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Outline

• Classical and quantum scattering, resonances.

• Chaotic régime: fractal trapped set

• Semiclassical limit: fractal Weyl law, eigenstates distribution

• spectral gap for thin trapped sets; link with the topological pressure

• Proof of the gap for a model with absorbing potential:

– open covers of the trapped set to compute the pressure
– a quantum partition of unity
– decomposing the propagator up to logarithmic times
– a hyperbolic estimate for the dominant terms
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Scattering in Hamiltonian systems

x
y

V(x,y)

Hamiltonian scattering system

• Left: hard obstacles in R2

• Right: Hamiltonian H = ξ2

2 + V (x), with potential V (x) decaying at infinity

The flow at energies E > 0 is unbounded, and the quantum Hamiltonian

Hh = −h2∆D
2 (resp. Hh = −h2∆

2 + V (x)) has a purely continuous spectrum on R+.
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Quantum resonances
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The resolvent (z − Hh)−1 may be continued meromorphically from {Im z > 0} to
{Im z < 0}. Its poles {zj(h)} are the resonances of Hh.

Each zj(h) is associated with a metastable (non-normalizable) state of Hh, with
lifetime τj = h(2| Im zj|)−1 =⇒ long-living state if Im zj = O(h).

Questions in the semiclassical régime:

• Distribution of long-living resonances zj(h) with Re zj ≈ E, Im zj = O(h).

• Description of the metastable states ψh associated with these resonances.
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Distribution of resonances - Trapped set

Main semiclassical idea: the semiclassical distribution of resonances near E depends
on the set KE = Γ+

E ∩ Γ−E of trapped trajectories at energy E.
We always assume that KE is contained in a bounded interaction region.
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Ex. 1: trapped set of positive volume. Resonances are very close from being real
(Im zj = O(h∞)), and from eigenvalues of an associated closed system.

−c/hez~Im

0
hγ

E
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Ex. 2: empty trapped set for a convex body: resonances are “far” from the real axis,
| Im zj| ∼ h

2
3, and satisfy a Weyl law, ∼ h−n+1 [Sjöstrand-Z,’99].

Ex 3: the trapped set = a single unstable orbit [Ikawa’83,Gérard,Sjöstrand..]

The resonances form a quasi-lattice (Bohr-Sommerfeld + inverted harm. osc.).

0
hγE

λz<−h   /2Im
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Chaotic scattering

We will consider chaotic systems, for which KE is a hyperbolic repeller, with a fractal
geometry.

Ex. 4: n ≥ 3 convex obstacles in R2

KE = Γ+
E ∩ Γ−E has a fractal (Hausdorff/box) dimension

dim(KE) = 2µE + 1 (µE < 1).

6



Fractal Weyl law

Theorem. [Sjöstrand-Z’05] In the limit h → 0, the number of resonances near E is
given by a fractal Weyl law

# {|zj − E| < γ h} ≤ CE,γ h
−µE, h→ 0 .

A bold conjecture would say that ≤ should be replaced by ∼.

An asymptotic relation of that kind was proven for a special open quantum map
[Nonnenmacher-Z’05].
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Distribution of resonant states

The metastable states associated with long-living resonances have specific phase space
distributions:

Theorem. [Nonnenmacher-Rubin’05, Nonnenmacher-Z ’06] Consider a family of
resonant states (ψh)h→0 s.t. Re z(h) = E + o(1), Im z(h) = O(h) and
‖ψh‖L2(inter) = 1.

Suppose a semiclassical measure µ is associated with (ψh):

∀f ∈ C∞c (T ∗Rd), χ|π supp f = 1, 〈χψh,Oph(f)χψh〉 h→0−−−→
∫
f(ρ) dµ(ρ) .

Then suppµ ∈ Γ+
E, and for some λ ≥ 0 we have

Im z(h)
h

h→0−−−→ λ/2 and LXH
µ = λµ .
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Ex: resonant state for a single hyperbolic point
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Phase space picture of the Eckart barrier

Real and imaginary parts of the first resonant state

Density plot of the FBI transform of the first resonant state

Top: the phase portrait for p(x, ξ) = ξ2 + cosh−2(x), with Γ±1 highlighted. Middle:
the “first” resonant state, h = 1/16. Bottom: squared modulus of its FBI tranform.
The resonant state was computed by D. Bindel, the FBI transform was provided by
L. Demanet. As predicted in the above Theorem, the mass of the FBI transform is
concentrated on Γ+

1 , with an exponential mass growth in the outgoing direction.
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Resonance gap for “filamentary” repellers

[Ikawa’88, Burq’93]: if n convex obstacles in Rd are far enough from e.o. ⇒ gap in
the semiclassical (≡ high-energy) resonance spectrum:

∃g > 0, for h small enough, any resonance with Re zj ≈ 1/2 satisfies Im zj ≤ −g h.

