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Abstract

Graph curves are a useful construction for considering various prob-
lems in algebraic geometry. In this paper, we explain some of the re-
sults about graph curves from the seminal paper by Bayer and Eisen-
bud [3]. We provide background in simplicial cohomology and the
canonical series of a curve for the beginning reader.

In our study of algebraic curves, it is helpful to consider degenerations –
objects that are simpler to characterize, while still having a lot of explana-
tory power. In this paper, we will investigate graph curves, in a sense the
simplest degeneration one could use.

Definition 0.1. A graph curve is a connected union of projective lines,
each line meeting three others in ordinary double points. The lines and
their intersections can be recorded in a dual graph G = (V,E), where each
vertex of V corresponds to a line, and each edge e connecting v1 and v2
represents a node where the corresponding lines intersect. C(G) is used to
denote the curve corresponding to a graph G.

There are many ways to relax the definition of a graph curve, allowing
some more general statements while giving up some of the simplicity and
symmetry of the geometry. For instance, instead of each line intersecting
three others, lines may be allowed to intersect one or two lines instead, as in
[4]. Additionally, instead of allowing only lines in the curve, we may allow
rational curves corresponding to the vertices, as in [1] and [2].

Example 0.2 (Bayer-Eisenbud, Introduction). Consider a set of four dis-
tinct lines in the plane. For simplicity take the zero sets of the polynomials
X,Y, Z, and (X + Y + Z), which (like all other lines in P2) intersect. The
corresponding graph is K4, the complete graph on four vertices, since we
have four lines that intersect each of the others. This graph is trivalent.

The polynomial defining this curve is trivially P (X,Y, Z) = XY Z(X +
Y + Z).
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Figure 1: An arrangement of lines, and the corresponding dual graph.

This relatively trivial calculation leads us to the central agenda of the
paper:

Question 0.3. What are the generators of the canonical ideal of an arbi-
trary graph curve?

Graph curves have the property of being stable; the presence of three
nodes on each component line causes the isomorphism group of the curve to
be finite.

The fact that makes them particularly useful in the study of curves is
that they are situated on the boundary of the moduli space of curves. When
a property can be proven to hold for a graph curve, this can sometimes be
extended to all the other curves of the same genus.

Bayer and Eisenbud used this to investigate Green’s Conjecture about
the Clifford Index of a curve [3]. Ciliberto, Harris, and Miranda also took
this approach to prove the surjectivity of the Wahl map [5]. This exposition
will mainly follow the first three sections of the paper of Bayer and Eisenbud,
culminating in the computation of the canonical ideal of a graph curve.

Acknowledgements: I would like to thank Jessica Sidman for initially
introducing me to the topic, and answering questions over the course of
preparation of this paper. I also thank Bernd Sturmfels for his advice in
pursuing this research and for referring me to the pre-print by Lohne ([9]).

1 Basic Properties

Before we approach the canonical ideal, let us state some properties that
arise from the basic definitions.

Proposition 1.1 (Properties of the Graph). The graph will have the fol-
lowing properties:

1. Trivalent
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2. Undirected (though we will impose an orientation later)

3. Simple

4. Connected

5. |V | = 2n, and |E| = 3n (for some integer n ≥ 2).

Proof. 1. Three intersections per line correspond to three edges incident
to each vertex.

2. The intersection data of the lines does not dictate any orientation

3. If two vertices would be connected to two edges, the corresponding
lines would have intersection `1 ∩ `2 with at least two points, which
implies `1 = `2. Therefore, only one edge can be allowed.

4. We required that the curve be connected, so the graph must be as well.

5. In any graph,
∑

deg vi = 2|E| (Handshaking Lemma). For a trivalent
graph, that means 3|V | = 2|E|.

Remark 1.2. Not every trivalent graph corresponds to a graph curve;
e.g. consider the graph in Figure 2. In the subgraph imposed on vertices
v1, . . . , v4, the lines C(v2) and C(v4) span a P2. C(v1) and C(v3) must be
contained in the same plane, since they intersect both lines. Bezout’s The-
orem dictates that they intersect; however, the graph indicates otherwise.

v3

v2

v1

v4

Figure 2: Trivalent graph without corresponding graph curve

Conjecture 1.3. Given any connected, trivalent, simple graph G, the graph
can be realized as a graph curve C(G), as long as G does not have K4 \ {e}
as an induced subgraph.
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The intuition for the above is that when two lines are not forced into the
same P2 there’s enough space to allow for intersection or lack of intersection,
as desired.

