Internal waves in fluids and spectral theory of 0th order operators

Seminarium algebry operatorów Wydział Fizyki Uniwersytetu Warszawskiego

Maciej Zworski, UC Berkeley

June 7, 2018

Yves Colin de Verdière and Laure Saint-Raymond have recently found a fascinating connection between internal waves in fluids and spectral theory of Oth order pseudo-differential operators.

Yves Colin de Verdière and Laure Saint-Raymond have recently found a fascinating connection between internal waves in fluids and spectral theory of Oth order pseudo-differential operators.

Semyon Dyatlov, Thibault de Poyferré and I ran a "groupe de travaille" on this topic in February and March and I report on some of the findings.

Yves Colin de Verdière and Laure Saint-Raymond have recently found a fascinating connection between internal waves in fluids and spectral theory of Oth order pseudo-differential operators.

Semyon Dyatlov, Thibault de Poyferré and I ran a "groupe de travaille" on this topic in February and March and I report on some of the findings.

Except for a weakening of assumptions and conclusions the results are due to Colin de Verdière-Saint-Raymond arXiv:1801.05582.

Motivation

Motivation

Motivation

Boussinesq approximation:

$$
\left\{\begin{array}{l}
\partial_{t} \eta+\mathbf{u} \cdot \nabla \rho_{0}=0, \quad \operatorname{div} \mathbf{u}=0, \\
\rho_{0} \partial_{t} \mathbf{u}=-\eta g \mathbf{e}_{3}-\nabla P+\mathbf{F} e^{-i \omega_{0} t},
\end{array} \quad \mathbf{n} \cdot \mathbf{u}=0 .\right.
$$

$\left(\left|\partial \rho^{\prime} / \partial x\right|^{2}+\left|\partial \rho^{\prime} / \partial z\right|^{2}\right)^{1 / 2}\left[\mathrm{~kg} / \mathrm{m}^{4}\right]$

Motivation

Boussinesq approximation:

$$
\left\{\begin{array}{l}
\partial_{t} \eta+\mathbf{u} \cdot \nabla \rho_{0}=0, \quad \operatorname{div} \mathbf{u}=0, \\
\rho_{0} \partial_{t} \mathbf{u}=-\eta g \mathbf{e}_{3}-\nabla P+\mathbf{F} e^{-i \omega_{0} t},
\end{array} \quad \mathbf{n} \cdot \mathbf{u}=0 .\right.
$$

$\left(\left|\partial \rho^{\prime} / \partial x\right|^{2}+\left|\partial \rho^{\prime} / \partial z\right|^{2}\right)^{1 / 2}\left[\mathrm{~kg} / \mathrm{m}^{4}\right]$

Formal diagonalization gives $\mathbf{u}=u_{+} \mathbf{e}_{+}+u_{-} \mathbf{e}_{-}$

$$
i \partial_{t} u_{ \pm}-P u_{ \pm}=e^{-i \omega_{0} t} f_{ \pm}
$$

Motivation

Boussinesq approximation:

$$
\left\{\begin{array}{l}
\partial_{t} \eta+\mathbf{u} \cdot \nabla \rho_{0}=0, \quad \operatorname{div} \mathbf{u}=0, \\
\rho_{0} \partial_{t} \mathbf{u}=-\eta g \mathbf{e}_{3}-\nabla P+\mathbf{F} e^{-i \omega_{0} t},
\end{array} \quad \mathbf{n} \cdot \mathbf{u}=0 .\right.
$$

$\left(\left|\partial \rho^{\prime} / \partial x\right|^{2}+\left|\partial \rho^{\prime} / \partial z\right|^{2}\right)^{1 / 2}\left[\mathrm{~kg} / \mathrm{m}^{4}\right]$

Formal diagonalization gives $\mathbf{u}=u_{+} \mathbf{e}_{+}+u_{-} \mathbf{e}_{-}$

$$
\begin{gathered}
i \partial_{t} u_{ \pm}-P u_{ \pm}=e^{-i \omega_{0} t} f_{ \pm} \\
P=H_{ \pm}(x, D), \quad H_{ \pm}(x, \xi)= \pm\left(-g \rho_{0}^{\prime}(x) / \rho_{0}(x)\right)^{\frac{1}{2}} \xi_{1} /|\xi|
\end{gathered}
$$

Motivation

Boussinesq approximation:

$$
\left\{\begin{array}{l}
\partial_{t} \eta+\mathbf{u} \cdot \nabla \rho_{0}=0, \quad \operatorname{divu}=0, \\
\rho_{0} \partial_{t} \mathbf{u}=-\eta \mathbf{g} \mathbf{e}_{3}-\nabla P+\mathbf{F} e^{-i \omega_{0} t},
\end{array} \quad \mathbf{n} \cdot \mathbf{u}=0 .\right.
$$

$\left(\left|\partial \rho^{\prime} / \partial x\right|^{2}+\left|\partial \rho^{\prime} / \partial z\right|^{2}\right)^{1 / 2}\left[\mathrm{~kg} / \mathrm{m}^{4}\right]$

Other related models: rotating fluids Ralston '73

$$
\begin{gathered}
\partial_{t}^{2} \Delta_{x} u=\partial_{x_{1}}^{2} u,\left.\quad u\right|_{\partial \Omega}=0 \\
i \partial_{t} u-P u=0, \quad P= \pm \Delta^{-\frac{1}{2}} \partial_{x_{1}}
\end{gathered}
$$

Mathematical Model

Mathematical Model
 (very much watered down...)

Mathematical Model
 (very much watered down...)

Mathematical Model (very much watered down...)

Mathematical Model (very much watered down...)

$p:=\sigma(P)$ homogeneous of degree $0,\left.\quad d p\right|_{p^{-1}\left(\omega_{0}\right)} \neq 0$,

Mathematical Model (very much watered down...)

$$
H_{ \pm}(x, D) \quad \longrightarrow \quad P \in \Psi^{0}\left(\mathbb{T}^{2}\right), \quad P^{*}=P
$$

$p:=\sigma(P)$ homogeneous of degree $0,\left.\quad d p\right|_{p^{-1}\left(\omega_{0}\right)} \neq 0$, the flow of $\left.\langle\xi\rangle H_{p}\right|_{p^{-1}\left(\omega_{0}\right) ん}$ is Morse-Smale with no fixed points

Mathematical Model (very much watered down...)

$$
H_{ \pm}(x, D) \quad \longrightarrow \quad P \in \Psi^{0}\left(\mathbb{T}^{2}\right), \quad P^{*}=P
$$

$$
p:=\sigma(P) \text { homogeneous of degree } 0,\left.\quad d p\right|_{p^{-1}\left(\omega_{0}\right)} \neq 0
$$

the flow of $\left.\langle\xi\rangle H_{p}\right|_{p^{-1}\left(\omega_{0}\right) ん}$ is Morse-Smale with no fixed points

$$
H_{p}=\partial_{\xi} p \cdot \partial_{x}-\partial_{x} p \cdot \partial_{\xi}, \quad(x, \xi) \sim(y, \eta) \Leftrightarrow x=y, \quad \xi=t \eta, t>0
$$

Mathematical Model

$$
i \partial_{t} u-P u=e^{-i \omega_{0} t} f, P \in \Psi^{0}\left(\mathbb{T}^{2}\right), P^{*}=P,\left.u\right|_{t=0}=0, f \in C^{\infty}\left(\mathbb{T}^{2}\right)
$$

Mathematical Model

$$
i \partial_{t} u-P u=e^{-i \omega_{0} t} f, \quad P \in \Psi^{0}\left(\mathbb{T}^{2}\right), \quad P^{*}=P,\left.u\right|_{t=0}=0, \quad f \in C^{\infty}\left(\mathbb{T}^{2}\right)
$$

The surface $\Sigma:=p^{-1}\left(\omega_{0}\right) / \sim$ lies on the boundary of $\overline{T^{*} \mathbb{T}^{2}} \backslash 0$ $\langle\xi\rangle H_{p}$ is tangent to Σ.