Equivalently, the quantum lifetimes τj ≤ (2g)−1.

hγ
E0

gh

[Gaspard-Rice’89] (3 disks in R2):
If the dimension µE < 1/2, which is equivalent with PE(1/2) < 0, then there is a gap,
and one can take g = −PE(1/2). Here PE(1/2) is the topological pressure.

Their argument assumes that, in the semiclassical limit, resonances zj = (hkj)2/2 are
approximately given by zeros of the Gutzwiller-Voros (∼ Selberg) zeta function:

Z(k) =
∏
ω

∏

j≥0

(
1− e−iklω−(1/2+j)λω

)
converges abs. for Im k > P (1/2) .
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Scattering on convex co-compact quotients

The geodesic flow in the infinite-volume manifold X = Γ\Hn+1 is uniformly hyperbolic
(κ = −1). For any E > 0 the trapped set KE has dimension 2δ+1, where δ is the dim.
of the limit set Λ(Γ).

The resonances z = s(n− s) = n2

4 + k2 of ∆X are given by the zeros of ZSelberg(s).

[Patterson’76, Sullivan’79, Patterson-Perry’01]: All the zeros are in the half-
plane
Re s ≤ δ ⇐⇒ Im k ≤ δ − n/2 (their density is bounded by rδ [Guillopé-Lin-Z’04]).

Here we also have δ − n/2 = P (1/2) the topological pressure of the geodesic flow.
Therefore, if P (1/2) < 0 there is a resonance gap g = |P (1/2)|.
Actually, in the semiclassical limit |Re k| → ∞, the gap is |P (1/2)|+ε, due to phase
cancellations [Naud’05].
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Resonance gap in Euclidean potential scattering

We consider Euclidean scattering by a potential V ∈ C∞c (Rd). We assume that near
some noncritical E > 0 the Hamiltonian flow Φt is uniformly hyperbolic on KE.

Φ (ρ)t
ρ
+

E

ρE
−

Σ

ρ

Let PE(s) be the topological pressure of the flow Φt on KE, associated with the unstable

Jacobian J+
t (ρ)−1 = det

(
dΦt

|E+
ρ

)−1
.

Theorem. [Nonnenmacher-Z’06] Assume the topological pressure PE(1/2) < 0, and
take any 0 < g < −PE(1/2).
Then, for h small enough, the resonances of Hh such that Re zj = E + o(1) satisfy
Im zj ≤ −gh.
In dimension d = 2, the gap condition PE(1/2) < 0 is equivalent with µE < 1/2, so we
recover the criterium of [Gaspard-Rice] for a smooth flow.
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A simpler model: scattering with absorbing potential

To avoid the trouble of complex dilation, it is convenient to add a complex potential
−iA(x) to the quantum Hamiltonian, obtaining the nonselfadjoint operator

Hh,A = −h2∆
2 + V (x)−iA(x).

This potential vanishes in the inter-
A(x)>1

A(x)=0

action region. Its role is to absorb
(kill) the outgoing wavepackets.

As a result, the spectrum of Hh,A

near the real axis is made of L2 eigen-
values instead of resonances. These
long-living eigenvalues are expected
to behave like the resonances of Hh.

h
E

γ
0

8−A(  )
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An alternative definition of the topological pressure

b
V

K E
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To define the pressure of Φt on KE, one starts from an open cover (Vb)b∈B of KE. This
cover is then refined T times through the flow, producing sets

V~b = Vb0 ∩ Φ−1Vb1 ∩ Φ−2Vb2 ∩ · · · ∩ Φ−T+1VbT−1
, ~b ∈ BT .

Keep the V~b intersecting KE.
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Weigh each V~b using the coarse-grained unstable Jacobian:

wT (V~b)
def= sup

ρ∈V~b
∩KE

(
J+

T (ρ)
)−1/2 ∼ e−T (d−1)λ̄/2 ,

where λ̄ is an “average” stretching exponent for initial points in V~b.

One then considers the partition function

ZT
def= inf{

∑

~b∈BT

wT (V~b) : BT ⊂ BT , KE ⊂
⋃

~b∈BT

V~b} .

The pressure PE(1/2) is finally given by

PE(1/2) = lim
diam(Vb)→0

lim
T→∞

1
T

logZT .

For a given ε > 0, we may select a (fine) partition (Vb), a time t0 ∈ N and a cover

(V~b)~b∈Bt0

def= (Wa)a∈A1, such that that

∑

a∈A1

wt0(Wa) ≤ exp
{
t0

(
PE(1/2) + ε

)}
.
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Completing the cover

Γρ
−
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Σ

We need to complete (Wa)a∈A1 in order to cover a thin energy layer H−1([E−δ, E+δ]).
One set lies in the forbidden zone: W∞ = {A(x) > 1}. Each of the remaining sets
(Wa)a∈A2 must have escaped to W∞ at the time N0t0 or −N0t0, for some N0 ∈ N.

