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We present microwave experiments on the symmetry reduced 5-disk billiard studying the tran-
sition from a closed to an open system. The measured microwave reflection signal is analyzed by
means of the harmonic inversion and the counting function of the resulting resonances is studied. For
the closed system this counting function shows the Weyl asymptotic with a leading exponent equal
to 2. By opening the system successively this exponent decreases smoothly to an non-integer value.
For the open systems the extraction of resonances by the harmonic inversion becomes more challeng-
ing and the arising difficulties are discussed. The results can be interpreted as a first experimental
indication for the fractal Weyl conjecture for resonances.
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I. INTRODUCTION

In this year we celebrate the 100th anniversary of the
Weyl law, which in its earliest version gives the leading
term in the asymptotic description of the counting func-
tion of the Dirichlet or Neumann Laplacien on a bounded
domain in the Euclidean space [1]. Weyl’s original inten-
tion was to justify the derivation of the Rayleigh-Jeans
law [2] for an arbitrary domain, not just boxes. Following
works by many mathematicians, among them Courant,
Hilbert, Avakumovic, Levitan, in 1968 Hörmander ob-
tained a very general Weyl law for elliptic operators [3].
The improved remainders under dynamical assumptions
were obtained by Duistermaat-Guillemin on manifolds
without boundary [4], and by Ivrii who proved the Weyl
conjecture on the second term in asymptotics (see (1) be-
low) [5, 6]. In physics literature, higher order terms for
smoothed out counting function were introduced already
in the 70s by Balian and Bloch in the context of electro-
magnetic eigenmodes in cavities with perfectly conduct-
ing smooth walls [7]. These results were experimentally
verified in three and two dimensional microwave cavities
[8, 9]. It is intriguing that for typical ‘closed’ cavities
the Weyl law agrees well even down to the ground state.
In more recent developments the Weyl formula has been
extended to take into account bouncing ball fluctuations
[9, 10], fractal boundaries [11, 12], and ray-splitting [13].

As soon as a wave-mechanical system is open the eigen-
values turn into resonances. The study of eigenvalues,
resonances and quasi-bound states has a long tradition
in theoretical, numerical and experimental chaotic scat-
tering (see, for instance, [14] and references therein). One
argument for the importance of open systems is the fact

∗ ulrich.kuhl@unice.fr

that for a measurement it is inevitable to allow inter-
action with the outside of the system which effectively
makes it open. If the system is opened only weakly,
the Weyl formula is a very good approximation, as one
can already see from the microwave experiments men-
tioned before. But if the system is strongly coupled to
the environment the resonances cannot be related to in-
dividual eigenvalues of the closed systems. If the number
of attached channels is finite the framework of random
matrix theory (RMT) using non-Hermitian Hamiltonians
predicts a separation of nearby resonances [15–17]. By
varying the coupling resonance trapping effects show up,
i.e. by increasing coupling many resonances may become
sharper and only a few become much broader [18–20]. All
these effects increase the difficulty of counting resonances
compared to the counting of eigenvalues.

If one is interested in the description of the resonances
in the semiclassical limit the number of channels di-
verges and random matrix description breaks down. In
this case the classical dynamics has to be taken into ac-
count. For open dynamical systems with a fractal re-
peller, Sjöstrand showed that the counting function is
polynomially bounded with the power given by the box
dimension of the classical repeller [21]. In systems with
only two degrees of freedom, such as considered here,
this corresponds to the Hausdorff dimension. The count-
ing function will be introduced in Sec. II. Numerical
investigations in [22] and [23] lead to a conjecture that
this bound is in fact optimal. Numerous numerical and
theoretical studies in physics and mathematics followed
[24–29]. In particular, the Weyl law has been investi-
gated numerically on maps, the kicked rotator or the
three disk billiard [23, 26–28, 30]. The fractal dimen-
sion of the chaotic set also occurs in systems with mixed
phase space [30–40]. Until now there exists no experi-
mental verification for this law as it is very challenging
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to extract resonances of strongly open systems in the
semiclassical regime. The most recent mathematical ad-
vances include fractal upper bounds for several convex
bodies [41] and for arbitrary manifolds with hyperbolic
ends [42].

