

γ2

1 1 0


=

1

det tM
det

 t 0

0 t

0

0

0 0 1

M1

 1 0

0 1

0

0

0 0 1/t


= q(x, a, c)/t .
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!2.5 !2 !1.5 !1 !0.5 0 0.5 1 1.5
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Propagating double soliton

!2 !1 0 1 0.01

0.015

0.02

0.025

0.03

0

10

20

The right component of the decomposition

!2 !1 0 1 0.01

0.015

0.02

0.025

0.03

0

10

20

The left component of the decomposition

Figure 4. A depiction of the double soliton solution given by (3.3).

The top figure shows the evolution of a double soliton. The bottom two

figures show the evolution of its two components defined using (3.11).

One possible “particle-like” interpretation of the two soliton interaction

[4] is that the slower soliton, shown in the left bottom plot is hit by

the fast soliton shown in the right bottom plot. Just like billiard balls,

the slower one picks up speed, and the fast one slows down. But unlike

billiard balls, the solitons simply switch velocities.

Now we discuss in more detail the properties of the profile q. Recalling that we

suppose that c2 > c1 > 0, let

(3.5) α1
def
=

1

c1

log

(
c1 + c2

c2 − c1

)
, α2

def
=

1

c2

log

(
c2 − c1

c1 + c2

)
,

noting that for c2 > c1 > 0, α1 > 0 and α2 < 0. Fix a smooth function, θ ∈
C∞(R, [0, 1]), such that

(3.6) θ(s) =

{
1 for s ≤ −1 ,

−1 for s ≥ 1 .
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Data at t = 0
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Evolution of the above data at t = !0.75
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0
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6

 

 
Double soliton with a1=!a2=3,c1=3,c2=5
Single soliton with c=5
Single soliton with c=3

Double soliton with a2=!a1=3,c1=3,c2=5
Single soliton with c=3
Single soliton with c=5

8 10 12 14 16 18
0

1

2

3

4

5

6
Evolution of the above data at t = 0.75

Figure 5. The top plots show show q(x, 3, 5,∓3,±3), the correspond-

ing η(x, âj, cj) given by Lemma 3.2. The bottom plots show the post-

interaction pictures at times ∓0.75. Since the sign of a2 − a1 changes
after the interaction we see the shift compared to the evotion of

η(x, âj, cj)’s.

Define the shifted positions as

(3.7) âj
def
= aj + αjθ(a2 − a1)

that is,

âj =

{
aj + αj , a2 � a1 ,

aj − αj , a2 � a1 .

see Fig. 5. We note that âj = âj(aj, c1, c2).
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Let S denote the Schwartz space. We will next introduce function classes Ssol and

Serr, and then show that q ∈ Ssol and give an approximate expression for q with error

in Serr.

Definition 3.1. Let Serr denote the class of functions, ϕ = ϕ(x, a, c), x ∈ R, a ∈ R2,

0 < δ < c1 < c2 − δ < 1/δ (for any fixed δ) satisfying∣∣∂`x∂kc ∂paϕ∣∣ ≤ C2 exp(−(|x− a1|+ |x− a2|)/C1) ,

where Cj depend on δ, `, k, and p only.

Let Ssol denote the class of functions of (x, a, c) of the form

p1(c1, c2)ϕ1(c1(x− â1)) + p2(c1, c2)ϕ2(c2(x− â2)) + ϕ(x, a, c)

where

(1) |∂`kϕj(k)| ≤ C` exp(−|k|/C), for some C,

(2) pj ∈ C∞(R2 \ C).

(3) ϕ ∈ Serr.

Some elementary properties of Ssol and Serr are given in the following.

Lemma 3.1 (properties of Serr).

(1) ∂xSerr ⊂ Serr, ∂ajSerr ⊂ Serr, ∂cjSerr ⊂ Serr.

(2) (x− aj)Serr ⊂ Serr and (x− âj)Serr ⊂ Serr .

(3) If f ∈ Serr and
∫ +∞
−∞ f = 0, then ∂−1

x f ∈ Serr.

The class Serr allows to formulate the following

Lemma 3.2 (asymptotics for q). Suppose that 0 < c1 < c2 < c1/ε < 1/ε2, for ε > 0.

Then for |a2 − a1| ≥ C0/(c1 + c2),

(3.8)

∣∣∣∣∣∂`x∂kc ∂pa
(
q(x, a, c)−

2∑
j=1

η(x, âj, cj)

)∣∣∣∣∣ ≤ C2 exp(−(|x− a1|+ |x− a2|)/C1) ,

where C2 depends on k, `, p and ε, and C0, C1 on ε only. In other words,

q(x, a, c)−
2∑
j=1

η(x, âj, cj) ∈ Serr .

Corollary 3.3. ∂−1
x ∂ajq, ∂

−1
x ∂cjq ∈ Ssol.

Proof. By Lemma 3.2, we have

∂cjq = ∂cj

2∑
j=1

η(·, âj, cj) + f
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where f ∈ Serr. By direct computation with the η terms, we find that∫ +∞

−∞
∂cj

2∑
j=1

η(·, âj, cj) = 0 .

By the remark in Lemma 3.5, we have
∫ +∞
−∞ ∂cjq = 0. Hence

∫ +∞
−∞ f = 0. By Lemma

3.1(3), we have ∂−1
x f ∈ Serr. Hence

∂−1
x ∂cjq = ∂−1

x ∂cj

2∑
j=1

η(·, âj, cj) + Serr

and the right side is clearly in Ssol. �

Proof of Lemma 3.2. We define

(3.9) Q(x, α, δ)
def
= q(x,−α, α, 1− δ, 1 + δ) ,

so that, using (3.4),

q(x, a1, a2, c1, c2) =
c1 + c2

2
Q

((
c1 + c2

2

)(
x− a1 + a2

2

)
, α, δ

)
,

α =

(
c1 + c2

2

)(
a2 − a1

2

)
, δ =

c2 − c1

c2 + c1

.

(3.10)

Hence it is enough to study the more symmetric expression (3.9). We decompose it

in the same spirit as the decomposition of double solitons for KdV was performed in

[4]:

(3.11) Q(x, α, δ) = τ(x, α, δ) + τ(−x,−α, δ) ,

where

(3.12) τ(x, α, δ) =
1

2

(1 + δ) exp((1− δ)(x+ α)) + (1− δ) exp((1 + δ)(x− α))

δ sech2(x− δα) + δ−1 cosh2(δx− α)
.

This follows from a straightforward but tedious calculation which we omit.

Thus, to show (3.8) we have to show that

|∂`x∂pα∂kδ (τ(x, α, δ)− η(x− |α| − log(1/δ)/(1± δ), 1± δ))|
≤ C2 exp(−(|x|+ |α|)/C1) , ±α� 1 ,

(3.13)

uniformly for 0 < δ ≤ 1− ε.
To see this put γ = (1− δ)/(1 + δ), and multiply the numerator and denominator

of (3.12) by e−(1+δ)(x−α):

(3.14) τ(x, α, δ) =
2(1− δ)

(
1 + γ−1e2α−2δx

)
δe(1−δ)(x+α)(1− e−2x+2δα)2 + δ−1e−(1−δ)(x+α)(1 + e−2δx+2α)2

.
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Similarly, the multiplication by e−(1+δ)(x−α) gives

τ(x, α, δ) =
2(1 + δ)

(
1 + γe−2α+2δx

)
δe(1+δ)(x−α)(1− e−2x+2δα)2 + δ−1e−(1+δ)(x−α)(1 + e−2δx−2α)2

=
2(1 + δ)

(
1 + γe−2α+2δx

)
(1 + e−2δx−2α)−2

δe(1+δ)(x−α) ((1− e−2x+2δα)/(1 + e−2δx−2α))2 + δ−1e−(1+δ)(x−α)
.

(3.15)

This shows that for negative values of x, τ is negligible: multiplying the numerator

and denominator by δ and using (3.14) for α ≤ 0 and (3.15) for α ≥ 0, gives

(3.16) τ(x, α, δ) ≤
{
δ(1 + δ)(1 + e−2(|α|+δ|x|))e−(1+δ)(|x|+|α|) , α ≥ 0 ,

δ(1 + δ)(1 + e2δ|x|−2|α|)−1e−(1−δ)(|x|+|α|) , α ≤ 0 ,

and in fact this is valid uniformly for 0 ≤ δ ≤ 1. Similar estimates hold also for

derivatives.

For x ≥ 0, 0 ≤ δ ≤ 1− ε, and for α� −1, we use (3.14) to obtain,

τ(x, α, δ) = (1− δ) sech

(
(1− δ)

(
x− |α| − 1

1− δ
log

1

δ

))
+ ε−(x, α, δ) ,

and for α� 1, (3.15):

τ(x, α, δ) = (1 + δ) sech

(
(1 + δ)

(
x− |α| − 1

1 + δ
log

1

δ

))
+ ε+(x, α, δ) ,

where

|∂kxε±| ≤ Ck exp(−(|x|+ |α|)/c) , c > 0 ,

uniformly in δ, 0 < δ < 1 − ε. Inserting the resulting decomposition into (3.10)

completes the proof. �

Lemma 3.4 (fundamental identities for q). With q = q(·, a, c), we have

(3.17) ∂xI
′
3(q) = 2∂x(−∂2

xq − 2q3) = 2
2∑
j=1

c2
j∂ajq ,

(3.18) ∂xI
′
1(q) = 2∂xq = −2

2∑
j=1

∂ajq ,

(3.19) q =
2∑
j=1

(x− aj)∂ajq +
2∑
j=1

cj∂cjq .

These three identities are analogues of the following three identities for the single-

soliton η = η(·, a, c), which are fairly easily verified by direct inspection.

∂xI
′
1(η) = ∂xη = −∂aη
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∂xI
′
3(η) = ∂x(−∂2

xη − 2η3) = c2∂aη

η = (x− a)∂aη + c∂cη

Proof. The first identity is just the statement that (3.3) solves mKdV and we take it

on faith from the inverse scattering method (or verify it by a computation). To see

(3.18) and (3.19) we differentiate (3.4) with respect to t. �

The value of Ij(q) for all j is recorded in the next lemma.

Lemma 3.5 (values of Ij(q)).

(3.20) I0(q) = 2π

For j = 1, 3, 5, we have

(3.21) Ij(q) = 2(−1)
j−1

2
cj1 + cj2
j

.

Also,

(3.22)

∫
xq(x, a, c)2 dx = 2a1c1 + 2a2c2 .

Note that by (3.20), ∫ +∞

−∞
∂ajq = 0,

∫ +∞

−∞
∂cjq = 0, j = 1, 2 .

from which it follows that ∂−1
x (∂ajq) and ∂−1

x (∂cjq) are Schwartz class functions.

Proof. We prove (3.21), (3.20) by reduction to the 1-soliton case. Let u(t) = q(·, a1 +

tc2
1, a2 + tc2

2, c1, c2). Then by the asymptotics in Lemma 3.2,

Ij(q) = Ij(u(0)) = Ij(u(t)) =
2∑

k=1

Ij(η(·, (ak + c2
kt)̂ , ck)) + ω(t)

where

|ω(t)| . 〈c2((a1 + tc2
1)− (a2 + tc2

2))〉−2

But note that by scaling,

Ij(η(·, (ak + c2
kt)̂ , ck)) = cjkIj(η)

By sending t→ +∞, we find that

Ij(q) = (cj1 + cj2)Ij(η)

To compute Ij(η), we let ηc(x) = cη(cx). By scaling Ij(ηc) = cjIj(η). Hence

jIj(η) = ∂c
∣∣
c=1
Ij(ηc) = 〈I ′j(η), ∂c

∣∣
c=1
ηc〉

= 〈I ′j(η), (xη)x〉 = 2(−1)
j−1

2 〈η, (xη)x〉 = 2(−1)
j−1

2 ,
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where we have used the identity

(3.23) I ′j(η) = 2(−1)
j−1

2 η ,

which follows from the energy hierarchy. In fact, I ′1(η) = 2η is just the definition of

I ′1. Assuming that I ′j(η) = 2(−1)
j−1

2 η, we compute

∂xI
′
j+2(η) = Λ(η)∂xI

′
j(η)

= 2(−1)(−1)
j−1

2 (∂2
x + 4η2 + 4ηx∂

−1
x η)ηx

= 2(−1)
j+1

2 ∂x(ηxx + 2η3)

= 2(−1)
j+1

2 ∂xη

We now prove (3.22). By direct computation, if u(t) solves mKdV, then ∂t
∫
xu2 =

−3I3(u). Again let u(t) = q(·, a1 + tc2
1, a2 + tc2

2, c1, c2). By (3.21) with j = 3, we have∫
xq(x, a, c)2 dx =

∫
xu(0, x)2 dx =

∫
xu(t, x)2 dx− 2(c3

1 + c3
2)t

By the asymptotics in Lemma 3.2,∫
xu(t, x)2 =

2∑
j=1

∫
xη(x, (aj + tc2

j )̂ , cj)
2 + ω(t)

where

|ω(t)| ≤ (a1 + tc2
1)〈c2((a1 + c2

1t)− (a2 + tc2
2))〉−2

But ∫
xη(x, âj, cj)

2 = 2cj âj

Combining, and using that c1â1 + c2â2 = c1a1 + c2a2, we obtain∫
xq(x, a, c)2 dx = 2(c1a1 + c2a2) + ω(t)

Send t→ +∞ to obtain the result. �

We define the four-dimensional manifold of 2-solitons M as

M = { q(·, a, c) | a = (a1, a2) ∈ R2 , c = (c1, c2) ∈ (R)2 \ C }

Lemma 3.6. The symplectic form (2.1) restricted to the manifold of 2-olitons is given

by

ω|M =
2∑
j=1

daj ∧ dcj .

In particular, it is nondegenerate and M is a symplectic manifold.
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Proof. By (3.21) with j = 1 and (3.18),

0 =
1

2
∂a1I1(q) =

1

2
〈I ′1(q), ∂a1q〉 = 〈∂a1q, ∂

−1
x ∂a1q〉+ 〈∂a2q, ∂

−1
x ∂a1q〉

= 〈∂a2q, ∂
−1
x ∂a1q〉

Again by (3.21) with j = 1 and (3.18),

(3.24) 1 =
1

2
∂c1I1(q) =

1

2
〈I ′1(q), ∂c1q〉 = 〈∂a1q, ∂

−1
x ∂c1q〉+ 〈∂a2q, ∂

−1
x ∂c1q〉

By (3.21) with j = 3 and (3.17),

(3.25) −c2
1 =

1

2
∂c1I3(q) =

1

2
〈I ′3(q), ∂c1q〉 = −c2

1〈∂a1q, ∂
−1
x ∂c1q〉 − c2

2〈∂a2q, ∂
−1
x ∂c1q〉

Solving (3.24) and (3.25), we obtain that 〈∂a1q, ∂
−1
x ∂c1q〉 = 1 and 〈∂a2q, ∂

−1
x ∂c1q〉 = 0.