Proposition 1.4. The degree of a graph curve, when embedded as a union
of lines, is equal to the number of projective lines in the curve, or the number
of vertices in the corresponding graph.

Proof. Theorem 7.7 in Hartshorne gives a formula for the degree of an alge-
braic variety, derived from the Hilbert polynomial (whose leading coefficient
is equal to the degree). The formula for arbitrary variety Y , hypersurface
H, and intersection Y ∩H = Z1, . . . , Zs, irreducible components, is:

s∑
j=1

i(Y,H;Zj) degZj = (deg Y )(degH).

In our case, this simplifies to

(# of points in Y ∩H) = deg Y.

Every line should intersect a generic hyperplane exactly once. So the degree
is the number of lines.

Proposition 1.5. The genus of a (connected) graph curve is equal to 1
2 |V |.

It is also equal to the dimension of the basis of the cycle space in the graph
G, or g = dim H1(G,C).

Proof. (Inspired by §4.1.1 in [8]) The easiest way to see this fact is through
topological considerations – these graph curves are Riemann surfaces stapled
together, so the closed loops raise the genus. Starting with 2n lines, meeting
in 3n points, 2n − 1 points of intersection would have them all connected
linearly, with genus 0. Each additional intersection raises the genus by 1, so
we have g = n+ 1.

We will explore another way to see this fact using the canonical bundle
of the curve.

2 Simplicial Cohomology of G

Graph curves are such a potent tool because the properties of the graph
translate into properties of the curve. The key to this connection is the
isomorphism between the 1-cocycles of the graph and the differential forms
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on the curve. We can simplify the discussion later by proving that the cycle
space of a graph is isomorphic to the cocycle space. The definitions below
are based on [7].

Definition 2.1. The chain complex associated to a directed graph is the
sequence:

0
∂2−→ C1

∂1−→ C0
∂0−→ 0

When discussing a graph as a simplicial complex, the 0-chains (elements
of C0) are formal sums of vertices, and the 1-chains (elements of C1) are
formal sums of edges. The edges and vertices are clearly bases of their
respective spaces.

The map ∂1 sends an edge ei oriented from vi to vi+1 into the 0-chain
(vi+1 − vi). Because a graph has no higher-dimensional components, the
other maps are trivial.

The first homology group, denotedH1(G), is the quotient group Ker(∂1)/Im(∂2).
In the case of a graph, Im(∂2) is zero, so H1(G) = Ker(∂1).

We define the cochain complex dually:

Definition 2.2. The cochain complex associated to a directed graph is the
sequence:

0
δ2←− C∗

1
δ1←− C∗

0
δ0←− 0

The 0-cochains (elements of C∗
0 ) are functions from the vertices to C,

and the 1-cochains (elements of C∗
1 ) are functions from the edges to C. In

other words, C∗
n = Hom(Cn,C).

Let the functions e∗i or v∗i be cochains valued as 1 on ei and vi respec-
tively, and 0 elsewhere. The set of such functions are bases for the space of
cochains.

The map δ1 sends a 0-cochain v∗i , where edges ei1 , . . . , eim are oriented
towards vi and ej1 , . . . , ejn are oriented away from it, to the 1-chain (

∑
e∗ir−∑

e∗js), where the subtraction is taken componentwise.

The first cohomology group, denoted H1(G,C), is the quotient group
Ker(δ2)/Im(δ1). In the case of a graph, Ker(δ2) is the whole space, because
the graph contains no 2-faces; so, H1(G,C) = C∗

1/ Im(δ1).

We can get a better understanding of the cochain space by observing
that we can give the space an inner product structure.
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Definition 2.3. Define the inner product 〈·, ·〉 on the distinguished basis of
the 1-cochain space by 〈e∗i , e∗j 〉 = e∗i (ej), then extend to the rest of the space
linearly. Define the inner product analogously for the space of 0-cochains.