Mathematical Model

$i \partial_{t} u-P u=e^{-i \omega_{0} t} f, P \in \Psi^{0}\left(\mathbb{T}^{2}\right), \quad P^{*}=P,\left.u\right|_{t=0}=0, f \in C^{\infty}\left(\mathbb{T}^{2}\right)$
The surface $\Sigma:=p^{-1}\left(\omega_{0}\right) / \sim$ lies on the boundary of $\overline{T^{*} \mathbb{T}^{2}} \backslash 0$ $\langle\xi\rangle H_{p}$ is tangent to Σ.

Morse-Smale on Σ :
(i) $\langle\xi\rangle H_{p}$ has a finite number of fixed points all of which are hyperbolic;
(ii) $\langle\xi\rangle H_{p}$ has a finite number of hyperbolic limit cycles;
(iii) there are no separatrix connections between saddle fixed points
(iv) every trajectory different from (i) and (ii) has a unique trajectory (i) or (ii) as its α, ω-limit set.

Mathematical Model

$i \partial_{t} u-P u=e^{-i \omega_{0} t} f, P \in \Psi^{0}\left(\mathbb{T}^{2}\right), \quad P^{*}=P,\left.u\right|_{t=0}=0, f \in C^{\infty}\left(\mathbb{T}^{2}\right)$
The surface $\Sigma:=p^{-1}\left(\omega_{0}\right) / \sim$ lies on the boundary of $\overline{T^{*} \mathbb{T}^{2}} \backslash 0$ $\langle\xi\rangle H_{p}$ is tangent to Σ.

Morse-Smale on Σ :
(i) $\langle\xi\rangle H_{p}$ has a finite number of fixed points all of which are hyperbolic;
(ii) $\langle\xi\rangle H_{p}$ has a finite number of hyperbolic limit cycles;
(iii) there are no separatrix connections between saddle fixed points
(iv) every trajectory different from (i) and (ii) has a unique trajectory (i) or (ii) as its α, ω-limit set.
If there are no fixed points Σ is a finite union of tori.

Mathematical Model

$i \partial_{t} u-P u=e^{-i \omega_{0} t} f, P \in \Psi^{0}\left(\mathbb{T}^{2}\right), \quad P^{*}=P,\left.u\right|_{t=0}=0, f \in C^{\infty}\left(\mathbb{T}^{2}\right)$
The surface $\Sigma:=p^{-1}\left(\omega_{0}\right) / \sim$ lies on the boundary of $\overline{T^{*} \mathbb{T}^{2}} \backslash 0$ $\langle\xi\rangle H_{p}$ is tangent to Σ.
Morse-Smale on Σ :
(i) $\langle\xi\rangle H_{p}$ has a finite number of fixed points all of which are hyperbolic;
(ii) $\langle\xi\rangle H_{p}$ has a finite number of hyperbolic limit cycles;
(iii) there are no separatrix connections between saddle fixed points
(iv) every trajectory different from (i) and (ii) has a unique trajectory (i) or (ii) as its α, ω-limit set.
If there are no fixed points Σ is a finite union of tori. This is why we do not consider more general manifolds in this case.

Mathematical Model

$i \partial_{t} u-P u=e^{-i \omega_{0} t} f, P \in \Psi^{0}\left(\mathbb{T}^{2}\right), P^{*}=P,\left.u\right|_{t=0}=0, f \in C^{\infty}\left(\mathbb{T}^{2}\right)$
The surface $\Sigma:=p^{-1}\left(\omega_{0}\right) / \sim$ lies on the boundary of $\overline{T^{*} \mathbb{T}^{2}} \backslash 0$ $\langle\xi\rangle H_{p}$ is tangent to Σ.
Morse-Smale on Σ :
(i) $\langle\xi\rangle H_{p}$ has a finite number of fixed points all of which are hyperbolic;
(ii) $\langle\xi\rangle H_{p}$ has a finite number of hyperbolic limit cycles;
(iii) there are no separatrix connections between saddle fixed points
(iv) every trajectory different from (i) and (ii) has a unique trajectory (i) or (ii) as its α, ω-limit set.
If there are no fixed points Σ is a finite union of tori. This is why we do not consider more general manifolds in this case.
(Some comments about fixed points at the end.)

Main result
Let $\widetilde{\Lambda}_{+}$be the attractor of the flow of $\langle\xi\rangle H_{p}$ on $\Sigma=p^{-1}\left(\omega_{0}\right) / \sim$.

Main result

Let $\widetilde{\Lambda}_{+}$be the attractor of the flow of $\langle\xi\rangle H_{p}$ on $\Sigma=p^{-1}\left(\omega_{0}\right) / \sim$.

$$
\begin{gathered}
\Lambda_{+}:=\left\{(x, \xi):[(x, \xi)]_{\sim} \in \tilde{\Lambda}_{+}\right\} \subset T^{*} \mathbb{T}^{2} \backslash 0 \text { is a conic Lagrangian } \\
I^{m}\left(\Lambda_{+}\right) \subset H^{-m-\frac{1}{2}-}
\end{gathered}
$$

is the space of Lagrangian distributions of order m.

Main result

Let $\widetilde{\Lambda}_{+}$be the attractor of the flow of $\langle\xi\rangle H_{p}$ on $\Sigma=p^{-1}\left(\omega_{0}\right) / \sim$.

$$
\begin{gathered}
\Lambda_{+}:=\left\{(x, \xi):[(x, \xi)]_{\sim} \in \widetilde{\Lambda}_{+}\right\} \subset T^{*} \mathbb{T}^{2} \backslash 0 \text { is a conic Lagrangian } \\
I^{m}\left(\Lambda_{+}\right) \subset H^{-m-\frac{1}{2}-}
\end{gathered}
$$

is the space of Lagrangian distributions of order m.
Example: $\Lambda_{+}=\left\{(x, \xi): x_{1}=0, \xi_{2}=0, \xi_{1}>0\right\} \subset T^{*} \mathbb{T}^{2} \backslash 0$

Main result

Let $\widetilde{\Lambda}_{+}$be the attractor of the flow of $\langle\xi\rangle H_{p}$ on $\Sigma=p^{-1}\left(\omega_{0}\right) / \sim$.

$$
\begin{gathered}
\Lambda_{+}:=\left\{(x, \xi):[(x, \xi)]_{\sim} \in \tilde{\Lambda}_{+}\right\} \subset T^{*} \mathbb{T}^{2} \backslash 0 \text { is a conic Lagrangian } \\
I^{m}\left(\Lambda_{+}\right) \subset H^{-m-\frac{1}{2}-}
\end{gathered}
$$

is the space of Lagrangian distributions of order m.
Example: $\Lambda_{+}=\left\{(x, \xi): x_{1}=0, \xi_{2}=0, \xi_{1}>0\right\} \subset T^{*} \mathbb{T}^{2} \backslash 0$

$$
\begin{gathered}
w \in I^{m}\left(\Lambda_{+}\right) \Longleftrightarrow w(x)=\int_{\mathbb{R}} a\left(x_{2}, \xi_{1}\right) e^{i x_{1} \xi_{1}} d \xi_{1} \\
\left|\partial_{x_{2}}^{k} \partial_{\xi_{1}}^{\ell} a\left(x_{2}, \xi_{1}\right)\right|= \begin{cases}\mathcal{O}\left(\xi_{1}^{m-\ell}\right) & \xi_{1} \rightarrow+\infty \\
\mathcal{O}\left(\left|\xi_{1}\right|^{-\infty}\right) & \xi_{1} \rightarrow-\infty\end{cases}
\end{gathered}
$$