We similarly obtain that 〈∂a2q, ∂
−1
x ∂c2q〉 = 1 and 〈∂a1q, ∂

−1
x ∂c2q〉 = 0. It remains to

show that 〈∂c1q, ∂−1
x ∂c2q〉 = 0:

〈∂c1q, ∂−1
x ∂c2q〉 =

1

c1

〈
2∑
j=1

cj∂cjq, ∂
−1
x ∂c2q〉

=
1

c1

〈q −
2∑
j=1

(x− aj)∂ajq, ∂−1
x ∂c2q〉 by (3.19)

=
1

c1

〈q + xqx, ∂
−1
x ∂c2q〉+

1

c1

2∑
j=1

aj〈∂ajq, ∂−1
x ∂c2q〉 by (3.18)

= − 1

2c1

∂c2

∫
xq2 +

a2

c1

= 0 by (3.22)

�

Remark. If |a1 − a2| � 2, and c1 < c2 then, in the notation of (3.7),∑
j=1,2

daj ∧ dcj =
∑
j=1,2

dâj ∧ dcj ,

that is the map (a, c) 7→ (â, c) is symplectic.

The nondegeneracy of the symplectic form (2.1) restricted to the manifold of 2-

olitons, M shows that H2 functions close to M can be uniquely decomposed into

an element q, of M and a function symplectically orthogonal TqM . We recall this

standard fact in the following

Lemma 3.7 (Symplectic orthogonal decomposition). Given c̃, there exist constants

δ > 0, C > 0 such that the following holds. If u = q(·, ã, c̃) + ṽ with ‖ṽ‖H2 ≤ δ, then
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there exist unique a, c such that

|a− ã| ≤ C‖ṽ‖H2 , |c− c̃| ≤ C‖ṽ‖H2

and v
def
= u− q(·, a, c) satisfies

(3.26) 〈v, ∂−1
x ∂ajq〉 = 0 and 〈v, ∂−1

x ∂cjq〉 = 0 , j = 1, 2 .

Proof. Let ϕ : H2 × R2 × (R+)2 → R4 be defined by

ϕ(u, a, c) =


〈u− q(·, a, c), ∂−1

x ∂a1q〉
〈u− q(·, a, c), ∂−1

x ∂a2q〉
〈u− q(·, a, c), ∂−1

x ∂c1q〉
〈u− q(·, a, c), ∂−1

x ∂c2q〉


Using that ω

∣∣
M

= da1 ∧ dc1 + da2 ∧ dc2, we compute the Jacobian matrix of ϕ with

respect to (a, c) at (q(·, ã, c̃), ã, c̃) to be

Da,cϕ(q(·, ã, c̃), ã, c̃) =


0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

 .

By the implicit function theorem, the equation ϕ(u, a, c) = 0 can be solved for (a, c)

in terms of u in a neighbourhood of q(·, ã, c̃). �

We also record the following lemma which will be useful in the next section:

Lemma 3.8. Suppose v solves a linearized equation

∂tv =
1

2
∂xI

′′
3 (q(t))v = ∂x(−∂2

x − 6q(t)2)v , q(x, t) = q(x, aj + tc2
j , cj) .

Then

∂t〈v(t), ∂−1
x (∂cjq)(t)〉 = ∂t〈v(t), ∂−1

x (∂ajq)(t)〉 = 0 ,

where (∂cjq)(t) = (∂cjq)(x, aj + tc2
j , cj) (and not ∂cj(q(x, aj + tc2

j , cj))). In addition,

for v(0) = ∂ajq, v(t) = (∂ajq)(t), and for v(0) = ∂cjq,

v(t) = (∂cjq)(t) + 2cjt(∂ajq)(t) .

4. Lyapunov functional and coercivity

In this section we introduce the function Hc adapted from the KdV theory of

Maddocks-Sachs [24]. We will build our Lyapunov functional E from Hc.

Thus let

Hc(u)
def
= I5(u) + (c2

1 + c2
2)I3(u) + c2

1c
2
2I1(u) .

We give a direct proof that q(·, a, c) is a critical point of Hc:
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Lemma 4.1 (q is a critical point of H). We have

(4.1) H ′c(q(·, a, c)) = 0 ,

that is

I ′5(q) + (c2
1 + c2

2)I ′3(q) + c2
1c

2
2I
′
1(q) = 0 .

Proof. We follow Lax [23, §2]: we want to find A = A(q) and B = B(q) such that

H ′(q)
def
= I ′5(q) + AI ′3(q) +BI ′1(q) = 0 ,

for all q = q(x, a, c) ∈ M . If we consider the mKdV evolution of q given by (3.3),

then Lemma 3.2 shows that as t → ±∞ we can express H ′(q) asymptotically using

H ′(ηc1) and H ′(ηc2). From (3.23) we see that

H ′(ηc) = I ′5(ηc) + AI ′3(ηc) +BI ′1(ηc) = 2(c4 − Ac2 +B)ηc .

Two parameters c1 and c2 are roots of this equation if A = c2
1 + c2

2 and B = c2
1c

2
2 and

this choice gives

H ′(q(t)) = r(t) , ‖r(t)‖L2 ≤ C exp(−|t|/C) ,

q(t)
def
= q(x, a1 + c2

1t, a2 + c2
2t, c1, c2) ,

(4.2)

where the exponential decay of r(t) comes from Lemma 3.2 and the fact that c1 6= c2.

To prove (4.1) we need to show that r(0) ≡ 0. For the reader’s convenience we

provide a direct proof of this widely accepted fact. Since it suffices to prove that

〈r(0), w〉 = 0, for all w ∈ S, we consider the mKdV linearized equation at q(t),

(4.3) vt =
1

2
∂xI

′′
3 (q(t))v , v(0) = w ∈ S ,

and will show that

(4.4) ∂t〈r(t), v(t)〉 = ∂t〈H ′(q(t)), v(t)〉 = 0 .

The conclusion 〈r(0), w〉 = 0 will the follow from showing that

(4.5) 〈r(t), v(t)〉 → 0 , t→∞ .

We first claim that

∂t〈I ′k(q), v〉 = 0 , ∀ k .

In fact, from (2.5) we have 〈I ′k(ϕ), ∂xI
′
3(ϕ)〉 = 0 for all ϕ ∈ S. Differentiating with

respect to ϕ in the direction of v, we obtain

〈I ′′k (ϕ)v, ∂xI
′
3(ϕ)〉 = −〈I ′k(ϕ), ∂xI

′′
3 (ϕ)v〉 .
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Applying this with v = v(t) and ϕ = q(t) we conclde that

∂t〈I ′k(q), v〉 = 〈I ′′k (q)∂tq, v〉+
1

2
〈I ′k(q), ∂xI ′′3 (q)v〉

=
1

2
〈I ′′k (q)∂xI

′
3(q), v〉+

1

2
〈I ′k(q), ∂xI ′′3 (q)v〉 ,

= 0 .

Since H is a linear combination of Ik’s, k = 1, 3, 5, this gives (4.4).

We now want to use the exponential decay of ‖r(t)‖L2 in (4.2), and (4.4) to show

(4.5). Clearly, all we need is a subexponential estimate on v(t), that is

(4.6) ∀ ε > 0 ∃ t0 , ‖v(t)‖L2 ≤ eεt , t > t0 .

Let ψ be a smooth function such that ψ(x) = 1 for all |x| ≤ 1 and ψ(x) ∼ e−2|x|

for |x| ≥ 1. With the notation of Lemma 3.2 define

ψj(x, t) = ψ(δ(x− (aj + c2
j t)̂ )).

for 0 < δ � 1 to be selected below and j = 1, 2. We now establish that

(4.7)

∣∣∣∣∂t(‖v‖2
L2 + ‖vx‖2

L2 + 6

∫
q2v2

)∣∣∣∣ . 2∑
j=1

‖ψjv‖2
L2 .

To prove (4.7), apply ∂−1
x to (4.3) and pair with vt to obtain

0 = 〈∂−1
x vt, vt〉+ 〈vxx, vt〉+ 〈6q2v, vt〉

which implies

(4.8) ∂t

(
1

2
‖vx‖2

L2 + 3

∫
q2v2

)
= 6

∫
qqtv

2

Next, pair (4.3) with v to obtain

0 = 〈vt, v〉+ 〈vxxx, v〉+ 6〈∂x(q2v), v〉

which implies

(4.9) ∂t‖v‖2
L2 = −12

∫
qqxv

2

Summing (4.8) and (4.9) gives (4.7).

The inequality (4.7) shows that we need to control is ‖ψjv(t)‖, j = 1, 2. For t large

ψj provides a localization to the region where q decomposes into an approximate sum

of decoupled solitons (see Lemma 3.2). Hence we define

Lj = c2
j − ∂2

x − 6η2(x, (aj + tc2
j )̂ , cj)

(see also §8 below for a use of similar operators). A calculation shows that

(4.10) t ≥ T (δ) =⇒ ∂t〈Ljψjv, ψjv〉 = O(δ)‖v‖2
H1 ,
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where T (δ) is large enough to ensure that the supports of ψj’s are separated. It

suffices to assume that v(0) = w satisfies 〈w, ∂−1
x ∂ajq〉 = 0 and 〈w, ∂−1

x ∂cjq〉 = 0, since

Lemma 3.8 already showed that the evolutions of ∂ajq and ∂cjq are linearly bounded

in t. Under this assumption, we have by Lemma 3.8 that 〈v(t), ∂−1
x ∂ajq(t)〉 = 0 and

〈v(t), ∂−1
x ∂cjq(t)〉 = 0.

We now want to invoke the well known coercivity estimates for operators Lj – see

for instance [18, §4] for a self contained presentation. For that we need to check that

|〈ψjv, ∂−1
x ∂aη(âj + tc2

j , cj)〉| � 1 , |〈ψjv, ∂−1
x (∂cη(âj + tc2

j , cj)|〉| � 1 .

This follows from the fact that v is symplectically orthogonal to (∂cjq)(t) and ∂ajq(t)

(Lemma 3.8 again), the fact that q decouples into two solitons for t large, and from

the remark after the proof of Lemma 3.6.

Hence,

〈Ljψjv, ψjv〉 & ‖ψjv‖2
H1 .

We now sum (4.7) and (4.10) multiplied by δ−
1
2 to obtain, for t suffieciently large

(depending on δ),

F ′(t) ≤ Cδ
1
2F (t) ,

F (t)
def
= ‖v(t)‖2

H1 + 6

∫
q2(t)v(t)2 + δ−

1
2 〈Lj(t)ψj(t)v(t), ψj(t)v(t)〉

(where we added the additional
∫
q2v2 term to the right hand side at no cost). Con-

sequently, F (t) ≤ exp(C ′δ
1
2 t), for t > T1(δ).

We recall that this implies (4.6) and going back to (4.4) show that r(0) = 0, and

hence H ′(q) = 0. �

We denote the Hessian of Hc at q(•, a, c) by Kc,a:

Kc,a = I ′′5 (q) + (c2
1 + c2

2)I ′′3 (q) + c2
1c

2
2I
′′
1 (q)

It is a fourth order self-adjoint operator on L2(R) and a calculation shows that

(4.11)
1

2
Kc,a = (−∂2

x + c2
1)(−∂2

x + c2
2)

+ 10∂x q
2∂x + 10(−q2

x + (q2)xx + 3q4)− 6(c2
1 + c2

2)q2

Lemma 4.2 (mapping properties of K). The kernel of Kc,a in L2(R) is spanned by

∂ajq:

(4.12) Kc,a∂ajq = 0,

and

(4.13) Kc,a∂cjq = 4(−1)jcj(c
2
1 − c2

2)∂−1
x ∂ajq



EFFECTIVE DYNAMICS OF DOUBLE SOLITONS FOR PERTURBED MKDV 29

Proof. Equations (4.12) follow from differentiation of (4.1) with respect to aj. As

x→∞, the leading part of Kc,a is given by (−∂2
x+c2

1)(−∂2
x+c2

2) and hence the kernel

in L2 is at most two dimensional.

To see (4.13) recall that

I ′1(q) = 2q = −2∂−1
x (∂a1q + ∂a2q)

I ′3(q) = −2q′′ − 4q3 = 2∂−1
x (c2

1∂a1q + c2
2∂a2q) ,

where we used Lemma 3.4. By differentiating H ′(q) = I ′5(q) + (c2
1 + c2

2)I ′3(q) +

c2
1c

2
2I
′
1(q) = 0 with respect to cj, we obtain

(4.14) K(∂c1q) = −2c1(I ′3(q) + c2
2I
′
1(q)) , K(∂c2q) = −2c2(I ′3(q) + c2

1I
′
1(q)) .

Inserting the above formulæ for I ′1(q) and I ′2(q) gives (4.13). �

The main result of this section is the following coercivity result:

Proposition 4.3 (coercivity of K). There exists δ = δ(c) > 0 such that for all v ∈ H2

satisfying the symplectic orthogonality conditions

〈v, ∂−1
x ∂ajq〉 = 0 and 〈v, ∂−1

x ∂cjq〉 = 0 , j = 1, 2 ,

we have

(4.15) δ‖v‖2
H2 ≤ 〈Kc,av, v〉 .

The proposition is proved in a few steps. In Lemma 4.2 we already described the

kernel Kc,a and now we investigate the negative eigenvalues:

Proposition 4.4 (Spectrum of K). The operator Kc,a has a single negative eigen-

value, h ∈ L2(R):

(4.16) Kc,ah = −µh , µ > 0 .

In addition, for

0 < δ < c1 < c2 − δ < 1/δ ,

there exists a constant, ρ, depending only on δ, such that

(4.17) min{λ > 0 : λ ∈ σ(Kc,a)} > ρ , a ∈ R2 ,

Proof. As always we assume 0 < c1 < c2. We know the continuous spectrum of Kc,a,

σac(Kc,a) = [2c2
1c

2
2,+∞)

and that for all a, c, there is a two-dimensional kernel given by span{∂a1q, ∂a2q}. The

eigenvalues depend continuously on a, c, and hence the constant dimension of the

kernel shows that the number of negative eigenvalues is constant (since the creation

or annihilation of a negative eigenvalue would increase the dimension of kerKc,a.)
Hence it suffices to determine the number of negative eigenvalues of K for any

convenient values of a, c. To do that we use the following fact:
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Lemma 4.5 (Maddocks-Sachs [24, Lemma 2.2]). Suppose that K is a self-adjoint,

4th order operator of the form

K = 2(−∂2
x + c2

1)(−∂2
x + c2

2) + p0(x)− ∂xp1(x)∂x ,

where the coefficients pj(x) are smooth, real, and rapidly decaying as x → ±∞. Let

r1(x), r2(x) be two linearly independent solutions of Krj = 0 such that rj → 0 as

x→ −∞.

