
Zvi Rosen Comb. Comm. Algebra Notes Bernd Sturmfels

1. Friday, August 24, 2012

1.1. Squarefree Monomial Ideals.

Definition 1.1. A simplicial complex ∆ on {1, 2, . . . , n} is a collection of subsets such that σ ∈ ∆
and τ ⊂ σ ⇒ τ ∈ ∆.

Example 1.2 (n = 5). ∆ = all subsets of {1, 2, 3}, {2, 4}, {3, 4}, {5}. (See Figure 1.) The vector
f = (1, 5, 5, 1) indicates the number of sets in the simplicial complex with the given cardinality.
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Figure 1. Simplicial Complex.

Definition 1.3. The Stanley-Reisner ideal of ∆ is the monomial ideal

I∆ = 〈xτ : τ /∈ ∆〉.
Remark 1.4. We identify subsets τ ⊂ {1, 2, . . . , n}, vectors in {0, 1}n and squarefree monomials
xτ =

∏
i∈τ xi.

Example 1.5. From the simplical complex ∆ above, we have

I∆ = 〈x1x4, x1x5, x2x3x4, x2x5, x3x5, x4x5〉.
Theorem 1.6. The map ∆ → I∆ is a bijection between simplicial complexes on {1, 2, . . . , n} and
square free monomial ideals in S = K[x1, . . . , xn]. Furthermore,

I∆ =
⋂
σ∈∆

〈xi : i /∈ σ〉.

The facets (minimal non-faces) suffice to generate the ideal.

Example 1.7. Again, from the above, we have

I∆ = 〈x4, x5〉 ∩ 〈x1, x2, x5〉 ∩ 〈x1, x3, x5〉 ∩ 〈x1, x2, x3, x4〉.
Definition 1.8. The Alexander dual ∆∗ consists of the complements of the non-faces of ∆.

Example 1.9. We can construct I∆∗ from the monomial generators of I∆ or from the primary
decomposition:

I∆ = 〈x1x4, x1x5, x2x3x4, x2x5, x3x5, x4x5〉
⇒ I∆∗ = 〈x1, x4〉 ∩ 〈x1, x5〉 ∩ 〈x2, x3, x4〉 ∩ 〈x2, x5〉 ∩ 〈x3, x5〉 ∩ 〈x4, x5〉.

I∆ = 〈x4, x5〉 ∩ 〈x1, x2, x5〉 ∩ 〈x1, x3, x5〉 ∩ 〈x1, x2, x3, x4〉
⇒ I∆∗ = 〈x4x5, x1x2x5, x1x3x5, x1x2x3x4〉.
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Remark 1.10. In general, the choice of generators of an ideal is not unique; however, in the context
of monomial ideals, a set of monomial generators will be unique.

1.2. Hilbert Series (“Inclusion-Exclusion”).

Definition 1.11. An S- module M is Nn-graded if M =
⊕

b∈NnMb and xaMb ⊆Ma+b. Its Hilbert
Series is:

H(M, x̄) =
∑
a∈Nn

dimK(Ma) · xa.

Example 1.12.

H(S, x) =
n∏
i=1

1

1− xi
= sum of all monomials in S.

If I is a monomial ideal, then H(S/I,X) = sum of all monomials not in I.

Definition 1.13. The K-polynomial of M is the numerator of

H(M,x) =
K(M,x)∏n
i=1(1− xi)

.

Theorem 1.14. The Stanley-Reisner ring has:

K(S/I∆, x) =
∑
σ∈∆

∏
i∈σ

xi
∏
j /∈σ

(1− xj)

 .

Example 1.15. For the square graph abcd:

I∆ = 〈ac, bd〉.
K = 1− ac− bd+ abcd.

We can use the theorem to calculate:

K = (1− a)(1− b)(1− c)(1− d) + a(1− b)(1− c)(1− d) + · · ·+ a(1− b)(1− c)d.
Remark 1.16. The K-polynomial allows us to count the monomials by inclusion-exclusion. First
we take out the minimal monomials, but then we have to put back in the intersection, etc.

Corollary 1.17 (Stanley’s Green Book). If d = dim(∆) + 1 then

H(S/I∆; t, t, . . . , t) =
1

(1− t)n
d∑
i=0

fi−1t
i(1− t)n−i

=
1

(1− t)d
d∑
i=0

fi−1t
i(1− t)d−i =

h0 + h1t+ · · ·+ hdt
d

(1− t)d .

1.3. Simplicial Complexes and Homology.

Definition 1.18. For ∆ a simplical complex on [n] = {1, 2, . . . , n}, Fi(∆ = {i-dimensional faces of
∆}. The reduced chain complex of ∆ over K is the sequence of linear maps:

0←KF−1(∆) ∂1← KF0(∆) ∂2← · · · ∂i−1← KFi−1(∆) ∂i← KFi(∆) ∂i+1← · · ·KFn−1(∆) ← 0.

where ∂i(eσ) =
∑

j∈σ sign(j, σ)eσ\j , (Note: ∂i−1 ◦ ∂i = 0) and sign(j, σ) = (−1)r−1 if j is the
r-th element in the sorted order of σ.

Definition 1.19. The i-th reduced homology of ∆ over K is the vector space

Hi(∆) = ker(∂i)/ Im(∂i+1).
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Example 1.20 (Triangle Graph).

0←K1 [1 1 1]←− K3

 1 1 0
−1 0 1
0 −1 −1


←− K3 ← 0.

Definition 1.21. The i-th reduced cohomology of ∆ over K is the vector space

H i(∆) = ker(∂i+1)/ Im(∂i).

2. Monday, August 27, 2012

2.1. Preview of Frobenius Splitting. Let R be a commutative ring containing a perfect (such
that every finite extension is separable) field K of characteristic p.

Freshmen’s Dream describes a field where (a + b)p = ap + bp. The Frobenius map F : R → R,
a 7→ ap is K-algebra homomorphism.

Say R is Frobenius-split if the inclusion FR ⊂ R of R-modules has a splitting, i.e. ∃K-linear
map ϕ : R→ R such that ϕ(ap · b) = aϕ(b). In other words, it can extract p-th roots.

Theorem 2.1 (Schwede, Knutson). If this holds, then there are only finitely many ideas I ⊂ R
that are compatibly split, i.e. ϕ(I) ⊆ I ⇔ ϕ(I) = I.

2.2. Monomial Matrices. Consider a sequence of Nn-graded S-modules

F• : 0←F0
φ1← F1

φ2← · · · φe−1← Fe−1
φe← Fe ← 0.

Each φi preserves Nn grading: it can be written as a matrix with entries in K and row/column
labels in Nn.

Example 2.2. The sequence

0←S
[ ac bd ]
←− S2

[
bd
−ac

]
←− S ← 0.

is represented as follows in terms of monomial matrices:

0←S0000

[ 1 1 ]
←− S2

1010
0101

[
1
−1

]
←− S1111 ← 0.

Definition 2.3. • F• is a complex if φi ◦ φi+1 = 0∀i.
• F• is exact in homological degree i if ker(φi) = im(φi+1).
• F• is a free resolution of M if it is exact everywhere except in homological degree 0, where
M = F0/im(φ1).

Theorem 2.4 (Hilbert’s Syzygy Theorem). There exists such a free resolution of length ≤ n (the
length of the grading).

Remark 2.5. We can use this theorem to compute K-polynomials.

Example 2.6.

M =
K[x1, . . . , x4]

〈x1x3, x2x4〉
has K = 1− x1x3 − x2x4 + x1x2x3x4.

Recommended Exercise for Homological Algebra: Exercise 1.12 – Find a direct proof that
TorSi (M,N) ∼= TorSi (N,M).
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2.3. Betti Numbers.