The paradigmatic physical example of an open system
with fractal repeller is the n-disk system which has been
introduced in the context of resonances by Ikawa in math-
ematics [43] and by Gaspard and Rice [14, 44] and Cvi-
tanović and Eckhardt [45] in physics. Theoretically it has
been studied in the classical, semiclassical and quantum
mechanical regime and there have also been an experi-
mental study on the spectral autocorrelation [46, 47]. In
this Letter we want to investigate the counting function
of a symmetry reduced n-disk system experimentally. As
we are interested in the transition from a closed to an
open system, we chose the 5-disk system, as for this sys-
tem the completely closed system is already sufficiently
large for performing experiments. Experimentally we are
restricted to a finite frequency range leading to about
150 resonances. We start from a closed system and by
changing a parameter the system opening increases (see
Sec. III). For small openings the system only couples via
few channels, whereas for large opening a ‘semiclassical’
coupling will be realized. The resonances are extracted
by the method of harmonic inversion (see Sec. IV) and in
Sec. V we present the experimental findings. Concluding
remarks are given in Sec. VI.

II. EIGENVALUE AND RESONANCE
COUNTING FUNCTIONS

As we are dealing with a two dimensional system we
will restrict the discussion of the counting function to
two dimensions. In case of a two-dimensional system
with area A and circumference U it is given by

NWeyl(k) =
1

4π
Ak2 ± 1

4π
Uk + c (1)

where ± depends on the boundary condition: + for Neu-
mann and − for Dirichlet boundary conditions. The con-
stant c is defined by the curvature and the corners in the
system [48]. In general the leading term is proportional
to kd, where d is the dimensionality of the system. (The
equality in (1) is valid after apropriate smoothing of the
counting function.)

By coupling the system to the environment eigenvalues
and eigenfunctions turn into resonances and scattering
states. One possible description is via a non-Hermitian
effective Hamiltonian [18, 19]. If the coupling is per-
formed only via a few weakly coupled channels all res-
onances will only acquire a small imaginary part. Thus
counting can be performed for the real part of the res-
onances and the number of resonances will satisfy the
Weyl law (1). To keep the coupling small and the num-
ber of channels constant in the semiclassical limit is not
realistic.

Let us first assume the number of channels M stays
constant but the coupling of all channels increases. This
corresponds to a RMT where the restriction of Hermitic-
ity is dropped. Its properties have been investigated and
for strong coupling a separation of resonance by their
imaginary part is given [16]. If the system contains
N > M resonances then one finds M broad resonances,
i.e. resonances with large imaginary parts, and N −M
resonances with small imaginary parts. Now one has to
define whether all resonances are to be counted or only
resonances up to a certain imaginary part C. The count-
ing statistics of resonances is typically defined by

N(k) ≡ #{k̃n : Im k̃n > −C,Re k̃n ≤ k} (2)

where C is a fixed finite positive constant, which should
not be too small. Thus depending on C one would either
countN orN−M resonances. This effect is not restricted
to RMT models but holds for any wave system strongly
coupled to the environment. It has been phrased as reso-
nance trapping in the framework of the effective Hamilto-
nian theory (for details see [19] and references therein). It
has also been observed experimentally in microwave cav-
ities with variable coupling [20, 49]. If the maximal wave
number kmax is not too large this might be observable
in the counting function as well (see e.g. Fig. 5 of [49]).
If waveguides with width d are attached each of them
supports Mw = d/(λ/2) = dk/π modes, where λ is the
wavelength. Thus the number of waveguide modes and
therefore also the number of channels increases linearly in
the semiclassical limit, whereas the number of eigenvalues
of the closed cavity increases quadratically. This would
still lead to a dominating Weyl term of k2. Another pos-
sibility is to couple as many channels as eigenvalues (or
more) to the system. In the framework of RMT this is
related to the Ginibre ensemble [50, 51].