Then the number of negative eigenvalues of K is equal to

(4.18)
∑
x∈R

dim ker

[
r1(x) r′1(x)

r2(x) r′2(x)

]
.

We apply this lemma with K = Kc,a, in which case

p1 = 20q2 , p0 = 40qxxq + 20q2
x + 60q4 − 12(c2

1 + c2
2)q2 , q = q(•, a, c) .

Convenient values of a and c are provided by a1 = a2 = 0 and c1 = 0.5, c2 = 1.5. In

the notation of (3.9) we then have q(x, a, c) = Q(x, 0, 0.5), and since

∂xQ = −∂a1q − ∂a2q , ∂αQ = −∂a1q + ∂a2q ,

we can take r1 = ∂xQ and r2 = ∂αQ. A computation based on (3.11) and (3.12)

shows that

Q(x, 0.5, 0) = sech(x/2) , ∂xQ(x, 0.5, 0) = − sinh(x/2)

2 cosh2(x/2)
,

∂αQ(x, 0.5, 0) =
sinh(x/2)

4 cosh4(x/2)
(9− 2 cosh2(x/2))

=
9 sinh(x/2)

4 cosh4(x/2)
+ ∂xQ(x, 0.5, 0) .

(4.19)

Since x 7→ y = sinh(x/2) is invertible, we only need to check the dimension of the

kernel the Wronskian matrix of

r̃1(y) =
y

1 + y2
, r̃2(y) =

y

(1 + y2)2
,

and that is equal to 1 at y = 0 and 0 on R \ {0}. In view of (4.18) this completes the

proof of (4.16)

To prove (4.17) we first note that by rescaling (3.10) we only need to prove the

estimate for

K(c, α)
def
= K((c,1),(−α,α)) , c ∈ [δ, 1− δ] , 0 < δ < 1/2 .

For that we introduce another operator

(4.20) P (c)
def
= (−∂2

x + 1)(−∂2
x + c2) + 10∂xη

2∂x + 10(3η2 − 2η4)− 6(1 + c2)η2 ,

where

η = sechx , c ∈ R+ \ {1} .
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The operator P (c) is the Hessian of H(c,1) at η, which is also a critical point for H(c,1).

In particular,

P (c)∂xη = 0 .

Putting,

Uαf(x)
def
= f(x+ α + log((1 + c)/(1− c)))) ,

and

P+(c, α)
def
= U∗αP (c)Uα ,

we see that

K(c, α) = 2P+(c, α) +O(e−(α+|x|)/C)∂2
x +O(e−(α+|x|)/C) , x ≥ 0 .

Similarly, if

Tcf(x)
def
=
√
cf(cx) ,

and

P−(c, α)
def
= c2UαTcP (1/c)T ∗c U

∗
α ,

then

K(c, α) = 2P−(c, α) +O(e−(α+|x|)/C)∂2
x +O(e−(α+|x|)/C) , x ≤ 0 .

We reduce the estimate (4.17) to a spectral fact about the operators P (c) and

P (1/c):

Lemma 4.6. Suppose that there exists

α 7−→ λ(c, α) ∈ R \ {0}

such that

λ(c, α) ∈ σ(K(c, α)) , λ(c, α) −→ 0 , α −→∞ .

Then we have

(4.21) dim kerL2 P (c) + dim kerL2 P (1/c) > 2 ,

where kerL2 means the kernel in L2.

Proof. The assumption that 0 6= λ(c, α) → 0 as α → ∞ implies that there exists a

family of quasimodes fα, ‖fα‖L2 = 1,

(4.22) ‖K(c, α)fα‖L2 = o(1) , α −→∞ , fα ⊥ kerL2 K(c, α) .

Since we know that the kernel of K(c, α) is spanned by U∗α∂xη + O(e−(|x|+α)/C) and

UαTc∂xη +O(e−(|x|+α)/C), we can modify fα and replace the orthogonality condition

by

fα ⊥ span (U∗α∂xη, UαTc∂xη) .

The estimate in (4.22), and ‖fα‖L2 = O(1), imply that

(4.23) ‖fα‖H2 = O(1) , α −→∞ .
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We first claim that

(4.24)

∫ 1

−1

|fα(x)|2dx = o(1) , α −→∞ .

In fact, on [−α/2, α/2],

K(c, α) = (−∂2
x + c2)(−∂2

x + 1) +O(e−α/C)∂2
x +O(e−α/c) ,

and hence, using (4.23),

(−∂2
x + c2)(−∂2

x + 1)fα = rα , ‖rα‖L2([−α/2,α/2]) = o(1) .

Putting

eα
def
= [(−∂2

x + c2)(−∂2
x + 1)]−1

(
rα1l[−α/2,α/2]

)
, ‖eα‖H2 = o(1) ,

we see that fα = gα + eα where

(4.25) (−∂2
x + c2)(−∂2

x + 1)gα(x) = 0 , |x| < α/2 .

Suppose now that (4.24) were not valid. Then the same would be true for gα, and there

would exist a constant c0 > 0, and a sequence αj →∞, for which ‖gαj‖L2([−1,1]) > c0.

In view of (4.25) this implies that

gαj(x) =
∑
±

(
a±j e

±x + b±j e
±cx) , |x| < α/2 , |a±j |, |b±j | = O(1) ,

and for at least one choice of sign,

|a±j |2 + |b±j |2 > c1 > 0 .

We can choose a subsequence so that this is true for a fixed sign, say, +, for all j. In

that case, a simple calculation shows that for Mj →∞, Mj ≤ αj/2,∫ Mj

0

|gαj(x)|2dx ≥ 1

2
|a+
j |2e2Mj +

1

2c
|b+
j |2e2cMj − 2

c+ 1
|a+
j ||b+

j |e(c+1)Mj

− 2

1− c
|a+
j ||b−j |e(1−c)Mj −O(1)

≥ 1

2

(
1− c
1 + c

)2(
|a+
j |2e2Mj +

1

c
|b+
j |2e2Mjc

)
− 4

(1− c)2
|a+
j |2e2(1−c)Mj −O(1) ,

where we used the fact that 0 < δ < c < 1− δ. Hence

‖fαj‖L2 ≥
∫ Mj

0

|fαj(x)|2dx ≥
∫ Mj

0

|gαj(x)|2dx− o(1)

≥ 1

2

(
1− c
1 + c

)2

c1e
2Mjc −O(1) −→∞ , j →∞ .

Since ‖fα‖L2 = 1 we obtain a contradiction proving (4.24).
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Now let χ±C
∞(R) be supported in ±[−1,∞), and satisfy χ2

+ +χ2
− = 1. Then (4.24)

(and the corresponding estimates for derivatives obtained from (4.22)) shows that

‖P±(c, α)(χ±fα)‖L2 = o(1) , α −→∞ .

For at least one of the signs we must have ‖χ±fα‖L2 > 1/3 (if α is large enough),

and hence we obtain a quasimode for P±(c, α), orthogonal to the known element of

the kernel of P±(c, α). This means that P±(c, α), for at least one of the signs has an

additional eigenvalue approaching 0 as α → ∞. Since the spectrum of P±(c, α) is

independent of α it follows that for at least one sign the kernel is two dimensional.

This proves (4.21). �

The next lemma shows that (4.21) is impossible:

Lemma 4.7. For c ∈ R+ \ {1}

(4.26) kerL2 P (c) = C · ∂xη .

Proof. Let L def
= (I ′′3 (η) + I ′′1 (η))/2:

Lv = −vxx − 6η2v + v , η(x) = sech(x) .

We recall (see the comment after (4.20)) that

P (c) =
1

2
H ′′(c,1)(η) =

1

2

(
I ′′5 (η) + (1 + c2)I ′′3 (η) + c2I ′′1 (η)

)
.

We already noted that

L(∂xη) = P (c)∂xη = 0 ,

and proceeding as in (4.14) we also have

(4.27) L(∂x(xη)) = −2η , P (c)(∂x(xη)) = 2(1− c2)η .

We claim that

(4.28) P (c)∂xL = L∂xP (c)

Since I ′j(η + tv) = tI ′′j (η)v +O(t2), v ∈ S, the equation (2.5) implies that

〈I ′′j (η)v, ∂xI
′′
k (η)v〉 = 0 , ∀ j, k , v ∈ S .

From this we see that

〈P (c)v, ∂xLv〉 = 0 , ∀v ∈ S ,
and hence by polarization,

〈P (c)v, ∂xLw〉 = −〈P (c)w, ∂xLv〉 = 〈∂xP (c)w,Lv〉 .

which implies (4.28).

Suppose now that dim kerL2 P (c) = 2 for some c 6= 1, and let ηx and ψ be the basis

of this kernel. Since P (c) is symmetric with respect to the reflection x 7→ −x, ψ can
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be chosen to be either even or odd. Applying (4.28) to ψ we get P (c)∂xLψ = 0 and

hence

∂xLψ = αηx + βψ ,

for some α, β ∈ R.

If ψ is odd then ∂xLψ is even, and therefore α = β = 0. But then ψ ∈ kerL2 L =

C · ηx, giving a contradiction.

If ψ is even then ∂xLψ is odd, β = 0 and Lψ = αη. We have α 6= 0 since ψ is

orthogonal to the kernel of L, spanned by ∂xη. From (4.27) we obtain

ψ = −α
2
∂x(xη) .

Applying the second equation in (4.27) we then obtain

P (c)ψ = −α(1− c2)η ,

contradicting ψ ∈ kerL2 P (c). �

With this lemma we complete the proof of Proposition 4.4. �

To obtain the coercivity statement in Proposition 4.3 we first obtain coercivity

under a different orthogonality condition:

Lemma 4.8. There exists a constant ρ > 0 depending only on c1, c2, such that the

following holds: If 〈u, ∂−1
x ∂a1q〉 = 0, 〈u, ∂−1

x ∂a2q〉 = 0, 〈u, ∂a1q〉 = 0, 〈u, ∂a2q〉 = 0,

then 〈Kc,au, u〉 ≥ ρ‖u‖2
L2.

Proof. To simplify notation we put K = Kc,a in the proof. Using (4.13) and the

expression for the symplectic form, ω
∣∣
M

= da1 ∧ dc1 + da2 ∧ dc2, we have

〈K∂c1q, ∂c1q〉 = −4c1(c2
1 − c2

2)〈∂−1
x ∂a1q, ∂c1q〉 = 4c1(c2

1 − c2
2)

and similarly

(4.29) 〈K∂c2q, ∂c2q〉 = −4c2(c2
1 − c2

2) .

Since we assumed that c1 < c2, 〈K∂c1q, ∂c1q〉 < 0.

Let ∂̃c1q be the orthogonal projection of ∂c1q on (kerK)⊥. We first claim that there

exists a constant α such that u = ũ+α∂̃c1q with 〈ũ, h〉 = 0, where µ and h are defined

in Proposition 4.4.

To prove this, decompose ∂c1q as ∂c1q = ξ + βh with 〈ξ, h〉 = 0. Then by (4.29)

0 > 〈K∂c1q, ∂c1q〉
= 〈Kξ, ξ〉+ 2β〈Kh, ξ〉+ β2〈Kh, h〉
= 〈Kξ, ξ〉 − µβ2
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Since 〈Kξ, ξ〉 ≥ 0, we must have that β 6= 0. Hence there exists u′ and α such that

u = u′ + α∂c1q with 〈u′, h〉 = 0. Now take ũ to be the projection of u′ away from the

kernel of K. This completes the proof of the claim.

We have that

〈u,K∂c1q〉 = −4c1(c2
2 − c2

1)〈u, ∂−1
x ∂a1q〉 = 0

by (4.13) and hypothesis. Substituting u = ũ+ α∂̃c1q, we obtain

(4.30) 〈ũ,K∂c1q〉 = −α〈∂̃c1q,K∂c1q〉 = −α〈∂c1q,K∂c1q〉

Now let ρ̃ denote the bottom of the positive spectrum of K. We have

〈Ku, u〉 = 〈K(ũ+ α∂̃c1q), (ũ+ α∂̃c1q)〉
= 〈Kũ, ũ〉+ 2α〈Kũ, ∂c1q〉+ α2〈K∂c1q, ∂c1q〉
= 〈Kũ, ũ〉 − α2〈K∂c1q, ∂c1q〉 by (4.30)

≥ ρ̃‖ũ‖2
L2 + 4c1(c2

2 − c2
1)α2

≥ C̃(‖ũ‖2
L2 + α2)

where C̃ depends on c1, c2 and ρ̃. However, since u = ũ+ α∂̃c1q, we have

‖u‖2
L2 ≤ C(‖ũ‖2

L2 + α2)

where C depends on c1, c2 which completes the proof. �

We now put

E = Ea,c = kerK = span{∂a1q, ∂a2q} ,
F = Fa,c = span{∂−1

x ∂c1q, ∂
−1
x ∂c2q} ,

G = Ga,c = span{∂−1
x ∂a1q, ∂

−1
x ∂a2q} .

(4.31)

In this notation Lemma 4.8 states that

u ⊥ (E +G) =⇒ 〈Ku, u〉 ≥ θ‖u‖2
L2 ,

while to establish Proposition 4.3 we need

u ⊥ (F +G) =⇒ 〈Ku, u〉 ≥ θ̃‖u‖2
L2 .

That is, we would like to replace orthogonality with the kernel E by orthogonality

with a “nearby” subspace F . For this, we apply the following analysis with D = F⊥.

Definition 4.1. Suppose that D and E are two closed subspaces in a Hilbert space.

Then α(D,E), the angle between D and E, is

α(D,E)
def
= cos−1 sup

‖d‖=1, d∈D
‖e‖=1, e∈E

〈d, e〉
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It is clear that 0 ≤ α(D,E) ≤ π/2, α(D,E) = α(E,D), and that α(E,D) = π/2

if and only if E ⊥ D. We will need slightly more subtle properties stated in the

following

Lemma 4.9. Suppose that D and E are two closed subspaces in a Hilbert space. Then

(4.32) α(D,E) = cos−1 sup
‖d‖=1,d∈D

‖PEd‖ , α(D,E) = sin−1 inf
‖d‖=1,d∈D

‖PE⊥d‖ .

In addition if E is finite dimensional then

(4.33) α(D,E) = 0 ⇐⇒ D ∩ E 6= {0} .