Main result

Let $\widetilde{\Lambda}_{+}$be the attractor of the flow of $\langle\xi\rangle H_{p}$ on $\Sigma=p^{-1}\left(\omega_{0}\right) / \sim$.

$$
\begin{gathered}
\Lambda_{+}:=\left\{(x, \xi):[(x, \xi)]_{\sim} \in \tilde{\Lambda}_{+}\right\} \subset T^{*} \mathbb{T}^{2} \backslash 0 \text { is a conic Lagrangian } \\
I^{m}\left(\Lambda_{+}\right) \subset H^{-m-\frac{1}{2}-}
\end{gathered}
$$

is the space of Lagrangian distributions of order m.
Example: $\Lambda_{+}=\left\{(x, \xi): x_{1}=0, \xi_{2}=0, \xi_{1}>0\right\} \subset T^{*} \mathbb{T}^{2} \backslash 0$

$$
\begin{gathered}
w \in I^{m}\left(\Lambda_{+}\right) \Longleftrightarrow w(x)=\int_{\mathbb{R}} a\left(x_{2}, \xi_{1}\right) e^{i x_{1} \xi_{1}} d \xi_{1} \\
\left|\partial_{x_{2}}^{k} \partial_{\xi_{1}}^{\ell} a\left(x_{2}, \xi_{1}\right)\right|= \begin{cases}\mathcal{O}\left(\xi_{1}^{m-\ell}\right) & \xi_{1} \rightarrow+\infty \\
\mathcal{O}\left(\left|\xi_{1}\right|^{-\infty}\right) & \xi_{1} \rightarrow-\infty\end{cases}
\end{gathered}
$$

For instance, $w(x)=\left(x_{1}-i 0\right)^{-1} \varphi\left(x_{1}, x_{2}\right), \varphi \in C^{\infty}\left(\mathbb{T}^{2}\right)$.

Main result

Let $\widetilde{\Lambda}_{+}$be the attractor of the flow of $\langle\xi\rangle H_{p}$ on $\Sigma=p^{-1}\left(\omega_{0}\right) / \sim$.

$$
\begin{gathered}
\Lambda_{+}:=\left\{(x, \xi):[(x, \xi)]_{\sim} \in \widetilde{\Lambda}_{+}\right\} \subset T^{*} \mathbb{T}^{2} \backslash 0 \text { is a conic Lagrangian } \\
I^{m}\left(\Lambda_{+}\right) \subset H^{-m-\frac{1}{2}-}
\end{gathered}
$$

is the space of Lagrangian distributions of order $>m$.
Theorem Suppose that $\omega_{0} \notin \operatorname{Spec}_{\mathrm{pp}}(P)$ and that u solves

$$
i \partial_{t} u-P u=e^{-i \omega_{0} t} f,\left.\quad u\right|_{t=0}=0, \quad f \in C^{\infty}\left(\mathbb{T}^{2}\right)
$$

Then,

$$
\begin{gathered}
u(t)=e^{-i \omega_{0} t} u_{\infty}+b(t)+\epsilon(t), \quad u_{\infty} \in I^{0}\left(\Lambda_{+}\right) \\
\|b(t)\|_{L^{2}} \leq C, \quad\|\epsilon(t)\|_{-\frac{1}{2}-} \rightarrow 0, \quad t \rightarrow \infty
\end{gathered}
$$

An example

An example

$$
\begin{gathered}
P=:=\langle D\rangle^{-1} D_{x_{2}}-2 \cos x_{1} \\
i u_{t}-P u=f, \quad f=\chi\left(x_{1}-\pi / 2, x_{2}\right)
\end{gathered}
$$

An example

$$
P=:=\langle D\rangle^{-1} D_{x_{2}}-2 \cos x_{1}
$$

$$
i u_{t}-P u=f, \quad f=\chi\left(x_{1}-\pi / 2, x_{2}\right)
$$

An example

$$
p=|\xi|^{-1} \xi_{2}-2 \cos x_{1}
$$

An example

$$
p=|\xi|^{-1} \xi_{2}-2 \cos x_{1}
$$

An example

$$
p=|\xi|^{-1} \xi_{2}-2 \cos x_{1}
$$

$$
\Lambda_{+}=\left\{x_{1}=\pi / 2, \xi_{1}<0, \xi_{2}=0\right\} \cup\left\{x_{1}=-\pi / 2, \xi_{1}>0, \xi_{2}=0\right\}
$$

An example

$$
p=|\xi|^{-1} \xi_{2}-2 \cos x_{1}
$$

X

$$
\Lambda_{+}=\left\{x_{1}=\pi / 2, \xi_{1}<0, \xi_{2}=0\right\} \cup\left\{x_{1}=-\pi / 2, \xi_{1}>0, \xi_{2}=0\right\}
$$

Another example

$$
p=|\xi|^{-1} \xi_{2}-\frac{1}{2} \cos x_{1}
$$

$$
\Lambda_{+}=\left\{x_{1}=\pi / 2, \xi_{1}<0, \xi_{2}=0\right\} \cup\left\{x_{1}=-\pi / 2, \xi_{1}>0, \xi_{2}=0\right\}
$$

Main Tool: spectral theory

$$
\begin{aligned}
& i \partial_{t} u-P u=f,\left.\quad u\right|_{t=0}=0, \quad f \in C^{\infty}\left(\mathbb{T}^{2}\right) \\
& \quad u(t)=\int_{0}^{t} e^{-i s P_{f}}
\end{aligned}
$$

Main Tool: spectral theory

$$
\begin{gathered}
i \partial_{t} u-P u=f,\left.\quad u\right|_{t=0}=0, \quad f \in C^{\infty}\left(\mathbb{T}^{2}\right) \\
u(t)=\int_{0}^{t} e^{-i s P} f=i P^{-1}\left(1-e^{-i t P}\right) f
\end{gathered}
$$

Main Tool: spectral theory

$$
\begin{gathered}
i \partial_{t} u-P u=f,\left.\quad u\right|_{t=0}=0, \quad f \in C^{\infty}\left(\mathbb{T}^{2}\right) . \\
u(t)=\int_{0}^{t} e^{-i s P} f=i P^{-1}\left(1-e^{-i t P}\right) f
\end{gathered}
$$

The operator $P^{-1}\left(e^{-i t P}-1\right)$ is well defined for all t using the spectral theorem (recall that $P=P^{*}$).

Main Tool: spectral theory

$$
\begin{gathered}
i \partial_{t} u-P u=f,\left.\quad u\right|_{t=0}=0, \quad f \in C^{\infty}\left(\mathbb{T}^{2}\right) . \\
u(t)=\int_{0}^{t} e^{-i s P} f=i P^{-1}\left(1-e^{-i t P}\right) f
\end{gathered}
$$

The operator $P^{-1}\left(e^{-i t P}-1\right)$ is well defined for all t using the spectral theorem (recall that $P=P^{*}$).
We need to show that

Main Tool: spectral theory

$$
\begin{gathered}
i \partial_{t} u-P u=f,\left.\quad u\right|_{t=0}=0, \quad f \in C^{\infty}\left(\mathbb{T}^{2}\right) . \\
u(t)=\int_{0}^{t} e^{-i s P} f=i P^{-1}\left(1-e^{-i t P}\right) f
\end{gathered}
$$

The operator $P^{-1}\left(e^{-i t P}-1\right)$ is well defined for all t using the spectral theorem (recall that $P=P^{*}$).