Definition 2.7. If F• is a minimal free resolution of M and Fi =
⊕

a∈Nn(Sa)
βi,a , then the i-th

Betti number of M in degree a is βi,a = βi,a(M).

Remark 2.8.

K(M,x) =
∑
a∈N

l∑
i=0

(−1)iβi,a(M)xa.

Question 2.9. Can we recover the resolution from knowing K(M,x)?

Answer. Usually no, but sometimes yes. �

Lemma 2.10.
βi,a(M) = dimK Tor

S
i (K,M)a.

Here K is the S −module described by S/〈x1, . . . , xn〉.
Definition 2.11. For a (not necessarily squarefree) monomial ideal I and degree b ∈ Nn, define
the Koszul simplicial complex

Kb(I) = {τ xb−τ ∈ I}.
Theorem 2.12 (Hochster). The Betti numbers of I and S/I in degree b can be expressed as

βi,b(I) = βi+1,b(S/I) = dimK H̃i−1(Kb(I);K).

(Here, we are discussing reduced homology.)

Ideas of Proof. βi,b(I) is the i-th homology of K• ⊗ I in degree b. Since I is a submodule of S, the
complex (K• ⊗ I)b is a subcomplex of (K•)b = chain complex of the simplex on σ = supp(b). It
consists of all τ ⊆ σ such that I(−τ)b 6= 0⇔ I is nonzero in degree b− τ ⇔ xb−τ ∈ I. �

Corollary 2.13. The link of σ inside the simplicial complex ∆ is

link∆(σ) = {τ ∈ ∆|τ ∪ σ ∈ ∆ and τ ∩ σ = ∅}.
Example 2.14. The link of a vertex in ∂ Octahedron is a 4-cycle.

Corollary 2.15. All nonzero Betti numbers of I∆ and S/I∆ lie in squarefree degrees σ where

βi,σ(I∆) = βi+1,σ(S/I∆) = dimK H̃i−1(link∆∗(σ̄);K).

Specifically, K1(I∆) = ∆∗, and its homology is given by the Betti numbers of I∆ in degree 1.

Exercise 2.16. Use this to calculate the Alexander dual. See Figure 2.
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Hollow Tetrahedron

Figure 2. Simplicial Complex and its Alexander Dual.
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I∆ = 〈x1x4, x1x5, x2x3x4, x2x5, x3x5, x4x5〉
I∆∗ = 〈x4x5, x1x2x5, x1x3x5, x1x2x3x4〉.

See the Macaulay2 file for Betti diagrams. The 1’s on the outer corners represent the interesting
homology.

3. Wednesday, August 29, 2012

Let S = K[x1, . . . , xn] be a ring with N grading, such that char(K) = 0.
Let GLn(K) = {invertible n×n matrices}, called the general linear group. Let Bn(K) = {upper-

triangular n× n matrices}, called the Borel group. Let Tn(K) = {diagonal n× n matrices}, called
the Torus group.

Tn(K) ⊂ Bn(K) ⊂ GLn(K).

Proposition 3.1. An ideal I ⊂ S is fixed under Tn iff I is a monomial ideal.

Proof by Example. Consider f = 11x2y + 17yz + 19xz3 ∈ I ⊂ K[x, y, z], a torus-fixed ideal. Scale
x, y, z by 2, 3, . . . (for example). 11

17
19

 1 1 1
23 22 24

33 32 34

 x2y
yz
xz3

 ∈
 I

I
I


By fudging with the scaling numbers, you can get each entry to stand on its own. �

Proposition 3.2. I is GLn-fixed iff I = 〈x1, . . . , xn〉d for some d ∈ N.

Proposition 3.3. For a monomial ideal I, the following are equivalent:

(1) I is Borel-fixed.
(2) If m ∈ I is divisible by xj, then m xi

xj
∈ I, for i < j.

Fix a term order < on S. If I is any ideal in S, then its generic initial ideal is

gin<(I) := in<(g ◦ I).

where g is a random matrix in GLn(K), i.e. in a suitable Zariski open subset.

Theorem 3.4 (Theorem 15.20 in Eisenbud). gin<(I) is Borel-fixed.

3.1. Gröbner Basis Review.

Example 3.5. Consider I = 〈Λ+
(3)〉, under the lex order x > y > z. By definition,

I = 〈x+ y + z, x2 + y2 + z2, x3 + y3 + z3〉.
The Gröbner basis is:

GB = {x+ y + z, y2 + yz + z2, z3}.
in<(I) = 〈x, y2, z3〉.

S/I ∼=K K{1, y, z, yz, z2, yz2}.
Hilbert function (N-grading):

d 0 1 2 3 4 5 6
S 1 3 6 10 15 21 28
S/I 1 2 2 1 0 0 0
I 0 1 4 9 15 21 28

gin<(I) = 〈x, y2, yz2, z4〉.
5
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Example 3.6 (GB for Submodules).

M =

〈[
x
y

]
,

[
x+ y
x+ y

]〉
⊂ S2

TOP (term over position) Gröbner basis rules ties in favor of the term with greater weight. In
our case,

GB =

{[
x
y

]
,

[
y
x

]}
in<(M) = 〈xe1, xe2〉.

GB =

{[
x
y

]
,

[
y
x

]
,

[
0

x2 − y2

]}
in<(M) = 〈xe1, ye1, (x

2 − y2)e2〉.

3.2. Eliahou-Kervaire Resolution.

Lemma 3.7. Each monomial m in Borel-fixed monomial ideal

I = 〈m1,m2, . . . ,mr〉.

can be written uniquely as a product m = mi ·m′, with max(mi) ≤ min(m′). Let ui = max(mi).

Proposition 3.8. The K-polynomial of S/I equals

K(S/I, x) = 1−
r∑
i=1

mi

ui−1∏
j=1

(1− xj).

Example 3.9.

I = 〈x2
1, x1x2, x

3
2, x1x

3
3〉.

⇒ K = 1− x2
1 − x1x2(1− x1)− x3

2(1− x1)− x1x
3
3(1− x1)− x1x

3
3(1− x1)(1− x2)

= 1− x2
1 − x1x2 − x3

2 − x1x
3
3 + x2

1x
2
3 + x1x2x

3
3 + x1x

3
2 + x2

1x2 − x2
1x2x

3
3.

This suggests the minimal free resolution

0←− S ←− S4 ←− S4 ←− S ←− 0.

Theorem 3.10. Let M ⊂ Sr be the module of first syzygies on a Borel-fixed monomial ideal
I. Then M has a POT Gröbner basis whose initial module in(M) has a linear free resolution.
Moreover, Sr/in(M) and I ∼= Sr/M have the same Betti numbers, namely:

βi =

r∑
j=1

(
uj − 1

i

)
.

Example 3.11 (Example 2.19 from Sturmfels-Miller).

I = 〈x1x2x
4
4, x1x2x3x

2
4, x1x

6
3, x1x2x

2
3, x

6
2, x1x

2
2, x

2
1〉.

See text or Macaulay2 Code for more detail.
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3.3. Lex-Segment Ideals. Fix a Hilbert function H : N→ N of some homogeneous ideal I ⊂ S.
Let Ld be the K-span of the H(d) largest monomials in the lex order on Sd and define

L =
∞⊕
d=0

Ld.

Proposition 3.12 (Macaulay 1927). The graded vector space L is a Borel-fixed ideal.

Remark 3.13. The part of this proposition that is non-trivial is to show that this vector space is
an ideal of the ring.

Theorem 3.14 (Macaulay’s Theorem). For every d ∈ N, the lex-segment ideal L has at least as
many generators as every other (monomial) ideal with the same Hilbert function H.