Proof. To see (4.32) let d ∈ D, with ‖d‖ = 1. By the definition of the projection

operator,

1− ‖PEd‖2 = ‖d− PEd‖2 = inf
e∈E
‖d− e‖2 = inf

e∈E
‖e‖=1

inf
α∈R
‖d− αe‖2

= inf
e∈E
‖e‖=1

inf
α∈R

(1− 2α〈d, e〉+ α2) = inf
e∈E
‖e‖=1

(1− 〈d, e〉2)

= 1− sup
e∈E
‖e‖=1

〈d, e〉2

and consequently,

‖PEd‖ = sup
e∈E
‖e‖=1

〈d, e〉 ,

from which the first formula in (4.32) follows. The second one is a consequence of the

first one as 1 = ‖PEd‖2 + ‖PE⊥d‖2.

The⇐ implication in (4.33) is clear. To see the other implication, we observe that

if D ∩ E = {0} and E is finite dimensional then

inf
y∈E
‖y‖=1

d(y,D) > 0 ,

where d(y,D) = infz∈D ‖y − z‖ is the distance from y to D. This implies that

0 < inf
y∈E
‖y‖=1

inf
z∈D
‖y − z‖2 = inf

y∈E
‖y‖=1

inf
z∈D

(1− 2〈y, z〉+ ‖z‖2)

≤ inf
y∈E
‖y‖=1

inf
z∈D
‖z‖=1

(2− 2〈y, z〉) = 2(1− sup
y∈E
‖y‖=1

sup
z∈D
‖z‖=1

〈y, z〉)

= 2(1− cosα(D,E)) .

Thus if D ∩E = {0} then α(D,E) > 0. But that is the ⇒ implication in (4.33). �

In the notation of (4.31), the translation symmetry gives

α(Ea,c, F
⊥
a,c) = F (c1, c2, a1 − a2) ,
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where F is a continuous fuction in C × R. We claim that

(4.34) F (c1, c2, α) ≥ κδ > 0 for δ ≤ c1 ≤ c1 + δ ≤ c2 ≤ δ−1 .

Consider now the case |a1 − a2| ≤ A (where A is chosen large below), and hence c1,

c2, and a1 − a2 vary within a compact set. Thus it suffices to check that α(Ea,c, F
⊥
a,c)

is nowhere zero and this amounts to checking E ∩ F⊥ = {0}.
Suppose the contrary, that is that there exists

u = z1∂a1q + z2∂a2q ∈ F⊥ .

Since ω
∣∣
M

= da1 ∧ dc1 + da2 ∧ dc2,

zj = 〈u, ∂−1
x ∂cjq〉 = 0 .

This proves (4.34). To complete the argument in the case |a1 − a2| ≤ A, we need:

Lemma 4.10. Let E = kerK, and suppose that G is a subspace such that E ⊥ G

and the following holds:

u ⊥ (E +G) =⇒ 〈Ku, u〉 ≥ θ‖u‖2
L2 .

Then, for any other subspace F we have

u ⊥ (F +G) =⇒ 〈Ku, u〉 ≥ θ sin2 α(E,F⊥) ‖u‖2
L2 .

Proof. Suppose u ⊥ (F +G) and consider its orthogonal decomposition, u = PEu+ ũ.

Since E ⊥ G and u ⊥ G, we have ũ ⊥ (E +G). Hence, by the hypothesis we have

〈Ku, u〉 = 〈Kũ, ũ〉 ≥ θ‖ũ‖2
L2 = θ‖PE⊥u‖2

L2 .

An application of (4.32),

sinα(E,F⊥) = inf
‖d‖=1

d∈F⊥

‖PE⊥d‖L2 ≤ ‖PE⊥u‖L
2

‖u‖L2

,

concludes the proof. �

5. Set-up of the proof

Recall the definition of T0 (for given δ0 > 0 and ā, c̄) stated in the introduction.

Recall

B(a, c, t)
def
=

∫
b(x, t)q2(x, a, c) dx .

In the next several sections, we establish the key estimates required for the proof of

the main theorem. Let us assume that on some time interval [0, T ], there are C1

parameters a(t) ∈ R2, c(t) ∈ R2 such that, if we set

(5.1) v(·, t) def
= u(·, t)− q(·, a(t), c(t))
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then the symplectic orthogonality conditions (3.26) hold. Since u solves (1.1), v(t)

satisfies

(5.2) ∂tv = ∂x(−∂2
xv − 6q2v − 6qv2 − 2v3 + bv)− F0

where F0 results from the perturbation and ∂t landing on the parameters:

(5.3) F0
def
=

2∑
j=1

(ȧj − c2
j)∂ajq +

2∑
j=1

ċj∂cjq − ∂x(bq)

Now decompose

F0 = F‖ + F⊥

where F‖ is symplectically parallel to M and F⊥ is symplectically orthogonal to M .

Explicitly,

(5.4) F‖ =
2∑
j=1

(ȧj − c2
j + 1

2
∂cjB)∂ajq +

2∑
j=1

(ċj − 1
2
∂ajB)∂cjq

(5.5) F⊥ = −∂x(bq) +
1

2

2∑
j=1

[−(∂cjB)∂ajq + (∂ajB)∂cjq]

All implicit constants will depend upon δ0 > 0 and L∞ norms of b0(x, t) and its

derivatives. We further assume that

(5.6) δ0 ≤ c1(t) ≤ c2(t)− δ0 ≤ δ−1
0

holds on all of [0, T ].

In §6 we will estimate F⊥ using the properties of q recalled in §3. We note that

F‖ ≡ 0 would mean that the parameters solve the effective equations of motion (1.4).

Hence the estimates on F‖ are related to the quality of our effective dynamics and

they are provided in §7. In §8 we then construct a correction term which removes the

leading non-homogeneous terms from the equation for v. Finally energy estimates in

§9 based on the coercivity of K lead to the final bootstrap argument in §10.

6. Estimates on F⊥

Using the identities in Lemma 3.4, we will prove that F⊥ is O(h2); in fact, we obtain

more precise information. For notational convenience, we will drop the t dependence

in b(x, t), and will write b′, b′′, b′′′, to represent x-derivatives.

We will use the following consequences of Lemma 3.2:

(6.1) ∂ajq = −∂xη(·, âj, cj) + Serr
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and

(6.2) cj∂cjq = ∂x[(x− aj)η(x, âj, cj)] +
2c3−jθ(a2 − a1)

(c1 + c2)(c1 − c2)
∂xη(x, âj, cj)

− 2cjθ(a2 − a1)

(c1 + c2)(c1 − c2)
∂xη(x, â3−j, c3−j) + Serr ,

where θ is given by (3.6).

Importantly, as the last formula shows, ∂cjq is not localized around âj due to the

cj-dependence of â3−j. Also note that it is (x− aj) and not (x− âj) in the first term

inside the brackets.

Definition 6.1. Let A denote the class of functions of a, c that are of the form

h2ϕ(a1 − a2, a, c) + q(a, c)h3 ,

a = (a1, a2) ∈ R2, 0 < δ < c1 < c2 − δ < 1/δ, where∣∣∂`α∂kc ∂paϕ(α, a, c)
∣∣ ≤ C〈α〉−N ,

∣∣∂kc ∂paq(a, c)∣∣ ≤ C ,

where C depends on δ, N , `, k, and p only.

We note that if f ∈ Serr, then
∫
f(x)dx has the form ϕ(a1 − a2, a, c), ϕ ∈ A. The

most important feature of the class A is that for f ∈ A,

|∂kaj∂
`
cj
f | . h2〈a1 − a2〉−N + h3

with implicit constant depending on c1, c2.

Lemma 6.1. We have

∂ajB(a, c, ·) = 2cjb
′(âj) +A(6.3)

∂cjB(a, c, ·) = 2b(âj) + 2b′(âj)(aj − âj)−
π2

12
b′′(âj)c

−2
j

− 2(−1)jc3−j(b
′(â2)− b′(â1))θ

(c1 + c2)(c1 − c2)
+A

(6.4)

Proof. First we compute ∂ajB(a, c, t). We have that ∂ajq is exponentially localized

around âj. Substituting the Taylor expansion of b around âj, we obtain

∂ajB(a, c, t) = b(âj)

∫
∂ajq

2 + b′(âj)

∫
(x− âj)∂ajq2

+
1

2
b′′(âj)

∫
(x− âj)2∂ajq

2 +O(h3)

= I + II + III +O(h3)
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Terms I and II are straightforward. Using (3.21) and (3.22),

I = b(âj)∂aj

∫
q2 = 0

II = b′(âj)

(
∂aj

∫
xq2 − âj∂aj

∫
q2

)
= 2cjb

′(âj)

For III, we will substitute (6.1) and hence pick up O(h2)〈a1 − a2〉−N errors.

III = −1

2
b′′(âj)

∫
(x− âj)2∂xη

2(x, âj, cj) dx+A = A

Thus, we obtain (6.3). Next, we compute ∂cjB(a, c, t). Note that ∂cjq is not localized

around âj. Begin by rewriting ∂cjB as

∂cjB =

∫
b(âj)∂cjq

2 +

∫
b′(âj)(x− âj)∂cjq2 +

∫
b̃j ∂cjq

2

where

b̃j(x)
def
= b(x)− b(âj)− b′(âj)(x− âj) .

Now substitute (6.2) into the last term and note that the Serr term in (6.2) produces

an A term here.

∂cjB =

∫
b(âj)∂cjq

2 +

∫
b′(âj)(x− âj)∂cjq2

+
2

cj

∫
b̃j(x) ∂x[(x− aj)η(x, âj, cj)]η(x, âj, cj)

+
c3−jθ

cj(c1 + c2)(c1 − c2)

∫
b̃j(x)∂xη

2(x, âj, cj)

− θ

(c1 + c2)(c1 − c2)

∫
b̃j(x)∂xη

2(x, â3−j, c3−j) +A

= I + II + III + IV + V +A

where terms I-V are studied separately below.

I = b(âj)∂cj

∫
q2 = 2b(âj)

II = b′(âj)

(
∂cj

∫
xq2 − âj∂cj

∫
q2

)
= 2b′(âj)(aj − âj)
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Term III is localized around âj, and thus we integrate by parts in x and Taylor expand

b̃j around âj to obtain

III =
1

cj

∫ (
−b̃′j(x)(x− aj) + b̃j(x)

)
η2(x, âj, cj)

= −1

2

b′′(âj)

cj

∫
(x− âj)2η2(x, âj, cj)

− b′′(âj)(âj − aj)
∫

(x− âj)η2(x, âj, cj) +O(h3)

= −π
2

12
b′′(âj)c

−2
j +O(h3)

Term IV is localized around âj, and thus we integrate by parts in x and Taylor expand

b̃j around âj to obtain∫
b̃j(x) ∂xη

2(x, âj, cj) = −
∫

(b′(x)− b(âj))η2(x, âj, cj)

= −1

2
b′′(âj)

∫
(x− âj)η2(x, âj, cj) +O(h3)

= O(h3)

Term V is localized around â3−j, and thus we integrate by parts in x and Taylor

expand b̃j around â3−j.∫
b̃j(x)∂xη

2(x, â3−j, c3−j) = −
∫

(b′(x)− b(âj))η2(x, â3−j, c3−j)

= −(b′(â3−j)− b′(âj))
∫
η2(x, â3−j, c3−j)

− b′′(â3−j)

∫
(x− â3−j)η

2(x, â3−j, c3−j) +O(h3)

= −2c3−j(b
′(â3−j)− b′(âj)) +O(h3)

�

Lemma 6.2 (estimates on F⊥).

(6.5) ∂−1
x ∂ajF⊥ = O(h2) · Ssol , ∂−1

x ∂cjF⊥ = O(h2) · Ssol , j = 1, 2

(6.6) F⊥ = −1

2

2∑
j=1

b′′(âj)

c2
j

∂xτ(·, âj, cj) +A · Ssol

where

(6.7) τ
def
=

(
π2

12
+ x2

)
η(x) , τ(x, âj, cj)

def
= cjτ(cj(x− âj)) .
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In light of the above lemma, we introduce the notation F⊥ = (F⊥)0 + F̃⊥, where

(6.8) (F⊥)0 = −1

2

2∑
j=1

b′′(âj)

c2
j

∂xτ(·, âj, cj)

and F̃⊥ ∈ A · Ssol. We make use of (6.5) in §7 and (6.6) in §8–9.

Proof. We begin by proving (6.6). By (3.18), (3.19),

(6.9)

∂x(bq) = (∂xb)q + b(∂xq)

= (∂xb)
2∑
j=1

((x− aj)∂ajq + cj∂cjq)− b
2∑
j=1

∂ajq

=
2∑
j=1

(−b+ (∂xb)(x− aj))∂ajq +
2∑
j=1

(∂xb)cj∂cjq +O(h3) · Ssol

The ∂ajq term is well localized around âj, and thus we can Taylor expand the coeffi-

cients around âj. The ∂cjq term we leave alone for the moment.

We have ∂x(bq) =

2∑
j=1

(
− b(âj) + b′(âj)(âj − aj) + b′′(âj)(âj − aj)(x− âj) +

1

2
b′′(âj)(x− âj)2

)
∂ajq

+
2∑
j=1

b′(x)cj∂cjq +A · Ssol

Substituting the above together with (6.3) and (6.4) into (5.5), we obtain

F⊥ =
1

2

2∑
j=1

b′′(âj)
(π2

12
c−2
j − 2(âj − aj)(x− âj)− (x− âj)2

)
∂ajq

+
(b′(â2)− b′(â1))θ

(c1 + c2)(c1 − c2)

2∑
j=1

(−1)jc3−j∂ajq −
2∑
j=1

(b′(x)− b′(âj))cj∂cjq +A · Ssol

We now substitute (6.1) and (6.2) recognizing that this will only generate errors of

type A times a Schwartz class function. We also Taylor expand around âj or â3−j
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depending upon the localization.