We need to show that

- the limit $(P-\omega-i 0)^{-1} f$ exists for ω near 0

Main Tool: spectral theory

$$
\begin{gathered}
i \partial_{t} u-P u=f,\left.\quad u\right|_{t=0}=0, \quad f \in C^{\infty}\left(\mathbb{T}^{2}\right) \\
u(t)=\int_{0}^{t} e^{-i s P} f=i P^{-1}\left(1-e^{-i t P}\right) f
\end{gathered}
$$

The operator $P^{-1}\left(e^{-i t P}-1\right)$ is well defined for all t using the spectral theorem (recall that $P=P^{*}$).
We need to show that

- the limit $(P-\omega-i 0)^{-1} f$ exists for ω near 0
$>P^{-1}\left(1-e^{-i t P}\right) \chi(P) f \xrightarrow{\text { in } H^{-\frac{1}{2}-}}(P-i 0)^{-1} \chi(P) f$.

Main Tool: spectral theory

$$
\begin{gathered}
i \partial_{t} u-P u=f,\left.\quad u\right|_{t=0}=0, \quad f \in C^{\infty}\left(\mathbb{T}^{2}\right) . \\
u(t)=\int_{0}^{t} e^{-i s P} f=i P^{-1}\left(1-e^{-i t P}\right) f
\end{gathered}
$$

The operator $P^{-1}\left(e^{-i t P}-1\right)$ is well defined for all t using the spectral theorem (recall that $P=P^{*}$).
We need to show that

- the limit $(P-\omega-i 0)^{-1} f$ exists for ω near 0
- $P^{-1}\left(1-e^{-i t P}\right) \chi(P) f \xrightarrow{\text { in } H^{-\frac{1}{2}-}}(P-i 0)^{-1} \chi(P) f$.
- $(P-i 0)^{-1} f \in I^{0}\left(\Lambda_{+}\right)$

Main Tool: radial estimates

The radial estimates were introduced by Melrose ' 94 for the study of asymptotically Euclidean scattering and have been developed further in various settings.

Main Tool: radial estimates

The radial estimates were introduced by Melrose ' 94 for the study of asymptotically Euclidean scattering and have been developed further in various settings.
Some relevant ones:

- scattering by 0th order potentials Hassell-Melrose-Vasy '04
- hyperbolic scattering Vasy '13, Datchev-Dyatlov '13
- general relativity Vasy, Hintz-Vasy '13..., Dyatlov '11-'14
- Lagrangian regularity Haber-Vasy '15
- Anosov flows Dyatlov-Zworski '16, '17
- Axiom A flows Dyatlov-Guillarmou '16, '18

Main Tool: radial estimates
Radial sources and sinks: definition by (a very special) example

Main Tool: radial estimates

Radial sources and sinks: definition by (a very special) example

$$
p=\xi_{1}^{-1}\left(\xi_{2}+\lambda \xi_{1} x_{1}\right), \quad \xi_{1}>\left|\xi_{2}\right|, \quad\langle\xi\rangle \sim \xi_{1}, \quad P=P^{*}, \quad p=\sigma(P)
$$

Main Tool: radial estimates

Radial sources and sinks: definition by (a very special) example

$$
\begin{aligned}
& p=\xi_{1}^{-1}\left(\xi_{2}+\lambda \xi_{1} x_{1}\right), \quad \xi_{1}>\left|\xi_{2}\right|, \quad\langle\xi\rangle \sim \xi_{1}, \quad P=P^{*}, \quad p=\sigma(P) \\
& \left.\xi_{1} H_{p}\right|_{p^{-1}(0)}=\partial_{x_{2}}+\lambda\left(x_{1} \partial_{x_{1}}-\xi_{1} \partial_{\xi_{1}}\right)
\end{aligned}
$$

Main Tool: radial estimates

Radial sources and sinks: definition by (a very special) example

$$
\begin{gathered}
p=\xi_{1}^{-1}\left(\xi_{2}+\lambda \xi_{1} x_{1}\right), \quad \xi_{1}>\left|\xi_{2}\right|, \quad\langle\xi\rangle \sim \xi_{1}, \quad P=P^{*}, \quad p=\sigma(P) \\
\left.\xi_{1} H_{p}\right|_{p^{-1}(0)}=\partial_{x_{2}}+\lambda\left(x_{1} \partial_{x_{1}}-\xi_{1} \partial_{\xi_{1}}\right), \quad \Lambda:=\left\{x_{1}=0, \xi_{2}=0\right\}, \quad L:=\Lambda / \sim
\end{gathered}
$$

Main Tool: radial estimates

Radial sources and sinks: definition by (a very special) example

$$
\begin{gathered}
p=\xi_{1}^{-1}\left(\xi_{2}+\lambda \xi_{1} x_{1}\right), \quad \xi_{1}>\left|\xi_{2}\right|, \quad\langle\xi\rangle \sim \xi_{1}, \quad P=P^{*}, \quad p=\sigma(P) \\
\left.\xi_{1} H_{p}\right|_{p^{-1}(0)}=\partial_{x_{2}}+\lambda\left(x_{1} \partial_{x_{1}}-\xi_{1} \partial_{\xi_{1}}\right), \quad \Lambda:=\left\{x_{1}=0, \xi_{2}=0\right\}, \quad L:=\Lambda / \sim
\end{gathered}
$$

Main Tool: radial estimates

Radial sources and sinks: definition by (a very special) example

$$
\begin{gathered}
p=\xi_{1}^{-1}\left(\xi_{2}+\lambda \xi_{1} x_{1}\right), \quad \xi_{1}>\left|\xi_{2}\right|, \quad\langle\xi\rangle \sim \xi_{1}, \quad P=P^{*}, \quad p=\sigma(P) \\
\left.\xi_{1} H_{p}\right|_{p^{-1}(0)}=\partial_{x_{2}}+\lambda\left(x_{1} \partial_{x_{1}}-\xi_{1} \partial_{\xi_{1}}\right), \quad \Lambda:=\left\{x_{1}=0, \xi_{2}=0\right\}, \quad L:=\Lambda / \sim
\end{gathered}
$$

$\lambda>0$, source/repeller

$\lambda<0$, sink/attractor

Main Tool: radial estimates

Radial sources and sinks: definition by (a very special) example

$$
\begin{gathered}
p=\xi_{1}^{-1}\left(\xi_{2}+\lambda \xi_{1} x_{1}\right), \quad \xi_{1}>\left|\xi_{2}\right|, \quad\langle\xi\rangle \sim \xi_{1}, \quad P=P^{*}, \quad p=\sigma(P) \\
\left.\xi_{1} H_{p}\right|_{p^{-1}(0)}=\partial_{x_{2}}+\lambda\left(x_{1} \partial_{x_{1}}-\xi_{1} \partial_{\xi_{1}}\right), \quad \Lambda:=\left\{x_{1}=0, \xi_{2}=0\right\}, \quad L:=\Lambda / \sim
\end{gathered}
$$