Example 3.15. Intersect of a quadric and cubic surface in P3. As an ideal, this is generated by a
quadratic and cubic homogeneous polynomial in 4 variables.

The Hilbert Series is:

1− t2 − t3 + t5

(1− t)4
=

1 + 2t+ 2t2 + t3

(1− t)2
= 1 + 4t+

∞∑
r=2

(6r − 3)tr.

ginrevlex(I) = 〈x2
1, x1x

2
2, x

4
2〉 ginlex(I) = 〈x1x

6
3, x

6
2, x1x2x4, x1x2x3x

2
4, x1x2x

2
3, x1x

2
2, x

2
1〉.

The lex-segment ideal L has 18 generators, more than from any other term ordering.

Open problem: given two random homogeneous forms, compute generic initial ideal in the lex
order.

Theorem 3.16 (Bigatti-Hulett Theorem). For all i and d, the lex-segment ideal L has the most
degree d minimal i-th syzygies among all (monomial) among all (monomial) ideals with the Hilbert
function H.

4. Friday, August 31, 2012

4.1. Staircases. First, let us look at a 2-dimensional case.

Example 4.1. Consider the ideal I ⊂ k[x, y] as follows.

I = 〈xa1yb1 , . . . , xarybr〉.
such that a1 > a2 > · · · > ar, and b1 < b2 < · · · < br.

This can be portrayed in a staircase diagram as in Figure 3.
Let us consider the K polynomial of this ideal:

K(S/I, x, y) = (1− x)(1− y)
∑
{xiyj /∈ I} = 1−

r∑
i=1

xaiybi +

r−1∑
j=1

xajybj+1 .

The first sum corresponds to the inner corners, and the second sum to the outer corners.

Proposition 4.2. The minimal free resolution of S/I equals

0←− S ←− Sr ←− Sr−1 ←− 0.

The minimal first syzygies are (ybi+1−biei − xai−ai+1ei+1).

Proposition 4.3 (Irreducible Decomposition).

I = 〈yb1〉 ∩ 〈xa1 , yb2〉 ∩ 〈xa2 , yb3〉 ∩ · · · ∩ 〈xar−1, ybr〉 ∩ 〈xar〉,
where the first (resp. last) intersectand is deleted if b1 = 0 or a1 = 0.

7
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(a1, b1)

(a2, b2)

(a3, b3)

Figure 3. Staircase Diagram.

Definition 4.4. The Buchberger graph Buch(I) of a monomial ideal I = 〈m1,m2, . . . ,mr〉 has:

• Vertices 1, 2, . . . , r,
• Edges {i, j} for i, j such that there is no k for which mk|lcm(mi,mj) and mk has smaller

degree in every variable occurring in lcm(mi,mj).

Proposition 4.5. The module of syzygies on I is generated by the syzygies

σij =
lcm(mi,mj)

mi
ei −

lcm(mi,mj)

mj
ej

corresponding to edges in the Buchberger graph.

See Figure 3.2 in Sturmfels-Miller for an example. The ideal’s decomposition can be read by
breaking the cubical complex into cuboids. In labeling the Buchberger graph, in each face, you
write the vector of the least common multiple of the vertices. The K polynomial is 1 − (vertex
labels) + (edge labels)− (face labels).

In general, the Buchberger graph is not planar. But it has nice properties under genericity
conditions.

4.2. Genericity and Deformations.

Definition 4.6. A monomial ideal I ⊂ K[X,Y, Z] is strongly generic if any generators xiyjzk and

xi
′
yj
′
zk
′

have the property that i 6= i′ unless they are both zero, and similarly for the other indices.

Proposition 4.7. If I is strongly generic, then the Buchberger graph is planar and connected. If I
is also Artinian, then Buch(I) consists of the edges of a triangulated triangle (thus, 3-connected).

Definition 4.8. A planar map is a graph together with an embedding into a surface homeomorphic
to R2.

Theorem 4.9. Given a strongly generic monomial ideal I in K[X,Y, Z], the planar map Buch(I)
provides a minimal free resolution of I:

0←− S ←− Sr ∂E←− Se ∂F←− Sf ←− 0.
8
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The differentials in this sequence are:

∂E(eij) =
mij

mj
ei −

mij

mi
ej .

∂F (eR) =
∑

edges {i,j}⊂R
±mR

mij
eij , where mR = lcm(mi|i ∈ R).

Question 4.10. What if I is not strongly generic?

Introduce a polynomial ring Sε = K[xε, yε, zε] for ε = 1
N for some N ∈ N which contains

S = K[X,Y, Z].
Consider monomial ideals:

I = 〈m1,m2, . . . ,mr〉 ⊂ S, and I = 〈mε,1,mε,2, . . . ,mε,r〉 ⊂ Sε.
Say Iε is a strong deformation of I if the partial order on {1, 2, . . . , r} by x-degree of the mε

refines the partial order of the mi and same for y and z.

Example 4.11.
I = 〈X,Y, Z〉3.

We could approach this problem using Borel-fixed ideal theory, Eliahou-Kervaire resolutions, or
even tropical strategy. We will use the Buchberger graph of I and Iε. (See Figure ∆).

0, 0, 3

1, 0, 2 + ε 0, 1 + 2ε, 2

2, 0, 1 1 + ε, 1, 1 + ε 0, 2− ε, 1 + 2ε

3, 0, 0 2 + ε, 1 + ε, 0 1 + 2ε, 2, 0 0, 3, 0

Figure 4. Buch(Iε) after deformation.

Proposition 4.12. Specializing the labels of the vertices, edges, and faces of the planar Buchberger
graph Buch(Iε) under ε = 0 yields a planar map resolution of I. (usually not minimal).

Question 4.13. Can you always make it minimal?

Yes. See Section 3.5 of Sturmfels-Miller.

Corollary 4.14. Let r be the number of generators of an ideal, e the number of first syzygies, and
f the number of second syzygies. Then, e ≤ 3r − 6 and f ≤ 2r − 5.

5. Wednesday, September 5, 2012

Definition 5.1. A polyhedral complex in Rm is a finite set X of convex polytopes such that

• If P ∈ X and F ⊂ P is a face, then F ∈ X.
• If P,Q ∈ X, then P ∩Q is a face of both P and Q.

X has a (reduced) chain complex (over Z) with boundary maps

∂(F ) =
∑
facets
G⊂F

sign(G,F ) ·G.

where sign(G,F ) = 1, if F ’s orientation induces G’s orientation, or −1 otherwise.
9
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Definition 5.2. X is a labelled cell complex if its r vertices are labelled by vectors a1, . . . , ar ∈ Nn.
The label of any face F ∈ X is given by

xaF = lcm(xai |i ∈ F ).

The monomial matrix on X uses this chain complex for scalar entries with row and column labels
aF , for F ∈ X.

The cellular free complex FX is the resulting complex of Nn graded free S-modules.

FX =
⊕
F∈X

S(−aF ). ∂(F ) =
∑
facets
G⊂F

sign(G,F ) · xaF−aG ·G.

We call FX a cellular resolution if it is exact.

Example 5.3. Consider the octahedron cell complex as in Figure 5. By counting the faces of
various dimension, we obtain the cellular free complex below:

0← S ← S6 ← S12 ← S8 ← S ← 0.

ab

bc

acad

bd

cd

Figure 5. Labelled Cell Complex.

If Q is an order ideal in Nn, then XQ = {F ∈ X|aF ∈ Q} is a labeled sub complex of X.

Example 5.4. X�b and X≺b.

Proposition 5.5. FX is a cellular resolution iff the cell complex X�b is acyclic over K for all
b ∈ Nn.