Till now we have neglected any additional variation of
the real part of the resonances that might be induced
by changing the coupling as well as the internal classical
dynamics. The structure of this internal dynamics will
induce special phase space structures leading to devia-
tions from RMT predictions. The classical phase space
of open chaotic systems is characterized by the forward
and backward trapped sets. The repeller is the intersec-
tion of the fractal sets of trajectories that stay trapped
forever in the future and in the past. In the semiclassical
limit the wavefunctions of the long-lived resonances, i.e.
resonances with small imaginary parts, will localize on
the trapped set [35, 52]. Thus they will avoid the cou-
pling to the channels which is in correspondance with the
resonance trapping effect.

As indicated in the introduction the mathematical and
numerical works suggest that the counting statistics in
case of open systems with a classical fractal repeller cor-
respond to a fractal Weyl law:

N(k) ∼ k1+dH , (3)

where dH is the dimension of the repeller. We stress that
the rigorous results so far prove only an upper bound of
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FIG. 1. On the left of this figure a sketch of the five disk
scattering system is given. The grey shaded part shows the
fundamental domain of the symmetry reduction. The radius
of the disks is denoted by a and their distance by R. On the
right side a photograph of the experimental setup is presented.

this form, or finer bounds in smaller intervals [29, 41] and
for arbitrary manifolds with hyperbolic ends [42]. The
numerical papers on maps [27], open cavities [23], and
microdisk lasers [38] showed the asymptotic behavior.

In this Letter we investigate experimentally a tran-
sition from a closed system to an open 5 disk system.
Experimentally one is typically restricted to the wave
number k range to 0 ≤ k ≤ kmax, corresponding to ap-
proximate 150 resonances in our case. The billiard of
interest consists of two straight walls inducing Dirichlet
boundary conditions with an angle of θ = 36◦. A half
circle is attached to only one wall with radius a and dis-
tance d from the corner. The position d can be varied but
angle and radius of the disk are fixed. In the following
section we describe the experimental setup in detail.

III. EXPERIMENTAL SETUP

In the experiments we use a flat microwave resonator
with a single wire antenna inserted through a hole in the
top plate (see the photograph in Fig. 1). The baseplate is
an aluminium triangle whose largest side is 100 cm long.
Two side walls with a height of 6 mm are set atop, the
angle between them is 36◦. Thus the resonator forms the
fundamental domain of a five disk system with metallic
sidewalls, which act as mirrors reducing the symmetry of
the system. The metallic walls induce Dirichlet boundary
conditions for the electric field of the TM0 mode, thereby
restricting the measurements to a single representation
A1u of the underlying symmetry group C5v (see sketch
on the left of Fig. 1). The third side is left open, but
additionally covered with a wide strip of microwave ab-
sorber to avoid reflections at the open end. Along the
longest triangle side we move a half-disk inset of radius
a = 19.5 cm, with the same height as the side walls, in
steps of 10 mm. The cover plate is not shown in Fig. 1.
An antenna is inserted through a hole in the upper cor-
ner of the cover. The radius of the antenna (r=0.7 mm)
is much smaller than the wavelength and the antenna

is sufficiently short not to touch the bottom plate. The
height of the cavity h = 6 mm leads to a cutoff frequency
of 25 GHz. The reflection coefficient is measured with
a vector-network-analyzer (VNA), revealing the complex
S-matrix. By limiting the frequency range to be anal-
ysed to 24 GHz we make sure that only the TM0 mode
can propagate and the cavity may be considered as two-
dimensional. In this case an equivalence between wave
mechanics and quantum mechanics, i. e. between the time
independent Helmholtz and Schrödinger equation exists
[53].

The disk positions are characterized by a distance-to-
radius parameter R/a, the ratio between the distance
R of two disks in the full system and the disk radius a
(see Fig. 1). The antenna is placed in the acute angle
between the aluminium walls guaranteeing coupling to
the interior of the cavity even in the closed case for R/a =
2. While increasing the ratio R/a from 2 to 3.9 the fractal
dimension of the underlying classical repeller changes and
accordingly should the exponent of the counting function.
The whole setup is covered by a second aluminium plate
that is firmly pressed onto the billiard leaving no gap
between walls and cover plate.