$\lambda>0$, source/repeller

$\lambda<0$, sink/attractor

$$
\left\|A_{-} u\right\|_{s} \lesssim\left\|\widetilde{B}_{-}(P-i \epsilon) u\right\|_{s+1}+\|u\|_{-N}, \quad s>-\frac{1}{2}, \quad \text { source }
$$

Main Tool: radial estimates

Radial sources and sinks: definition by (a very special) example

$$
\begin{gathered}
p=\xi_{1}^{-1}\left(\xi_{2}+\lambda \xi_{1} x_{1}\right), \quad \xi_{1}>\left|\xi_{2}\right|, \quad\langle\xi\rangle \sim \xi_{1}, \quad P=P^{*}, \quad p=\sigma(P) \\
\left.\xi_{1} H_{p}\right|_{p^{-1}(0)}=\partial_{x_{2}}+\lambda\left(x_{1} \partial_{x_{1}}-\xi_{1} \partial_{\xi_{1}}\right), \quad \Lambda:=\left\{x_{1}=0, \xi_{2}=0\right\}, \quad L:=\Lambda / \sim
\end{gathered}
$$

$\lambda>0$, source/repeller

$\lambda<0$, sink/attractor

$$
\left\|A_{-} u\right\|_{s} \lesssim\left\|\widetilde{B}_{-}(P-i \epsilon) u\right\|_{s+1}+\|u\|_{-N}, \quad s>-\frac{1}{2}, \quad \text { source }
$$

$$
\left\|A_{+} u\right\|_{s} \lesssim\left\|\widetilde{B}_{+}(P-i \epsilon) u\right\|_{s+1}+\left\|B_{+} u\right\|_{s}+\|u\|_{-N}, \quad s<-\frac{1}{2}, \quad \text { sink }
$$

Main Tool: radial estimates

Radial sources and sinks: definition by (a very special) example

$$
\begin{gathered}
p=\xi_{1}^{-1}\left(\xi_{2}+\lambda \xi_{1} x_{1}\right), \quad \xi_{1}>\left|\xi_{2}\right|, \quad\langle\xi\rangle \sim \xi_{1}, \quad P=P^{*}, \quad p=\sigma(P) \\
\left.\xi_{1} H_{p}\right|_{p^{-1}(0)}=\partial_{x_{2}}+\lambda\left(x_{1} \partial_{x_{1}}-\xi_{1} \partial_{\xi_{1}}\right), \quad \Lambda:=\left\{x_{1}=0, \xi_{2}=0\right\}, \quad L:=\Lambda / \sim
\end{gathered}
$$

$\lambda>0$, source/repeller

$\lambda<0$, sink/attractor

$$
\left\|A_{-} u\right\|_{s} \lesssim\left\|\widetilde{B}_{-}(P-i \epsilon) u\right\|_{s+1}+\|u\|_{-N}, \quad s>-\frac{1}{2}, \quad \text { source }
$$

$$
\left\|A_{+} u\right\|_{s} \lesssim\left\|\widetilde{B}_{+}(P-i \epsilon) u\right\|_{s+1}+\left\|B_{+} u\right\|_{s}+\|u\|_{-N}, \quad s<-\frac{1}{2}, \quad \text { sink }
$$

Uniform for $\epsilon>0$.

Regularity of eigenfunctions

For $|\omega|<\delta \ll 1$, dynamical assumptions on p shows that p has a Lagrangian sink, $\Lambda_{+}(\omega)$.

Regularity of eigenfunctions

For $|\omega|<\delta \ll 1$, dynamical assumptions on p shows that p has a Lagrangian sink, $\Lambda_{+}(\omega)$.

Suppose that $(P-\omega) u=0,|\omega|<\delta$ and that $\mathrm{WF}(u) \subset \Lambda_{+}(\omega)$.

Regularity of eigenfunctions

For $|\omega|<\delta \ll 1$, dynamical assumptions on p shows that p has a Lagrangian sink, $\Lambda_{+}(\omega)$.

Suppose that $(P-\omega) u=0,|\omega|<\delta$ and that $\operatorname{WF}(u) \subset \Lambda_{+}(\omega)$. Is $u \in L^{2}$?

Regularity of eigenfunctions

For $|\omega|<\delta \ll 1$, dynamical assumptions on p shows that p has a Lagrangian sink, $\Lambda_{+}(\omega)$.

Suppose that $(P-\omega) u=0,|\omega|<\delta$ and that $\operatorname{WF}(u) \subset \Lambda_{+}(\omega)$. Is $u \in L^{2}$?

Lemma (Dyatlov-Zworski '17) Suppose that $|\omega|<\delta \ll 1$,

$$
(P-\omega) u \in \mathcal{C}^{\infty}, \quad W F(u) \subset \Lambda_{+}(\omega)
$$

Regularity of eigenfunctions

For $|\omega|<\delta \ll 1$, dynamical assumptions on p shows that p has a Lagrangian sink, $\Lambda_{+}(\omega)$.

Suppose that $(P-\omega) u=0,|\omega|<\delta$ and that $\operatorname{WF}(u) \subset \Lambda_{+}(\omega)$. Is $u \in L^{2}$?

Lemma (Dyatlov-Zworski '17) Suppose that $|\omega|<\delta \ll 1$,

$$
(P-\omega) u \in \mathcal{C}^{\infty}, \quad \operatorname{WF}(u) \subset \Lambda_{+}(\omega), \quad \operatorname{Im}\langle(P-\omega) u, u\rangle \geq 0
$$

Regularity of eigenfunctions

For $|\omega|<\delta \ll 1$, dynamical assumptions on p shows that p has a Lagrangian sink, $\Lambda_{+}(\omega)$.

Suppose that $(P-\omega) u=0,|\omega|<\delta$ and that $\operatorname{WF}(u) \subset \Lambda_{+}(\omega)$. Is $u \in L^{2}$?

Lemma (Dyatlov-Zworski '17) Suppose that $|\omega|<\delta \ll 1$,

$$
(P-\omega) u \in \mathcal{C}^{\infty}, \quad \operatorname{WF}(u) \subset \Lambda_{+}(\omega), \quad \operatorname{Im}\langle(P-\omega) u, u\rangle \geq 0
$$

Then $u \in C^{\infty}$.

Regularity of eigenfunctions

For $|\omega|<\delta \ll 1$, dynamical assumptions on p shows that p has a Lagrangian sink, $\Lambda_{+}(\omega)$.

Suppose that $(P-\omega) u=0,|\omega|<\delta$ and that $\operatorname{WF}(u) \subset \Lambda_{+}(\omega)$. Is $u \in L^{2}$?

Lemma (Dyatlov-Zworski '17) Suppose that $|\omega|<\delta \ll 1$,

$$
(P-\omega) u \in \mathcal{C}^{\infty}, \quad \operatorname{WF}(u) \subset \Lambda_{+}(\omega), \quad \operatorname{Im}\langle(P-\omega) u, u\rangle \geq 0
$$

Then $u \in C^{\infty}$.
The analytic component of showing that the Ruelle zeta function, $\zeta(s)=\prod_{\gamma}\left(1-e^{-\ell_{\gamma} s}\right)$, for a compact orientable negatively curved Riemannian surface of genus g satisfies

$$
\zeta(s) \sim s^{2 g-2} .
$$

Regularity of eigenfunctions

For $|\omega|<\delta \ll 1$, dynamical assumptions on p shows that p has a Lagrangian sink, $\Lambda_{+}(\omega)$.

Suppose that $(P-\omega) u=0,|\omega|<\delta$ and that $\operatorname{WF}(u) \subset \Lambda_{+}(\omega)$. Is $u \in L^{2}$?

