Mathematics of magic angles

Maxwell Institute Mini-symposium in Analysis and PDE

Maciej Zworski

March 31, 2023

A project in the time of covid-19
2020: Simon Becker, Mark Embree, Jens Wittsten, MZ: BEWZ

2022: Simon Becker, Tristan Humbert, MZ: BHZ
2023: Michael Hitrik, MZ: HZ, Simon Becker MZ: BZ

Motivation: bilayer graphene
graphite

graphene

Motivation: bilayer graphene

graphite

MacGyver in the physics (ab

Motivation: bilayer graphene

graphite

Geim-Novoselov '04

Motivation: bilayer graphene

graphite

MacGyver in the physics (ab

Geim-Novoselov '04

Cao et al '18, Yankovitz et al '18: superconductivity at $\theta \simeq 1.08^{\circ}$

Motivation: bilayer graphene

graphite

MacGyver in the physics lab

Geim-Novoselov '04

Cao et al '18, Yankovitz et al '18: superconductivity at $\theta \simeq 1.08^{\circ}$ Predicted by Bistritzer-MacDonald '11

The chiral model of TBG

The chiral model of TBG
 PHYSICAL REVIEW LETTERS 122, 106405 (2019)

Origin of Magic Angles in Twisted Bilayer Graphene

Grigory Tarnopolsky, Alex Jura Kruchkov,* and Ashvin Vishwanath Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA

The chiral model of TBG

Origin of Magic Angles in Twisted Bilayer Graphene
Grigory Tarnopolsky, Alex Jura Kruchkov,* and Ashvin Vishwanath Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA

$$
\begin{gathered}
H(\alpha):=\left(\begin{array}{cc}
0 & D(\alpha)^{*} \\
D(\alpha) & 0
\end{array}\right), \quad D(\alpha):=\left(\begin{array}{cc}
2 D_{\bar{z}} & \alpha U(z) \\
\alpha U(-z) & 2 D_{\bar{z}}
\end{array}\right), \\
z=x_{1}+i x_{2}, \quad D_{\bar{z}}:=\frac{1}{2 i}\left(\partial_{x_{1}}+i \partial_{x_{2}}\right) \\
U(z):=\sum_{k=0}^{2} \omega^{k} e^{\frac{1}{2}\left(z \bar{\omega}^{k}-\bar{z} \omega^{k}\right)}, \quad \omega:=e^{2 \pi i / 3} .
\end{gathered}
$$

The chiral model of TBG

Origin of Magic Angles in Twisted Bilayer Graphene
Grigory Tarnopolsky, Alex Jura Kruchkov,* and Ashvin Vishwanath Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA

$$
\begin{gathered}
H(\alpha):=\left(\begin{array}{cc}
0 & D(\alpha)^{*} \\
D(\alpha) & 0
\end{array}\right), \quad D(\alpha):=\left(\begin{array}{cc}
2 D_{\bar{z}} & \alpha U(z) \\
\alpha U(-z) & 2 D_{\bar{z}}
\end{array}\right), \\
z=x_{1}+i x_{2}, \quad D_{\bar{z}}:=\frac{1}{2 i}\left(\partial_{x_{1}}+i \partial_{x_{2}}\right) \\
U(z):=\sum_{k=0}^{2} \omega^{k} e^{\frac{1}{2}\left(z \bar{\omega}^{k}-\bar{z} \omega^{k}\right)}, \quad \omega:=e^{2 \pi i / 3} . \\
U\left(z+\frac{4}{3} \pi i \omega^{\ell}\right)=\bar{\omega} U(z), \quad U(\omega z)=\omega U(z), \quad \ell=1,2 .
\end{gathered}
$$

Origin of Magic Angles in Twisted Bilayer Graphene
Grigory Tarnopolsky, Alex Jura Kruchkov, and Ashvin Vishwanath Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA

$$
\begin{gathered}
H(\alpha):=\left(\begin{array}{cc}
0 & D(\alpha)^{*} \\
D(\alpha) & 0
\end{array}\right), \quad D(\alpha):=\left(\begin{array}{cc}
2 D_{\bar{z}} & \alpha U(z) \\
\alpha U(-z) & 2 D_{\bar{z}}
\end{array}\right), \\
z=x_{1}+i x_{2}, \quad D_{\bar{z}}:=\frac{1}{2 i}\left(\partial_{x_{1}}+i \partial_{x_{2}}\right) \\
U(z):=\sum_{k=0}^{2} \omega^{k} e^{\frac{1}{2}\left(z \bar{\omega}^{k}-\bar{z} \omega^{k}\right)}, \quad \omega:=e^{2 \pi i / 3} . \\
U\left(z+\frac{4}{3} \pi i \omega^{\ell}\right)=\bar{\omega} U(z), \quad U(\omega z)=\omega U(z), \quad \ell=1,2 .
\end{gathered}
$$

Derived from the full Bistritzer-MacDonald '11 Hamiltonian

The operator of today

$$
\begin{gathered}
D(\alpha)=\left(\begin{array}{cc}
2 D_{\bar{z}} & \alpha U(z) \\
\alpha U(-z) & 2 D_{\bar{z}}
\end{array}\right) \quad \text { on } \mathbb{C} / \Gamma, \quad D_{\bar{z}}=\frac{1}{2 i}\left(\partial_{x_{1}}+i \partial_{x_{2}}\right) \\
U(z+\gamma)=U(z), \quad \gamma \in \Gamma, \text { a (very specific) lattice }
\end{gathered}
$$

The operator of today

$$
\begin{gathered}
D(\alpha)=\left(\begin{array}{cc}
2 D_{\bar{z}} & \alpha U(z) \\
\alpha U(-z) & 2 D_{\bar{z}}
\end{array}\right) \quad \text { on } \mathbb{C} / \Gamma, \quad D_{\bar{z}}=\frac{1}{2 i}\left(\partial_{x_{1}}+i \partial_{x_{2}}\right) \\
U(z+\gamma)=U(z), \quad \gamma \in \Gamma, \text { a (very specific) lattice }
\end{gathered}
$$

The operator of today

$$
\begin{gathered}
D(\alpha)=\left(\begin{array}{cc}
2 D_{\bar{z}} & \alpha U(z) \\
\alpha U(-z) & 2 D_{\bar{z}}
\end{array}\right) \quad \text { on } \mathbb{C} / \Gamma, \quad D_{\bar{z}}=\frac{1}{2 i}\left(\partial_{x_{1}}+i \partial_{x_{2}}\right) \\
U(z+\gamma)=U(z), \quad \gamma \in \Gamma, \text { a (very specific) lattice }
\end{gathered}
$$

The operator of today

$$
D(\alpha)=\left(\begin{array}{cc}
2 D_{\bar{z}} & \alpha U(z) \\
\alpha U(-z) & 2 D_{\bar{z}}
\end{array}\right) \quad \text { on } \mathbb{C} / \Gamma, \quad D_{\bar{z}}=\frac{1}{2 i}\left(\partial_{x_{1}}+i \partial_{x_{2}}\right)
$$

$$
U(z+\gamma)=U(z), \quad \gamma \in \Gamma, \text { a (very specific) lattice }
$$

Seeley 85: $P(\alpha)=e^{i x} D_{x}+\alpha e^{i x}, x \in \mathbb{S}^{1}, \operatorname{Spec}(P(\alpha))=\mathbb{C}, \alpha \in \mathbb{Z}$.

The operator of today

PHYSICAL REVIEW LETTERS 122, 106405 (2019)
Editors' Suggestion

Origin of Magic Angles in Twisted Bilayer Graphene

Grigory Tarnopolsky, Alex Jura Kruchkov,* and Ashvin Vishwanath
Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA

Twisted bilayer graphene (TBG) was recently shown to host superconductivity when tuned to special "magic angles" at which isolated and relatively flat bands appear. However, until now the origin of the magic angles and their irregular pattern have remained a mystery. Here we report on a fundamental continuum model for TBG which features not just the vanishing of the Fermi velocity, but also the perfect flattening of the entire lowest band. When parametrized in terms of $\alpha \sim 1 / \theta$, the magic angles recur with a remarkable periodicity of $\Delta \alpha \simeq 3 / 2$. We show analytically that the exactly flat band wave functions can be constructed from the doubly periodic functions composed of ratios of theta functions-reminiscent of quantum Hall wave functions on the torus. We further report on the unusual robustness of the experimentally relevant first magic angle, address its properties analytically, and discuss how lattice relaxation effects help justify our model parameters.

The operator of today

PHYSICAL REVIEW LETTERS 122, 106405 (2019)

```
Editors' Suggestion
```


Origin of Magic Angles in Twisted Bilayer Graphene

Grigory Tarnopolsky, Alex Jura Kruchkov, ${ }^{*}$ and Ashvin Vishwanath
Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA

Twisted bilayer graphene (TBG) was recently shown to host superconductivity when tuned to special "magic angles" at which isolated and relatively flat bands appear. However, until now the origin of the magic angles and their irregular pattern have remained a mystery. Here we report on a fundamental continuum model for TBG which features not just the vanishing of the Fermi velocity, but also the perfect flattening of the entire lowest band. When parametrized in terms of $\alpha \sim 1 / \theta$, the magic angles recur with a remarkable periodicity of $\Delta \alpha \simeq 3 / 2$. We show analytically that the exactly flat band wave functions can be constructed from the doubly periodic functions composed of ratios of theta functions-reminiscent of quantum Hall wave functions on the torus. We further report on the unusual robustness of the experimentally relevant first magic angle, address its properties analytically, and discuss how lattice relaxation effects help justify our model parameters.

Bands: eigenvalues of $H_{\mathrm{k}}(\alpha):=\left(\begin{array}{cc}0 & D(\alpha)^{*}-\overline{\mathrm{k}} \\ D(\alpha)-\mathrm{k} & 0\end{array}\right), \mathrm{k} \in \mathbb{C} / \Gamma^{*}$

The operator of today

PHYSICAL REVIEW LETTERS 122, 106405 (2019)

```
Editors' Suggestion
```


Origin of Magic Angles in Twisted Bilayer Graphene

Grigory Tarnopolsky, Alex Jura Kruchkov,* and Ashvin Vishwanath
Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA

Twisted bilayer graphene (TBG) was recently shown to host superconductivity when tuned to special "magic angles" at which isolated and relatively flat bands appear. However, until now the origin of the magic angles and their irregular pattern have remained a mystery. Here we report on a fundamental continuum model for TBG which features not just the vanishing of the Fermi velocity, but also the perfect flattening of the entire lowest band. When parametrized in terms of $\alpha \sim 1 / \theta$, the magic angles recur with a remarkable periodicity of $\Delta \alpha \simeq 3 / 2$. We show analytically that the exactly flat band wave functions can be constructed from the doubly periodic functions composed of ratios of theta functions-reminiscent of quantum Hall wave functions on the torus. We further report on the unusual robustness of the experimentally relevant first magic angle, address its properties analytically, and discuss how lattice relaxation effects help justify our model parameters.