In this case, FX resolves S/I where I = 〈xav |v vertex ∈ F 〉.
Example 5.6 (Example 5.3 Continued). Take X�abc, where X is the labeled cell complex from
Example 5.3. The resulting subcomplex as depicted in Figure 6 is acyclic, as are all other subcom-
plexes. Therefore, FX is a cellular resolution. However, it is not minimal, since the edge labels
match the face label.

Theorem 5.7. Write H̃i(X, k) for the reduced homology. If FX resolves I then

βi,b(I) = dimk H̃i−1(X≺b, k).

Example 5.8 (Example 5.6 Continued). To calculate β2,abcd(I), we look at the subcomplex X≺abcd,
depicted in Figure 7. The K-polynomial of this ideal is:

K = 1− ab− ac− ad− bc− bd− cd+ abc+ abd+ acd+ bcd− 3abcd.

Because dimk H̃1(X≺b, k) = 3, we have β2,abcd(I) = 3.
10
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ab

bc

ac

Figure 6. Subcomplex X�abc.

ab

cd

bcbd

acad

Figure 7. Subcomplex X≺abcd.

Remark 5.9. While we use the closed order ideal to test for cellular resolution, we use the open
order ideal to calculate the Betti numbers.

.

Theorem 5.10. If FX is a cellular resolution of I, then the K-polynomial of I is the Nn-graded
Euler characteristic

K(S/I;X) =
∑
F∈X

(−1)dimF+1xaF .

Examples of Cellular Resolutions

(1) Planar Maps. (as we discussed in relation to the Buchberger graphs)

(2) Taylor Resolution: X = ∆r−1, the full (r − 1)-simplex. This is “highly non-minimal.”

(5) Minimal Triangulation of RP2.

0← S ← S10 ← S15 ← S6 ← 0

is exact iff char(k) 6= 2. The corresponding cell complex has 10 vertices, 15 edges, and 6
pentagonal faces (see p. 70 of Sturmfels-Miller for a diagram.)

(3) Permutohedron Ideals. The permutahedron is the convex hull of the action of the symmetric
group. (Gorenstein)

Example 5.11. Take a solid hexagon, labeled with all permutations of the exponent vector
(1, 2, 3).

11
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(4) Tree Ideals. They are defined as follows:

I =

〈(∏
i∈σ

xi

)n−|σ|+1

∅ ⊆ σ ⊆ [n]

〉
.

The tree ideals are Alexander dual to permutohedron ideals. They have (n+1)n−1 standard
monomials, one for each labeled tree on n+ 1 vertices. The Hilbert Series gives the parking
functions = # reduced divisors on Kn+1.

These objects are important for Chip Firing (see “Monomials, Binomials, and Riemann-
Roch” by Manjunath and Sturmfels).

The cell complex for n = 3 is presented in Figure 8.

z3

y2z2

y3

x2y2x3

x2z2

xyz

Figure 8. Tree ideal for n = 3.

(6) Simple Polytopes. Let P be a simple d-polytope with facets F1, . . . , Fn and vertices v1, . . . , vr.

Label each vertex vi by a squarefree monomial
∏
vi /∈Fj

xj .

The corresponding ideal IP is the irrelevant ideal in the toric Cox ring.

Exercise 5.12. Prove that FP is a linear minimal free resolution.

Question 5.13. Does every monomial ideal have a minimal cellular resolution?

No! (M. Velasco, Journal of Algebra 2008)

6. Friday, September 7, 2012

6.1. The hull resolution. For t ∈ R>0 and a ∈ Nn set ta = (ta1 , ta2 , . . . , tan) ∈ Rn. For a
monomial ideal I ⊂ S = K[x1, . . . , xn], set

Pt = conv {ta : xa ∈ I}.
Lemma 6.1. This is a convex polyhedron, specifically

Pt = Rn≥0 conv {ta : xa ∈ min gens I}.
Proof. (⊆) Let xb ∈ I. There is xa ∈ min gens(I) dividing xb ⇒ b ≥ a ⇒ tb − ta ∈ Rn≥0 ⇒ tb ∈
RHS. Both are convex.

(⊇) Need to show that for all xa ∈ min gens(I) : ta + Rn≥0 ⊆ Pt. Consider ta + u where

u = (u1, . . . , un) ≥ 0.
12



Zvi Rosen Comb. Comm. Algebra Notes Bernd Sturmfels

Choose r ∈ N+ such that 0 ≤ uj ≤ taj+r − taj for all j.
Let C be the convex hull of the 2n points

ta +
∑
j∈J

(taj+r − taj ) · ej

where J ⊆ {1, 2, . . . , n}. These represent the monomials xa(
∏
j∈J xj)

r.
The cube is contained in Pt and contains ta + u. �

Proposition 6.2. The face poset of Pt is independent of t for t > (n+ 1)! The same holds for the
subposet of bounded faces of Pt.
Definition 6.3. The hull complex hull(I) is the labeled polyhedral complex of all bounded faces
of Pt for t >> 0.

Theorem 6.4. The cellular free complex Fhull(I) is a resolution of S/I.

Proof. By Proposition 4.5, NOS X = (hull(I))≤b is acyclic over K
Claim: X is contractible. Set v = t−b. If ta is a vertex of X then a ≤ b, so

ta · v = t−b·−a ≤ t−b·b = n.

All other monomials xc ∈ min gens(I) satisfy the hypothesis:

∃i : ci ≥ bi + 1⇒ tc · v = t−b · tc ≥ tci−bi ≥ t > n.

The hyperplane H = {x ∈ Rnx · v = n} separates the vertices of X from all other vertices of Pt.
F = Pt ∩H is a face of the polytope Q = Pt ∩H≥0 and X is the complex of faces of Q which

are disjoint from F .
To complete the proof we cite Lemma 4.18: X≤b is contractible. �

Corollary 6.5.
K(S/I) = χ(hull(I);x).

Example 6.6. hull(I) =

x2z xyz y2z

x5y3 x4y4 x3y5

Figure 9. Hull Resolution.

6.2. Subdividing the Simplex. J = 〈xd11 , . . . , x
dn
n , . . .〉 is artinian. Pt has n special vertices

v1, . . . , vn that form an (n− 1)-simplex.

Lemma 6.7. The polytope Qt = conv({1} ∪∆(J))∩Pt is n-dimensional and has ∆(J) as a facet.

Lemma 6.8. Every bounded face of Pt survives as a face of Qt.

Theorem 6.9. The hull complex ∆(J) is a (regular) polyhedral subdivision of (n−1)-simplex ∆(J).
A face G of this complex lies in the boundary of hull(J) iff aG fails to have full support.

13
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Exercise 6.10. Draw pictures illustrating Example 4.33. Take Qt and hull(J) for

J = 〈x5, y5, z5, x3y2, x2y3, x3yz, x2yz2, xy3z, xy2z2〉.

(1, 1, t5)

(t5, 1, 1)

(t3, t2, 1) (t2, t3, 1)

(t2, t, t2) (t, t2, t2)

(1, t5, 1)

Figure 10. Qt for the ideal J .

7. Monday, September 10, 2012

7.1. Alexander Duality. Minimal generators xσ =
∏
i=σ xi become prime components mσ =

〈xi i ∈ σ〉.
Proposition 7.1. If I is a square free monomial ideal then (I∗)∗ = I. Equivalently, (∆∗)∗ = ∆
for any simplicial complex ∆.

Think about this in terms of order ideals and filters in a Boolean lattice on n = 3. In Figure
11, the white vertices are a filter, since the are closed upward, and the black vertices are an order
ideal, since they are closed downward.

Figure 11. Boolean lattice of 2[3].