One can check that this satisfies the axioms of inner products. Given
that H1(G,C) = C∗

1/ Im(δ1), we will take advantage of the inner product
to classify the elements of this group. Im(δ1) are the coboundaries in C∗

1 , so
we want to identify the subspace orthogonal to the space of coboundaries.

Proposition 2.4. Let φ =
∑
aiei be a 1-chain, and ψ =

∑
biv

∗
i a 0-cochain.

The value of 〈(∂ ◦ φ)∗, ψ〉, as a product of 0-cochains, is equal to 〈φ∗, δ ◦ψ〉,
as a product of 1-cochains.

Proof. It is sufficient to consider this statement on an element of the basis
of the 0-cochain space.

〈(∂ ◦φ)∗, v∗i 〉 = 〈(∂ ◦
∑

aiei)
∗, ψ∗〉 = 〈

∑
ai(v

∗
j −v∗k), v∗i 〉 =

∑
air −

∑
ajs ,

where eir are edges oriented towards vi and ejs are oriented away. From the
other direction,

〈φ, δ ◦ v∗i 〉 = 〈
∑

aie
∗
i ,
∑

e∗ir −
∑

e∗js) =
∑

air −
∑

ajs .

Using this fact it becomes evident that the cochains orthogonal to the
coboundaries are precisely the duals to the cycles of H1(G,C). With φ a
1-chain, and ψ a 0-cochain,

〈φ∗, δ ◦ ψ〉 = 0 ≡ 〈(∂ ◦ φ)∗, ψ〉 = 0

Because ψ could be any 0-cochain, we must require that ∂ ◦ φ = 0, i.e.
φ is a 1-cycle. So, in our discussions later in the paper, we are justified in
interchanging 1-cycles and 1-cocycles.

3 The Sheaf of Differentials on C(G)

The correspondence with the cohomology of the graph expresses itself in the
curve through the canonical sheaf.

Definition 3.1 (§II.8 in [6]). Let V be a nonsingular variety over k. We
define the canonical sheaf as ωX =

∧n ΩX/k, the n-th exterior power of the
sheaf of differentials, where n = dim X.
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The key to characterizing the differentials on a graph curve is in un-
derstanding the interplay between the global section and its restriction to
individual components. Since the genus of a graph curve is always suffi-
ciently high, the canonical sheaf will contain only holomorphic differentials.
On the other hand, the restriction to any component P1 is a 1-form on a
genus 0 curve, which is linearly equivalent to −2P , so has two poles.

Therefore, given a global section ω ∈ ΩC(G)/k, we want the restrictions
ω|`i to glue together in such a way that the poles on adjacent lines cancel
each other out. Therefore, the poles can only be on the nodes of intersection;
furthermore, the residues at each node, taken on the two intersecting lines,
must sum to zero.

Again, keeping in mind the restrictions to each projective line, we ap-
ply the residue theorem to conclude that the sum of the residues on any
component P1 of C(G) must be 0.

To summarize, here are the restrictions on a differential ω ∈ ΩC(G)/k:

1. ω|`i has simple poles at the nodes, and nowhere else.

2.
∑

poles on `i
resPω|`i = 0

3. If P = `i ∩ `j , then resPω|`i + resPω|`j .

A quick calculation of the dimension of differentials shows that we are
on the right track. Given three nodes per line, with 2g − 2 lines, we start
with 6g− 6 unknowns for the values of residues. Given the relation between
the residues on adjacent lines at a given node, for each of 3g − 3 nodes, we
impose 3g− 3 restrictions. Finally, the residue theorem point indicates that
each line sums to zero, though the relation on one of the lines is redundant,
so we pick up another (2g − 2)− 1 restrictions.

(6g − 6)− (3g − 3)− (2g − 3) = g = dim H0ωC(G)

The possible values for the residues give us the full space of differentials
on the graph curve.

4 The Canonical Embedding of a Graph Curve

The cocycle space and the sheaf of differentials described in the preceding
sections turn out to be identified by the following proposition from [3]. This
connection will allow us to easily describe the canonical embedding.