Bands: eigenvalues of $H_{\mathrm{k}}(\alpha):=\left(\begin{array}{cc}0 & D(\alpha)^{*}-\overline{\mathrm{k}} \\ D(\alpha)-\mathrm{k} & 0\end{array}\right), \mathrm{k} \in \mathbb{C} / \Gamma^{*}$
A flat band at 0 energy means that $\operatorname{Spec}_{L^{2}(\mathbb{C} / \Gamma)}(D(\alpha))=\mathbb{C}$

A simpler example first:

A simpler example first: $D_{x}:=\frac{1}{i} \partial_{x}$

A simpler example first: $D_{x}:=\frac{1}{i} \partial_{x}$
$\operatorname{Spec}_{L^{2}(\mathbb{R})}\left(D_{\chi}\right)=\mathbb{R}$,

A simpler example first: $D_{x}:=\frac{1}{i} \partial_{x}$

$$
\operatorname{Spec}_{L^{2}(\mathbb{R})}\left(D_{X}\right)=\mathbb{R}, \quad \operatorname{Spec}_{L^{2}(\mathbb{R} / 2 \pi \mathbb{Z})}\left(D_{X}\right)=\mathbb{Z}
$$

A simpler example first: $D_{x}:=\frac{1}{i} \partial_{x}$
$\operatorname{Spec}_{L^{2}(\mathbb{R})}\left(D_{x}\right)=\mathbb{R}, \quad \operatorname{Spec}_{L^{2}(\mathbb{R} / 2 \pi \mathbb{Z})}\left(D_{x}\right)=\mathbb{Z}$
$L^{2}(\mathbb{R}) \simeq L^{2}\left(\mathbb{R} / \mathbb{Z} ; L^{2}(\mathbb{R} / 2 \pi \mathbb{Z})\right),\left.\left.\quad D_{x}\right|_{L^{2}(\mathbb{R})} \simeq \bigoplus_{k \in \mathbb{R} / \mathbb{Z}}\left(D_{x}-k\right)\right|_{L^{2}(\mathbb{R} / 2 \pi \mathbb{Z})}$

A simpler example first: $D_{x}:=\frac{1}{i} \partial_{x}$

$$
\operatorname{Spec}_{L^{2}(\mathbb{R})}\left(D_{X}\right)=\mathbb{R}, \quad \operatorname{Spec}_{L^{2}(\mathbb{R} / 2 \pi \mathbb{Z})}\left(D_{X}\right)=\mathbb{Z}
$$

$$
\begin{aligned}
& L^{2}(\mathbb{R}) \simeq L^{2}\left(\mathbb{R} / \mathbb{Z} ; L^{2}(\mathbb{R} / 2 \pi \mathbb{Z})\right),\left.\left.\quad D_{x}\right|_{L^{2}(\mathbb{R})} \simeq \bigoplus_{k \in \mathbb{R} / \mathbb{Z}}\left(D_{x}-k\right)\right|_{L^{2}(\mathbb{R} / 2 \pi \mathbb{Z})} \\
& u(x) \mapsto U(x, k):=\sum_{m \in \mathbb{Z}} e^{-2 \pi i(x-m) k} u(x-m),
\end{aligned}
$$

A simpler example first: $D_{x}:=\frac{1}{i} \partial_{x}$
$\operatorname{Spec}_{L^{2}(\mathbb{R})}\left(D_{x}\right)=\mathbb{R}, \quad \operatorname{Spec}_{L^{2}(\mathbb{R} / 2 \pi \mathbb{Z})}\left(D_{x}\right)=\mathbb{Z}$

$$
\begin{aligned}
& L^{2}(\mathbb{R}) \simeq L^{2}\left(\mathbb{R} / \mathbb{Z} ; L^{2}(\mathbb{R} / 2 \pi \mathbb{Z})\right),\left.\left.\quad D_{x}\right|_{L^{2}(\mathbb{R})} \simeq \bigoplus_{k \in \mathbb{R} / \mathbb{Z}}\left(D_{x}-k\right)\right|_{L^{2}(\mathbb{R} / 2 \pi \mathbb{Z})} \\
& u(x) \mapsto U(x, k):=\sum_{m \in \mathbb{Z}} e^{-2 \pi i(x-m) k} u(x-m), \quad D_{x} u \mapsto\left(D_{x}-k\right) U
\end{aligned}
$$

A simpler example first: $D_{x}:=\frac{1}{i} \partial_{x}$

$$
\begin{gathered}
\operatorname{Spec}_{L^{2}(\mathbb{R})}\left(D_{x}\right)=\mathbb{R}, \quad \operatorname{Spec}_{L^{2}(\mathbb{R} / 2 \pi \mathbb{Z})}\left(D_{x}\right)=\mathbb{Z} \\
L^{2}(\mathbb{R}) \simeq L^{2}\left(\mathbb{R} / \mathbb{Z} ; L^{2}(\mathbb{R} / 2 \pi \mathbb{Z})\right),\left.\left.\quad D_{x}\right|_{L^{2}(\mathbb{R})} \simeq \bigoplus_{k \in \mathbb{R} / \mathbb{Z}}\left(D_{x}-k\right)\right|_{L^{2}(\mathbb{R} / 2 \pi \mathbb{Z})} \\
u(x) \mapsto U(x, k):=\sum_{m \in \mathbb{Z}} e^{-2 \pi i(x-m) k} u(x-m), \quad D_{x} u \mapsto\left(D_{x}-k\right) U \\
\operatorname{Spec}_{L^{2}(\mathbb{R})}\left(D_{x}\right)=\bigcup_{k \in \mathbb{R} / \mathbb{Z}} \operatorname{Spec}_{L^{2}(\mathbb{R} / 2 \pi \mathbb{Z})}\left(D_{x}-k\right)
\end{gathered}
$$

Flat bands

The bands are eigenvalues of $H_{\mathrm{k}}(\alpha)$ on $L_{0}^{2}(\mathbb{C} / \Gamma), \mathrm{k} \in \mathbb{C} / 3 \Gamma^{*}$:

Flat bands

The bands are eigenvalues of $H_{\mathrm{k}}(\alpha)$ on $L_{0}^{2}(\mathbb{C} / \Gamma), \mathrm{k} \in \mathbb{C} / 3 \Gamma^{*}$:

Theorem (BHZ '22; implicit in BEWZ '20)

$$
\exists \mathrm{k} \notin 3 \Gamma^{*}+\{0,-\mathrm{i}\} \quad E_{1}(\alpha, \mathrm{k})=0 \Longrightarrow \forall \mathrm{k} E_{1}(\alpha, \mathrm{k})=0 .
$$

A curious structure of the first band

A curious structure of the first band

$$
\mathrm{k} \mapsto \widetilde{E}_{1}(\alpha, \mathrm{k}) /\left(\max _{\mathrm{k}} \widetilde{E}_{1}(\alpha, \mathrm{k})\right), \quad 0.4<\alpha<0.6
$$

A curious structure of the first band

$$
\mathrm{k} \mapsto \widetilde{E}_{1}(\alpha, \mathrm{k}) /\left(\max _{\mathrm{k}} \widetilde{E}_{1}(\alpha, \mathrm{k})\right), \quad 0.4<\alpha<0.6
$$

A curious structure of the first band

$$
\mathrm{k} \mapsto \widetilde{E}_{1}(\alpha, \mathrm{k}) /\left(\max _{\mathrm{k}} \widetilde{E}_{1}(\alpha, \mathrm{k})\right), \quad 0.4<\alpha<0.6
$$

Rescaled plots remain almost fixed at $\mathrm{k} \longmapsto|U(-4 \sqrt{3} \pi i k / 9)|$

Symmetries play a crucial role!

$$
D(\alpha)=\left(\begin{array}{cc}
2 D_{\bar{z}} & \alpha U(z) \\
\alpha U(-z) & 2 D_{\bar{z}}
\end{array}\right), \quad H(\alpha)=\left(\begin{array}{cc}
0 & D^{*} \\
D & 0
\end{array}\right)
$$

Symmetries play a crucial role!

$$
\begin{gathered}
D(\alpha)=\left(\begin{array}{cc}
2 D_{\bar{z}} & \alpha U(z) \\
\alpha U(-z) & 2 D_{\bar{z}}
\end{array}\right), \quad H(\alpha)=\left(\begin{array}{cc}
0 & D^{*} \\
D & 0
\end{array}\right) \\
\mathscr{L}_{\mathrm{a}} \mathrm{u}=\operatorname{diag}\left(\omega^{a_{1}+a_{2}}, 1, \omega^{a_{1}+a_{2}}, 1\right) \mathrm{u}\left(z+\frac{4}{3} i \pi\left(\omega a_{1}+\omega^{2} a_{2}\right)\right), \quad \mathrm{a} \in \mathbb{Z}_{3}^{2},
\end{gathered}
$$

Symmetries play a crucial role!

$$
\begin{gathered}
D(\alpha)=\left(\begin{array}{cc}
2 D_{\bar{z}} & \alpha U(z) \\
\alpha U(-z) & 2 D_{\bar{z}}
\end{array}\right), \quad H(\alpha)=\left(\begin{array}{cc}
0 & D^{*} \\
D & 0
\end{array}\right) \\
\mathscr{L}_{\mathrm{a}} \mathrm{u}=\operatorname{diag}\left(\omega^{a_{1}+a_{2}}, 1, \omega^{a_{1}+a_{2}}, 1\right) \mathrm{u}\left(z+\frac{4}{3} i \pi\left(\omega a_{1}+\omega^{2} a_{2}\right)\right), \quad \mathrm{a} \in \mathbb{Z}_{3}^{2}, \\
\mathscr{C}^{k} \mathrm{u}(z)=\operatorname{diag}\left(1,1, \bar{\omega}^{k}, \bar{\omega}^{k}\right) \mathrm{u}\left(\omega^{k} z\right), \quad k \in \mathbb{Z}_{3}
\end{gathered}
$$

Symmetries play a crucial role!

$$
\begin{gathered}
D(\alpha)=\left(\begin{array}{cc}
2 D_{\bar{z}} & \alpha U(z) \\
\alpha U(-z) & 2 D_{\bar{z}}
\end{array}\right), \quad H(\alpha)=\left(\begin{array}{cc}
0 & D^{*} \\
D & 0
\end{array}\right) \\
\mathscr{L}_{\mathrm{a}} \mathrm{u}=\operatorname{diag}\left(\omega^{a_{1}+a_{2}}, 1, \omega^{a_{1}+a_{2}}, 1\right) \mathrm{u}\left(z+\frac{4}{3} i \pi\left(\omega a_{1}+\omega^{2} a_{2}\right)\right), \quad \mathrm{a} \in \mathbb{Z}_{3}^{2}, \\
\mathscr{C}^{k} \mathrm{u}(z)=\operatorname{diag}\left(1,1, \bar{\omega}^{k}, \bar{\omega}^{k}\right) \mathrm{u}\left(\omega^{k} z\right), \quad k \in \mathbb{Z}_{3} \\
\mathscr{L}_{\mathrm{a}} H=H \mathscr{L}_{\mathrm{a}},
\end{gathered}
$$

Symmetries play a crucial role!

$$
\begin{gathered}
D(\alpha)=\left(\begin{array}{cc}
2 D_{\bar{z}} & \alpha U(z) \\
\alpha U(-z) & 2 D_{\bar{z}}
\end{array}\right), \quad H(\alpha)=\left(\begin{array}{cc}
0 & D^{*} \\
D & 0
\end{array}\right) \\
\mathscr{L}_{\mathrm{a}} \mathrm{u}=\operatorname{diag}\left(\omega^{a_{1}+a_{2}}, 1, \omega^{a_{1}+a_{2}}, 1\right) \mathrm{u}\left(z+\frac{4}{3} i \pi\left(\omega a_{1}+\omega^{2} a_{2}\right)\right), \quad \mathrm{a} \in \mathbb{Z}_{3}^{2}, \\
\mathscr{C}^{k} \mathrm{u}(z)=\operatorname{diag}\left(1,1, \bar{\omega}^{k}, \bar{\omega}^{k}\right) \mathrm{u}\left(\omega^{k} z\right), \quad k \in \mathbb{Z}_{3} \\
\mathscr{L}_{\mathrm{a}} H=H \mathscr{L}_{\mathrm{a}}, \quad \mathscr{C} H=H \mathscr{C},
\end{gathered}
$$