Example 7.2. For I∆ = 〈x0x1, y0y1, z0z1〉. Then, the Alexander dual I∆∗ = 〈x0, x1〉 ∩ 〈y0, y1〉 ∩
〈z0, z1〉. The complexes are represented in Figure 12.

14
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x1

y0

z0y1

z1

x0 x0y1z1

x0y0z0

x1y1z1

x1y0z0

x0y1z0

x0y0z1 x1y0z0

x1y1z0

Figure 12. ∆ and a Cellular Complex for ∆∗.

Theorem 7.3.
H̃i−1(∆∗,K) ∼= H̃n−2−i(∆,K).

Theorem 7.4 (Alexander Inversion Formula).

K(S/I∆, x̄) = K(I∆∗ , 1− x̄).

Proof. By Proposition 1.37, the Hilbert series of I∆∗ is the sum of all monomials xb divisible by∏
j /∈σ xj for some face σ of ∆.

⇒ formula

�

7.2. Generators versus irreducible components. A monomial ideal I in S = K[x1, . . . , xn] is

irreducible if it has the form mb = 〈xbii bi ≥ 1〉 for some b ∈ Nn.

Example 7.5 (n= 3). m105 = 〈x, z5〉.
Definition 7.6. An irreducible decomposition of I is

I = mb1 ∩mb2 ∩ · · · ∩mb1

If this is irredundant then the mbi are irreducible components of I.

Lemma 7.7. Every monomial ideal has an (irredundant) irreducible decomposition.

Proof. If I is not irreducible then there exists generators m,m′ such that m,m′ are relatively prime.
Now, I = (I + 〈m〉) ∩ (I + 〈m′〉). Iterate. �

Definition 7.8. If a, b ∈ Nn with b ≤ a, let a \ b denote the vector with coordinates

ai \ bi =

{
ai + 1− bi if bi ≥ 1

0 if bi = 0
.

For example,
(7, 6, 5) \ (2, 0, 3) = (6, 0, 3).

If all m in generators of I divide xa, then the Alexander dual of I with respect to xa is I [a] =⋂{ma\b xb ∈ min gens(I)}.
The canonical choice is a = (1, 1, . . . , 1).

Theorem 7.9.
(I [a])[a] = I.

15
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Example 7.10. Let I = 〈x3, xy, yz2〉 = 〈x3, y〉 ∩ 〈x, z3〉.
Take a = (4, 4, 4).
Then I∗ = 〈x2〉 ∩ 〈x4, y4〉 ∩ 〈y4, z3〉 = 〈x2y4, x4z3〉.

Theorem 7.11. Assume all min gens of I divide xa. Then I has a unique irredundant irreducible
decomposition, namely

I =
⋂
{ma\b xb ∈ min gens (I [a])}

Equivalently, the Alexander dual of I equals

I [a] = xa\b mb is an irreducible component of I〉.
Remark 7.12. Computationally, finding a dual is much quicker than finding a decomposition in
the usual way. So, this is a useful shortcut.

7.3. Topological preparation for next time. If X is a cell complex then its cochain complex
C∗(X,K) is the vector space dual of the chain complex C∗(X,K).

If X ′ is a subcomplex of X then we have an inclusion C∗(X ′,K) ⊂ C∗(X,K) and a surjection
C∗(X,K)→ C∗(X ′,K).

Definition 7.13. The relative cochain complex is defined by the exact sequence:

0→ C∗(X,X ′;K)→ C∗(X,K)→ C∗(X ′,K)→ 0.

It is the leftmost nonzero complex in the sequence. The i-th relative cohomology of the pair (X,X ′)
is

H i(X,X ′;K) := H iC∗(X,X ′;K).

8. Wednesday, September 12, 2012

8.1. Duality for Resolutions.

Definition 8.1. For a, b ∈ Nn define a ∧ b and a ∨ b in Nn by

xa∧b = gcd(xa, xb), xa∨b = lcm(xa, xb)⇔ (a ∧ b)i = min(ai, bi), (a ∨ b)I = max(ai, bi).

Definition 8.2. A cell complex Y or a pair (Y, Y ′) is weakly colabeled if aG ≥ aF for faces G ⊂ F
and it is colabeled if aG =

∨
F facet,G⊂F

aF .

The cocellular monomial matrix supported on Y has the cochain complex C∗(Y,K) for scalar
entries, with faces of dimension n− 1 in homological degree 0 and row and column labels aG given
by Y .

Example 8.3. The colabeled relative complex in Figure 13 is a minimal resolution for the permu-
tohedron ideal.

Theorem 8.4 (Duality for Resolution). Fix a monomial Ideal I generated in degrees ≤ a and a
length n cellular resolution FX of S/(I + ma+1) such that all face labels on X precede a + 1. If

Y = a+1−X, then FY is a weakly cocellular resolution of (I [a])�a, and FY�a is a weakly cocellular

resolution of the Alexander dual I [a]. Both Y and Y�a support minimal cocellular resolutions if FX
is minimal.

Example 8.5. Apply this to the tree ideal I with minimal cellular resolution given by Figure 8.
The minimal free resolution is:

0← S7 ← S12 ← S6 ← 0.

The first S6 corresponds to triangles, S12 corresponds to edges, and S7 to vertices. Subtracting
each exponent vector in this labeling from a + 1 = (4, 4, 4) gives us the labeling in Figure 13.

16



Zvi Rosen Comb. Comm. Algebra Notes Bernd Sturmfels

144

224

414

424441

242

231

331

232

132
133 123

223

213

313
312322

333

321

Figure 13. Colabeled Relative Complex.

We consider FY�a , which essentially tells us to rip out the boundary, where we find the 4
coordinates.

Proof of Theorem 8.4. The proof uses the Nerve Lemma. If U is an acyclic cover of a polyhedral
complex Y by acyclic polyhedral subcomplexes, then H̃ i(Y,K) ∼= H̃ i(N (U),K). �

8.2. Cohull resolution and applications.

Definition 8.6. Given an ideal I generated in degrees � a, the cohull complex of I with respect
to a is the weakly colabeled complex

cohulla(I) = (a+ 1−X)�a for X = hull(I [a] +ma+1).

Applying Theorem 5.37 to X we obtain:

Corollary 8.7. Fcohulla(I) is the free resolution of I.

Remark 8.8 (Historical Note). This construction came out of the desire to find the intersection
of some set of ideals. It turned out to be easer to calculate the whole resolution, and read off the
list of generators from that.

Theorem 8.9 (Duality for Betti numbers). If I is generated in degrees � a and 1 � b � a, then

βn−i,b(S/I) = βi,a+1−b(I
[a]).

“Alexander daulity for resolutions in 3 variables has a striking interpretation for planar graphs.”

Theorem 8.10. Let I ⊇ ma where m = 〈x, y, z〉. An axial planar map G supports a minimal

cellular resolution of K[x, y, z]/I if and only if its dual, the radial map G̃ supports a minimal

cellular resolution of K[x, y, z]/I [a].

Can you do this in four dimensions?

9. Wednesday, September 19. 2012

[Absent for Monday, September 17 due to Rosh Hashanah]
17
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9.1. Taylor Complexes and Genericity. I = 〈m1, . . . ,mr〉monomial ideal in S = K[x1, . . . , xn].
For σ ⊂ [r] set mσ = lcm(mi : i ∈ σ) and aσ = deg(mσ).

Definition 9.1. Given any simplicial complex on ∆ on [r], the Taylor complex F∆ is the sequence
of monomial matrices from the boundary map of ∆ with face labels mσ.

Lemma 9.2. F∆ is a resolution iff for every monomial m, the subcomplex ∆≤m = {σ ∈ ∆|mσ

divides m} is acyclic (no homology) over K.