IV. HARMONIC INVERSION

Under the assumption that the antenna couples point-
like to the system the measured reflection signal is of the
form [54]

S11(ν) = 1 +
∑
j

Ãj
ν2 − ν2

j

(4)

where the νj are the complex valued resonance positions.
As for all the resonances that will be studied in the sequel
one has |Re(νj)| � |Im(νj)| the approximation

Ãj
ν2 − ν2

j

=
Ãj

(ν − νj)(ν + νj)
≈ Aj
ν − νj

(5)

with Aj =
Ãj

2νj
is good for Re(ν) > 0. This leads to

S11(ν) = 1 +
∑
j

Aj
ν − νj

, (6)

which is more convenient in the following. In Fig. 2 the
spectra for three different R/a parameters are shown. For
the closed system (R/a=2, black solid line) even in the
high frequency regime some separate resonances are vis-
ible. For R/a=2.25 the opening between the half circle
and the straight wall is approximately 24 mm. Thus the
opening supports approximately 4 modes in the shown
frequency range and the resonances can still be recog-
nized but are sufficiently broadened (red dotted line). By
further increasing the opening (R/a=3.83, blue dashed
line) the resonances are strongly overlapping.
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FIG. 2. (Color online) The plot shows measured reflection
spectra for the closed system R/a = 2 (black solid line), a
system in the transition region with R/a = 2.25 (red dotted
line) and an open system with R/a = 3.83 (blue dashed line).

In order to extract the resonances from this frequency
signal we use the Harmonic Inversion (HI) algorithm as
it has been presented by Main et al. [55]. To illustrate
the challenges of applying this algorithm to experimen-
tal data, we first give a short summary of the algorithm
described in [55] and refer to [55, 56] for further details.
Afterwards we propose some new tools to circumvent the
occurring problems.

The HI algorithm extracts the resonances from the sig-
nal in 4 steps: windowing, truncating the Fourier trans-
formed signal, Padé approximation and finally filtering.
In the first step the measured signal is divided into over-
lapping windows. This is necessary to reduce the number
of resonances in each separately analyzed window which
is crucial for applying the Padé approximation. In order
to reduce boundary effects of the windowing, only res-
onances within a given range ∆νr in the centre of each
of the windows will be taken into account. The windows
must therefore overlap correspondingly. In the following
∆νr=1 GHz with a buffer region of 1 GHz on each side
leading to a total window size of 3 GHz.

For each of these windows a fast Fourier transform
(FFT) is applied. Using (6) and neglecting the window
effects, the FFT signal is given by

C(t) = δ(t) +
∑
j

dje
−2πiνjt. (7)

As the system is open, the resonance frequencies have a
negative imaginary part and C(t) decays exponentially
with t. In Fig. 3 examples for two different openings are
shown. The decay at the beginning given by a sum of
exponentials is due to the widths of the resonances and
then changes to an 1/n decay which is due to the window-
ing, which can be seen in the inset. Applying the FFT
to a measured window of 3 GHz width and a step-width
of 0.1 MHz we obtain a discrete time series of 30000 data
points which is still too large to apply the Padé approx-

FIG. 3. (Color online) This figure shows the fast Fourier
transform of the reflection signal of the frequency window
from 20 to 23 GHz for the closed system (R/a = 2, upper
black curve) and an open system (R/a = 3.83, lower orange
curve). The unit of the x-axis is the number of data points of
this discrete time signal. The inset shows the decay for the
closed system in a double logarithmic plot. The red straight
line correspond to an 1/n-decay. The light blue shaded region
indicates the variation of the cutoff parameter between 80 and
120 data points, which is used in the data analysis described
in section V.

imation. This problem is solved by truncating the time
signal after Ntrunc data points which is justified by the
fact that for high t values the signal is governed by the
1/t decay which is due to the discontinuities at the win-
dow boundaries. The physical information of the decay
is hence contained in the first part of the time signal.
As it will be crucial in the sequel that the analyzed time
series is of form (7) it is important that one cuts off the
signal before the 1/t decay takes over. On the other
hand Ntrunc should also be chosen sufficiently large such
that sufficient information is contained in the truncated
signal. Figure 3 shows that for the analyzed microwave
spectra and a total window size of 3 GHz a truncation at
Ntrunc = 80 . . . 120 is reasonable.