Symmetries play a crucial role!

$$
\begin{gathered}
D(\alpha)=\left(\begin{array}{cc}
2 D_{\bar{z}} & \alpha U(z) \\
\alpha U(-z) & 2 D_{\bar{z}}
\end{array}\right), \quad H(\alpha)=\left(\begin{array}{cc}
0 & D^{*} \\
D & 0
\end{array}\right) \\
\mathscr{L}_{\mathrm{a}} \mathrm{u}=\operatorname{diag}\left(\omega^{a_{1}+a_{2}}, 1, \omega^{a_{1}+a_{2}}, 1\right) \mathrm{u}\left(z+\frac{4}{3} i \pi\left(\omega a_{1}+\omega^{2} a_{2}\right)\right), \quad \mathrm{a} \in \mathbb{Z}_{3}^{2}, \\
\mathscr{C}^{k} \mathrm{u}(z)=\operatorname{diag}\left(1,1, \bar{\omega}^{k}, \bar{\omega}^{k}\right) \mathrm{u}\left(\omega^{k} z\right), \quad k \in \mathbb{Z}_{3} \\
\mathscr{L}_{\mathrm{a}} H=H \mathscr{L}_{\mathrm{a}}, \quad \mathscr{C} H=H \mathscr{C}, \quad \mathscr{C} \mathscr{L}_{\mathrm{a}}=\mathscr{L}_{M_{\mathrm{a}}} \mathscr{C},
\end{gathered}
$$

Symmetries play a crucial role!

$$
\begin{gathered}
D(\alpha)=\left(\begin{array}{cc}
2 D_{\bar{z}} & \alpha U(z) \\
\alpha U(-z) & 2 D_{\bar{z}}
\end{array}\right), \quad H(\alpha)=\left(\begin{array}{cc}
0 & D^{*} \\
D & 0
\end{array}\right) \\
\mathscr{L}_{\mathrm{a}} \mathrm{u}=\operatorname{diag}\left(\omega^{a_{1}+a_{2}}, 1, \omega^{a_{1}+a_{2}}, 1\right) \mathrm{u}\left(z+\frac{4}{3} i \pi\left(\omega a_{1}+\omega^{2} a_{2}\right)\right), \quad \mathrm{a} \in \mathbb{Z}_{3}^{2}, \\
\mathscr{C}^{k} \mathrm{u}(z)=\operatorname{diag}\left(1,1, \bar{\omega}^{k}, \bar{\omega}^{k}\right) \mathrm{u}\left(\omega^{k} z\right), \quad k \in \mathbb{Z}_{3} \\
\mathscr{L}_{\mathrm{a}} H=H \mathscr{L}_{\mathrm{a}}, \quad \mathscr{C} H=H \mathscr{C}, \quad \mathscr{C} \mathscr{L}_{\mathrm{a}}=\mathscr{L}_{M a} \mathscr{C}, \quad M=\left(\begin{array}{ll}
0 & -1 \\
1 & -1
\end{array}\right) .
\end{gathered}
$$

Symmetries play a crucial role!

$$
\begin{gathered}
D(\alpha)=\left(\begin{array}{cc}
2 D_{\bar{z}} & \alpha U(z) \\
\alpha U(-z) & 2 D_{\bar{z}}
\end{array}\right), \quad H(\alpha)=\left(\begin{array}{cc}
0 & D^{*} \\
D & 0
\end{array}\right) \\
\mathscr{L}_{\mathrm{a}} \mathrm{u}=\operatorname{diag}\left(\omega^{a_{1}+a_{2}}, 1, \omega^{a_{1}+a_{2}}, 1\right) \mathrm{u}\left(z+\frac{4}{3} i \pi\left(\omega a_{1}+\omega^{2} a_{2}\right)\right), \quad \mathrm{a} \in \mathbb{Z}_{3}^{2}, \\
\mathscr{C}^{k} \mathrm{u}(z)=\operatorname{diag}\left(1,1, \bar{\omega}^{k}, \bar{\omega}^{k}\right) \mathrm{u}\left(\omega^{k} z\right), \quad k \in \mathbb{Z}_{3} \\
\mathscr{L}_{\mathrm{a}} H=H \mathscr{L}_{\mathrm{a}}, \quad \mathscr{C} H=H \mathscr{C}, \quad \mathscr{C} \mathscr{L}_{\mathrm{a}}=\mathscr{L}_{M a} \mathscr{C}, \quad M=\left(\begin{array}{cc}
0 & -1 \\
1 & -1
\end{array}\right) .
\end{gathered}
$$

Decompose into irreducible representions of this Heisenberg group:
$L^{2}(\mathbb{C} / \Gamma)=\bigoplus_{k, p \in \mathbb{Z}_{3}} L_{\rho_{k, p}}^{2}\left(\mathbb{C} / \Gamma ; \mathbb{C}^{2}\right) \oplus L_{\rho_{(1,0)}}^{2}\left(\mathbb{C} / \Gamma ; \mathbb{C}^{2}\right) \oplus L_{\rho_{(2,0)}}^{2}\left(\mathbb{C} / \Gamma ; \mathbb{C}^{2}\right)$

Symmetries play a crucial role!

$$
\begin{gathered}
D(\alpha)=\left(\begin{array}{cc}
2 D_{\bar{z}} & \alpha U(z) \\
\alpha U(-z) & 2 D_{\bar{z}}
\end{array}\right), \quad H(\alpha)=\left(\begin{array}{cc}
0 & D^{*} \\
D & 0
\end{array}\right) \\
\mathscr{L}_{\mathrm{a}} \mathrm{u}=\operatorname{diag}\left(\omega^{a_{1}+a_{2}}, 1, \omega^{a_{1}+a_{2}}, 1\right) \mathrm{u}\left(z+\frac{4}{3} i \pi\left(\omega a_{1}+\omega^{2} a_{2}\right)\right), \quad \mathrm{a} \in \mathbb{Z}_{3}^{2}, \\
\mathscr{C}^{k} \mathrm{u}(z)=\operatorname{diag}\left(1,1, \bar{\omega}^{k}, \bar{\omega}^{k}\right) \mathrm{u}\left(\omega^{k} z\right), \quad k \in \mathbb{Z}_{3} \\
\mathscr{L}_{\mathrm{a}} H=H \mathscr{L}_{\mathrm{a}}, \quad \mathscr{C} H=H \mathscr{C}, \quad \mathscr{C} \mathscr{L}_{\mathrm{a}}=\mathscr{L}_{M \mathrm{a}} \mathscr{C}, \quad M=\left(\begin{array}{cc}
0 & -1 \\
1 & -1
\end{array}\right) .
\end{gathered}
$$

Decompose into irreducible representions of this Heisenberg group:

$$
\begin{aligned}
L^{2}(\mathbb{C} / \Gamma)= & \bigoplus_{k, p \in \mathbb{Z}_{3}} L_{\rho_{k, p}}^{2}\left(\mathbb{C} / \Gamma ; \mathbb{C}^{2}\right) \oplus L_{\rho_{(1,0)}}^{2}\left(\mathbb{C} / \Gamma ; \mathbb{C}^{2}\right) \oplus L_{\rho_{(2,0)}}^{2}\left(\mathbb{C} / \Gamma ; \mathbb{C}^{2}\right) \\
\rho_{k, p} & \longleftrightarrow \mathscr{L}_{a} \equiv \omega^{k\left(a_{1}+a_{2}\right)}, \mathscr{C} \equiv \bar{\omega}^{p}
\end{aligned}
$$

Symmetry protected states

Symmetry protected states

$$
\operatorname{ker}_{L^{2}(\mathbb{C} / \Gamma)} H(0)=\mathbb{C}^{4}, \quad \Gamma=4 i \pi\left(\omega a_{1}+\omega^{2} a_{2}\right)
$$

Symmetry protected states

$$
\begin{aligned}
& \operatorname{ker}_{L^{2}(\mathbb{C} / \Gamma)} H(0)=\mathbb{C}^{4}, \quad \Gamma=4 i \pi\left(\omega a_{1}+\omega^{2} a_{2}\right) \\
& \mathrm{e}_{1} \in L_{\rho_{1,0}}^{2}, \quad \mathrm{e}_{2} \in L_{\rho_{0,0}}^{2}, \quad \mathrm{e}_{3} \in L_{\rho_{1,1}}^{2}, \quad \mathrm{e}_{4} \in L_{\rho_{0,1}}^{2} .
\end{aligned}
$$

Symmetry protected states

$$
\begin{aligned}
& \operatorname{ker}_{L^{2}(\mathbb{C} / \Gamma)} H(0)=\mathbb{C}^{4}, \quad \Gamma=4 i \pi\left(\omega a_{1}+\omega^{2} a_{2}\right) \\
& \mathrm{e}_{1} \in L_{\rho_{1,0}}^{2}, \quad \mathrm{e}_{2} \in L_{\rho_{0,0}}^{2}, \quad \mathrm{e}_{3} \in L_{\rho_{1,1}}^{2}, \quad \mathrm{e}_{4} \in L_{\rho_{0,1}}^{2} .
\end{aligned}
$$

$$
H(\alpha)=-\mathscr{W} H(\alpha) \mathscr{W}^{*}, \quad \mathscr{W}:=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right), \mathscr{W} \mathscr{C}=\mathscr{C} \mathscr{W}, \mathscr{L}_{\mathrm{a}} \mathscr{W}=\mathscr{W} \mathscr{L}_{\mathrm{a}}
$$

Symmetry protected states

$$
\begin{gathered}
\operatorname{ker}_{L^{2}(\mathbb{C} / \Gamma)} H(0)=\mathbb{C}^{4}, \quad \Gamma=4 i \pi\left(\omega a_{1}+\omega^{2} a_{2}\right) \\
\mathrm{e}_{1} \in L_{\rho_{1,0}}^{2}, \quad \mathrm{e}_{2} \in L_{\rho_{0,0}}^{2}, \quad \mathrm{e}_{3} \in L_{\rho_{1,1}}^{2}, \quad \mathrm{e}_{4} \in L_{\rho_{0,1}}^{2} . \\
H(\alpha)=-\mathscr{W} H(\alpha) \mathscr{W}^{*}, \quad \mathscr{W}:=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right), \mathscr{W} \mathscr{C}=\mathscr{C} \mathscr{W}, \mathscr{L}_{\mathrm{a}} \mathscr{W}=\mathscr{W} \mathscr{L}_{\mathrm{a}}
\end{gathered}
$$

This implies that the spectrum of $\left.H(\alpha)\right|_{L_{\rho_{k, \ell}}^{2}(\mathbb{C} / \Gamma)}$ is even

Symmetry protected states

$$
\begin{gathered}
\operatorname{ker}_{L^{2}(\mathbb{C} / \Gamma)} H(0)=\mathbb{C}^{4}, \quad \Gamma=4 i \pi\left(\omega a_{1}+\omega^{2} a_{2}\right) \\
\mathrm{e}_{1} \in L_{\rho_{1,0}}^{2}, \quad \mathrm{e}_{2} \in L_{\rho_{0,0}}^{2}, \quad \mathrm{e}_{3} \in L_{\rho_{1,1}}^{2}, \quad \mathrm{e}_{4} \in L_{\rho_{0,1}}^{2} . \\
H(\alpha)=-\mathscr{W} H(\alpha) \mathscr{W}^{*}, \quad \mathscr{W}:=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right), \mathscr{W} \mathscr{C}=\mathscr{C} \mathscr{W}, \mathscr{L}_{\mathrm{a}} \mathscr{W}=\mathscr{W} \mathscr{L}_{\mathrm{a}}
\end{gathered}
$$