Lemma 9.3. F∆ is minimal iff ∀σ ∈ ∆ and ∀i ∈ σ, mσ 6= mσ\i.

Definition 9.4. Call I generic if whenever two generators mi and mj have the same degree
degxk(mi) = degxk(mj). Then there exists ml that strictly divides mij = lcm(mi,mj) in every
variable.

Remark 9.5. Strongly generic, in the sense of Chapter 3, implies generic. However, the reverse
implication is not true.

9.2. The Scarf Complex.

Definition 9.6. The Scarf Complex ∆I is the collection of subsets of {m1, . . . ,mr} whose lcm is
unique. Explicitly,

∆I = {σ ⊆ [r]|∀τ ⊆ [r],mσ = mτ ⇒ σ = τ.}.
Lemma 9.7. The Scarf complex ∆I is a simplicial complex. Its dimension is at most n− 1.

Example 9.8. For the ideal, 〈x2z, xy, y2z, z2〉, the scarf complex is:

x2z z2

xy y2z

Figure 14. Scarf Complex.

with free resolution 0← S4 ← S5 ← S2 ← 0.

Example 9.9. I = 〈xy, xz, yz〉, then ∆I = three isolated vertices. F∆I
: 0 ← S ← S3 ← 0 is not

exact.
I = 〈x, y, z〉,∆I = solid triangle, F∆I

is the Koszul complex, which is exact.

Call F∆I
the algebraic Scarf Complex of I.

Proposition 9.10. Every free resolution of S/I contains F∆I
as a subcomplex. (The monomial

matrices contain it as a block)

Theorem 9.11. If I is any monomial ideal then its scarf complex is a sub complex of hull(I). If
I is generic then ∆I = hull(I), so its algebraic Scarf complex F∆I

minimally resolves the quotient.
18
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Therefore, we have a nice upper bound for a resolution from the hull complex, and a nice lower
bound from the scarf complex, and they agree in the generic case.

Corollary 9.12. The minimal free resolution of a generic monomial ideal is independent of
char(K). The total Betti number βi(I) =

∑
a∈Nn βa,i equals the number fi(∆) of i-dimensional

faces in the scarf complex.

Corollary 9.13. K(S/I) =
∑

σ∈∆I
(−1)|σ|mσ.

How does Alexander duality interact with the scarf complex?

Definition 9.14. For b, u ∈ Nn, set b̂ =
∑
i:bi≤ui

biei.

Corollary 9.15. Given I is generic, fix u ∈ Nn such that every minimal generator of I divides x4.
Set I ′ = I +mu+1. The irredundant irreducible decomposition of I is

I =
⋂

G∈∆I′

mâG .

This allows you to create the following irreducible decomposition:

Example 9.16. Specifically, use u = (3, 3, 3).

I = 〈x3y2z, x2yz3, xy3z2〉
= 〈x〉 ∩ 〈x〉 ∩ 〈y〉 ∩ 〈z〉 ∩ 〈x2, y3〉 ∩ 〈y2, z3〉 ∩ 〈z2, x3〉 ∩ 〈x3, y3, z3〉.

Theorem 9.17. A generic monomial ideal I is Cohen-Macaulay if and only if all irreducible
components of I have the same dimension. More generally, the projective dimension of S/I equals
the maximal number of generators of an irreducible component.

Alternatively, the number of yellow vertices and white vertices are the same.

10. Friday, September 21, 2012

10.1. Genericity by Deformation. A deformation fo a monomial ideal I = 〈m1,m2, . . . ,mr〉 is
a choice of vectors εi = (εi1, . . . , εin) for i ∈ [r] satisfying

ais < ajs ⇒ ais + εis < ajs + εjs

and ais = 0⇒ εis = 0.
Formally introudce (in a suitable polynomial ring):

Iε = 〈m1x
ε1 , . . . ,mrx

εr〉 = 〈xa1+ε1 , . . . , xar+εr〉.
Theorem 10.1. Let Iε be a generic deformation of I. Define ∆ε

I by labeling each face of the Scarf
complex ∆Iε by mσ instead of lcm(mix

εi : i ∈ σ). The resulting Taylor complex F∆ε
I

resolves I.

Example 10.2. The images below depict an ideal before and after deformation.

Theorem 10.3. Suppose min(I) � u and set I∗ = I + mu+1. The following are equivalent:

(1) I is generic.
(2) F∆∗ is a minimal free resolution of S/I∗.
(3) ∆I∗ = hull(I∗).
(4) I = ∩{mâσ |σ ∈ ∆I∗ and |σ| = n} is the irredundant, irreducible decomposition of I.
(5) For each irreducible component mb of I∗, there exists a face of ∆I∗ labeled by aσ = b.
(6) F∆I

is a free resolution of S/I and no variable xk appears with the same non-zero exponent
in mi and mj for any edge {i, j} of ∆I .

(7) If σ /∈ ∆I∗, then some monomial m ∈ I divides mσ.
(8) The Scarf complex ∆I∗ is unchanged by arbitrary deformations of I∗.
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xz

z2

yz

xyx2 y2

Figure 15. Before Deformation.

x1.1z

z2

yz

xy1.1x2 y2

Figure 16. After Deformation.

10.2. Bounds on Betti Numbers.

Definition 10.4. The cyclic polytope Cn(r) = conv{(ti, t2i , . . . , tni ) : i = 1, 2, . . . , r}. (David Gale)

Theorem 10.5 (Ziegler, Theorem 8.23). The Upper Bound Theorem for Convex Polytopes: The
number βi(I) of minimal i-th syzygies of any monomial ideal I with r generators in n variables is
≤ #Ci,n,r of i-dimensional faces of Cn(r). If i = n− 1 then even βi(I) ≤ Cn−1,n,r − 1.

Example 10.6. n = 3, S = k[x, y, z] planar graphs.

C1,3,r = 3r − 6, C2,3,r = 2r − 4.

Example 10.7. n = 4, S = k[a, b, c, d]. Cyclic polytopes are “neighborly”: C1,4,r =
(
r
2

)
, i.e. every

pair of vertices is connected by an edge.

C0,4,r = r, C1,4,r =
1

2
r(r − 1), C2,4,r = r(r − 3), C3,4,r =

1

2
r(r − 3).

Example 10.8. (r = 12)

I = 〈a9, b9, c9, d9, a6b7c4d, a2b3c8d5, a5b8c3d2, ab4c7d6, a8b5c2d3, a4bc6d7, a7b6cd4, a3b2c5d8〉.
Every pairwise first syzygy is minimal. The resolution is:

0← I ← S12 ← S66 ← S108 ← S53 ← 0.

Question 10.9. Are these bounds tight?
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No!

Theorem 10.10 (Hosten & Morris). Let HMn be the number of simplicial complexes on {1, 2, . . . , n−
1} (equal to the number of anti-chains in the Boolean lattice) such that no pair of faces covers a
ll of {1, . . . , n− 1}. Then the maximum number of generators of a neighborly monomial ideal in n
variables equals HMn.

n 3 4 5 6 7 8
HMn 4 12 81 2646 1, 422, 564 229, 809, 982, 112

11. Monday, September 24, 2012

(Guest lecture by Thomas Kahle.)

Part I was about monomial ideals in S = k[x1, . . . , xn] = k[Nn].
S has a monoid of exponents Nn = posHull{e1, . . . , en}, where ei is the i-th generators of Zn.

We generalize to Q, the positive Hull of a1, . . . , an ∈ A some abelian group. Then Q =
{∑n

i=1 niai, ni ∈ N}.
Convention: Q is finitely generated, cancellative (i.e. a+ c = b+ c⇒ a = b), and Q has identity.