After this truncation an equidistant discrete time series
of Ntrunc data points C(∆t · n) =

∑
j dje

−2πiνj∆t·n with
n = 0 . . . Ntrunc − 1 remains and the central step is now
to interpret this signal as a system of nonlinear equations
of the form

cn =

Ntrunc/2∑
k=1

dkz
n
k with n = 1 . . . Ntrunc/2 (8)

which is solved by the Padé approximation [55, 57].
An obvious problem with this approach is that Ntrunc

determines the number of resonances which are returned.
Choosing this parameter according to the criteria dis-
cussed above Ntrunc

2 will be larger than the true number
of resonances and the Padé approximation will generate
spurious resonances which have to be filtered out. There
are two filter mechanisms: (i) The Padé approximation
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FIG. 4. (Color online) This figure shows the resonances of
the five disk system with R/a = 3.83 in the complex plane
obtained via the HI for one set of parameters. The light blue
circles are resonances that are removed by the filter, whereas
the black dots correspond to resonances that are assumed to
be true.

is performed a second time with a time signal shifted by
one point, i.e. C(∆t·n) with n = 1 . . . Ntrunc. Resonances
that are unstable with respect to this point shift are re-

jected. (ii) Only resonances whose heights
|Aj |
|Imνj | exceed

sufficiently the noise level are accepted. For the data an-
alyzed in this Letter it has proven to be convenient to set
this filter to 0.05. The effect of the filtering is illustrated
in Fig. 4. Without filtering the HI returns too many
resonances, especially there appear resonances with very
small widths which are not realistic for such an open sys-
tem. After filtering, only the resonances shown as black
dots survive and the other resonances (light blue circles)
are sorted out. For the remaining resonances a spectral
gap and a conglomeration around Im(ν) ≈ −0.03 can be
observed. Have in mind that the imaginary part includes
terms coming from the absorption in the top, bottom and
side walls and from the antenna. The description of the
algorithm above shows that the HI-algorithm requires the
choice of several parameters, such as Ntrunc or the win-
dow overlap. For all these parameters there is a range of
plausible values, their exact values however are arbitrary.
The assumption that the time series is a superposition of
decaying exponentials only is another problem. For ex-
perimental data this will never be exactly true due to
inevitable experimental noise and errors.

The possible problems occurring with the harmonic
inversion of experimental data are visualized in Fig. 5.
The measured microwave spectrum for R/a = 3.83 (black
solid line) was analyzed by the harmonic inversion in or-
der to extract the resonances in the valid range between
21 and 22 GHz. Therefore the HI was applied to the data
with 160 different parameter sets by varying Ntrunc be-
tween 80 and 120 and changing the buffer region on both
sides between 1 and 0.98 GHz, respectively. According
to Fig. 3 all these parameter sets are plausible. If the
complex resonance positions of these 160 HI results are
plotted in one plot (light blue dots in the lower part of
Fig. 5) one observes that the resonances of the different
parameter sets form clusters in the complex plane. If

FIG. 5. (Color online) The upper plot shows the measured
microwave spectrum (R/a = 3.83) (black solid line) as well
as two reconstructions obtained by the HI results for two dif-
ferent parameter sets (orange dashed and red dotted lines).
The lower plot shows the corresponding complex resonance
positions. The red circles correspond to the resonances of
the reconstructed signal shown above as red dotted line and
the blue triangles to the orange dashed line. Light blue dots
represent the resonance positions of the HI results for all pa-
rameter sets. The two vertical dashed lines mark the valid
range of the analyzed window.

one looks however at an individual result of a particu-
lar parameter set marked by the red circles one observes,
that for this parameter set several clusters are missing.
For other parameter sets however nearly all the clusters
within the valid interval are matched in the resulting res-
onances. The blue triangles mark one example.