This implies that the spectrum of $\left.H(\alpha)\right|_{L_{\rho_{k, \ell}}^{2}(\mathbb{C} / \Gamma)}$ is even

Symmetry protected states

$$
\begin{aligned}
& \operatorname{ker}_{L^{2}(\mathbb{C} / \Gamma)} H(0)=\mathbb{C}^{4}, \quad \Gamma=4 i \pi\left(\omega a_{1}+\omega^{2} a_{2}\right) \\
& \mathrm{e}_{1} \in L_{\rho_{1,0}}^{2}, \quad \mathrm{e}_{2} \in L_{\rho_{0,0}}^{2}, \quad e_{3} \in L_{\rho_{1,1}}^{2}, \quad \mathrm{e}_{4} \in L_{\rho_{0,1}}^{2} .
\end{aligned}
$$

$H(\alpha)=-\mathscr{W} H(\alpha) \mathscr{W}^{*}, \quad \mathscr{W}:=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right), \mathscr{W} \mathscr{C}=\mathscr{C} \mathscr{W}, \mathscr{L}_{\mathrm{a}} \mathscr{W}=\mathscr{W} \mathscr{L}_{\mathrm{a}}$
This implies that the spectrum of $\left.H(\alpha)\right|_{L_{\rho_{k, \ell}}^{2}(\mathbb{C} / \Gamma)}$ is even

$\operatorname{dim} \operatorname{ker}_{L^{2}(\mathbb{C} / \Gamma)}(H(\alpha)) \geq 4, \quad \operatorname{dim} \operatorname{ker}_{L^{2}(\mathbb{C} / \Gamma)}(D(\alpha)) \geq 2$

Spectral characterization of flat bands

Spectral characterization of flat bands

$$
\begin{gathered}
H_{\mathrm{k}}(\alpha):=\left(\begin{array}{cc}
0 & D(\alpha)^{*}-\overline{\mathrm{k}} \\
D(\alpha)-\mathrm{k} & 0
\end{array}\right): H_{0}^{1}(\mathbb{C} / \Gamma) \rightarrow L_{0}^{2}(\mathbb{C} / \Gamma), \\
L_{0}^{2}(\mathbb{C} / \Gamma):=\left\{\mathrm{u} \in L^{2}(\mathbb{C} / \Gamma): \mathscr{L}_{\mathrm{a}} \mathrm{u}=\mathrm{u}, \quad \mathrm{a} \in \frac{1}{3} \Gamma / \Gamma\right\} .
\end{gathered}
$$

Bands: $\left\{E_{j}(\alpha, \mathrm{k})\right\}_{j \in \mathbb{Z} \backslash\{0\}}=\operatorname{Spec}_{L_{0}^{2}} H_{\mathrm{k}}(\alpha), \quad E_{ \pm 1}(\alpha, 0)=E_{ \pm 1}(\alpha,-\mathrm{i})=0$.

Spectral characterization of flat bands

$$
\begin{gathered}
H_{\mathrm{k}}(\alpha):=\left(\begin{array}{cc}
0 & D(\alpha)^{*}-\overline{\mathrm{k}} \\
D(\alpha)-\mathrm{k} & 0
\end{array}\right): H_{0}^{1}(\mathbb{C} / \Gamma) \rightarrow L_{0}^{2}(\mathbb{C} / \Gamma), \\
L_{0}^{2}(\mathbb{C} / \Gamma):=\left\{\mathrm{u} \in L^{2}(\mathbb{C} / \Gamma): \mathscr{L}_{\mathrm{a}} \mathrm{u}=\mathrm{u}, \quad \mathrm{a} \in \frac{1}{3} \Gamma / \Gamma\right\} .
\end{gathered}
$$

Bands: $\left\{E_{j}(\alpha, \mathrm{k})\right\}_{j \in \mathbb{Z} \backslash\{0\}}=\operatorname{Spec}_{L_{0}^{2}} H_{\mathrm{k}}(\alpha), \quad E_{ \pm 1}(\alpha, 0)=E_{ \pm 1}(\alpha,-\mathrm{i})=0$.
Flat band at $0 \Longleftrightarrow \operatorname{Spec}_{L_{0}^{2}(\mathbb{C} / \Gamma)}(D(\alpha))=\mathbb{C}$

Spectral characterization of flat bands

$$
\begin{gathered}
H_{\mathrm{k}}(\alpha):=\left(\begin{array}{cc}
0 & D(\alpha)^{*}-\overline{\mathrm{k}} \\
D(\alpha)-\mathrm{k} & 0
\end{array}\right): H_{0}^{1}(\mathbb{C} / \Gamma) \rightarrow L_{0}^{2}(\mathbb{C} / \Gamma), \\
L_{0}^{2}(\mathbb{C} / \Gamma):=\left\{\mathrm{u} \in L^{2}(\mathbb{C} / \Gamma): \mathscr{L}_{\mathrm{a}} \mathrm{u}=\mathrm{u}, \quad \mathrm{a} \in \frac{1}{3} \Gamma / \Gamma\right\} .
\end{gathered}
$$

Bands: $\left\{E_{j}(\alpha, \mathrm{k})\right\}_{j \in \mathbb{Z} \backslash\{0\}}=\operatorname{Spec}_{L_{0}^{2}} H_{\mathrm{k}}(\alpha), \quad E_{ \pm 1}(\alpha, 0)=E_{ \pm 1}(\alpha,-\mathrm{i})=0$.
Flat band at $0 \Longleftrightarrow \operatorname{Spec}_{L_{0}^{2}(\mathbb{C} / \Gamma)}(D(\alpha))=\mathbb{C}$

Spectral characterization of flat bands

$$
\begin{gathered}
H_{\mathrm{k}}(\alpha):=\left(\begin{array}{cc}
0 & D(\alpha)^{*}-\overline{\mathrm{k}} \\
D(\alpha)-\mathrm{k} & 0
\end{array}\right): H_{0}^{1}(\mathbb{C} / \Gamma) \rightarrow L_{0}^{2}(\mathbb{C} / \Gamma), \\
L_{0}^{2}(\mathbb{C} / \Gamma):=\left\{\mathrm{u} \in L^{2}(\mathbb{C} / \Gamma): \mathscr{L}_{\mathrm{a}} \mathrm{u}=\mathrm{u}, \quad \mathrm{a} \in \frac{1}{3} \Gamma / \Gamma\right\} .
\end{gathered}
$$

Bands: $\left\{E_{j}(\alpha, \mathrm{k})\right\}_{j \in \mathbb{Z} \backslash\{0\}}=\operatorname{Spec}_{L_{0}^{2}} H_{\mathrm{k}}(\alpha), \quad E_{ \pm 1}(\alpha, 0)=E_{ \pm 1}(\alpha,-\mathrm{i})=0$.
Flat band at $0 \Longleftrightarrow \operatorname{Spec}_{L_{0}^{2}(\mathbb{C} / \Gamma)}(D(\alpha))=\mathbb{C}$
Theorem (BEWZ '20) There exists a discrete set $\mathcal{A} \subset \mathbb{C}$ such that

$$
\operatorname{Spec}_{L_{0}^{2}(\mathbb{C} / \Gamma)} D(\alpha)= \begin{cases}3 \Gamma^{*}+\{0,-i\} & \alpha \notin \mathcal{A} \\ \mathbb{C} & \alpha \in \mathcal{A},\end{cases}
$$

Spectral characterization of flat bands

$$
\begin{gathered}
H_{\mathrm{k}}(\alpha):=\left(\begin{array}{cc}
0 & D(\alpha)^{*}-\overline{\mathrm{k}} \\
D(\alpha)-\mathrm{k} & 0
\end{array}\right): H_{0}^{1}(\mathbb{C} / \Gamma) \rightarrow L_{0}^{2}(\mathbb{C} / \Gamma), \\
L_{0}^{2}(\mathbb{C} / \Gamma):=\left\{\mathrm{u} \in L^{2}(\mathbb{C} / \Gamma): \mathscr{L}_{\mathrm{a}} \mathrm{u}=\mathrm{u}, \quad \mathrm{a} \in \frac{1}{3} \Gamma / \Gamma\right\} .
\end{gathered}
$$

Bands: $\left\{E_{j}(\alpha, \mathrm{k})\right\}_{j \in \mathbb{Z} \backslash\{0\}}=\operatorname{Spec}_{L_{0}^{2}} H_{\mathrm{k}}(\alpha), \quad E_{ \pm 1}(\alpha, 0)=E_{ \pm 1}(\alpha,-\mathrm{i})=0$.
Flat band at $0 \Longleftrightarrow \operatorname{Spec}_{L_{0}^{2}(\mathbb{C} / \Gamma)}(D(\alpha))=\mathbb{C}$
Theorem (BEWZ '20) There exists a discrete set $\mathcal{A} \subset \mathbb{C}$ such that
$\operatorname{Spec}_{L_{0}^{2}(\mathbb{C} / \Gamma)} D(\alpha)= \begin{cases}3 \Gamma^{*}+\{0,-i\} & \alpha \notin \mathcal{A} \\ \mathbb{C} & \alpha \in \mathcal{A},\end{cases}$

Exponential squeezing of bands

Exponential squeezing of bands

Exponential squeezing of bands

Theorem. (BEWZ '20) There exist $c_{j}>0$ such that for all $k \in \mathbb{C}$,

$$
\left|E_{j}(\alpha, \mathrm{k})\right| \leq c_{0} e^{-c_{1} \alpha}, \quad j \leq c_{2} \alpha, \quad \alpha>0
$$

Exponential squeezing of bands

Theorem. (BEWZ '20) There exist $c_{j}>0$ such that for all $k \in \mathbb{C}$,

$$
\left|E_{j}(\alpha, \mathrm{k})\right| \leq c_{0} e^{-c_{1} \alpha}, \quad j \leq c_{2} \alpha, \quad \alpha>0 .
$$

In practice, $c_{1}=1$ and c_{2} can be taken arbitrarily large

Exponential squeezing of bands

Theorem. (BEWZ '20) There exist $c_{j}>0$ such that for all $k \in \mathbb{C}$,

$$
\left|E_{j}(\alpha, \mathrm{k})\right| \leq c_{0} e^{-c_{1} \alpha}, \quad j \leq c_{2} \alpha, \quad \alpha>0
$$

In practice, $c_{1}=1$ and c_{2} can be taken arbitrarily large
Consequence of general results about quasimodes for semiclassical ($h=1 / \alpha$) non-normal operators:

Exponential squeezing of bands

Theorem. (BEWZ '20) There exist $c_{j}>0$ such that for all $k \in \mathbb{C}$,

$$
\left|E_{j}(\alpha, \mathrm{k})\right| \leq c_{0} e^{-c_{1} \alpha}, \quad j \leq c_{2} \alpha, \quad \alpha>0 .
$$

In practice, $c_{1}=1$ and c_{2} can be taken arbitrarily large
Consequence of general results about quasimodes for semiclassical ($h=1 / \alpha$) non-normal operators: Hörmander '69 $(\{q, \bar{q}\} \neq 0)$,

Exponential squeezing of bands

Theorem. (BEWZ '20) There exist $c_{j}>0$ such that for all $k \in \mathbb{C}$,

$$
\left|E_{j}(\alpha, \mathrm{k})\right| \leq c_{0} e^{-c_{1} \alpha}, \quad j \leq c_{2} \alpha, \quad \alpha>0 .
$$