Definition 11.1. The semigroup ring (“monoid algebra”) is the k-algebra with k-basis {ta : a ∈ Q}
and multiplication tatb = ta+b. (k could be a ring) This algebra is denoted K[Q]

Definition 11.2. λta is a monomial. ta − λtb is a binomial. A monomial (resp. binomial) ideal is
an ideal generated by monomials (resp. binomials).

Question 11.3. How do we compute with k[Q]?

We give a presentation for Q:

A← Zn ← L← 0.

(L is an integer lattice, i.e. subgroup of Zn, and ei ∈ Zn 7→ ai ∈ A)
So, Q = Nn/ ∼L, where u ∼L v iff u− v ∈ L.

Definition 11.4. Given an integer lattice L, the lattice ideal IL is the binomial ideal IL = 〈xu−xv :
u, v ∈ Nn, u− v ∈ L〉 ⊆ S = k[x1, . . . , xn].

Theorem 11.5. k[Q] ∼= S/IL, and deg(ta) = a.

Remark 11.6. The Q-graded Hilbert function takes only values in {0, 1} on S/IL.

We consider some Lattices in Z3:

Example 11.7.

L = Z(3, 4,−5), A = Z2, Q = N{
(

5

2

)
,

(
0

1

)
,

(
3

2

)
}

IL is minimally generated as 〈x3y4 − z5〉.
Example 11.8.

Q = N{3, 4, 5}, A = Z, L = {(u, v, w) ∈ N3 : 3u+ 4v + 5w = 0}
In this case, IL is generated as 〈x3 − yz, x2y − z2, xz − y2〉.
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Example 11.9.
L = {(u, v, w) ∈ Z3, u+ v + w ∈ 2Z.}

Then 2ei ∈ L for each i. Here,

IL = 〈x2 − 1, xy − 1, yz − 1〉 = 〈x− 1, y − 1, z − 1〉 ∩ 〈x+ 1, y + 1, z + 1〉.
k[Q] is not an integral domain.

Theorem 11.10. The following are equivalent:

(1) IL is prime.
(2) k[Q] is an integral domain.
(3) The group generated by Q inside A is free abelian.
(4) Q is an affine semigroup, i.e. a finitely generated subsemigroup of Zd, for some d.

Proposition 11.11.
dim k[Q] = n− rank(L).

11.1. Polyhedral Cones and Affine Semigroups. Let Q be an affine semigroup.

Zd ⊇ A A←− Zn ← L← 0.

Def. of polyhedral cone.

Definition 11.12. T ⊆ Q is an ideal if T − Q ⊆ T . A subsemigroup F ⊆ Q is a face if Q \ F is
an ideal. Q is pointed if 0 is the only unit.

Lemma 11.13. F ⊆ Q is a face of Q if and only if Q \ F is a prime ideal pF .

Lemma 11.14. Faces of Q are 1− 1 with faces of cone(A).

12. Friday, October 5, 2012

[Class on Monday and Wednesday missed for Sukkot]
Usually deg is surjective, so we can write

0→ L→ Zn deg→ A→ 0

and the grading of S is specified by the sub lattice L of Zn.

Example 12.1. n = 2, S = K[x, y].

(1) L = span{
(

2
0

)
,
(

1
1

)
}; A ∼= Z2. S = Seven ⊕ Sodd. This is the super- polynomial ring.

(2) L = span{
(

5
−3

)
} ⇒ A =∼= Z, deg(x) = 3, deg(y) = 5.

S = S0 ⊕ S3 ⊕ S5 ⊕ S6 ⊕ S8 ⊕ S9 ⊕ · · ·
The Hilbert Series is

1

(1− t3)(1− t5)
=
∑

dimK(Sn)tn.

In general S =
⊕

a∈A Sa and S0 = K[L ∩ Nn] is a normal semigroup ring.

Proposition 12.2. Each Sa is a finitely-generated S0-module.

(Missed a few notes here.) This is related to Spec(S0).

Theorem 12.3. Let S be multi graded by A and Q = deg(Nn). The following are equivalent:

(1) There exists a ∈ A, such that Sa is finite-dimensional over K.
(2) The only polynomials of degree zero are constants, i.e. S0

∼= K.
(3) For all a ∈ A, Sa is finite-dimensional over K.
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(4) For all finitely-generated A-graded S-modules M , and for all a ∈ A, Ma is finite-dimensional
over K.

(5) Zero is the only non-negative vector in the lattice L. That is L ∩ Nn = {0}.
(6) The semigroup Q has no units, and no variable xi has degree 0.

If this holds, the grading is positive.

Positive gradings can be given by Zn → A ⊂ Zd with Q = deg(Zn) ⊂ Nd.
Helpful for Review: Modules over PIDs, Smith Normal Form.

Proposition 12.4. Let S be multigraded by a torsion-free abelian group A. All associated primes
of multigraded S-modules are homogeneous.

Example 12.5. S = K[x, y], A = Z, deg(x) = 1, deg(y) = −1.

I = 〈x3y + x2, xy2 + y〉 = 〈xy + 1〉 ∩ 〈x2, y〉.
The ideal is homogeneous, as well as its associated primes.

Remark 12.6. How do you know if an ideal is homogeneous? Calculate the reduced Gröbner
basis; every term should be homogeneous.

In a super algebra, 〈x2 − 1〉, is homogenous of degree zero. However, if you break it up into
primes 〈x2 − 1〉 = 〈x+ 1〉 ∩ 〈x− 1〉.

12.1. Hilbert Series and K-polynomials. Suppose S is positively graded as described above.
For any finitely-generated, graded S-module, the Hilbert series

H(M, t) =
∑
a∈A

dimK(Ma)t
a

lives in Z[[A]] =
∏
a∈A Zta, an additive group.

This group contains the ring Z[[Q]][A] = Z[[Q]] ⊗Z[Q] Z[A], the completion of the semigroup
algebra tensor the Laurent Series.

Lemma 12.7.

H(S, t) =
1

(1− ta1)(1− ta2) · · · (1− tan)

holds in Z[[Q]].

Theorem 12.8. For every finitely-generated graded S-module M , there exists a unique Laurent
polynomial K(M ; t) ∈ Z[A] such that

H(M, t) =
K(M ; t)∏n
i=1(1− tai)

holds in Z[[Q]][A]. This is the K-polynomial.

We have a finite minimal free resolution. Every free summand is multigraded, so everything will
be given by a monomial matrix. We can do inclusion-exclusion, and this will give the K-polynomial,
as well.

Easier strategy: Pass to an initial ideal. The K-polynomial will be the same.
Sneak Peek to next week: Given a variety X ⊂ Pn, we have notions of dim(X) and degree(X).

We will have multidegree versions of both notions, which will be obtained from the polynomial in
t.
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13. Wednesday, October 10

13.1. Syzygies of Lattice Ideals. Let Q = N{a1, . . . , an} ⊂ Zd = A be a pointed affine semi-
group. Let S = K[x1, . . . , xn] be a positively graded ring. K[Q] = S/IL has a Hilbert series∑

b∈Q
tb =

KQ(t1, . . . , td)

(1− ta1) · · · (1− tan)

and this derives from the minimal free resolution

0← IL ←
⊕
b∈Q

S(−b)β0,b ← · · · ←
⊕
b∈Q

S(−b)βr,b ← 0,

where we define βi,b = # minimal i-th syzygies of K[Q] in degree b. Fact: r ≤ n− 1 by Hilbert’s
syzygy theorem.

Example 13.1 (Twisted Cubic Curve). n = 4, d = 2. The semigroup Q = N{
(

1
0

)
,
(

1
1

)
,
(

1
2

)
,
(

1
3

)
}.