F⊥ =
1

2

2∑
j=1

b′′(âj)
(
− π2

12
c−2
j + 2(âj − aj)(x− âj) + (x− âj)2

)
∂xη(x, âj, cj) ← I

− (b′(â2)− b′(â1))θ

(c1 + c2)(c1 − c2)

2∑
j=1

(−1)jc3−j∂xη(x, âj, cj) ← II

−
2∑
j=1

b′′(âj)(x− âj)∂x[(x− aj)η(x, âj, cj)] ← III

−
2∑
j=1

c3−jθ

(c1 + c2)(c1 − c2)
b′′(âj)(x− âj)∂xη(x, âj, cj) ← IV

+
2∑
j=1

cjθ

(c1 + c2)(c1 − c2)
b′′(â3−j)(x− â3−j)∂xη(x, â3−j, c3−j) ← V

+
2∑
j=1

cjθ

(c1 + c2)(c1 − c2)
(b′(â3−j)− b′(aj))∂xη(x, â3−j, c3−j) ← VI

+A · Ssol

We have that IV + V = 0 and II + VI = 0. Hence

F⊥ = I + III +A · Ssol

= −1

2

2∑
j=1

b′′(âj)∂x

((π2

12
c−2
j + (x− âj)2

)
η(x, âj, cj)

)
This completes the proof of (6.6). To obtain (6.5), we note that a consequence of

(6.6) is F⊥ = O(h2)f , where f ∈ Ssol. By the definition (5.5) of F⊥ and Corollary

3.3, we have ∂−1
x F⊥ ∈ Ssol, and hence f ∈ Ssol. �

7. Estimates on the parameters

The equations of motion are recovered (in approximate form) using the symplectic

orthogonality properties (3.26) of v and the equation (5.2) for v. For a function G of

the form

G = g1∂a1q + g2∂a2q + g3∂c1q + g4∂c2q

with gj = gj(a, c), define

coef(G) = (g1, g2, g3, g4) .

Lemma 7.1. Suppose we are given δ0 > 0 and b0(x, t), and parameters a(t), c(t)

such that v defined by (5.1) satisfies the symplectic orthogonality conditions (3.26).

Suppose, moreover, that the amplitude separation condition (5.6) holds. Then (with
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implicit constants depending upon δ0 > 0 and L∞ norms of b0 and its derivatives), if

‖v‖H2 . 1, then we have

(7.1) | coef(F‖)| . h2‖v‖H1 + ‖v‖2
H1 .

Proof. Since 〈v, ∂−1
x ∂ajq〉 = 0, we have upon substituting (5.2)

0 = ∂t〈v, ∂−1
x ∂ajq〉

= 〈∂tv, ∂−1
x ∂ajq〉+ 〈v, ∂t∂−1

x ∂ajq〉
= 〈(∂2

xv + 6q2)v, ∂ajq〉+ 〈(6qv2 + 2v3), ∂ajq〉 ← I + II

− 〈bv, ∂ajq〉 − 〈F‖, ∂−1
x ∂ajq〉 − 〈F⊥, ∂−1

x ∂ajq〉 ← III + IV + V

+ 〈v, ∂−1
x ∂aj

(
2∑

k=1

∂akq ȧk +
2∑

k=1

∂ckq ċk

)
〉 ← VI

We have, by (3.17),

I = 〈v, ∂aj(∂2
xq + 2q3)〉

= −1

2
〈v, ∂−1

x ∂aj∂xI
′
3(q)〉

= −〈v, ∂−1
x ∂aj

2∑
k=1

c2
k∂akq〉

Also, by (5.5)

III = −〈bv, ∂ajq〉
= −〈v, ∂aj(bq)〉
= −〈v, ∂−1

x ∂aj∂x(bq)〉

= −〈v, ∂−1
x ∂aj

(
− F⊥ − 1

2

2∑
k=1

(∂ckB)∂akq + 1
2

2∑
k=1

(∂akB)∂ckq
)
〉

Thus

|I + III + VI| = |〈v, ∂−1
x ∂ajF⊥〉+ 〈v, ∂−1

x ∂ajF‖〉|
≤ ‖v‖L2(‖∂−1

x ∂ajF⊥‖L2 + ‖∂−1
x ∂ajF‖‖)

≤ ‖v‖L2(h2 + | coef(F‖)|)

Next, we note that by Cauchy-Schwarz,

|II| . ‖v‖2
H1 .

Next, observe from (5.4) and Lemma 3.6 that

IV = 〈F‖, ∂−1
x ∂ajq〉 = −(ċj −

1

2
∂ajB) .
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Of course, we have V = 〈F⊥, ∂−1
x ∂ajq〉 = 0. Combining, we obtain

(7.2)

∣∣∣∣ċj − 1

2
∂ajB

∣∣∣∣ . ‖v‖H1(h2 + | coef(F‖)|) + ‖v‖2
H1 .

A similar calculation, applying ∂t to the identity 0 = 〈v, ∂−1
x ∂cjq〉, yields

(7.3)

∣∣∣∣ȧj − c2
j +

1

2
∂cjB

∣∣∣∣ . ‖v‖H1(h2 + | coef(F‖)|) + ‖v‖2
H1 .

Combining (7.2) and (7.3) gives (7.1). �

8. Correction term

Recall the definition (6.7) of τ . Let ρ be the unique function solving

(1− ∂2
x − 6η2)ρ = τ ,

see [19, Proposition 4.2] for the properties of this equation. The function ρ is smooth,

exponentially decaying at ∞, and satisfies the symplectic orthogonality conditions

(8.1) 〈ρ, η〉 = 0 , 〈ρ, xη〉 = 0

Set

ρ(x, âj, cj)
def
= c−1

j ρ(cj(x− âj))
and note that

(c2
j − ∂2

x − 6η2(·, âj, cj))ρ(·, âj, cj) = τ(·, âj, cj)
Define the symplectic projection operator

Pf
def
=

2∑
j=1

〈f, ∂−1
x ∂cjq〉∂ajq +

2∑
j=1

〈f, ∂−1
x ∂ajq〉∂cjq .

Define

(8.2) w
def
= −1

2
(I − P )

2∑
j=1

b′′(âj)

c2
j

ρ(·, âj, cj)

Note that w = O(h2) and clearly now w satisfies

(8.3) 〈w, ∂−1
x ∂ajq〉 = 0 , 〈w, ∂−1

x ∂cjq〉 = 0 .

Recall the definition (6.8) of (F⊥)0.

Lemma 8.1. If ċj = O(h), and ȧj = cj − b(âj) +O(h), then

(8.4) ∂tw + ∂x(∂
2
xw + 6q2w − bw) = −(F⊥)0 −G+A · Ssol .

where G is an O(h2) term that is symplectically parallel to M , i.e.

G ∈ span{∂−1
x ∂a1q, ∂

−1
x ∂a2q, ∂

−1
x ∂c1q, ∂

−1
x ∂c2q} .
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Proof. Let

wj =
b′′(âj)

c2
j

ρ(·, âj, cj)

Then

∂twj = b′′′(âj) ˙̂ajc
−2
j ρ(·, âj, cj)− 2b′′(âj)c

−3
j ċjρ(·, âj, cj)

+ b′′(âj)c
−2
j

˙̂aj∂ajρ(·, âj, cj) + b′′(âj)c
−2
j

˙̂cj∂cjρ(·, âj, cj) + ∂tb
′′(âj)c

−2
j ρ(·, âj, cj)

= −ȧj∂xwj +A · Ssol

Also, we have

(∂2
x + 6q2)wj = (∂2

x + 6η2(·, âj, cj))wj +A · Ssol

= c2
jwj − b′′(âj)c−2

j τ(·, âj, cj) +A · Ssol

Also,

bwj = b(âj)wj +A · Ssol

Combining, we obtain

∂twj + ∂x(∂
2
xwj + 6q2wj − bwj)

= −b′′(âj)c−2
j ∂xτ(·, âj, cj) + (−ȧj + c2

j − b(âj))∂xwj +A · Ssol

= −b′′(âj)c−2
j ∂xτ(·, âj, cj) +A · Ssol

Now we discuss ∂tPwj.

∂tPwj = 〈∂twj, ∂−1
x ∂a1q〉∂c1q + 〈wj, ∂t∂−1

x ∂a1q〉∂cjq + similar

+ 〈wj, ∂−1
x ∂a1q〉∂t∂c1q + similar

The first line of terms is symplectically parallel to M . For the second line, note that

by (8.1), we have 〈wj, ∂−1
x ∂a1q〉 = A. Consequently,

∂tPwj = TqM +A · Ssol

�

Define ũ and ṽ by

(8.5) u = ũ+ w , v = ṽ + w .

Of course, it follows that ũ = q + ṽ. Note that by (3.26) and (8.3), we have

(8.6) 〈ṽ, ∂−1
x ∂ajq〉 = 0 and 〈ṽ, ∂−1

x ∂cjq〉 = 0 , j = 1, 2 .

Note that ũ solves

(8.7) ∂tũ = −∂x(∂2
xũ+ 2ũ3 − bũ)− ∂tw − ∂x(∂2

xw + 6ũ2w − bw) +O(h4)

where the O(h4) terms arise from w2 and w3. Moreover, if we make the mild assump-

tion that ṽ = O(h), then ũ2w = q2w +O(h3). By (8.7) and (8.4), we have

(8.8) ∂tũ = −∂x(∂2
xũ+ 2ũ3 − bũ) + (F⊥)0 +G+A · Ssol
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Since ũ = q + ṽ, we have (in analogy with (5.2))

(8.9) ∂tṽ = ∂x(−∂2
xṽ − 6q2ṽ + bṽ)− F‖ − F̃⊥ +G+A · Ssol +O(h3)H1

where we have made the assumption that ṽ = O(h3/2) in order to discard the ṽ2 and

ṽ3 terms. We thus see that, in comparison to v, the equation for ṽ has a lower-order

inhomogeneity, but still satisfies the symplectic orthogonality conditions (8.6) and

v = ṽ +O(h2).

9. Energy estimate

Since w = O(h2), to obtain the desired bound on v it will suffice to obtain a bound

for ṽ. This will be achieved by the “energy method.”

Lemma 9.1. Suppose we are given δ0 > 0 and b0(x, t), and parameters a(t), c(t)

such that v defined by (5.1) satisfies the symplectic orthogonality conditions (3.26)

on [0, T ]. Suppose, moreover, that the amplitude separation condition (5.6) holds on

[0, T ]. Then (with implicit constants depending upon δ0 > 0 and L∞ norms of b0 and

its derivatives), if ‖v‖H2 . 1 and T � h−1, then

‖v‖2
L∞

[0,T ]
H2 . ‖v(0)‖2

H2 + h4

(
1 +

∫ T

0

〈a1 − a2〉−N dt
)2

.

Proof. Recall that we have defined

Hc(u) = I5(u) + (c2
1 + c2

2)I3(u) + c2
1c

2
2I1(u) .

With w given by (8.2) and ũ given by (8.5), let

E(t) = Hc(ũ)−Hc(q) .

Then

∂tE = 〈H ′c(ũ), ∂tũ〉 − 〈H ′c(q), ∂tq〉+ 2(c1ċ1 + c2ċ2)(I3(ũ)− I3(q))

+ 2c1c2(c1ċ2 + ċ1c2)(I1(ũ)− I1(q))

= I + II + III + IV

Note that II = 0 since Lemma 4.1 showed that H ′c(q) = 0. For III, we have by (3.17)

and the orthogonality conditions (8.6),

III = 2(c1ċ1 + c2ċ2)(〈I ′3(q), ṽ〉+O(‖ṽ‖2
H1))

= 4(c1ċ1 + c2ċ2)〈
2∑
j=1

c2
j∂
−1
x ∂ajq, ṽ〉+O((|ċ1|+ |ċ2|)‖ṽ‖2

H1)

= O((|ċ1|+ |ċ2|)‖ṽ‖2
H1)
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Term IV is bounded similarly. It remains to study Term I. Writing (8.8) as ∂tũ =
1
2
∂xI

′
3(ũ) + ∂x(bũ) + (F⊥)0 +G+A · Ssol and appealing to (2.5), we have by Lemma

2.1 (with u replaced by ũ in that lemma) that

I = 〈H ′c(ũ), ∂x(bũ)〉+ 〈H ′c(ũ), (F⊥)0 +A · Ssol〉
= 5〈bx, A5(ũ)〉 − 5〈bxxx, A3(ũ)〉+ 〈bxxxxx, A1(ũ)〉

+ (c2
1 + c2

2)(3〈bx, A3(ũ)〉 − 〈bxxx, A1(ũ)〉) + c2
1c

2
2〈bx, A1(ũ)〉

+ 〈H ′c(ũ), (F⊥)0 +A · Ssol〉

Expand Aj(ũ) = Aj(q + ṽ) = Aj(q) +A′j(q)(ṽ) +O(ṽ2) and H ′c(ũ) = H ′c(q) +Kc,aṽ +

O(ṽ2) = Kc,aṽ +O(ṽ2) to obtain I = IA + IB + IC, where

IA = 5〈bx, A5(q)〉 − 5〈bxxx, A3(q)〉+ 〈bxxxxx, A1(q)〉
+ (c2

1 + c2
2)(3〈bx, A3(q)〉 − 〈bxxx, A1(q)〉) + c2

1c
2
2〈bx, A1(q)〉

IB = 5〈bx, A′5(q)(ṽ)〉 − 5〈bxxx, A′3(q)(ṽ)〉+ 〈bxxxxx, A′1(q)(ṽ)〉
+ (c2

1 + c2
2)(3〈bx, A′3(q)(ṽ)〉 − 〈bxxx, A′1(q)(ṽ)〉) + c2

1c
2
2〈bx, A′1(q)(ṽ)〉

IC = 〈Kc,aṽ, (F⊥)0〉+O(h‖ṽ‖2
H2) +O(A · ‖ṽ‖H2)

Then reapply Lemma 2.1 (with u replaced by q in that lemma) to obtain that IA =

−〈H ′c(q), ∂x(bq)〉 = 0. Applying Lemma 2.2,

IB = 〈Kc,aṽ, (bq)x〉 − 〈∂xH ′c(q), bṽ〉
= 〈Kc,aṽ, (bq)x〉

In summary thus far, we have obtained that

∂tE = 〈Kc,aṽ, (bq)x + (F⊥)0〉+O(h‖ṽ‖2
H2) +O(A‖ṽ‖H2)

By (4.12), (4.13), and (8.6) (recalling the definition (5.3) of F0), we obtain

〈Kc,aṽ, ∂x(bq)〉 = −〈Kc,aṽ, F0〉 = −〈Kc,aṽ, F‖ + F⊥〉

Hence

∂tE = −〈Kc,aṽ, F‖ + F̃⊥〉+O(h‖ṽ‖2
H2) +O(A‖ṽ‖H2)

It follows from Lemma 7.1 and F̃⊥ ∈ A · Ssol (see (6.6), (6.8)) that

|∂tE| . (h2〈a1 − a2〉−N + h3)‖ṽ‖H2 + h‖ṽ‖2
H2

If T = δh−1,

E(T ) = E(0) + h2

(
1 +

∫ T

0

〈a1 − a2〉−N
)
‖ṽ‖L∞

[0,T ]
H2
x

+ h‖ṽ‖2
L∞

[0,T ]
H2 .