In practice, $c_{1}=1$ and c_{2} can be taken arbitrarily large
Consequence of general results about quasimodes for semiclassical ($h=1 / \alpha$) non-normal operators: Hörmander '69 $(\{q, \bar{q}\} \neq 0)$, Sato-Kawai-Kashiwara '73 ... Dencker-Sjöstrand-Z '04
$\operatorname{Spec}_{L^{2}(\mathbb{C} / \Gamma)} D(\alpha)= \begin{cases}\Gamma^{*} & \alpha \notin \mathcal{A} \\ \mathbb{C} & \alpha \in \mathcal{A},\end{cases}$

$$
\operatorname{Spec}_{L^{2}(\mathbb{C} / \Gamma)} D(\alpha)= \begin{cases}\Gamma^{*} & \alpha \notin \mathcal{A} \\ \mathbb{C} & \alpha \in \mathcal{A}\end{cases}
$$

flat band at $\alpha \Longleftrightarrow \operatorname{Spec}_{L^{2}(\mathbb{C} / \Gamma)} D(\alpha)=\mathbb{C} \Longleftrightarrow 1 / \alpha \in \operatorname{Spec}\left(T_{\mathrm{k}}\right)$

$$
\operatorname{Spec}_{L^{2}(\mathbb{C} / \Gamma)} D(\alpha)= \begin{cases}\Gamma^{*} & \alpha \notin \mathcal{A} \\ \mathbb{C} & \alpha \in \mathcal{A}\end{cases}
$$

flat band at $\alpha \Longleftrightarrow \operatorname{Spec}_{L^{2}(\mathbb{C} / \Gamma)} D(\alpha)=\mathbb{C} \Longleftrightarrow 1 / \alpha \in \operatorname{Spec}\left(T_{\mathrm{k}}\right)$

We did not prove that $\mathcal{A} \cap \mathbb{R}_{+} \neq \emptyset$.

$$
\operatorname{Spec}_{L^{2}(\mathbb{C} / \Gamma)} D(\alpha)= \begin{cases}\Gamma^{*} & \alpha \notin \mathcal{A} \\ \mathbb{C} & \alpha \in \mathcal{A}\end{cases}
$$

flat band at $\alpha \Longleftrightarrow \operatorname{Spec}_{L^{2}(\mathbb{C} / \Gamma)} D(\alpha)=\mathbb{C} \Longleftrightarrow 1 / \alpha \in \operatorname{Spec}\left(T_{\mathrm{k}}\right)$

We did not prove that $\mathcal{A} \cap \mathbb{R}_{+} \neq \emptyset$. However, $\mathcal{A} \neq \emptyset$ BEWZ '21:

$$
\operatorname{Spec}_{L^{2}(\mathbb{C} / \Gamma)} D(\alpha)= \begin{cases}\Gamma^{*} & \alpha \notin \mathcal{A} \\ \mathbb{C} & \alpha \in \mathcal{A}\end{cases}
$$

flat band at $\alpha \Longleftrightarrow \operatorname{Spec}_{L^{2}(\mathbb{C} / \Gamma)} D(\alpha)=\mathbb{C} \Longleftrightarrow 1 / \alpha \in \operatorname{Spec}\left(T_{\mathrm{k}}\right)$

We did not prove that $\mathcal{A} \cap \mathbb{R}_{+} \neq \emptyset$. However, $\mathcal{A} \neq \emptyset$ BEWZ '21:

$$
\sum_{\alpha \in \mathcal{A}} \alpha^{-4}=\operatorname{tr} T_{\mathrm{k}}^{4}=\frac{72 \pi}{\sqrt{3}}
$$

$$
\operatorname{Spec}_{L^{2}(\mathbb{C} / \Gamma)} D(\alpha)= \begin{cases}\Gamma^{*} & \alpha \notin \mathcal{A} \\ \mathbb{C} & \alpha \in \mathcal{A}\end{cases}
$$

flat band at $\alpha \Longleftrightarrow \operatorname{Spec}_{L^{2}(\mathbb{C} / \Gamma)} D(\alpha)=\mathbb{C} \Longleftrightarrow 1 / \alpha \in \operatorname{Spec}\left(T_{\mathrm{k}}\right)$

We did not prove that $\mathcal{A} \cap \mathbb{R}_{+} \neq \emptyset$. However, $\mathcal{A} \neq \emptyset$ BEWZ '21:

$$
\sum_{\alpha \in \mathcal{A}} \alpha^{-4}=\operatorname{tr} T_{\mathrm{k}}^{4}=\frac{72 \pi}{\sqrt{3}}, \quad \text { combinatorics }+\wp \text { function }
$$

$$
\operatorname{Spec}_{L^{2}(\mathbb{C} / \Gamma)} D(\alpha)= \begin{cases}\Gamma^{*} & \alpha \notin \mathcal{A} \\ \mathbb{C} & \alpha \in \mathcal{A}\end{cases}
$$

flat band at $\alpha \Longleftrightarrow \operatorname{Spec}_{L^{2}(\mathbb{C} / \Gamma)} D(\alpha)=\mathbb{C} \Longleftrightarrow 1 / \alpha \in \operatorname{Spec}\left(T_{\mathrm{k}}\right)$

We did not prove that $\mathcal{A} \cap \mathbb{R}_{+} \neq \emptyset$. However, $\mathcal{A} \neq \emptyset$ BEWZ '21:

$$
\sum_{\alpha \in \mathcal{A}} \alpha^{-4}=\operatorname{tr} T_{\mathrm{k}}^{4}=\frac{72 \pi}{\sqrt{3}}, \quad \text { combinatorics }+\wp \text { function }
$$

$\operatorname{Spec}_{L^{2}(\mathbb{C} / \Gamma)} D(\alpha)= \begin{cases}\Gamma^{*} & \alpha \notin \mathcal{A} \\ \mathbb{C} & \alpha \in \mathcal{A},\end{cases}$

$$
\operatorname{Spec}_{L^{2}(\mathbb{C} / \Gamma)} D(\alpha)= \begin{cases}\Gamma^{*} & \alpha \notin \mathcal{A} \\ \mathbb{C} & \alpha \in \mathcal{A}\end{cases}
$$

Theorem (BHZ '22) For all $p>1$

$$
\sum_{\alpha \in \mathcal{A}} \alpha^{-2 p} \in \frac{\pi}{\sqrt{3}} \mathbb{Q}
$$

$$
\operatorname{Spec}_{L^{2}(\mathbb{C} / \Gamma)} D(\alpha)= \begin{cases}\Gamma^{*} & \alpha \notin \mathcal{A} \\ \mathbb{C} & \alpha \in \mathcal{A},\end{cases}
$$

Theorem (BHZ '22) For all $p>1$

$$
\sum_{\alpha \in \mathcal{A}} \alpha^{-2 p} \in \frac{\pi}{\sqrt{3}} \mathbb{Q} \quad \text { and as a consequence }|\mathcal{A}|=\infty .
$$

$$
\operatorname{Spec}_{L^{2}(\mathbb{C} / \Gamma)} D(\alpha)= \begin{cases}\Gamma^{*} & \alpha \notin \mathcal{A} \\ \mathbb{C} & \alpha \in \mathcal{A},\end{cases}
$$

Theorem (BHZ '22) For all $p>1$

$$
\sum_{\alpha \in \mathcal{A}} \alpha^{-2 p} \in \frac{\pi}{\sqrt{3}} \mathbb{Q} \text { and as a consequence }|\mathcal{A}|=\infty
$$

$$
\sigma_{p}:=\frac{1}{18} \operatorname{tr} T_{\mathrm{k}}^{2 p}, \quad F_{\mathrm{k}}(\alpha):=\operatorname{det}_{2}\left(I-\alpha^{2} T_{\mathrm{k}}^{2}\right)
$$

p	$\sqrt{3} \sigma_{p} / 3^{p} \pi$
2	$4 / 9$
3	$32 / 63$
4	$40 / 81$

p	$\sqrt{3} \sigma_{p} / 3^{p} \pi$
5	$9560 / 20007$
6	$245120 / 527877$
7	$1957475168 / 4337177481$

$$
\operatorname{Spec}_{L^{2}(\mathbb{C} / \Gamma)} D(\alpha)= \begin{cases}\Gamma^{*} & \alpha \notin \mathcal{A} \\ \mathbb{C} & \alpha \in \mathcal{A},\end{cases}
$$

Theorem (BHZ '22) For all $p>1$

$$
\sum_{\alpha \in \mathcal{A}} \alpha^{-2 p} \in \frac{\pi}{\sqrt{3}}^{\mathbb{Q}} \quad \text { and as a consequence }|\mathcal{A}|=\infty
$$

$$
\sigma_{p}:=\frac{1}{18} \operatorname{tr} T_{\mathrm{k}}^{2 p}, \quad F_{\mathrm{k}}(\alpha):=\operatorname{det}_{2}\left(I-\alpha^{2} T_{\mathrm{k}}^{2}\right)
$$

p	$\sqrt{3} \sigma_{p} / 3^{p} \pi$
2	$4 / 9$
3	$32 / 63$
4	$40 / 81$

p	$\sqrt{3} \sigma_{p} / 3^{p} \pi$
5	$9560 / 20007$
6	$245120 / 527877$
7	$1957475168 / 4337177481$

Theorem (BHZ '22) The largest real eigenvalue of $T_{k}, 1 / \alpha_{*}$, is simple and $\alpha_{*} \in(0.583,0.589)$.

Spectral characterization allows accurate computation of more α 's:

Spectral characterization allows accurate computation of more α 's:

k	α_{k}	$\alpha_{k}-\alpha_{k-1}$
1	0.58566355838955	
2	2.2211821738201	1.6355
3	3.7514055099052	1.5302
4	5.276497782985	1.5251
5	6.79478505720	1.5183
6	8.3129991933	1.5182
7	9.829066969	1.5161
8	11.34534068	1.5163
9	12.8606086	1.5153
10	14.376072	1.5155
11	15.89096	1.5149
12	17.4060	1.5150
13	18.920	1.5147

Spectral characterization allows accurate computation of more α 's:

k	α_{k}	$\alpha_{k}-\alpha_{k-1}$
1	0.58566355838955	
2	2.2211821738201	1.6355
3	3.7514055099052	1.5302
4	5.276497782985	1.5251
5	6.79478505720	1.5183
6	8.3129991933	1.5182
7	9.829066969	1.5161
8	11.34534068	1.5163
9	12.8606086	1.5153
10	14.376072	1.5155
11	15.89096	1.5149
12	17.4060	1.5150
13	18.920	1.5147

Tarnopolsky et al '19 observed that $\alpha_{k}-\alpha_{k-1} \simeq \frac{3}{2}(0<k \leq 8)$

Spectral characterization allows accurate computation of more α 's:

k	α_{k}	$\alpha_{k}-\alpha_{k-1}$
1	0.58566355838955	
2	2.2211821738201	1.6355
3	3.7514055099052	1.5302
4	5.276497782985	1.5251
5	6.79478505720	1.5183
6	8.3129991933	1.5182
7	9.829066969	1.5161
8	11.34534068	1.5163
9	12.8606086	1.5153
10	14.376072	1.5155
11	15.89096	1.5149
12	17.4060	1.5150
13	18.920	1.5147