Useful to reject bad HI results is the quality of the
reconstruction which is calculated as follows: Suppose
one is interested in resonances in the frequency interval
from 21 to 22 GHz as in Fig. 5 and has chosen to take the
overlap on each side to be 1 GHz. The HI Algorithm thus
analyzes the whole interval from 20 to 23 GHz, Fourier
transforms it, applies the Padé approximation and filters
the resonances as described above. As a result it returns
a set of resonances and amplitudes {(Aj , νj)} where the
real parts of the found resonances range from 20 to 23

GHz. One now compares the superposition
∑
j

Aj

ν−νj with

the measured signal S11(ν) between 21 and 22 GHz. Note
that all the resonances in the large window range be-
tween 20 and 23 GHz are already contained in the super-
position. However influences of resonances outside this
window and very broad resonances which cannot be ex-
tracted from the signal are not yet taken into account.
We suppose that these influences can be approximated
over the size of the valid region by a complex valued linear
function. This background is thus fitted to the difference
between superposition and measured signal. The result
of the reconstruction (which now contains the superposi-
tion of Lorentzians and the fitted background) is plotted
in the upper part of Fig. 5. While the reconstructed sig-
nal (orange dashed line) of one set of resonances (blue
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triangles) agrees well with the measured data, the devia-
tion of another reconstruction (red dotted line) using the
other set (red circles) is enormous.

Based on these observations it is not sufficient to use
only one parameter set for applying the HI on such kind
of experimental data, as even the set leading to the best
reconstruction might overlook single resonances. There-
fore we perform the HI for several parameter sets, reject
those with unconvincing reconstruction by means of their
χ2 value and average over all the others.

V. COUNTING RESONANCES:
EXPERIMENTAL RESULTS

In order to study the spectral asymptotics of the 5-
disk system, we have to determine the counting function
(2) from the measured reflection spectrum. In this sec-
tion we first give the detailed parameters used for the
data analysis. Afterwards we present the results on the
spectral asymptotics.

The resonance positions which are needed for the cal-
culation of the counting function are extracted from the
reflection spectra by the harmonic inversion. Thus ac-
cording to section IV we start the analysis by decompos-
ing the complete signal ranging from 1 to 25 GHz into
smaller windows. The width of the valid interval is cho-
sen to be 1 GHz and the buffer region on both sides as
1 GHz as well. Thus we obtain in total 22 windows allow-
ing us to extract the resonances between 2 and 24 GHz.
For each of these windows we applied the HI with various
different parameter sets for the reasons given in the pre-
ceding section. We varied Ntrunc between 80 and 120, the
shaded area in figure 3. Additionally we slightly shifted
the buffer region on both sides by 0.02 GHz. The combi-
nation of these variation thus yields 160 different param-
eter sets.

For each window and each parameter set the HI re-
turned a set of complex resonances and amplitudes. For
each of these results the reconstruction had been com-
pared to the original signal as described above and all
parameter sets leading to a reconstruction with a χ2 er-
ror worse than the variance of the signal had been re-
jected. Now the density of states in the valid range of
each window is obtained by averaging over the results
of all accepted parameter sets. The averaged counting
function finally was obtained by the averaged density of
states of all windows.

In Fig. 6 three examples of the experimentally ob-
tained counting functions for different R/a-parameters
are shown: for the closed (R/a = 2) and the most open
system (R/a = 3.9) as well as for the transition region
(R/a = 2.25). The closed curve is compared to the pre-
diction of the Weyl law (1) with area and boundary term.
Measuring only with one fixed antenna we cannot expect
to find all resonances as several of them have an am-
plitude of the order of the noise. In closed room tem-
perature aluminum cavities of similar sizes this typically

FIG. 6. (color online) The counting-functions for R/a=2,
2.25, and 3.9 (in this order from bottom to top) are plotted
in black. Fits of their slope in the frequency range 15-24 GHz,
corresponding to a k range of 315-500 mm−1 (dotted vertical
line) are shown in blue. The orange curve corresponds to
the Weyl-formula with 12% loss for the closed system. Plot-
ted in the inset is the difference between the Weyl-formula
with 12% loss and the experimental counting-function for the
closed system (R/a=2).

lead to a loss of 5-10%. For R/a = 2 the orange line
shows the Weyl law (1) with 12% loss and is in good
agreement with the extracted counting function. The in-
set shows the difference between Weyl law with 12% loss
and counting function. The experimental data fluctuates
around the theory with a deviation of less than 4 reso-
nances, but there is no overall tendency.