Lemma (Dyatlov-Zworski '17) Suppose that $|\omega|<\delta \ll 1$,

$$
(P-\omega) u \in \mathcal{C}^{\infty}, \quad \operatorname{WF}(u) \subset \Lambda_{+}(\omega), \quad \operatorname{Im}\langle(P-\omega) u, u\rangle \geq 0
$$

Then $u \in C^{\infty}$.
The analytic component of showing that the Ruelle zeta function, $\zeta(s)=\prod_{\gamma}\left(1-e^{-\ell_{\gamma} s}\right)$, for a compact orientable negatively curved Riemannian surface of genus g satisfies

$$
\zeta(s) \sim s^{2 g-2} .
$$

Hence the length spectrum, $\left\{\ell_{\gamma}\right\}$ (dynamics), determines the genus g (topology).

Limiting absorption principle

Limiting absorption principle
Radial estimates give

$$
\|u\|_{-\frac{1}{2}-} \lesssim\|(P-i \epsilon) u\|_{\frac{1}{2}+}+\|u\|_{-N}
$$

Limiting absorption principle

Radial estimates give

$$
\begin{gathered}
\|u\|_{-\frac{1}{2}-} \lesssim\|(P-i \epsilon) u\|_{\frac{1}{2}+}+\|u\|_{-N} \\
\exists u=\lim _{\epsilon_{j} \rightarrow 0}\left(P-\omega-i \epsilon_{j}\right)^{-1} f, f \in C^{\infty} \Longrightarrow \mathrm{WF}(u) \subset \Lambda_{+}(\omega) .
\end{gathered}
$$

Limiting absorption principle

Radial estimates give

$$
\begin{gathered}
\|u\|_{-\frac{1}{2}-} \lesssim\|(P-i \epsilon) u\|_{\frac{1}{2}+}+\|u\|_{-N} \\
\exists u=\lim _{\epsilon_{j} \rightarrow 0}\left(P-\omega-i \epsilon_{j}\right)^{-1} f, f \in C^{\infty} \Longrightarrow \mathrm{WF}(u) \subset \Lambda_{+}(\omega) .
\end{gathered}
$$

Our lemma shows that

$$
(P-\omega) u=0, \quad \operatorname{WF}(u) \subset \Lambda_{+}(\omega) \Longrightarrow u \in \mathcal{C}^{\infty}
$$

Limiting absorption principle

Radial estimates give

$$
\begin{gathered}
\|u\|_{-\frac{1}{2}-} \lesssim\|(P-i \epsilon) u\|_{\frac{1}{2}+}+\|u\|_{-N} \\
\exists u=\lim _{\epsilon_{j} \rightarrow 0}\left(P-\omega-i \epsilon_{j}\right)^{-1} f, f \in C^{\infty} \Longrightarrow \mathrm{WF}(u) \subset \Lambda_{+}(\omega) .
\end{gathered}
$$

Our lemma shows that

$$
(P-\omega) u=0, \quad \operatorname{WF}(u) \subset \Lambda_{+}(\omega) \Longrightarrow u \in \mathcal{C}^{\infty}
$$

(It replaces Rellich's uniqueness theorem in scattering theory)

Limiting absorption principle

Radial estimates give

$$
\begin{gathered}
\|u\|_{-\frac{1}{2}-} \lesssim\|(P-i \epsilon) u\|_{\frac{1}{2}+}+\|u\|_{-N} \\
\exists u=\lim _{\epsilon_{j} \rightarrow 0}\left(P-\omega-i \epsilon_{j}\right)^{-1} f, f \in C^{\infty} \Longrightarrow W F(u) \subset \Lambda_{+}(\omega) .
\end{gathered}
$$

Our lemma shows that

$$
(P-\omega) u=0, \quad \operatorname{WF}(u) \subset \Lambda_{+}(\omega) \Longrightarrow u \in \mathcal{C}^{\infty}
$$

(It replaces Rellich's uniqueness theorem in scattering theory)
Standard arguments in scattering theory (cf. Melrose '94) show that the limit

$$
(P-\omega-i 0)^{-1} f \in H^{-\frac{1}{2}-}, \quad f \in C^{\infty}
$$

exists except at finitely many eigenvalues.

Lagrangian regularity of the final state

$$
\begin{gathered}
\|u\|_{-\frac{1}{2}-} \lesssim\|(P-i \epsilon) u\|_{\frac{1}{2}+}+\|u\|_{-N} \\
\exists u=\lim _{\epsilon_{j} \rightarrow 0}\left(P-\omega-i \epsilon_{j}\right)^{-1} f, f \in C^{\infty} \Longrightarrow \mathrm{WF}(u) \subset \Lambda_{+}(\omega) . \\
(P-\omega) u=0, \quad \mathrm{WF}(u) \subset \Lambda_{+}(\omega) \Longrightarrow u \in \mathcal{C}^{\infty} .
\end{gathered}
$$

Standard arguments in scattering theory (cf. Melrose '94) show that the limit

$$
(P-\omega-i 0)^{-1}: H^{\frac{1}{2}+} \rightarrow H^{-\frac{1}{2}-}
$$

exists except at finitely many eigenvalues.

Lagrangian regularity of the final state

$$
\|u\|_{-\frac{1}{2}-} \lesssim\|(P-i \epsilon) u\|_{\frac{1}{2}+}+\|u\|_{-N}
$$

$$
\begin{aligned}
\exists u= & \lim _{\epsilon_{j} \rightarrow 0}\left(P-\omega-i \epsilon_{j}\right)^{-1} f, f \in C^{\infty} \Longrightarrow \mathrm{WF}(u) \subset \Lambda_{+}(\omega) . \\
& (P-\omega) u=0, \quad \mathrm{WF}(u) \subset \Lambda_{+}(\omega) \Longrightarrow u \in \mathcal{C}^{\infty} .
\end{aligned}
$$

Standard arguments in scattering theory (cf. Melrose '94) show that the limit

$$
(P-\omega-i 0)^{-1}: H^{\frac{1}{2}+} \rightarrow H^{-\frac{1}{2}-}
$$

exists except at finitely many eigenvalues.
Lemma (Dyatlov-Zworski '18; related to Haber-Vasy '15) Suppose that

$$
(P-\omega) u \in C^{\infty}, \quad \operatorname{WF}(u) \subset \Lambda_{+}(\omega), \quad u \in H^{-\frac{1}{2}-} .
$$

Then $u \in I^{0}\left(\Lambda_{+}(\omega)\right)$.
Moreover, if $u(\omega)=(P-\omega-i 0)^{-1} f, f \in C^{\infty}$, then

$$
u(\omega) \in C^{\infty}\left((-\delta, \delta)_{\omega} ; I^{0}\left(\Lambda_{+}(\omega)\right)\right)
$$

Geometry of attracting Lagrangians

Geometry of attracting Lagrangians

The general set up:

1. M is a compact surface without boundary;
2. $p(x, \xi): T^{*} M \backslash 0 \rightarrow \mathbb{R}$ is smooth and homogeneous of order 0 ;
3. $\Lambda_{\omega} \subset p^{-1}(\omega) \subset T^{*} M \backslash 0$ is a family of conic embedded Lagrangian submanifolds depending smoothly on $\omega \in I$
4. H_{p} is tangent to each Λ_{ω}.