Tarnopolsky et al '19 observed that $\alpha_{k}-\alpha_{k-1} \simeq \frac{3}{2}(0<k \leq 8)$
Ren-Gao-MacDonald-Niu '20 "exact" WKB:

$$
\alpha_{k}-\alpha_{k-1} \simeq 1.47
$$

Spectral characterization allows accurate computation of more α 's:

k	α_{k}	$\alpha_{k}-\alpha_{k-1}$
1	0.58566355838955	
2	2.2211821738201	1.6355
3	3.7514055099052	1.5302
4	5.276497782985	1.5251
5	6.79478505720	1.5183
6	8.3129991933	1.5182
7	9.829066969	1.5161
8	11.34534068	1.5163
9	12.8606086	1.5153
10	14.376072	1.5155
11	15.89096	1.5149
12	17.4060	1.5150
13	18.920	1.5147

Tarnopolsky et al '19 observed that $\alpha_{k}-\alpha_{k-1} \simeq \frac{3}{2}(0<k \leq 8)$
Ren-Gao-MacDonald-Niu '20 "exact" WKB:

$$
\alpha_{k}-\alpha_{k-1} \simeq 1.47 \quad ? ? ?
$$

Works for general potentials with $\mathbb{Z}_{3}^{2} \rtimes \mathbb{Z}_{3}$ symmetries

$$
U_{\theta}(z):=\sum_{k=0}^{2} \omega^{k}\left(\cos ^{2} \theta e^{\frac{1}{2}\left(\bar{z} \omega^{k}-z \bar{\omega}^{k}\right)}+\sin ^{2} \theta e^{\bar{z} \omega^{k}-z \bar{\omega}^{k}}\right)
$$

Works for general potentials with $\mathbb{Z}_{3}^{2} \rtimes \mathbb{Z}_{3}$ symmetries

$$
U_{\theta}(z):=\sum_{k=0}^{2} \omega^{k}\left(\cos ^{2} \theta e^{\frac{1}{2}\left(\bar{z} \omega^{k}-z \bar{\omega}^{k}\right)}+\sin ^{2} \theta e^{\bar{z} \omega^{k}-z \bar{\omega}^{k}}\right)
$$

Flat bands from theta functions

Tarnopolsky et al '19: consider $\mathbf{u} \in L_{\rho_{1,0}}^{2}\left(\mathbb{C} / \Gamma ; \mathbb{C}^{2}\right), D(\alpha) \mathbf{u}=0$

Flat bands from theta functions

Tarnopolsky et al '19: consider $\mathbf{u} \in L_{\rho_{1,0}}^{2}\left(\mathbb{C} / \Gamma ; \mathbb{C}^{2}\right), D(\alpha) \mathbf{u}=0$
$\mathrm{u}_{k}(z):=e^{\frac{i}{2}(z \overline{\mathrm{k}}+\bar{z} \mathrm{k})} f_{\mathrm{k}}(z) \mathrm{u}(z), \quad z \mapsto e^{\frac{i}{2}(z \overline{\mathrm{k}}+\bar{z} \mathrm{k})} f_{\mathrm{k}}(z)$ periodic, $\partial_{\bar{z}} f_{\mathrm{k}}=0$

$$
(D(\alpha)-\mathrm{k}) \mathrm{u}_{k}(z)=0
$$

Problem: f_{k} with these properties will have poles

Flat bands from theta functions

Tarnopolsky et al '19: consider $\mathbf{u} \in L_{\rho_{1,0}}^{2}\left(\mathbb{C} / \Gamma ; \mathbb{C}^{2}\right), D(\alpha) \mathbf{u}=0$
$\mathrm{u}_{k}(z):=e^{\frac{i}{2}(z \overline{\mathrm{k}}+\bar{z} \mathrm{k})} f_{\mathrm{k}}(z) \mathrm{u}(z), \quad z \mapsto e^{\frac{i}{2}(z \overline{\mathrm{k}}+\bar{z} \mathrm{k})} f_{\mathrm{k}}(z)$ periodic, $\partial_{\bar{z}} f_{\mathrm{k}}=0$

$$
(D(\alpha)-\mathrm{k}) \mathrm{u}_{k}(z)=0
$$

Problem: f_{k} with these properties will have poles
Solution: Look for α 's at which u has a zero!

Flat bands from theta functions

Tarnopolsky et al '19: consider $\mathbf{u} \in L_{\rho_{1,0}}^{2}\left(\mathbb{C} / \Gamma ; \mathbb{C}^{2}\right), D(\alpha) \mathbf{u}=0$
$\mathrm{u}_{k}(z):=e^{\frac{i}{2}(z \overline{\mathrm{k}}+\bar{z} \mathrm{k})} f_{\mathrm{k}}(z) \mathrm{u}(z), \quad z \mapsto e^{\frac{i}{2}(z \overline{\mathrm{k}}+\bar{z} \mathrm{k})} f_{\mathrm{k}}(z)$ periodic, $\partial_{\bar{z}} f_{\mathrm{k}}=0$

$$
(D(\alpha)-\mathrm{k}) \mathrm{u}_{k}(z)=0
$$

Problem: f_{k} with these properties will have poles
Solution: Look for α 's at which u has a zero!

Flat bands from theta functions
Tarnopolsky et al '19: consider $\mathrm{u} \in L_{\rho_{1,0}}^{2}\left(\mathbb{C} / \Gamma ; \mathbb{C}^{2}\right), D(\alpha) \mathrm{u}=0$
$\mathrm{u}_{k}(z):=e^{\frac{i}{2}(z \overline{\mathrm{k}}+\bar{z} \mathrm{k})} f_{\mathrm{k}}(z) \mathrm{u}(z), \quad z \mapsto e^{\frac{i}{2}(z \overline{\mathrm{k}}+\bar{z} \mathrm{k})} f_{\mathrm{k}}(z)$ periodic, $\partial_{\bar{z}} f_{\mathrm{k}}=0$

$$
(D(\alpha)-\mathrm{k}) \mathrm{u}_{k}(z)=0
$$

Problem: f_{k} with these properties will have poles
Solution: Look for α 's at which u has a zero!

$$
\mathrm{u}\left(\alpha, z_{S}\right)=0, \quad \alpha \in \mathcal{A}, \quad z_{S}=\frac{4 \sqrt{3}}{9} \pi, \quad z_{S} \equiv \omega z_{S} \quad \bmod \Gamma / 3
$$

Flat bands from theta functions
Tarnopolsky et al '19: consider $\mathrm{u} \in L_{\rho_{1,0}}^{2}\left(\mathbb{C} / \Gamma ; \mathbb{C}^{2}\right), D(\alpha) \mathbf{u}=0$
$\mathrm{u}_{k}(z):=e^{\frac{i}{2}(z \overline{\mathrm{k}}+\bar{z} \mathrm{k})} f_{\mathrm{k}}(z) \mathrm{u}(z), \quad z \mapsto e^{\frac{i}{2}(z \overline{\mathrm{k}}+\bar{z} \mathrm{k})} f_{\mathrm{k}}(z)$ periodic, $\partial_{\bar{z}} f_{\mathrm{k}}=0$

$$
(D(\alpha)-\mathrm{k}) \mathrm{u}_{k}(z)=0
$$

Problem: f_{k} with these properties will have poles
Solution: Look for α 's at which u has a zero!

$$
\begin{aligned}
& \mathrm{u}\left(\alpha, z_{S}\right)=0, \quad \alpha \in \mathcal{A}, \quad z_{S}=\frac{4 \sqrt{3}}{9} \pi, \quad z_{S} \equiv \omega z_{S} \quad \bmod \Gamma / 3 \\
& e^{\frac{i}{2}(z \overline{\mathrm{k}}+\bar{z} \mathrm{k})} f_{k}(z)=e^{2 \pi(\zeta-\bar{\zeta}) k / \sqrt{3}} \frac{\theta_{1}(\zeta+k \mid \omega)}{\theta_{1}(\zeta \mid \omega)}, \quad z=\frac{4}{3} \pi i \omega \zeta
\end{aligned}
$$

Flat bands from theta functions
Tarnopolsky et al '19: consider $\mathrm{u} \in L_{\rho_{1,0}}^{2}\left(\mathbb{C} / \Gamma ; \mathbb{C}^{2}\right), D(\alpha) \mathbf{u}=0$
$\mathrm{u}_{k}(z):=e^{\frac{i}{2}(z \overline{\mathrm{k}}+\bar{z} \mathrm{k})} f_{\mathrm{k}}(z) \mathrm{u}(z), \quad z \mapsto e^{\frac{i}{2}(z \overline{\mathrm{k}}+\bar{z} \mathrm{k})} f_{\mathrm{k}}(z)$ periodic, $\partial_{\bar{z}} f_{\mathrm{k}}=0$

$$
(D(\alpha)-\mathrm{k}) \mathrm{u}_{k}(z)=0
$$

Problem: f_{k} with these properties will have poles
Solution: Look for α 's at which u has a zero!

$$
\begin{aligned}
& \mathrm{u}\left(\alpha, z_{S}\right)=0, \quad \alpha \in \mathcal{A}, \quad z_{S}=\frac{4 \sqrt{3}}{9} \pi, \quad z_{S} \equiv \omega z_{S} \quad \bmod \Gamma / 3 \\
& e^{\frac{i}{2}(z \overline{\mathrm{k}}+\bar{z} \mathrm{k})} f_{k}(z)=e^{2 \pi(\zeta-\bar{\zeta}) k / \sqrt{3}} \frac{\theta_{1}(\zeta+k \mid \omega)}{\theta_{1}(\zeta \mid \omega)}, \quad z=\frac{4}{3} \pi i \omega \zeta
\end{aligned}
$$

Similar argument in Dubrovin-Novikov '80

Flat bands from theta functions
Tarnopolsky et al '19: consider $\mathbf{u} \in L_{\rho_{1,0}}^{2}\left(\mathbb{C} / \Gamma ; \mathbb{C}^{2}\right), D(\alpha) \mathbf{u}=0$
$\mathrm{u}_{k}(z):=e^{\frac{i}{2}(z \overline{\mathrm{k}}+\bar{z} \mathrm{k})} f_{\mathrm{k}}(z) \mathrm{u}(z), \quad z \mapsto e^{\frac{i}{2}(z \overline{\mathrm{k}}+\bar{z} \mathrm{k})} f_{\mathrm{k}}(z)$ periodic, $\partial_{\bar{z}} f_{\mathrm{k}}=0$

$$
(D(\alpha)-\mathrm{k}) \mathrm{u}_{k}(z)=0
$$

Problem: f_{k} with these properties will have poles
Solution: Look for α 's at which u has a zero!

$$
\begin{aligned}
& \mathrm{u}\left(\alpha, z_{S}\right)=0, \quad \alpha \in \mathcal{A}, \quad z_{S}=\frac{4 \sqrt{3}}{9} \pi, \quad z_{S} \equiv \omega z_{S} \quad \bmod \Gamma / 3 \\
& e^{\frac{i}{2}(z \overline{\mathrm{k}}+\bar{z} \mathrm{k})} f_{k}(z)=e^{2 \pi(\zeta-\bar{\zeta}) k / \sqrt{3}} \frac{\theta_{1}(\zeta+k \mid \omega)}{\theta_{1}(\zeta \mid \omega)}, \quad z=\frac{4}{3} \pi i \omega \zeta
\end{aligned}
$$

Similar argument in Dubrovin-Novikov '80
Theorem (BHZ '22) $\alpha \in \mathcal{A}$ simple $\Rightarrow z_{S}$ is the only zero of u.