By Lemma 4.1, the definition of E and Kc,a, and the fact that ũ = q + ṽ, we have

|E − 〈Kc,aṽ, ṽ〉| . ‖ṽ‖3
H2 .
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Applying this at time 0 and T , together with the coercivity of K (Proposition 4.3),

‖ṽ(T )‖2
H2 . ‖ṽ(0)‖2

H2 + h2

(
1 +

∫ T

0

〈a1 − a2〉−N
)
‖ṽ‖L∞

[0,T ]
H2
x

+ h‖ṽ‖2
L∞

[0,T ]
H2 .

Replacing T by T ′ such that 0 ≤ T ′ ≤ T , and taking the supremum in T ′ over

0 ≤ T ′ ≤ T , we obtain

‖ṽ‖2
L∞

[0,T ]
H2 . ‖ṽ(0)‖2

H2 + h2

(
1 +

∫ T

0

〈a1 − a2〉−N
)
‖ṽ‖L∞

[0,T ]
H2
x

+ h‖ṽ‖2
L∞

[0,T ]
H2 .

By selecting δ small enough, we obtain

‖ṽ‖2
L∞

[0,T ]
H2 . ‖ṽ(0)‖2

H2 + h4

(
1 +

∫ T

0

〈a1 − a2〉−N dt
)2

Finally, using that ‖w‖H2 ∼ h2, and v = ṽ+w, we obtained the claimed estimate. �

10. Proof of the main theorem

We start with the proposition which links the ODE analysis with the estimates on

the error term v:

Proposition 10.1. Suppose we are given b0 ∈ C∞b (R2) and δ0 > 0. (Implicit con-

stants below depend only on b0 and δ0). Suppose that we are further given ā ∈ R2,

c̄ ∈ R2\C, κ ≥ 1, h > 0, and v0 satisfying (3.26), such that

0 < h . κ−1 , ‖v0‖H2
x
≤ κh2 .

Let u(t) be the solution to (1.1) with b(x, t) = b0(hx, ht) and initial data η(·, ā, c̄)+v0.

Then there exist a time T ′ > 0 and trajectories a(t) and c(t) defined on [0, T ′] such

that a(0) = ā, c(0) = c̄ and the following holds, with v
def
= u− η(·, a, c):

(1) On [0, T ′], the orthogonality conditions (3.26) hold.

(2) Either c1(T ′) = δ0, c1(T ′) = c2(T ′) − δ0, c2(T ′) = δ−1
0 , or T ′ = ωh−1, where

ω � 1.

(3) |ȧj − c2
j + b(aj, t)| . h.

(4) |ċj − cjb′(aj)| . h2.

(5) ‖v‖L∞
[0,T ′]H

2
x
≤ ακh2 , where α� 1.

Here α and ω are constants depending only on b0 and δ0 (independent of κ, etc)

Proof. Recall our convention that implicit constants depend only on b0 and δ. By

Lemma 3.7 and the continuity of the flow u(t) in H2, there exists some T ′′ > 0 on

which a(t), c(t) can be defined so that (3.26) hold. Now take T ′′ to be the maximal

time on which a(t), c(t) can be defined so that (3.26) holds. Let T ′ be first time

0 ≤ T ′ ≤ T ′′ such that c1(T ′) = δ0, c1(T ′) = c2(T ′) − δ0, c2(T ′) = δ−1
0 , T ′ = T ′′, or

ωh−1 (whichever comes first). Here, 0 < ω � 1 is a constant that we will chosen
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suitably small at the end of the proof (depending only upon implicit constants in the

estimates, and hence only on b0 and δ).

Remark 10.2. We will show that on [0, T ′], we have ‖v(t)‖H2
x
. κh2, and hence

by Lemma 3.7 and the continuity of the u(t) flow, it must be the case that either

c1(T ′) = δ0, c1(T ′) = c2(T ′) − δ0, c2(T ′) = δ−1
0 , or ωh−1 (i.e. the case T ′ = T ′′ does

not arise).

Let T , 0 < T ≤ T ′, be the maximal time such that

(10.1) ‖v‖L∞
[0,T ]

H2
x
≤ ακh2 ,

where α is suitably large constant related to the implicit constants in the estimates

(and thus dependent only upon b0 and δ0 > 0).

Remark 10.3. We will show, assuming that (10.1) holds, that ‖v‖L∞
[0,T ]

H1
x
≤ 1

2
ακh1/2

and thus by continuity we must have T = T ′.

In the remainder of the proof, we work on the time interval [0, T ], and we are able

to assume that the orthogonality conditions (3.26) hold, δ0 ≤ c1(t) ≤ c2(t)−δ0 ≤ δ−1
0 ,

and that (10.1) holds. By Lemma 7.1 and Taylor expansion, we have (since κ2h4 . h2)

(10.2)

{
ȧj = c2

j − b(aj, t) +O(h)

ċj = cj∂xb(aj, t) +O(h2) ,

with initial data aj(0) = āj, cj(0) = c̄j. Let

ξ(t)
def
=
b(a1(t), t)− b(a2(t), t)

a1(t)− a2(t)

and let Ξ(t) denote an antiderivative. By the mean-value theorem |ξ| . h, and since

T ≤ ωh−1, we have eΞ ∼ 1. We then have

d

dt

(
eΞ(a2 − a1)

)
= eΞ(c2

2 − c2
1) +O(h) .

Since δ2
0 ≤ c2

2 − c2
1, we see that eΞ(a2 − a1) is strictly increasing. Let 0 ≤ t1 ≤ T

denote the unique time at which eΞ(a2−a1) = 0 (if the quantity is always positive, take

t1 = 0, and if the quantity is always negative, take t1 = T , and make straightforward

modifications to the argument below). If t < t1, integrating from t to t1 we obtain

δ2
0(t1 − t) . −eΞ(t)(a2(t)− a1(t)) = eΞ(t)|a2(t)− a1(t)|

If t > t1, integrating from t1 to t we obtain

δ2
0(t− t1) . eΞ(t)(a2(t)− a1(t)) .

Hence, ∫ T

0

〈a2(t)− a1(t)〉−2 . 1 .
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By Lemma 9.1, we conclude that

‖v‖L∞T H2
x
≤ α

4
(‖v(0)‖H2 + h2) ≤ α

4
(κh2 + h2) ≤ 1

2
ακh2 .

�

We can now complete

Proof of the main Theorem. Suppose that ‖v0‖H2 ≤ h2. Iterate Prop. 10.1, as long

as the condition

(10.3) δ0 ≤ c1 ≤ c2 − δ0 ≤ δ−1
0

remains true, as follows: for the k-th iterate, put κ = αk in Prop. 10.1 and advance

from time tk = kωh−1 to time tk+1 = (k + 1)ωh−1. At time tk, we have ‖v(tk)‖H2 ≤
αkh2, and we find from Prop. 10.1 that ‖v‖L∞

[tk,tk+1]
H2
x
≤ αk+1h2. Provided (10.3)

holds on all of [0, tK ], we can continue until κ−1 ∼ h, i.e. K ∼ log h−1.

Recall (1.5), and Aj(T ), Cj(T ) defined by (1.11). Let âj(t) = h−1Aj(ht), ĉj(t) =

Cj(ht). Then âj, ĉj solve {
˙̂aj = ĉ2

j − b(âj, t)
˙̂cj = ĉj∂xb(âj, t)

with initial data âj(0) = āj, ĉj(0) = c̄j. We know that (10.3) holds for ĉj on [0, h−1T0].

Let ãj = aj − âj, c̃j = cj − ĉj denote the differences. Let

γ(t)
def
=
b(aj, t)− b(âj, t)

aj − âj

σ(t)
def
=
∂xb(aj, t)− ∂xb(âj, t)

aj − âj
.

By the mean-value theorem, |γ(t)| . h and |σ(t)| . h2. We have

(10.4)

{
˙̃aj = c̃2

j + 2ĉj c̃j − γãj +O(h)

˙̃cj = c̃j(∂xb)(aj, t) + ĉjσãj +O(h2) .

We conclude that |ãj| . eCht and |c̃j| . heCht. This is proved by Gronwall’s method

and a bootstrap argument. Since (10.3) holds for ĉj on [0, h−1T0], it holds for cj on

the same time scale if T0 <∞, and up to the maximum time allowable by the above

iteration argument, εh−1 log h−1, if T0 = +∞. �
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Appendix A. Local and global well-posedness

In this appendix, we will prove that (1.1) is globally well-posed in Hk, k ≥ 1

provided

(A.1) M(T )
def
=

k+1∑
j=0

‖∂jxb(x, t)‖L∞[0,T ]
L∞x <∞ .

for all T > 0. This is proved for k = 1 under the additional assumption that

‖b‖L2
xL
∞
T
< ∞ in the appendix of Dejak-Sigal [11]. ‡ The removal of the assump-

tion ‖b‖L2
xL
∞
T
< ∞ is convenient since it allows for us to consider potentials that

asymptotically in x converge to a nonzero number, rather than decay. Moreover, our

argument is self-contained.

Well-posedness for KdV (nonlinearity ∂xu
2) with b ≡ 0 was obtained by Bona-Smith

[5] via the energy method, using the vanishing viscosity technique for construction

and a regularization argument for uniqueness. Although their argument adapts to

include b 6= 0 and to mKdV (1.1), it applies only for k > 3
2

due to the derivative

in the nonlinearity. Kenig-Ponce-Vega [21, 20] reduced the regularity requirements

(for b ≡ 0) below k = 1 by introducing new local smoothing and maximal function

estimates and applying the contraction method. These estimates were obtained by

Fourier analysis (Plancherel’s theorem, van der Corput lemma). At the H1 level of

regularity (and above) for mKdV, the full strength of the maximal function estimate

in [21, 20] is not needed. Here, we prove a local smoothing estimate and a (weak)

maximal function estimate (see (A.2) and (A.3) in Lemma A.1 below) instead by the

integrating factor method, which easily accomodates the inclusion of a potential term

since integration by parts can be applied. The estimates proved by Kenig-Ponce-Vega

were directly applied by Dejak-Sigal, treating the potential term as a perturbation,

which required introducing the norm ‖b‖L2
xL
∞
T

. Our argument does not apply directly

to KdV since we are lacking the (strong) maximal function estimate used by [21, 20].

Let Qn = [n− 1
2
, n+ 1

2
] so that R = ∪Qn. Let Q̃n = [n− 1, n+ 1]. An example of

our notation is:

‖u‖`∞n L2
TL

2
Qn

= sup
n
‖u‖L2

(0,T )
L2
Qn
.

We will use variants like `2
nL
∞
T L

2
Qn

etc. Note that due to the finite incidence of overlap,

we have

‖u‖`∞n L2
TL

2
Qn
∼ ‖u‖`∞n L2

TL
2
Q̃n

‡It is further assumed in [11] that ‖b‖L∞
T L∞

x
is small, although this appears to be unnecessary in

their argument.
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Theorem A.1 (local well-posedness). Take k ∈ Z, k ≥ 1. Suppose that

M
def
=

k+1∑
j=0

‖∂jxb(x, t)‖L∞[0,1]
L∞x <∞ .

For any R ≥ 1, take

T . min(M−1, R−4) .

(1) If ‖u0‖Hk ≤ R, there exists a solution u(t) ∈ C([0, T ];Hk
x) to (1.1) on [0, T ]

with initial data u0(x) satisfying

‖u‖L∞T Hk
x

+ ‖∂k+1
x u‖`∞n L2

TL
2
Qn
. R .

(2) This solution u(t) is unique among all solutions in C([0, T ];H1
x).

(3) The data-to-solution map u0 7→ u(t) is continuous as a mapping Hk →
C([0, T ];Hk

x).

The main tool in the proof of Theorem A.1 is the local smoothing estimate (A.2)

below.

Lemma A.1. Suppose that

vt + vxxx − (bv)x = f .

We have, for

T . (1 + ‖bx‖L∞T L∞x + ‖b‖L∞T L∞x )−1 ,

the energy and local smoothing estimates

(A.2) ‖v‖L∞T L2
x

+ ‖vx‖`∞n L2
TL

2
Qn
. ‖v0‖L2

x
+

{
‖∂−1

x f‖`1nL2
TL

2
Qn

‖f‖L1
TL

2
x

and the maximal function estimate

(A.3) ‖v‖`2nL∞T L2
Qn
. ‖v0‖L2

x
+ T 1/2‖v‖L2

TH
1
x

+ T 1/2‖f‖L2
TL

2
x
.

The implicit constants are independent of b.

Proof. Let ϕ(x) = − tan−1(x−n), and set w(x, t) = eϕ(x)v(x, t). Note that 0 < e−
π
2 ≤

eϕ(x) ≤ e
π
2 <∞, so the inclusion of this factor is harmless in the estimates, although

has the benefit of generating the “local smoothing” term in (A.2). We have

∂tw+wxxx−3ϕ′wxx+3(−ϕ′′+(ϕ′)2)wx+(−ϕ′′′+3ϕ′′ϕ′−(ϕ′)3)w−(bw)x+ϕ′bw = eϕf .

This equation and manipulations based on integration by parts show that

∂t‖w‖L2
x

= 6〈ϕ′, w2
x〉 − 3〈(−ϕ′′ + (ϕ′)2)′, w2〉+ 2〈−ϕ′′′ + 3ϕ′′ϕ′ − (ϕ′)3, w2〉

− 〈bx, w2〉+ 2〈bϕ′, w2〉+ 2〈w, eϕf〉 .
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We integrate the above identity over [0, T ], move the smoothing term 6
∫ T

0
〈ϕ′, w2

x〉x dt
over to the left side, and estimate the remaining terms to obtain:

‖w(T )‖2
L2
x

+ 6‖〈x− n〉−1wx‖2
L2
TL

2
x

≤ ‖w0‖2
L2
x

+ CT (1 + ‖bx‖L∞T L∞x + ‖b‖L∞T L∞X )‖w‖2
L∞T L

2
x

+ C

∫ T

0

∣∣∣∣∫ eϕfw dx

∣∣∣∣ dt .
Replacing T by T ′, and taking the supremum over T ′ ∈ [0, T ], we obtain, for T .
(1 + ‖bx‖L∞T L∞x + ‖b‖L∞

[0,T ]
L∞x )−1, the estimate

‖w‖2
L∞T L

2
x

+ ‖〈x− n〉−1wx‖2
L2
TL

2
x
. ‖w0‖2

L2
x

+

∫ T

0

∣∣∣∣∫ eϕfw dx

∣∣∣∣ dt
Using that 0 < e−π/2 ≤ eϕ ≤ eπ/2 < ∞, this estimate can be converted back to an

estimate for v:

‖v‖2
L∞T L

2
x

+ ‖vx‖2
L2
TL

2
Qn
. ‖v0‖2

L2
x

+

∫ T

0

∣∣∣∣∫ e2ϕfv dx

∣∣∣∣ dt .
Estimating as ∫ T

0

∣∣∣∣∫ e2ϕfv dx

∣∣∣∣ dt . ‖f‖L1
TL

2
x
‖v‖L∞T L2

x
,

and then taking the supremum in n yields the second bound in (A.2). Estimating

instead as: ∫ T

0

∣∣∣∣∫ e2ϕfv dx

∣∣∣∣ dt =

∫ T

0

∣∣∣∣∫ e2ϕ(∂x∂
−1
x f)v dx

∣∣∣∣ dt
≤
∫ T

0

∣∣∣∣∫ (∂−1
x f) ∂x(e

2ϕv) dx

∣∣∣∣ dt
≤
∑
m

‖∂−1
x f‖L2

TL
2
Qm
‖〈∂x〉v‖L2

TL
2
Qm

≤ ‖∂−1
x f‖`1mL2

TL
2
Qm
‖〈∂x〉v‖`∞mL2

TL
2
Qm

and taking the supremum in n yields the second bound in (A.2).