We thus get a cover

H−1([E − δ, E + δ]) ⊂
⋃

a∈A1∪A2∪∞
Wa .
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A quantum partition of unity

To this open cover we associate a smooth partition of unity:

1 =
∑

a∈A1∪A2

πa + π∞ + πE ,

where πa ∈ C∞c (Wa), π∞ is supported in W∞, and πE vanishes in H−1([E ± δ/2]).
This partition may be h-quantized into a sum of bounded ΨDOs:

IdL2 =
∑

a∈Atot

Πa , Atot = A1 ∪A2 ∪∞∪ E, Πa = Opw
h (πa) .

We use this quantum partition to split the “absorbing propagator” U = e−it0Hh,A/h:

U =
∑

a∈Atot

Ua , Ua = U Πa
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Decomposition of the propagator

Let ψh be a normalized eigenstate of Hh,A with eigenvalue z(h) (assuming Re z =
E + o(1), Im z = O(h)). To prove the gap, our aim is to bound from above

‖UN ψh‖ = eNt0 Im z(h)/h and we will need to go up to N ∼M | log h|, M >> 1 .

To do this, we use the above quantum partition of unity:

UN ψh =
∑

ai∈Atot, 1≤i≤N

UaN
UaN−1

· · ·Ua2Ua1 ψh

• ψh is microlocalized in H−1(E) =⇒ U~aψh = O(h∞) if any of the ai = E.

• wavepackets are absorbed in W∞ =⇒ ‖U∞‖ = O(h∞).

• from the escape properties of Wa, a ∈ A2, we have ‖Ubn . . . Ub1Ua‖ = O(h∞) or
‖UaUbn . . . Ub1‖ = O(h∞) if n ≥ N0.

• As a result, the above sum is dominated by ~a such that ai ∈ A1 for N0 < i ≤ N−N0.
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Using hyperbolicity

The following bound (valid for h small enough) relies on the hyperbolicity of Φt:

∀n = O(| log h|), ∀~a ∈ An
1 , ‖Uan · · ·Ua1‖ ≤ h−d/2(1 + ε)nt0

n∏

j=1

wt0(Waj
) .

The last product behaves as e−nt0(d−1)λ̄/2. Due to the prefactor h−d/2, the LHS starts
to decay exponentially only for n ≥ d−1

d
| log h|

λ̄
(Ehrenfest time).

Take N ∼M | log h| and sum over all contributions:

‖UNψh‖ ≤ C h−d/2(1+ε)Nt0
( ∑

a∈A1

wt0(Wa)
)N

≤ C exp
{
Nt0

( d

2Mt0
+PE(1/2)+2ε

)}
.

Choosing M ≥ d/(2εt0), we finally get

Im z(h)/h ≤ PE(1/2) + 3ε .

¤
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Proof of the hyperbolic bound

The bound on ‖U~a‖ is similar as the one proven by [Anantharaman’06] in the case
of the geodesic flow on Anosov manifolds.

Λη
0t

Γρ
−

Wa2

Λη
0tΦ(     )

0t Wa1
Φ(      )

Wa1

ρ

Φ

I

Γρ
+0

For any normalized Ψ ∈ L2, the state Πa1Ψ can be decomposed as

Πa1Ψ = h−d/2
∫

I
dη f(η) eη +O(h∞), where ‖f‖L2 ≤ C and

each eη is a normalized WKB state supported on the Lagrangian Λη (close to Γ+0).

U eη is also Lagrangian, supported on Φt0(Λη). After the truncation by Πa2, one has

‖Πa2U eη‖ . J+
t0

(ρ)−1/2 ≈ wt0(Wa1) .
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By iterating this procedure, we get

‖Uan · · ·Ua2U eη‖ .
n−1∏

j=1

wt0(Waj
) +O(h∞) .

Since the RHS is independent of η, we may integrate these norms over η ∈ I:

‖Uan · · ·Ua1Ψ‖ . h−d/2‖f‖L1

n−1∏

j=1

wt0(Waj
) ,

and finally use ‖f‖L1 ≤
√
|I| ‖f‖L2 ≤ C.

¤
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Final remarks

• the same procedure can be used for actual resonances of Hh. One needs to complex-
dilate the operator, to obtain a nonselfadjoint Hh,θ with properties similar with
Hh,A.

• can one show that the semiclassical gap g ≥ |P (1/2)|+ ε?
Need to control the relative phases of the components U~aψh.

• proof of the fractal Weyl law asymptotics?

• better study semiclassical measures associated with resonant states

• a nice “experimental” model is provided by open quantum maps
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