For the open systems the fractal Weyl law only pre-
dicts the asymptotic exponent of the counting function.
To compare our results with this prediction the slope was
fitted with a standard regression (blue lines) to our ex-
perimental counting functions in the interval 15-24 GHz
(marked by the dotted vertical line). For the fit we need
on the one hand a sufficiently large range to extract the
slope reliably, on the other hand we need large k to get
into the semiclassical regime. In the chosen fit range all
counting functions show an approximately linear behav-
ior.

In Fig. 7 the slopes of the counting functions are
plotted versus their R/a-parameter. For the quantum-
mechanically closed system the classical Weyl law pre-
dicts a value of 2. As long as the slit between disk and
metallic wall is smaller than half a wavelength of the max-
imal frequency 24 GHz, the system is quantum mechani-
cally closed and couples only by tunneling to the exterior.
This region is highlighted by the darker blue shading and
an exponent of 2 is still expected within the wave number
range investigated. For large R/a-parameter the fractal
Weyl law predicts a fractional exponent. The black solid
line shows the predicted exponent 1 + dH of the fractal
Weyl law, where dH is the reduced fractal dimension of
the repeller. This dimension has been calculated via the
topological pressure and cycle expansion in dependence
of R/a (see [14, 44, 45] for details). Due to pruning ef-
fects this method fails to calculate dH for small R/a pa-



7

FIG. 7. (color online) The data points correspond to the fit-
ted exponent of the counting function in dependence of the
R/a parameter. The solid line shows the asymptotic expo-
nent 1+dH predicted by the fractal Weyl law and the dashed
curve is the same shifted by 0.4 as a guide to the eye. The
three squares mark the examples which have already been
presented in the previous figures. The darker shaded blue re-
gion indicates the R/a values without open channels whereas
in the range marked by the lighter shaded blue region only a
few open channels (1. . . 8) exist.

rameters, thus the orange line stops at R/a = 2.4. In
between there will be a transition region. In Fig. 7 the
region between one and eight open channels is shaded in
light blue. Experimentally the expected start value of
about 2 for the closed system and a smooth transition to
lower non-integer values between 1 and 2 is seen. For the
quantum-mechanically closed system the fitted exponent
agrees well with the predicted value of 2 of the classi-
cal Weyl law. In the transition region with a few open
channels the exponent decreases smoothly. For the open
system the fitted exponents do not match the theoreti-
cally predicted curve, but the parametric dependence still
can be seen though it is 20% smaller than expected. The
exponents are significantly larger than one and definitely
non integer.

The deviations from the fractal Weyl prediction might
have several causes: First of all the the exponential be-
havior of the counting function is predicted in the semi-
classical limit, corresponding to the limit of infinite fre-

quencies. Experimentally we are however restricted to a
finite frequency and width range. Additionally the reso-
nance structure of such open microwave systems is very
sensitive to inevitable reflections on imperfect absorbers.
Finally the discussion in chapter IV has shown, that the
extraction of the resonances in the strongly overlapping
regime is very delicate. Even if the process of averaging
over many parameter sets and checking the reconstruc-
tion significantly increases the reliability of the results,
there remain ambiguities which cannot be resolved with
certainty.

VI. CONCLUSION

In this Letter we experimentally examined the behav-
ior of the counting function in a 5-disk microwave sys-
tem which was successively transformed from a closed to
an open system with a classically fractal repeller. The
counting function was obtained from the measured spec-
trum by the harmonic inversion. We pointed out the
occurring problems and proposed some tools to circum-
vent them. In the closed regime we found good agree-
ment between the extracted counting function and the-
ory. In the range of many open modes the functional
dependence showed an agreement with theoretical pre-
dictions, though the experimental exponents had been
found to be approximately 0.4 below the prediction. This
certainly is in agreement with mathematics upper bounds
though falls short of demonstrating asymptotics (3). It is
however clear that the growth of resonances is not linear
as predicted in [44]. In between there seems to exist a
smooth monotonic transition between the two regimes,
exhibiting the existence of a small number of open chan-
nels for the investigated wave number range.
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