For the estimate (A.3), we take ψ(x) = 1 on [n− 1
2
, n+ 1

2
] and 0 outside [n−1, n+1],

set w = ψv, and compute, similarly to the above,

‖v‖2
L∞T L

2
Qn
. ‖v0‖2

L2
Q̃n

+ T‖vx‖2
L2
TL

2
Q̃n

+ T‖f‖2
L2
TL

2
Q̃n

The proof is completed by summing in n. �

Proof of Theorem A.1. We prove the existence by contraction in the space X, where

X = {u | ‖u‖C([0,T ];Hk
x ) + ‖∂k+1

x u‖`∞n L2
TL

2
Qn

+ sup
α≤k−1

‖∂αxu‖`2nL∞T L2
Qn
≤ CR } .
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Here C is just chosen large enough to exceed the implicit constant in (A.2). Given

u ∈ X, let ϕ(u) denote the solution to

(A.4) ∂tϕ(u) + ∂3
xϕ(u)− ∂x(bϕ(u)) = −2∂x(u

3) .

with initial condition ϕ(u)(0) = u0. A fixed point ϕ(u) = u in X will solve (1.1). We

separately treat the case k = 1 for clarity of exposition.

Case k = 1. Applying ∂x to (A.4) gives, with v = ϕ(u)x,

vt + vxxx − (bv)x = −2(u3)xx + (bxϕ(u))x .

Now, (A.2) gives

‖ϕ(u)x‖L∞T L2
x

+ ‖ϕ(u)xx‖`∞n L2
TL

2
Qn
.

‖u0‖H1
x

+ ‖(u3)x‖`1nL2
TL

2
Qn

+ ‖(bxϕ(u))x‖L1
TL

2
x
.

(A.5)

Using that ‖u‖2
L∞Q
. (‖u‖L2

Q̃
+ ‖ux‖L2

Q̃
)‖u‖L2

Q̃
, we also have

‖(u3)x‖L2
Q
. ‖ux‖L2

Q
‖u‖2

L∞Q
. ‖ux‖L2

Q
‖u‖L2

Q̃
(‖u‖L2

Q̃
+ ‖ux‖L2

Q̃
) .

Taking the L2
T norm and applying the Hölder inequality, we obtain

‖(u3)x‖L2
TL

2
Q
. ‖ux‖L∞T L2

Q
‖u‖L∞T L2

Q̃
(‖u‖L2

TL
2
Q̃

+ ‖ux‖L2
TL

2
Q̃

) .

Taking the `1
n norm and applying the Hölder inequality again yields

‖(u3)x‖`1L2
TL

2
Qn
. ‖ux‖`∞n L∞T L2

Qn
‖u‖`2nL∞T L2

Q̃n

(‖u‖`2nL2
TL

2
Q̃n

+ ‖ux‖`2nL2
TL

2
Q̃n

) .

Using the straightforward bounds ‖ux‖`∞n L∞T L2
Qn
. ‖ux‖L∞T L2

x
,

‖u‖`2nL2
TL

2
Q̃n

. ‖u‖L2
TL

2
x
. T 1/2‖u‖L∞T L2

x

and

‖ux‖`2nL2
TL

2
Q̃n

. ‖ux‖L2
TL

2
x
. T 1/2‖ux‖L∞T L2

x
,

we obtain

‖(u3)x‖`1nL2
TL

2
Qn
. T 1/2‖u‖2

L∞T H
1
x
‖u‖`2nL∞T L2

Qn
.

Inserting these bounds into (A.5),

(A.6) ‖ϕ(u)x‖L∞T L2
x

+ ‖ϕ(u)xx‖`∞n L2
TL

2
Qn
. ‖u0‖H1

x
+ T 1/2‖u‖2

L∞T H
1
x
‖u‖`2nL∞T L2

Qn

+ T (‖bx‖L∞x + ‖bxx‖L∞x )‖ϕ(u)‖H1
x
.

The local smoothing estimate (A.2) applied to v = ϕ(u) (not v = ϕ(u)x as above),

and the estimate

‖(u3)x‖L1
TL

2
x
. T‖u‖3

L∞T H
1
x
,

provides the estimate

(A.7) ‖ϕ(u)‖L∞T L2
x
. T‖u‖3

L∞T H
1
x
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The maximal function estimate (A.3) applied to v = ϕ(u) and the estimate

‖(u3)x‖L2
TL

2
x
. T 1/2‖u‖3

L∞T H
1
x
,

give the estimate

(A.8) ‖ϕ(u)‖`2nL∞T L2
Qn
. ‖u0‖L2

x
+ T‖ϕ(u)‖L∞T H1

x
+ T‖u‖3

L∞T H
1
x
.

Summing (A.6), (A.7), (A.8), we obtain that ‖ϕ(u)‖X ≤ CR if ‖u‖X ≤ CR provided

T is as stated above. Thus ϕ : X → X. A similar argument establishes that ϕ is a

contraction on X.

Case k ≥ 2. Differentiating (A.4) k times with respect to x we obtain, with v =

∂kxϕ(u),

∂tv + ∂3
xv − ∂x(bv) = −2∂k+1

x (u3)− 2∂x
∑

α+β≤k+1
β≤k−1

∂αx b ∂
β
xϕ(u) .

Using (A.2) gives

‖∂kxϕ(u)‖L∞T L2
x

+ ‖∂k+1
x ϕ(u)‖`∞n L2

TL
2
Qn
.

‖∂kxu3‖`1nL2
TL

2
Qn

+ sup
α+β≤k+1
β≤k−1

‖∂x(∂αx b ∂βxϕ(u))‖L1
TL

2
x
.

Expanding, and applying Leibniz rule gives

∂kxu =
∑

α+β+γ=k
α≤β≤γ

cαβγ∂
α
xu ∂

β
xu ∂

γ
xu ,

which is then estimated as follows

‖∂kxu‖`1nL2
TL

2
Qn
.

∑
α+β+γ=k
α≤β≤γ

‖∂αxu‖`2nL∞T L∞Qn‖∂
β
xu‖`2nL2

TL
∞
Qn
‖∂γxu‖`∞n L∞T L2

Qn
.

By the Sobolev embedding theorem (as in the k = 1 case) we obtain

‖∂kxu3‖`1nL2
TL

2
Qn
.

∑
α+β+γ=k
α≤β≤γ

(
sup
σ≤α+1

‖∂σxu‖`2nL∞T L2
Qn

)(
sup
σ≤β+1

‖∂σxu‖`2nL2
TL

2
Qn

)
‖∂γxu‖L∞T L2

x

When k ≥ 2, we have α ≤ [[1
3
k]] ≤ k − 2 and β ≤ [[1

2
k]] ≤ k − 1, and therefore

‖∂kxu3‖`1nL2
TL

2
Qn
. T 1/2

(
sup
α≤k−1

‖∂αxu‖`2nL∞T L2
Qn

)
‖u‖2

L∞T H
k
x
.

Also,

‖∂x(∂αx b ∂βxϕ(u))‖L1
TL

2
x
≤ T

(
sup
α≤k+1

‖∂αx b‖L∞T L∞x

)
‖ϕ(u)‖L∞T Hk

x
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Combining these estimates, we obtain

‖∂kxϕ(u)‖L∞T L2
x

+ ‖∂k+1
x ϕ(u)‖`∞n L2

TL
2
Qn
. ‖u0‖Hk

x

+T 1/2

(
sup
α≤k−1

‖∂αxu‖`2nL∞T L2
Qn

)
‖u‖2

L∞T H
k
x

+ T

(
sup
α≤k+1

‖∂αx b‖L∞T L∞x

)
‖ϕ(u)‖L∞T Hk

x

(A.9)

The local smoothing ‖(u3)x‖L1
TL

2
x
. T‖u‖3

L∞T H
1
x

to obtain

(A.10) ‖ϕ(u)‖L∞T L2
x
. T‖u‖3

L∞T H
1
x

We apply the maximal function estimate (A.3) to v = ∂αxϕ(u) for α ≤ k − 1 and use

that ‖∂α+1
x u3‖L1

TL
2
x
≤ T‖u‖3

L∞T H
k
x

and

‖∂α+1
x (bϕ(u))‖L1

TL
2
x
≤ T

(
sup
β≤k
‖∂βx b‖L∞T L∞x

)
‖ϕ(u)‖L∞T Hk

x

to obtain

(A.11) ‖∂αxϕ(u)‖`2nL∞T L2
Qn
. ‖u0‖Hk−1

x
+ T‖ϕ(u)‖L∞T Hk

x
+ T‖u‖3

L∞T H
k
x

+ T

(
sup
β≤k
‖∂βx b‖L∞T L∞x

)
‖ϕ(u)‖L∞T Hk

x

Summing (A.9), (A.10), (A.11), we obtain that ϕ : X → X, and a similar argument

shows that ϕ is a contraction. This concludes the case k ≥ 2.

To establish uniqueness within the broader class of solutions belonging merely to

C([0, T ];H1
x), we argue as follows. Suppose u, v ∈ C([0, T ];H1

x) solve (1.1). By (A.3),

‖v‖`2nL∞T L2
Qn
. ‖v0‖L2 + T‖v‖L∞T H1

x
+ T‖v‖3

L∞T H
1
x
.

By taking T small enough in terms of ‖v‖L∞T H1
x
, we have that

(A.12) ‖v‖`2nL∞T L2
Qn
. ‖v‖L∞T H1

x
.

Similarly,

(A.13) ‖u‖`2nL∞T L2
Qn
. ‖u‖L∞T H1

x
.

Set w = u− v. Then, with g = (u3 − v3)/(u− v) = u2 + uv + v2, we have

wt + wxxx − (bw)x ± (gw)x = 0 .

Apply (A.2) to v = wx to obtain

(A.14) ‖wx‖L∞T L2
x

+ ‖wxx‖`∞n L2
TL

2
Qn
. ‖(gw)x‖`1nL2

TL
2
Qn

+ ‖(bxw)x‖L1
TL

2
x

The terms of ‖(gw)x‖`1nL2
TL

2
Qn

are bounded following the method used above:

‖uxvw‖`1nL2
TL

2
Qn
. ‖ux‖`∞n L∞T L2

Qn
‖vw‖`1nL2

TL
∞
Qn

. ‖ux‖`∞n L∞T L2
Qn

(‖vw‖`1nL2
TL

1
Qn

+ ‖(vw)x‖`1nL2
TL

1
Qn

)
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The term in parentheses is bounded by

‖v‖`2nL2
TL

2
Qn
‖w‖`2nL∞T L2

Qn
+ ‖vx‖`2nL2

TL
2
Qn
‖w‖`2nL∞T L2

Qn
+ ‖v‖`2nL∞T L2

Qn
‖wx‖`2nL2

TL
2
Qn

which leads to the bound

(A.15) ‖uxvw‖`1nL2
TL

2
Qn
. T 1/2‖u‖L∞T H1

x
(‖v‖L∞T H1

x
‖w‖`2nL∞T L2

Qn
+‖v‖`2nL∞T L2

Qn
‖w‖L∞T H1

x
)

We now allow implicit constants to depend upon ‖u‖L∞T H1
x

and ‖v‖L∞T H1
x
. Appealing

to (A.14), (A.15) (and analogous estimates for other terms in gw), (A.12), (A.13) to

obtain

‖w‖L∞T H1
x
. T 1/2(‖w‖`2nL∞T L2

Qn
+ ‖w‖L∞T H1

x
)

Combining this estimate with the maximal function estimate (A.3) applied to w yields

‖w‖`2nL∞T L2
Qn
. T 1/2‖w‖L∞T H1

x
+ T‖g‖L∞T H1

x
‖w‖L∞T H1

x
.

This gives w ≡ 0 for T sufficiently small. The continuity of the data-to-solution map

is proved using similar arguments. �

Next, we prove global well-posedness in Hk by proving a priori bounds. Theorem

A.1 shows that doing it suffices for global well-posedness

Theorem A.2 (global well-posedness). Fix k ≥ 1 and suppose M(T ) < ∞ for all

T ≥ 0, where M(T ) is defined in (A.1). For u0 ∈ Hk, there is a unique global solution

u ∈ Cloc([0,+∞);Hk
x) to (1.1) with ‖u‖L∞T Hk

x
controlled by ‖u0‖Hk , T , and M(T ).

Proof. Before beginning, we note that by the Gagliaro-Nirenberg inequality, ‖u‖4
L4 .

‖u‖3
L2‖ux‖L2 , we have (in the focusing case)

‖ux‖2
L2 − ‖ux‖‖u‖3

L2 ≤ I3(u) ≤ ‖ux‖2
L2 .

With α = ‖ux‖2
L2/‖u‖6

L2 and β = I3(u)/‖u‖6
L2 , this is α−α1/2 ≤ β ≤ α, which implies

that 〈α〉 ∼ 〈β〉, i.e.

‖ux‖2
L2 + ‖u‖6

L2 ∼ I3(u) + ‖u‖6
L2

The same statement holds in the defocusing case.

Another fact we need is based on the

d

dt
Ij(u) = 〈I ′j(u), ∂tu〉

= 〈I ′j(u),−uxxx − 2(u3)x + (bu)x〉
= 〈I ′j(u), ∂xI

′
3(u)〉+ 〈I ′j(u), (bu)x〉

= 〈I ′j(u), (bu)x〉

For u(t) ∈ L2, we compute near conservation of momentum and energy from Lemma

2.1:
d

dt
I1(u) = 〈bx, A1(u)〉
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Estimate |〈bx, A1(u)〉| ≤ ‖bx‖L∞I1(u), and apply Gronwall to obtain a bound on

‖u‖L∞T L2
x

in terms of ‖bx‖L∞T L∞ and ‖u0‖L2 . For u(t) ∈ H1, we compute near conser-

vation of energy from Lemma 2.1:

d

dt
I3(u) = 3〈bx, A3(u)〉 − 〈bxxx, A1(u)〉 .