Proposition 4.1 (Proposition 1.1 in [3]). There is a natural isomorphism
H0ωC(G)

∼= H1(G,C); in particular g(C) = g(G).
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Proof. We consider a holomorphic differential ω on C(G). As described in
Section 3, the residues at a given node P on the pair of incident lines add
up to zero. So, in G, we only need one value at any given node to identify
the 1-form; if the edge corresponding to P , e, is oriented from v1 to v2 (corr.
to `1 and `2) in our chosen orientation, we take the 1-cochain φ, such that
φ(e) = resPω|`2 .

Furthermore, the residue theorem restriction indicates that the corre-
sponding cochain is, in fact, a cocycle. Using the inner product structure
that we explained earlier, the fact that the sum of the residues∑

poles on `i
resPω|`i = 0 is equivalent to saying that 〈φ, δv∗i 〉 = 0, for all

vi ∈ V . In other words, a cochain corresponding to a differential is orthog-
onal to all coboundaries; therefore, it is in the cohomology group H1(G,C).

Having defined the sections of the canonical sheaf, we can discuss the
canonical map. Bayer and Eisenbud prove that the canonical series is base
point free iff the graph G is 2-connected; this condition implies that the
map is well-defined. They also prove that the canonical series is very ample
iff the graph G is 3-connected; this implies that the map will in fact be an
embedding. (Recall that n-connectivity in a graph is the condition that at
least n vertices must be removed to render the graph disconnected.)

We now explicitly describe the canonical embedding of a graph curve.
We start by setting T = Sym(Coch(G)), the symmetric algebra on the ring
of cochains. Then, we take S = Sym(H1(G,C)), the symmetric algebra on
the ring of cocycles. As mentioned before, these can be put in bijection with
the chains and cycles of the graph. Clearly, S can be considered a subring of
T , since all cocycles are cochains. To simplify matters, T can be thought of
as a polynomial ring in 2g−2 variables (C[x1, . . . , x2g−2]), i.e. the number of
edges; S can be thought of as the subring generated by the sums of variables
corresponding (according to orientation). Let R = the canonical ring of C.

We are looking for the ideal I which is the kernel of the map S → R.
Then the image of the ideal in R will define our canonical curve.

Theorem 4.2 (Proposition 3.1 in [3]). I is the intersection of S and the
ideal of T generated by all monomials of the forms xy, where x and y are
dual to disjoint edges of G, and xyz where x,y, and z are dual to the edges
of a triangle in G.

Proof. These generators are found by considering the ideal corresponding to
an individual line, and then taking the intersection over all of the component
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lines in the graph curve (the intersection of ideals corresponds to the union
of varieties).

The ideal of each line will be the intersection of S, the ring of canonical
sections, with the ideal generated by those edges not incident to it. When
you intersect all such ideals, you obtain the intersection of S with the ideal
generated by products of edges that do not share an incident vertex.

The exception to this is when the graph contanis triangles. Any pair
of edges in a triangle share a vertex, so none of them are non-adjacent;
therefore, none of these quadratic monomials will be included in the ideal.
However, the degree-3 monomial consisting of all three variables contains an
edge disjoint from each vertex. If we include these in our list of generators,
we have obtained all the elements in the canonical ideal.

5 Computations of Canonical Ideals

Define the graph G = (V,E) as in Figure 3. Using Macaulay2, we set up the
polynomial rings S = Sym(H1(G),C) and T = Sym(Coch G). We define
the ideal I, generated by monomials corresponding to triangles and pairs
of disjoint edges in the graph. We define the map φ : S → T , by mapping
cocycles to the sum of variables dual to the edges in the cycle (modifying
sign according to orientation).

Figure 3: Graph for Canonical Ideal Calculation

S = ZZ/32003[w..z]

T = ZZ/32003[a..i]

I = ideal(a*b*c,g*h*i,a*d,a*e,a*f,a*g,a*h,a*i,b*f,b*g,b*h,b*i,c*d,

c*g,c*h,c*i,d*e,d*f,d*h,e*f,e*i,f*g)

phi = map(T, S, {a+c+b,c+e+h+f,h+i+g,b+d+g-e})
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Following Proposition 3.1 in Bayer-Eisenbud, we obtain the intersection
of S with I. The Proposition points to the intersection of φ(S) with I as
the canonical ideal; however, the plurality of variables would only confuse
matters. Instead, we look at I’s preimage in S.

i8 : I2 = preimage(phi,I)

2 2 2 2 2

o8 = ideal (w*y, w*x*z - x z + x*y*z - x*z , x y*z - x*y z + x*y*z )

i9 : mingens I2

o9 = | wy wxz-x2z+xyz-xz2 |

As shown by the Macaulay2 output, the curve in P3 is defined by the
equations P = wy and Q = xz(w − x + y − z). This curve turns out to
be a complete intersection of two surfaces, one with degree 2 and one with
degree 3.