New direction: in-plane magnetic field

New direction: in-plane magnetic field
Kwan et al '20, Qin-MacDonald '21:

New direction: in-plane magnetic field
Kwan et al '20, Qin-MacDonald '21:

$$
D_{B}(\alpha):=D(\alpha)+\mathcal{B}, \quad \mathcal{B}:=\left(\begin{array}{cc}
B & 0 \\
0 & -B
\end{array}\right), \quad B=B_{0} e^{2 \pi i \theta} .
$$

New direction: in-plane magnetic field
Kwan et al '20, Qin-MacDonald '21:

$$
D_{B}(\alpha):=D(\alpha)+\mathcal{B}, \quad \mathcal{B}:=\left(\begin{array}{cc}
B & 0 \\
0 & -B
\end{array}\right), \quad B=B_{0} e^{2 \pi i \theta}
$$

How do the Dirac points move as α and θ change?

New direction: in-plane magnetic field

Kwan et al '20, Qin-MacDonald '21:

$$
D_{B}(\alpha):=D(\alpha)+\mathcal{B}, \quad \mathcal{B}:=\left(\begin{array}{cc}
B & 0 \\
0 & -B
\end{array}\right), \quad B=B_{0} e^{2 \pi i \theta} .
$$

How do the Dirac points move as α and θ change?
Theorem (BZ '23) If $\underline{\alpha} \in \mathcal{A}$ is simple (+ one more condition) and $0<B \ll 1$ then then there are no flat bands and for $\alpha \sim \underline{\alpha}$ Dirac points (eigenvalues of $D_{B}(\alpha)$) are close to the Γ point.

New direction: in-plane magnetic field

Kwan et al '20, Qin-MacDonald '21:

$$
D_{B}(\alpha):=D(\alpha)+\mathcal{B}, \quad \mathcal{B}:=\left(\begin{array}{cc}
B & 0 \\
0 & -B
\end{array}\right), \quad B=B_{0} e^{2 \pi i \theta} .
$$

How do the Dirac points move as α and θ change?
Theorem (BZ '23) If $\underline{\alpha} \in \mathcal{A}$ is simple (+ one more condition) and $0<B \ll 1$ then then there are no flat bands and for $\alpha \sim \underline{\alpha}$ Dirac points (eigenvalues of $D_{B}(\alpha)$) are close to the Γ point.

New direction: in-plane magnetic field
Kwan et al '20, Qin-MacDonald '21:

$$
D_{B}(\alpha):=D(\alpha)+\mathcal{B}, \quad \mathcal{B}:=\left(\begin{array}{cc}
B & 0 \\
0 & -B
\end{array}\right), \quad B=B_{0} e^{2 \pi i \theta}
$$

Theorem (BZ '23) If $\underline{\alpha} \in \mathcal{A} \cap \mathbb{R}$ is simple and $0<B_{0} \ll 1$ then

$$
\begin{aligned}
& \mathscr{R}_{\ell} \backslash \bigcup_{k \neq K, K} D(k, \epsilon) \subset \bigcup_{\underline{\alpha}-\delta<\alpha<\underline{\alpha}+\delta} \operatorname{Spec}_{L_{0}^{2}}\left(D_{\omega^{\ell} B}(\alpha)\right) \subset \mathscr{R}_{\ell}, \\
& \mathscr{R}_{\ell}:=\omega^{\ell}\left(2 \pi(i \mathbb{R}+\mathbb{Z}) \cup \frac{2 \pi}{\sqrt{3}}(\mathbb{R}+i \mathbb{Z})\right)
\end{aligned}
$$

New direction: in-plane magnetic field Kwan et al '20, Qin-MacDonald '21:

$$
D_{B}(\alpha):=D(\alpha)+\mathcal{B}, \quad \mathcal{B}:=\left(\begin{array}{cc}
B & 0 \\
0 & -B
\end{array}\right), \quad B=B_{0} e^{2 \pi i \theta}
$$

Theorem (BZ '23) If $\underline{\alpha} \in \mathcal{A} \cap \mathbb{R}$ is simple and $0<B_{0} \ll 1$ then

$$
\begin{aligned}
& \mathscr{R}_{\ell} \backslash \bigcup_{k \neq K, K} D(k, \epsilon) \subset \bigcup_{\underline{\alpha}-\delta<\alpha<\underline{\alpha}+\delta} \operatorname{Spec}_{L_{0}^{2}}\left(D_{\omega^{\ell} B}(\alpha)\right) \subset \mathscr{R}_{\ell}, \\
& \mathscr{R}_{\ell}:=\omega^{\ell}\left(2 \pi(i \mathbb{R}+\mathbb{Z}) \cup \frac{2 \pi}{\sqrt{3}}(\mathbb{R}+i \mathbb{Z})\right) \quad \ell=1 \text { in the figure }
\end{aligned}
$$

Fine structure of $u \in \operatorname{ker}_{H_{0}^{1}} D(\alpha)$

Fine structure of $u \in \operatorname{ker}_{H_{0}^{1}} D(\alpha) \quad\left(\operatorname{dim} \operatorname{ker}_{H_{0}^{1}} D(\alpha)=1, \quad \alpha \notin \mathcal{A}\right)$

Fine structure of $u \in$ kar... $\cap(n) \quad($ dim kor.,1 $D(\alpha)=1, \quad \alpha \notin \mathcal{A})$

Countur pivis ui $<\mapsto \operatorname{lug}|u(\alpha, z)|$

Fine structure of $u \in$ kar... $\cap(n) \quad($ dim kor.,1 $D(\alpha)=1, \quad \alpha \notin \mathcal{A})$

A contour plot of $|\{q, \bar{q}\}|, q=(2 \bar{\zeta})^{2}-U(z) U(-z)$

Fine structure of $u \in$ kar... $\cap(n) \quad($ dim kor.,1 $D(\alpha)=1, \quad \alpha \notin \mathcal{A})$

A contour plot of $|\{q, \bar{q}\}|, q=(2 \bar{\zeta})^{2}-U(z) U(-z)$
Numerically, $|\mathrm{u}(\alpha, z)| \leq e^{-c_{0} \alpha}$ near the set where $|\{q, \bar{q}\}|=0$!

Fine structure of eigenfunctions
Numerically, $|\mathbf{u}(\alpha, z)| \leq e^{-c_{0} \alpha}$ near the set where $|\{q, \bar{q}\}|=0$!

Fine structure of eigenfunctions
Numerically, $|\mathbf{u}(\alpha, z)| \leq e^{-c_{0} \alpha}$ near the set where $|\{q, \bar{q}\}|=0$!

Theorem (HZ '22) Any point on an open edge of the hexagon has an open neighbourhood $\Omega \subset \mathbb{R}^{2}$ such that

$$
|u(\alpha, z)| \leq e^{-c_{\Omega} \alpha}, \quad z \in \Omega, \quad c_{\Omega}>0 .
$$

Theorem (HZ '22) Any point on the open edges of the hexagon has an open neighbourhood $\Omega \subset \mathbb{R}^{2}$ such that

$$
|u(\alpha, z)| \leq e^{-c_{\Omega} / h}, \quad z \in \Omega, \quad c_{\Omega}>0, \quad h=\alpha^{-1}
$$

Theorem (HZ '22) Any point on the open edges of the hexagon has an open neighbourhood $\Omega \subset \mathbb{R}^{2}$ such that

$$
|u(\alpha, z)| \leq e^{-c_{\Omega} / h}, \quad z \in \Omega, \quad c_{\Omega}>0, \quad h=\alpha^{-1}
$$

Reduction to the principally scalar case: $q=(2 \bar{\zeta})^{2}-U(z) U(-z)$:
$\left(\begin{array}{cc}2 h D_{\bar{z}} & U(z) \\ \alpha U(-z) & 2 h D_{\bar{z}}\end{array}\right) \mathrm{u}=0 \Longrightarrow\left(\left(2 h D_{\bar{z}}\right)^{2}-U(z) U(-z)+h R\right) \mathrm{u}=0$

Theorem (HZ '22) Any point on the open edges of the hexagon has an open neighbourhood $\Omega \subset \mathbb{R}^{2}$ such that

$$
|u(\alpha, z)| \leq e^{-c_{\Omega} / h}, \quad z \in \Omega, \quad c_{\Omega}>0, \quad h=\alpha^{-1}
$$

Reduction to the principally scalar case: $q=(2 \bar{\zeta})^{2}-U(z) U(-z)$:
$\left(\begin{array}{cc}2 h D_{\bar{z}} & U(z) \\ \alpha U(-z) & 2 h D_{\bar{z}}\end{array}\right) \mathrm{u}=0 \Longrightarrow\left(\left(2 h D_{\bar{z}}\right)^{2}-U(z) U(-z)+h R\right) \mathrm{u}=0$
This allows an adaptation of (to some, v esoteric) hypoellipticity methods of Kashiwara, Sjöstrand, Trepreau, Himonas... (the 80's):

Theorem (HZ '22) Any point on the open edges of the hexagon has an open neighbourhood $\Omega \subset \mathbb{R}^{2}$ such that

$$
|u(\alpha, z)| \leq e^{-c_{\Omega} / h}, \quad z \in \Omega, \quad c_{\Omega}>0, \quad h=\alpha^{-1}
$$

Reduction to the principally scalar case: $q=(2 \bar{\zeta})^{2}-U(z) U(-z)$:
$\left(\begin{array}{cc}2 h D_{\bar{z}} & U(z) \\ \alpha U(-z) & 2 h D_{\bar{z}}\end{array}\right) \mathrm{u}=0 \Longrightarrow\left(\left(2 h D_{\bar{z}}\right)^{2}-U(z) U(-z)+h R\right) \mathrm{u}=0$
This allows an adaptation of (to some, v esoteric) hypoellipticity methods of Kashiwara, Sjöstrand, Trepreau, Himonas... (the 80's):

$$
\left.\{q, \bar{q}\}\right|_{\pi^{-1}\left(z_{0}\right) \cap q^{-1}(0)}=0, \quad\left\{q,\left.\{q, \bar{q}\}\right|_{\pi^{-1}\left(z_{0}\right) \cap q^{-1}(0)} \neq 0\right.
$$

implies the conclusion of the theorem for $\Omega=\operatorname{neigh}_{\mathbb{C}}\left(\mathrm{z}_{0}\right)$.

Theorem (HZ '22) Any point on the open edges of the hexagon has an open neighbourhood $\Omega \subset \mathbb{R}^{2}$ such that

$$
|u(\alpha, z)| \leq e^{-c_{\Omega} / h}, \quad z \in \Omega, \quad c_{\Omega}>0, \quad h=\alpha^{-1}
$$

Reduction to the principally scalar case: $q=(2 \bar{\zeta})^{2}-U(z) U(-z)$:
$\left(\begin{array}{cc}2 h D_{\bar{z}} & U(z) \\ \alpha U(-z) & 2 h D_{\bar{z}}\end{array}\right) \mathrm{u}=0 \Longrightarrow\left(\left(2 h D_{\bar{z}}\right)^{2}-U(z) U(-z)+h R\right) \mathrm{u}=0$
This allows an adaptation of (to some, v esoteric) hypoellipticity methods of Kashiwara, Sjöstrand, Trepreau, Himonas... (the 80's):

$$
\left.\{q, \bar{q}\}\right|_{\pi^{-1}\left(z_{0}\right) \cap q^{-1}(0)}=0, \quad\left\{q,\left.\{q, \bar{q}\}\right|_{\pi^{-1}\left(z_{0}\right) \cap q^{-1}(0)} \neq 0\right.
$$

implies the conclusion of the theorem for $\Omega=\operatorname{neigh}_{\mathbb{C}}\left(\mathrm{z}_{0}\right)$.
At the corners, it is trickier and does not fit into existing theories.