Geometry of attracting Lagrangians

The general set up:

1. M is a compact surface without boundary;
2. $p(x, \xi): T^{*} M \backslash 0 \rightarrow \mathbb{R}$ is smooth and homogeneous of order 0 ;
3. $\Lambda_{\omega} \subset p^{-1}(\omega) \subset T^{*} M \backslash 0$ is a family of conic embedded Lagrangian submanifolds depending smoothly on $\omega \in I$
4. H_{p} is tangent to each Λ_{ω}.

Lemma (Dyatlov-Zworski '18) Suppose that for all $\omega \in I$ and all $(x, \xi) \in \Lambda_{\omega}, \exp \left(t H_{p}\right)(x, \xi)$ converges to infinity of the fibers at linear rate as $t \rightarrow \infty$.

Geometry of attracting Lagrangians

The general set up:

1. M is a compact surface without boundary;
2. $p(x, \xi): T^{*} M \backslash 0 \rightarrow \mathbb{R}$ is smooth and homogeneous of order 0 ;
3. $\Lambda_{\omega} \subset p^{-1}(\omega) \subset T^{*} M \backslash 0$ is a family of conic embedded Lagrangian submanifolds depending smoothly on $\omega \in I$
4. H_{p} is tangent to each Λ_{ω}.

Lemma (Dyatlov-Zworski '18) Suppose that for all $\omega \in I$ and all $(x, \xi) \in \Lambda_{\omega}, \exp \left(t H_{p}\right)(x, \xi)$ converges to infinity of the fibers at linear rate as $t \rightarrow \infty$.
Suppose that, locally,

$$
\Lambda_{\omega}=\left\{(x, \xi): x=\partial_{\xi} F(\omega, \xi)\right\}
$$

where $\xi \mapsto F(\omega, \xi)$ is a family of homogeneous functions of order one. Then for some $c>0$,

$$
\partial_{\omega} F(\omega, \xi)<-c|\xi|, \quad \xi \in \Gamma_{0}
$$

Theorem Suppose that $0 \notin \operatorname{Spec}_{\mathrm{pp}}(P)$ and that u solves

$$
i \partial_{t} u-P u=f,\left.\quad u\right|_{t=0}=0, \quad f \in C^{\infty}\left(\mathbb{T}^{2}\right)
$$

Then, $u(t)=u_{\infty}+b(t)+\epsilon(t)$, where $u_{\infty} \in I^{0}\left(\Lambda_{+}\right),\|b(t)\|_{L^{2}} \leq C$ and $\|\epsilon(t)\|_{-\frac{1}{2}-} \rightarrow 0$, as $t \rightarrow \infty$.

Theorem Suppose that $0 \notin \operatorname{Spec}_{\mathrm{pp}}(P)$ and that u solves

$$
i \partial_{t} u-P u=f,\left.\quad u\right|_{t=0}=0, \quad f \in C^{\infty}\left(\mathbb{T}^{2}\right)
$$

Then, $u(t)=u_{\infty}+b(t)+\epsilon(t)$, where $u_{\infty} \in I^{0}\left(\Lambda_{+}\right),\|b(t)\|_{L^{2}} \leq C$ and $\|\epsilon(t)\|_{-\frac{1}{2}-} \rightarrow 0$, as $t \rightarrow \infty$.
Proof: From spectral theorem and Stone's formula

$$
\begin{aligned}
& u(t)= \frac{1}{2 \pi} \int_{0}^{t} e^{-i s \omega}\left((P-\omega-i 0)^{-1}-(P-\omega+i 0)^{-1}\right) f d \omega \\
&= \frac{1}{2 \pi} \int_{0}^{t} e^{-i s \omega}\left((P-\omega-i 0)^{-1}-(P-\omega+i 0)^{-1}\right) f \chi(\omega) d \omega \\
&+b_{1}(t), \quad\left\|b_{1}(t)\right\|_{L^{2}} \leq C, \quad \chi=1 \text { near } 0 \\
&= \frac{1}{2 \pi} \int_{0}^{t} e^{-i s \omega}\left(u_{+}(\omega)-u_{-}(\omega)\right) d \omega+b_{1}(t), \quad u_{ \pm}(\omega) \in I^{0}\left(\Lambda_{ \pm}(\omega)\right) \\
& \stackrel{?}{=} u_{\infty}+b(t)+\epsilon(t) \\
& u_{\infty} \in I^{0}\left(\Lambda_{+}(0)\right), \quad\|b(t)\|_{L^{2}} \leq C, \quad\|\epsilon(t)\|_{-\frac{1}{2}-} \rightarrow 0, \quad t \rightarrow \infty
\end{aligned}
$$

Theorem Suppose that $0 \notin \operatorname{Spec}_{\mathrm{pp}}(P)$ and that u solves

$$
i \partial_{t} u-P u=f,\left.\quad u\right|_{t=0}=0, \quad f \in C^{\infty}\left(\mathbb{T}^{2}\right)
$$

Then, $u(t)=u_{\infty}+b(t)+\epsilon(t)$, where $u_{\infty} \in I^{0}\left(\Lambda_{+}\right),\|b(t)\|_{L^{2}} \leq C$ and $\|\epsilon(t)\|_{-\frac{1}{2}-} \rightarrow 0$, as $t \rightarrow \infty$.
Proof: From spectral theorem and Stone's formula

$$
\begin{aligned}
& u(t)= \frac{1}{2 \pi} \int_{0}^{t} e^{-i s \omega}\left((P-\omega-i 0)^{-1}-(P-\omega+i 0)^{-1}\right) f d \omega \\
&= \frac{1}{2 \pi} \int_{0}^{t} e^{-i s \omega}\left((P-\omega-i 0)^{-1}-(P-\omega+i 0)^{-1}\right) f \chi(\omega) d \omega \\
&+b_{1}(t), \quad\left\|b_{1}(t)\right\|_{L^{2}} \leq C, \quad \chi=1 \text { near } 0 \\
&= \frac{1}{2 \pi} \int_{0}^{t} e^{-i s \omega}\left(u_{+}(\omega)-u_{-}(\omega)\right) d \omega+b_{1}(t), \quad u_{ \pm}(\omega) \in I^{0}\left(\Lambda_{ \pm}(\omega)\right) \\
& \stackrel{?}{=} u_{\infty}+b(t)+\epsilon(t) \\
& u_{\infty} \in I^{0}\left(\Lambda_{+}(0)\right), \quad\|b(t)\|_{L^{2}} \leq C, \quad\|\epsilon(t)\|_{-\frac{1}{2}-} \rightarrow 0, \quad t \rightarrow \infty
\end{aligned}
$$

Proof continued...

$$
\begin{aligned}
& \frac{1}{2 \pi} \int_{0}^{t} e^{-i s \omega}\left(u_{+}(\omega)-u_{-}(\omega)\right) d \omega+b_{1}(t), u_{ \pm}(\omega) \in I^{0}\left(\Lambda_{ \pm}(\omega)\right) \\
& \quad \stackrel{?}{=} u_{+}(0)+b(t)+\epsilon(t), \quad u_{+}(0):=(P-i 0)^{-1} f, \\
& u_{+}(0) \in I^{0}\left(\Lambda_{+}(0)\right), \quad\|b(t)\|_{L^{2}} \leq C, \quad\|\epsilon(t)\|_{-\frac{1}{2}-} \rightarrow 0, \quad t \rightarrow \infty
\end{aligned}
$$

Proof continued...