We have

|〈bx, A3(u)〉| . ‖bx‖L∞(‖ux‖2
L2 + ‖u‖4

L4)

. ‖bx‖L∞(‖ux‖2
L2 + ‖ux‖L2‖u‖3

L2)

. ‖bx‖L∞(‖ux‖2
L2 + ‖u‖6

L2)

. ‖bx‖L∞(I3(u) + ‖u‖6
L2)

and

|〈bxxx, A1(u)〉| . ‖bxxx‖L∞‖u‖2
L2 .

Combining these gives∣∣∣∣ ddtI3(u)

∣∣∣∣ . ‖bx‖L∞I3(u) + ‖bx‖L∞‖u‖6
L2 + ‖bxxx‖L∞‖u‖2

L2

Gronwall’s inequality, combined with the previous bound on ‖u‖L2 , gives the bound

on I3(u) and hence ‖u‖H1 .

For u(t) ∈ H2, we apply Lemma 2.1 to obtain

d

dt
I5(u) = 〈I ′5(u), (bu)x〉

= 5〈bx, A5(u)〉 − 5〈bxxx, A3(u)〉+ 〈bxxxxx, A1(u)〉

We have

|〈bx, A5(u)〉| . ‖bx‖L∞(‖uxx‖2
L2 + ‖u‖4

H1 + ‖u‖6
H1)

. ‖bx‖L∞I5(u) + ‖bx‖L∞(‖u‖4
H1 + ‖u‖6

H1)

Also,

|〈bxxx, A3(u)〉| . ‖bxxx‖L∞(‖u‖2
H1 + ‖u‖4

H1)

and

|〈bxxxxx, A1(u)〉| . ‖bxxx‖L∞‖(u2)xx‖L2 . ‖bxxx‖L∞‖u‖H2‖u‖L2

Combining, applying Gronwall’s inequality, and appealing to the bound on ‖u‖H1

obtained previously, we obtain the claimed a priori bound in the case k = 2.

Bounds on Hk for k ≥ 3 can be obtained by the above method appealing to higher-

order analogues of the identities in Lemma 2.1. However, starting with k = 3, we do

not need such refined information. By direct computation from (1.1),

d

dt
‖∂kxu‖2

L2 = −
∫
∂k+1
x (bu) ∂kxu+ 2

∫
∂k+1
x u3 ∂kxu
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In the Leibniz expansion of ∂k+1
x u3, we isolate two cases:

∂k+1
x u3 = 3u2∂k+1

x u+
∑

α+β+γ=k+1
α≤β≤γ≤k

cαβγ∂
α
xu ∂

β
xu ∂

γ
xu

For the first term,∣∣∣∣∫ u2 ∂k+1
x u ∂kxu

∣∣∣∣ =

∣∣∣∣∫ (u2)x(∂
k
xu)2

∣∣∣∣ . ‖u‖2
H2‖u‖2

Hk

By the Hölder’s inequality and interpolation, if α + β + γ = k + 1 and γ ≤ k,

‖∂αxu ∂βxu ∂γxu‖L2 . ‖u‖2
H2‖u‖Hk

Thus we have ∣∣∣∣∫ ∂k+1
x u3 ∂kxu

∣∣∣∣ . ‖u‖2
H2‖u‖2

Hk

Similarly, we can bound ∣∣∣∣∫ ∂k+1
x (bu) ∂kxu

∣∣∣∣ .M(t)‖u‖2
Hk

by separately considering the term b ∂k+1
x u ∂kxu and integrating by parts. We obtain∣∣∣∣ ddt‖∂kxu‖2

L2

∣∣∣∣ . (M + ‖u‖2
H2)‖u‖2

Hk

and can apply the Gronwall inequality to obtain the desired a priori bound. �

Appendix B. Comments about the effective ODEs

Here we make some comments about the differential equations for the parameters

a and c.

B.1. Conditions on T0. First we give a reason for replacing T0(h) in the definition

of T (h) (1.5) by T0 defined by (1.12). In (10.2) we have seen that the a and c solving

the system (1.4) give the following equations for Ã = ha, C̃ = c, T = ht:{
∂T Ãj = C̃2

j − b0(Ãj, T ) +O(h)

∂T C̃j = C̃j∂xb0(Ãj, T ) +O(h)
, Ã(0) = āh , C̃(0) = c̄ , j = 1, 2 .

This can also be seen by analysing (B.6) using Lemma 3.2.

As in (10.4) we can write the equations for Ãj − Aj and C̃j − Cj:
∂T (Ãj − Aj) = (C̃j − Cj)2 + 2Cj(C̃j − Cj) + γ0(Ãj − Aj) +O(h)

∂T (C̃j − Cj) = (C̃j − Cj)(∂xb0)(Aj, t) + Cjσ0(Ãj − Aj) +O(h) ,

Ãj(0)− Aj(0) = 0 , C̃j(0)− Cj(0) = 0 ,
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where γ0, σ0 = O(1). This implies that{
Ãj(T )− Aj(T ) = O(h)eCT ,

C̃j(T )− Cj(T ) = O(h)eCT .

This means that for T < δ log(1/h), we have Cj(T ) = C̃j(T ) +O(h1−δC). Hence, if δ

is small enough, then for small h we have that T0(h) defined in (1.5) and T0 in (1.12)

can be interchanged.

B.2. Examples with Cj going to 0. In the decoupled equations (1.11) we can have

Cj(T )→ 0 , T →∞ ,

which implies that T0 <∞ in the definition (1.12). That prevents log(1/h)/h lifespan

of the approximation (1.3).

Let us put

a = Aj , c = Cj ,

so that the system (1.11) becomes

(B.1) a′T = c2(T )− b0(a, T ) , c′T = c ∂ab0(a, T ) .

For simplicity we consider the case of b0(a, T ) = b0(a). In that case the Hamiltonian

E(a, c) = −1

3
c3 + cb0(a)

is conserved in the evolution and we have

(B.2) exp(T min ∂ab) ≤ |c(T )| ≤ exp(T max ∂ab) .

In particular this means that c > δ > 0 if T < T1(δ).

We cannot improve on (B.2), and in general we may have

|c(T )| ≤ e−γT , T →∞ ,

but this behaviour is rare. First we note that the conservation of E shows that if

c(Tj)→ 0 for some sequence Tj →∞, then E = 0. We can then solve for c, and the

equation reduces to da/dT = 2b0(a), c2 = 3b0(a), that is to

(B.3)
1

2

∫ a

a0

dã

b0(ã)
= T , b(a(0)) > 0 .

If b0(a) > 0 in this set of values a then

(B.4) a(T )→∞ , T →∞ ,

and c(T ) = (3b0(a(T )))
1
2 .
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If b0(a) = 0 for some a > a(0) (a′T = 2b0 > 0), then we denote a1, the smallest

such a and assume that the order of vanishing of b0 there is `1. The analysis of (B.3)

shows that

a(T ) = a1 +O(1)


Ke−γT `1 = 1 ,

KT−1/(`1−1) `1 > 1 ,

which gives the rate of decay of c(T ).

Hence we have shown the following statement which is almost as long to state as

to prove:

Lemma B.1. Suppose that in (B.1) b0 = b0(a). Then

E 6= 0 , |c(0)| > δ0 > 0 =⇒ ∃ δ > 0 ∀T > 0 , |c(T )| > δ .

If E = 0, let

a1 = min{a : a > a(0) , b0(a) = 0} ,
with a1 not defined if the set is empty (note that c(0) 6= 0 and E = 0 imply that

b0(a(0)) > 0). Now suppose that a1 exists, and that

∂`b0(a1) = 0 , ` < `1 , ∂`1b0(a1) 6= 0 .

Then as T →∞,

|c(T )| ≤


Ke−γT `1 = 1 ,

KT−`1/(`1−1) `1 > 1 ,

for some constants γ and K, and a(T )→ a1.

If a1 does not exist then c(T ) = (3b0(a(T )))
1
2 , a(T )→∞, T →∞.

We excluded the case of infinite order of vanishing since it is very special from our

point of view.

The lemma suggests that c→ 0 is highly nongeneric but it can occur for our system.

Since for the original time t in (1.1) we would like to go up to time δ log(1/h)/h we

cannot do it in some cases as then

c(t)|t=δ log(1/h)/h ∼


hγδ/2 `1 = 1 ,

log−
1
2
`1/(`1−1)(1/h) `1 > 1 .

B.3. Avoided crossing for the effective equations of motion. Here we make

some comments about the puzzling avoided crossing which needs further investigation.

For the decoupled equations it is easy to find examples in which

(B.5) c1(T0) = c2(T0) .

One is shown in Fig.6. We take b0 independent of T and equal to cos2 x. If we

choose the initial conditions so that c2
j = 3 cos2Aj, Aj = haj as in (1.11), and
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h=0.1, (A2,c2)
h=0.1, (A1,c1)
h=0.3, (A2,c2)
h=0.3, (A1,c1)
decoupled

Figure 6. The plots of (Aj, cj), j = 1, 2, solving (B.6) for for

b0(x, t) = cos2 x and initial data A1(0) = −π/3, A2(0) = π/6, and

c1(0) =
√

3 cos(π/3), c2(0) =
√

3 cos(π/6). The “decoupled” curve cor-

responds to solving (1.11). Because of the choice of initial conditions,

(Aj, cj), j = 1, 2 line on the same curve.

−π/2 < A1 < −A2 < 0, then when A1(T0) = −A2(T0) we have (B.5) (this also

provides an example of c2(T )→ 0 as T →∞).

The decoupled equations (1.11) should be compared the rescaled version of (1.4):

∂T cj = ∂xjB0(c, A, h) , ∂TAj = c2
j − ∂cjB0(c, A, h) ,

B0(c, A, h)
def
=

1

2

∫
q2(x/h, c, A/h)b0(x)dx .

(B.6)

For the example above the comparison between the solutions of the decoupled h-

independent equations and solutions to the equation (B.6) are shown in Fig.6 (the

solutions (1.11) are shown as a single curve which both solutions with these initial

data follow).
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Figure 7. The plots of q2(x, c, A/h) for (Aj, cj), j = 1, 2, solving (B.6)

for for b0(x, t) = cos2 x and initial data A1(0) = −π/3, A2(0) = π/6,

and c1(0) =
√

3 cos(π/3), c2(0) =
√

3 cos(π/6). On the left h = 0.1 and

on the right h = 0.3.

The dramatic avoided crossings shown in Fig.6 (and also, for a different, time

dependent b0 in Fig.3) are not seen in the behaviour of q2(x, c, A/h) which is the

approximation of the solution to (1.1) – see Fig.7. The masses of the right and left

solitons are switched and that corresponds to the switch of positions of A1 and A2.

It is possible that a different parametrization of double solitons would resolve this

problem. Another possibility is to study the decomposition (3.11) in the proof of

Lemma 3.2 uniformly α→ 0 (corresponding to a2 − a1 → 0).

We conclude with two heuristic observations. If the decoupled equations lead to

(B.5) and |A1 − A2| > ε > 0 (which is the case when we approach the crossing in

Fig.6) then equations (B.6) differ from (1.11) by terms of size

h log

(
c2 − c1

c1 + c2

)
,

see Lemma 3.2. For this to affect the motion of trajectories on finite time scales in T

we need

(B.7) c2 − c1 ' exp
(
−γ
h

)
.

This means that cj’s have to get exponentially close to each other (but does not

explain avoided crossing).

On the other hand if |a1−a2| > ε > 0, where aj’s are the original variables in (1.4),

Aj(0) = haj(0), then we can use the decomposition in Lemma 3.2 and variables âj
defined by (3.7). The remark after the proof of Lemma 3.6 shows that the equations

of motion take essentially the same form written in terms of âj’s and cj’s and hence

âj has to stay bounded. And that means that c2−c1 is bounded away from 0. Hence,

when c2 − c1 → 0 we must also have a2 − a1 → 0 as seen in Fig.3 and Fig.6.
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Appendix C. Alternative proof of Lemma 4.7 (with Bernd Sturmfels)

We note that the standard substition reduces the equation P (c)u = 0, where P (c)

is defined in (4.20), to an equation with rational coefficients:

z = tanhx , ∂x = (1− z2)∂z , η2 = 1− z2 .

This means that P (c)u = 0 is equivalent to Q(c)v = 0, u(x) = v(tanhx), where

Q(c) = (L2 + 1)(L2 + c2)− 10LR(z)L+ 10(3R(z)− 2R(z)2)− 6(1 + c2)R(z) ,

and

L =
1

i
(1− z2)∂z , R(z) = 1− z2 , −1 < z < 1 .

Lemma 4.7 will follow from finding a basis of solutions of Q(c)v = 0 and from

seeing that the only bounded solution is the one corresponding to ∂xη, that is, to

v(z) = z(1− z2)
1
2 .

Remarkably, and no doubt because of some deeper underlying structure due to com-

plete integrability, this can be achieved using MAPLE package DEtools.

First, the operator Q(c) is brought to a convenient form

Q = (z − 1)4(z + 1)4 d
4

dz4
f(z) + 12z(z − 1)3(z + 1)3 d

3

dz3
f(z)

+ (z − 1)2(z + 1)2(26z2 − c2 + 1)
d2

dz2
f(z)

− 2z(z − 1)(z + 1)(8z2 − 11 + c2)
d

dz
f(z)

+ (4− 20z2 + 6c2z2 − 5c2 + 16z2)f(z)

Applying the MAPLE command DFactorsols(Q,f(z)) gives the following explicit

basis of solutions to Q(c)v = 0, c 6= 1:

v1(z) = (1− z2)
1
2 z ,

v2(z) = (1 + z)−
c
2 (1− z)

c
2 ((c+ z)2 + z2 − 1) ,

v3(z) = v2(−z) = (1 + z)
c
2 (z − 1)−

c
2 ((c− z)2 + z2 − 1) ,

v4(z) = (1− z2)−
1
2

(
−3zc2 + 3z3c2 − 7z3 + 7z

)
log

z + 1

z − 1

+ (1− z2)−
1
2

(
4c2 − 6c2z2 + 14z2 − 12

)
.

For c 6= 1 these solutions are linearly independent and only v1 vanishes at z = ±1 (or

is bounded). Hence kerL2 P (c) is one dimensional proving Lemma 4.7.
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