Theorem (HZ '22) Any point on the open edges of the hexagon has an open neighbourhood $\Omega \subset \mathbb{R}^{2}$ such that

$$
|u(\alpha, z)| \leq e^{-c_{\Omega} / h}, \quad z \in \Omega, \quad c_{\Omega}>0, \quad h=\alpha^{-1}
$$

Reduction to the principally scalar case: $q=(2 \bar{\zeta})^{2}-U(z) U(-z)$:
$\left(\begin{array}{cc}2 h D_{\bar{z}} & U(z) \\ \alpha U(-z) & 2 h D_{\bar{z}}\end{array}\right) \mathrm{u}=0 \Longrightarrow\left(\left(2 h D_{\bar{z}}\right)^{2}-U(z) U(-z)+h R\right) \mathrm{u}=0$
This allows an adaptation of (to some, v esoteric) hypoellipticity methods of Kashiwara, Sjöstrand, Trepreau, Himonas... (the 80's):

$$
\left.\{q, \bar{q}\}\right|_{\pi^{-1}\left(z_{0}\right) \cap q^{-1}(0)}=0, \quad\left\{q,\left.\{q, \bar{q}\}\right|_{\pi^{-1}\left(z_{0}\right) \cap q^{-1}(0)} \neq 0\right.
$$

implies the conclusion of the theorem for $\Omega=\operatorname{neigh}_{\mathbb{C}}\left(\mathrm{z}_{0}\right)$.
At the corners, it is trickier and does not fit into existing theories. Near the center of the hexagon q is not of principal type.

Another numerical observation (BHZ): Curvature

$\mathbb{C} / 3 \Gamma^{*} \ni \mathrm{k} \rightarrow u_{\mathrm{k}} \in L_{0}^{2}(\mathbb{C} / \Gamma) \mathrm{s}$ holomorphic (Ledwith et al '21) and defines a natural line bundle

Another numerical observation (BHZ): Curvature
$\mathbb{C} / 3 \Gamma^{*} \ni \mathrm{k} \rightarrow u_{\mathrm{k}} \in L_{0}^{2}(\mathbb{C} / \Gamma) \mathrm{s}$ holomorphic (Ledwith et al '21) and defines a natural line bundle
Chern connection: $\eta:=\partial_{\mathrm{k}} \log \left\|u_{\mathrm{k}}\right\|^{2}$

Another numerical observation (BHZ): Curvature
$\mathbb{C} / 3 \Gamma^{*} \ni \mathrm{k} \rightarrow u_{\mathrm{k}} \in L_{0}^{2}(\mathbb{C} / \Gamma) \mathrm{s}$ holomorphic (Ledwith et al '21) and defines a natural line bundle
Chern connection: $\eta:=\partial_{\mathrm{k}} \log \left\|u_{\mathrm{k}}\right\|^{2}=\left\|\mathrm{u}_{\mathrm{k}}\right\|^{-2}\left\langle\partial_{\mathrm{k}} \mathrm{u}_{\mathrm{k}}, \mathrm{u}_{\mathrm{k}}\right\rangle d \mathrm{k}$

Another numerical observation (BHZ): Curvature
$\mathbb{C} / 3 \Gamma^{*} \ni \mathrm{k} \rightarrow u_{\mathrm{k}} \in L_{0}^{2}(\mathbb{C} / \Gamma) \mathrm{s}$ holomorphic (Ledwith et al '21) and defines a natural line bundle
Chern connection: $\eta:=\partial_{\mathrm{k}} \log \left\|u_{\mathrm{k}}\right\|^{2}=\left\|u_{\mathrm{k}}\right\|^{-2}\left\langle\partial_{\mathrm{k}} \mathrm{u}_{\mathrm{k}}, \mathrm{u}_{\mathrm{k}}\right\rangle d \mathrm{k}$
Curvature: $\Omega=d \eta=\bar{\partial}_{\mathrm{k}} \partial_{\mathrm{k}} \log \left\|u_{\mathrm{k}}\right\|^{2}$

Another numerical observation (BHZ): Curvature
$\mathbb{C} / 3 \Gamma^{*} \ni \mathrm{k} \rightarrow u_{\mathrm{k}} \in L_{0}^{2}(\mathbb{C} / \Gamma) \mathrm{s}$ holomorphic (Ledwith et al '21) and defines a natural line bundle
Chern connection: $\eta:=\partial_{\mathrm{k}} \log \left\|u_{\mathrm{k}}\right\|^{2}=\left\|\mathrm{u}_{\mathrm{k}}\right\|^{-2}\left\langle\partial_{\mathrm{k}} \mathrm{u}_{\mathrm{k}}, \mathrm{u}_{\mathrm{k}}\right\rangle d \mathrm{k}$
Curvature: $\Omega=d \eta=\bar{\partial}_{\mathrm{k}} \partial_{\mathrm{k}} \log \left\|u_{\mathrm{k}}\right\|^{2}=H(\mathrm{k}) d \overline{\mathrm{k}} \wedge d \mathrm{k}, \quad H(\mathrm{k}) \geq 0$.

Another numerical observation (BHZ): Curvature
$\mathbb{C} / 3 \Gamma^{*} \ni \mathrm{k} \rightarrow u_{\mathrm{k}} \in L_{0}^{2}(\mathbb{C} / \Gamma) \mathrm{s}$ holomorphic (Ledwith et al '21) and defines a natural line bundle
Chern connection: $\eta:=\partial_{\mathrm{k}} \log \left\|u_{\mathrm{k}}\right\|^{2}=\left\|u_{\mathrm{k}}\right\|^{-2}\left\langle\partial_{\mathrm{k}} \mathrm{u}_{\mathrm{k}}, \mathrm{u}_{\mathrm{k}}\right\rangle d \mathrm{k}$
Curvature: $\Omega=d \eta=\bar{\partial}_{\mathrm{k}} \partial_{\mathrm{k}} \log \left\|u_{\mathrm{k}}\right\|^{2}=H(\mathrm{k}) d \overline{\mathrm{k}} \wedge d \mathrm{k}, \quad H(\mathrm{k}) \geq 0$.
Chern class: $c_{1}=\frac{i}{2 \pi} \int_{\mathbb{C} / 3 \Gamma^{*}} \Omega$

Another numerical observation (BHZ): Curvature
$\mathbb{C} / 3 \Gamma^{*} \ni \mathrm{k} \rightarrow u_{\mathrm{k}} \in L_{0}^{2}(\mathbb{C} / \Gamma) \mathrm{s}$ holomorphic (Ledwith et al '21) and defines a natural line bundle
Chern connection: $\eta:=\partial_{\mathrm{k}} \log \left\|u_{\mathrm{k}}\right\|^{2}=\left\|u_{\mathrm{k}}\right\|^{-2}\left\langle\partial_{\mathrm{k}} \mathrm{u}_{\mathrm{k}}, \mathrm{u}_{\mathrm{k}}\right\rangle d \mathrm{k}$
Curvature: $\Omega=d \eta=\bar{\partial}_{\mathrm{k}} \partial_{\mathrm{k}} \log \left\|u_{\mathrm{k}}\right\|^{2}=H(\mathrm{k}) d \overline{\mathrm{k}} \wedge d \mathrm{k}, \quad H(\mathrm{k}) \geq 0$.
Chern class: $c_{1}=\frac{i}{2 \pi} \int_{\mathbb{C} / 3 \Gamma^{*}} \Omega=-1$

Another numerical observation (BHZ): Curvature
$\mathbb{C} / 3 \Gamma^{*} \ni \mathrm{k} \rightarrow u_{\mathrm{k}} \in L_{0}^{2}(\mathbb{C} / \Gamma) \mathrm{s}$ holomorphic (Ledwith et al '21) and defines a natural line bundle
Chern connection: $\eta:=\partial_{\mathrm{k}} \log \left\|u_{\mathrm{k}}\right\|^{2}=\left\|\mathrm{u}_{\mathrm{k}}\right\|^{-2}\left\langle\partial_{\mathrm{k}} \mathrm{u}_{\mathrm{k}}, \mathrm{u}_{\mathrm{k}}\right\rangle d \mathrm{k}$
Curvature: $\Omega=d \eta=\bar{\partial}_{\mathrm{k}} \partial_{\mathrm{k}} \log \left\|u_{\mathrm{k}}\right\|^{2}=H(\mathrm{k}) d \overline{\mathrm{k}} \wedge d \mathrm{k}, \quad H(\mathrm{k}) \geq 0$.
Chern class: $c_{1}=\frac{i}{2 \pi} \int_{\mathbb{C} / 3 \Gamma^{*}} \Omega=-1$

Curvature

Another numerical observation (BHZ): Curvature
$\mathbb{C} / 3 \Gamma^{*} \ni \mathrm{k} \rightarrow u_{\mathrm{k}} \in L_{0}^{2}(\mathbb{C} / \Gamma)$ s holomorphic (Ledwith et al '21) and defines a natural line bundle
Chern connection: $\eta:=\partial_{\mathrm{k}} \log \left\|u_{\mathrm{k}}\right\|^{2}=\left\|\mathrm{u}_{\mathrm{k}}\right\|^{-2}\left\langle\partial_{\mathrm{k}} \mathrm{u}_{\mathrm{k}}, \mathrm{u}_{\mathrm{k}}\right\rangle d \mathrm{k}$
Curvature: $\Omega=d \eta=\bar{\partial}_{\mathrm{k}} \partial_{\mathrm{k}} \log \left\|u_{\mathrm{k}}\right\|^{2}=H(\mathrm{k}) d \overline{\mathrm{k}} \wedge d \mathrm{k}, \quad H(\mathrm{k}) \geq 0$.
Chern class: $c_{1}=\frac{i}{2 \pi} \int_{\mathbb{C} / 3 \Gamma^{*}} \Omega=-1$
Curvature

Many mathematical open problems

- Multiplicity issues; a stronger generic simplicity statement

Many mathematical open problems

- Multiplicity issues; a stronger generic simplicity statement

Many mathematical open problems

- Multiplicity issues; a stronger generic simplicity statement

- The fixed "shape" of the first band; what is a heuristic explanation?

Many mathematical open problems

- Multiplicity issues; a stronger generic simplicity statement

- The fixed "shape" of the first band; what is a heuristic explanation?
- Significance and explanation of the curvature "peak" at $\mathrm{k}=\mathrm{i}$

Many mathematical open problems

- Multiplicity issues; a stronger generic simplicity statement

- The fixed "shape" of the first band; what is a heuristic explanation?
- Significance and explanation of the curvature "peak" at $\mathrm{k}=\mathrm{i}$
- Asymptotics of $\alpha \in \mathcal{A} \cap \mathbb{R}_{+}$; in particular $\Delta \alpha \simeq \frac{3}{2}$?

Many mathematical open problems

- Multiplicity issues; a stronger generic simplicity statement

- The fixed "shape" of the first band; what is a heuristic explanation?
- Significance and explanation of the curvature "peak" at $\mathrm{k}=\mathrm{i}$
- Asymptotics of $\alpha \in \mathcal{A} \cap \mathbb{R}_{+}$; in particular $\Delta \alpha \simeq \frac{3}{2}$? Help from Hitrik-Sjöstrand '04... '?

Many mathematical open problems

- Multiplicity issues; a stronger generic simplicity statement

- The fixed "shape" of the first band; what is a heuristic explanation?
- Significance and explanation of the curvature "peak" at $\mathrm{k}=\mathrm{i}$
- Asymptotics of $\alpha \in \mathcal{A} \cap \mathbb{R}_{+}$; in particular $\Delta \alpha \simeq \frac{3}{2}$? Help from Hitrik-Sjöstrand '04... '?

Thanks for your attention!