$$
\begin{aligned}
& \frac{1}{2 \pi} \int_{0}^{t} e^{-i s \omega}\left(u_{+}(\omega)-u_{-}(\omega)\right) d \omega+b_{1}(t), u_{ \pm}(\omega) \in I^{0}\left(\Lambda_{ \pm}(\omega)\right) \\
& \quad \stackrel{?}{=} u_{+}(0)+b(t)+\epsilon(t), \quad u_{+}(0):=(P-i 0)^{-1} f, \\
& u_{+}(0) \in I^{0}\left(\Lambda_{+}(0)\right), \quad\|b(t)\|_{L^{2}} \leq C, \quad\|\epsilon(t)\|_{-\frac{1}{2}-} \rightarrow 0, \quad t \rightarrow \infty
\end{aligned}
$$

Lemma (Dyatlov-Zworski '18) Suppose that

$$
w(\omega) \in C_{0}^{\infty}\left(\mathbb{R}_{\omega} ; I^{0}\left(\Lambda_{\omega}\right)\right), \quad \Lambda_{\omega}=\left\{\left(\partial_{\xi} F(\omega, \xi), \xi\right)\right\}
$$

Suppose that $\varepsilon \partial_{\omega} F(0, \xi)<0$. Then for $w(\omega)$ supported near 0 ,
$\int_{0}^{t} e^{i s \omega} w(\omega) d \omega=w_{\infty}+b(t)+\epsilon(t), \quad w_{\infty}=\left\{\begin{array}{cl}2 \pi w(0) & \varepsilon=+, \\ 0 & \varepsilon=-.\end{array}\right.$

Proof continued...

$$
\begin{aligned}
& \frac{1}{2 \pi} \int_{0}^{t} e^{-i s \omega}\left(u_{+}(\omega)-u_{-}(\omega)\right) d \omega+b_{1}(t), u_{ \pm}(\omega) \in I^{0}\left(\Lambda_{ \pm}(\omega)\right) \\
& \quad \stackrel{?}{=} u_{+}(0)+b(t)+\epsilon(t), \quad u_{+}(0):=(P-i 0)^{-1} f, \\
& u_{+}(0) \in I^{0}\left(\Lambda_{+}(0)\right), \quad\|b(t)\|_{L^{2}} \leq C, \quad\|\epsilon(t)\|_{-\frac{1}{2}-} \rightarrow 0, \quad t \rightarrow \infty
\end{aligned}
$$

Lemma (Dyatlov-Zworski '18) Suppose that

$$
w(\omega) \in C_{0}^{\infty}\left(\mathbb{R}_{\omega} ; I^{0}\left(\Lambda_{\omega}\right)\right), \quad \Lambda_{\omega}=\left\{\left(\partial_{\xi} F(\omega, \xi), \xi\right)\right\}
$$

Suppose that $\varepsilon \partial_{\omega} F(0, \xi)<0$. Then for $w(\omega)$ supported near 0 ,
$\int_{0}^{t} e^{i s \omega} w(\omega) d \omega=w_{\infty}+b(t)+\epsilon(t), \quad w_{\infty}=\left\{\begin{array}{cl}2 \pi w(0) & \varepsilon=+, \\ 0 & \varepsilon=-.\end{array}\right.$

The geometric lemma provides the sign condition! QED

More general geometries

More general geometries

$$
\begin{gathered}
P=A+A^{*}, \quad A:=\langle D\rangle^{-1}\left(D_{x_{1}} \cos x_{1}-2 D_{x_{2}} \cos x_{2}\right) \\
i u_{t}-P u=f, \quad f=\chi\left(x_{1}-\pi / 2, x_{2}-\pi / 2\right)
\end{gathered}
$$

More general geometries

$$
\begin{gathered}
P=A+A^{*}, \quad A:=\langle D\rangle^{-1}\left(D_{x_{1}} \cos x_{1}-2 D_{x_{2}} \cos x_{2}\right) \\
i u_{t}-P u=f, \quad f=\chi\left(x_{1}-\pi / 2, x_{2}-\pi / 2\right)
\end{gathered}
$$

More general geometries

$$
p=|\xi|^{-1}\left(\xi_{1} \cos x_{1}+2 \xi_{2} \cos x_{2}\right)
$$

More general geometries

$$
p=|\xi|^{-1}\left(\xi_{1} \cos x_{1}+2 \xi_{2} \cos x_{2}\right)
$$

More general geometries

$$
p=|\xi|^{-1}\left(\xi_{1} \cos x_{1}+2 \xi_{2} \cos x_{2}\right)
$$

$$
\begin{gathered}
u(t)=u_{\infty}+b(t)+\epsilon(t), \quad W \mathrm{WF}(u) \subset \Lambda_{+} \cup \Gamma_{+}, \\
u_{\infty} \in H^{-\frac{1}{2}-}, \quad\|b(t)\|_{L^{2}} \leq C, \quad\|\epsilon(t)\|_{H^{-\frac{3}{2}-}} \rightarrow 0, \quad t \rightarrow \infty
\end{gathered}
$$

More general geometries

$$
p=|\xi|^{-1}\left(\xi_{1} \cos x_{1}+2 \xi_{2} \cos x_{2}\right)
$$

$$
\begin{gathered}
u(t)=u_{\infty}+b(t)+\epsilon(t), \quad W \mathrm{WF}(u) \subset \Lambda_{+} \cup \Gamma_{+}, \\
u_{\infty} \in H^{-\frac{1}{2}-}, \quad\|b(t)\|_{L^{2}} \leq C, \quad\|\epsilon(t)\|_{H^{-\frac{3}{2}-}} \rightarrow 0, \quad t \rightarrow \infty
\end{gathered}
$$

Λ_{+}and Γ_{+}described using estimates of Dyatlov-Guillarmou '16

More general geometries

$$
p=|\xi|^{-1}\left(\xi_{1} \cos x_{1}+2 \xi_{2} \cos x_{2}\right)
$$

$$
\begin{gathered}
u(t)=u_{\infty}+b(t)+\epsilon(t), \quad W \mathrm{WF}(u) \subset \Lambda_{+} \cup \Gamma_{+}, \\
u_{\infty} \in H^{-\frac{1}{2}-}, \quad\|b(t)\|_{L^{2}} \leq C, \quad\|\epsilon(t)\|_{H^{-\frac{3}{2}-}} \rightarrow 0, \quad t \rightarrow \infty
\end{gathered}
$$

Λ_{+}and Γ_{+}described using estimates of Dyatlov-Guillarmou '16 In the Morse-Smale case, Colin de Verdière '18 used a hybrid of Mourre and radial estimates to show that $\|\epsilon(t)\|_{H^{-\frac{1}{2}-}} \rightarrow 0$.

More general geometries

$$
u_{\infty} \in H^{-\frac{1}{2}-}, \quad W F(u) \subset \Lambda_{+} \cup \Gamma_{+},
$$

$$
\pi\left(\Lambda_{+}\right)=\left\{x_{1}=x_{2}=-\frac{1}{2} \pi\right\} \cup\left\{x_{1}=-\frac{\pi}{2}, x_{2}=\frac{\pi}{2}\right\} \cup\left\{x_{1}=\frac{\pi}{2}, x_{2}=-\frac{\pi}{2}\right\}
$$

$$
\pi\left(\Gamma_{+}\right)=\left\{x_{1}=\frac{\pi}{2}\right\} \cup\left\{x_{2}=\frac{\pi}{2}\right\}
$$

Finally,

Finally, a word from our sponsor...

Finally, a word from our sponsor...

Volume 1 Number 1
To appear soon

The Journal
About the Journal
Editorial Board
Submission Guidelines
Submission Form
Ethics Statement
Editorial Login
To Appear

ABOUT THE JOURNAL

https://msp.org/paa

Thank you for your attention!