Another important graph which is embedded as a complete intersection
is the complete bipartite graph K3,3. Its canonical ideal is 〈wx + wy +
xz, yz(w − x)〉.

Not all graph curves will be complete intersections in the canonical em-
bedding. One example (which, incidentally, was central to the argument
found in [5]) is the Petersen graph, which has an embedding with a minimal
set of generators 〈(w+x)z, (v+w)y, vx−wy+xz, ux+uy−xz, uw−wy+
xz, uv + wy + uz〉.

6 Research Directions

1. The gonality of a curve C is defined as the lowest degree of a non-
constant rational map from C to the projective line. Equivalently,
if C is defined over the field K and K(C) denotes the function field
of C, then the gonality is the minimum value taken by the degrees
of field extensions K(C)/K(f) of the function field over its subfields
generated by single functions f . The gonality is often connected to
the Clifford Index, the topic of Bayer and Eisenbud’s paper.

This is the most active area of research in connection with graph
curves. While most of the work using graph curves was performed
in the late 1980s, the articles [1] and [2] were published since 2009.
Ballico gives a slightly modified definition of gonality that makes the
gonality of a graph curve always equal to 2g− 2. Additionally, Lohne,
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in [9] explores the possibility of connecting an analogue of gonality on
a simplicial graph to the gonality of corresponding graph curves.

2. Combinatorics of generators of the canonical ideal. In [4], the authors
studied the combinatorics of generators from a sub-trivalent version of
graph curves. We found that given a specific algorithm for embedding
the curve, the ideal will be generated by products of linear forms of
a particular type. Because trivalent graph curves have more inher-
ent symmetry, the generators of ideals may also be combinatorially
predictable given the corresponding graph.

One class of curves which may yield to examination are prism graphs,
a sampling of which are pictured in Figure 4. These are nicely char-
acterized and may yield some interesting combinatorics.

Figure 4: Prism Graphs for n = 3, 4

3. The final research direction we will mention is other structures built
out of graph curves. In particular, the construction of the first secant
variety can be carried out by taking any two points in the variety
and then taking the projective line that they generate. The union of
all such lines is called the first secant variety. In the case of a graph
curve, the first secant variety will be a union of 3-planes intersecting
in 2-planes. The combinatorics of these objects are interesting, and
they also arise in natural problems.

11



References

[1] E. Ballico. On the gonality of graph curves. Manuscripta Math.,
129(2):169–180, 2009.

[2] E. Ballico. Graph curves with gonality one. Rend. Semin. Mat. Univ.
Politec. Torino, 68(1):17–28, 2010.

[3] Dave Bayer and David Eisenbud. Graph curves. Adv. Math., 86(1):1–40,
1991. With an appendix by Sung Won Park.

[4] Greg Burnham, Zvi Rosen, Jessica Sidman, and Peter Vermeire.
Line arrangements modeling curves of high degree: Equations,
syzygies and secants. preprint (2011), available from Zvi Rosen
(zhrosen@math.berkeley.edu) upon request.

[5] Ciro Ciliberto, Joe Harris, and Rick Miranda. On the surjectivity of the
Wahl map. Duke Math. J., 57(3):829–858, 1988.

[6] Robin Hartshorne. Algebraic geometry. Springer-Verlag, New York, 1977.
Graduate Texts in Mathematics, No. 52.

[7] Allen Hatcher. Algebraic topology. Cambridge University Press, Cam-
bridge, 2002.

[8] Frances Kirwan. Complex algebraic curves, volume 23 of London Mathe-
matical Society Student Texts. Cambridge University Press, Cambridge,
1992.

[9] Henning Lohne. Square-free s-modules with support on a simplicial
graph and brill-noether theory. Available at arXiv:1001.4375v2.

12