0← IL
[bd−c2,bc−ad,ac−b2]←

S(−(2,4))

⊕S(−(2, 3)) ⊕S(−(2, 2))


a b
b c
c d


←

S(−(3,4))

⊕S(−(3, 5))← 0.

[Hilbert-Burch,Cohen-Macaulay of codimension 2]
The Hilbert series:

KQ(s, t)

(1− s)(1− st)(1− st2)(1− st3)
=

1 + st+ st2

(1− s)(1− st3)
.

The multi degree is a degree 2 homogeneous polynomial, specifically:

3s2 + 9st+ 6t2 = (s+ 2t)(s+ 3t) + s(s+ 3t) + s(s+ 3t) + s(s+ t).

This latter expression would be obtained by considering the initial ideal as the intersection 〈c, d〉 ∩
〈a, d〉 ∩ 〈a, b〉.

For b ∈ Q consider the simplicial complex
∑
uiai = b, then

∆b = {I ⊆ {1, 2, . . . , n}|b−
∑
i∈I

ai ∈ Q}.

= simplicial complex generated by {supp(xu)|xu ∈ Sb}.
Theorem 13.2.

βj,b = dimK(H̃j(∆b,K)).

Idea of Proof. Start with βj,b = dimK(Torj+1
S (K,K[Q])b). Tensor the Koszul complex K0 with

K[Q]. In degree b this is the reduced chain complex of ∆b. �

Example 13.3 (Twisted Cubic, Part 2). Take b =
(

3
4

)
. Then,

S(34)
= K{and, ac2, b2c}.

The simplicial complex ∆(34)
is given in Figure 17.

Corollary 13.4. IL has a minimal generator in degree b iff ∆b is disconnected.

We want to beat Hilbert’s Syzygy Theorem for n >> n − d (Lots of generators in low degree).
(Recall the upper bound from HST is r ≤ n− 1.

Corollary 13.5. The projective dimension of IL ≤ 2n−d − 2.
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b

d

a

c

Figure 17. Simplicial Complex for
(

3
4

)
.

Proof. Let F1, . . . , Fs be the facets of ∆b. There exist monomials xu1 , . . . , xus of degree b with
supp(xui) = Fi.

Claim: s ≤ 2n−d. Otherwise, ∃i 6= j such that ui ≡ uj mod 2. The midpoint 1
2(ui +uj) is in Nn

and has degree b, and its support Fi ∪ Fj strictly contains Fi. �

This bound is actually tight.

Example 13.6. Let n = 8, d = 5⇒ n− d = 3. Take the lattice

L = span

 1 1 1 2 −2 −1 −1 −1
1 2 −2 −1 1 1 −1 −1
1 −1 1 −1 1 −1 2 −2

 .
What are a1, . . . , a8 ∈ Z5? We have the following free resolution:

0← IL ← S13 ← S44 ← S67 ← S56 ← S28 ← S8 ← S1 ← 0.

There exists a special b ∈ N8/L = Q such that ∆b = boundary of the 7-simplex.

13.2. Fast Forward. How do we build resolutions?

Corollary 13.7 (9.25 in the Text, Page 188). The minimal free resolution of a generic lattice ideal
is its Scarf complex.

We only defined a Scarf complex for a monomial ideal.

Definition 13.8. The Scarf complex of a generic lattice ideal is the image modulo the L-action of
the Scarf complex of the monomial module

ML = S{xu : u ∈ L}.
Example 13.9. Consider the lattice L = Z

(
1
−1

)
⊂ Z2. Then, we draw the lattice and label as in

Figure 18.
An image in 3 dimensions is found on page 185 of the text.

14. Guest Lecture by Dave Bayer, October 11, 2012

For a long time, developments in monomial ideals mirrored those in toric ideals.

Example 14.1. Let I = 〈b2 − ac, bc− ad, c2 − bd〉. The location of a generator in a lattice gives a
simplicial complex that relates to the ideal. The lattice corresponding to our ideal is depicted in
Figure 19.

Let k[a, b]/(b2−a2). To get a standard monomial, send b2 → a2, as pictured in Figure 20. Then,
L : 〈(−2, 2)〉.

We can draw a picture of a staircase which represents this notion.
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1

y/x

x/y

x2/y2

y2/x2

Figure 18. Lattice with Labeling for Scarf Complex.

a

b

c

d

Figure 19. Lattice for k[a, b, c]/I, with Generator and Associated Complex.

b

a

Figure 20. Lattice for k[a, b]/(b2 − a2) .

Definition 14.2. Laurent monomial module. Previously when working with k[x1, . . . , xn], we dealt
with k[Nn]. Now we are working in k[x±1

1 , . . . , x±1
n ]. Let L ⊂ Znbe a lattice. Let J = 〈xu|u ∈ L〉.
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Example 14.3. Consider k[a, b]/(b − a). The corresponding lattice is L = 〈(1,−1)〉 ⊂ Z2, as
pictured in Figure 21.

Figure 21. Lattice for k[a, b]/(b− a) and Corresponding Cellular Visualization.

Example 14.4. Consider the following lattice in Z4:

L = 〈(−1, 2− 1, 0), (−1, 1, 1,−1), (0,−1, 2,−1)〉.
Though this is in four dimensions, we only care about the two-dimensional slice in which the lattice
lies. This is a grid, similar to the image in Figure 22.

Figure 22. Grid Associated to L.

A cell from this grid can be labeled as in Figure 23.
This picture gives us the first minimal syzygy of the twisted cubic.

15. Monday, October 15, 2012

15.1. Free Resolutions of Lattice Ideals.

Definition 15.1. Let L ⊂ Zn be a lattice, such that L ∩ Nn = {0}. The group algebra of L over
S = K[x1, . . . , xn] is

S[L] = K{xuzv : u ∈ Nn, v ∈ L}.
It is Zn-graded via deg(xuzv) = u+ v. The lattice module ML is a Zn-graded S[L]-module

ML
∼= S[L]/〈xu − xvzu−v : u, v ∈ Nn, u− v ∈ L〉.
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b−1c2d−1 a−1bcd−1

a−1b2c−11

c2 bc

b2

a−1b2c

bc2d−1

bc2

b2c

Figure 23. Cell Complex Associated to L.

Consider two categories:

A = {Zn-graded f.g. S[L]-modules}.

B = {Zn/L-graded f.g. S-modules}.
and the functor π : A → B, sending M 7→M ⊗S[L] S. Set all z’s to 1. As an S[L]-module, S can
be written as

S = S[L]/〈zv − 1 : v ∈ L〉.
The ideal we quotient by is called the “augmentation ideal.”

Key observation: π(ML) = S/IL.

Theorem 15.2. π is an equivalence of categories.

Corollary 15.3. If F• is any Zn-graded free resolution of ML over S[L], then π(F•) is a Zn/L-
graded free resolution of S/IL over S.

Moreover, F• is minimal iff π(F•) is minimal iff π(F•) is minimal.

A resolution of ML over S[L] is a resolution of ML as an S-module with a free L-action. Main
example: Hull Resolution.

hull(ML) : 0← S[L]← S[L]β1 ← S[L]β2 ← · · · ← 0,

where βi = #L-equivalence classes of i-faces of hull(ML).

Definition 15.4. The hull resolution of K[Q] = S/IL is π(hull(ML)). It is obtained by setting
z = 1 in all maps.

Example 15.5 (Steven Karp 11/21). Let L be unimodular; i.e. every linearly independent d-subset
of {a1, . . . , an} is a basis of Zd.

Consider the Lawrence lifting Λ(L) = {(u,−u) ∈ Z2n|u ∈ L} and its ideal IΛ(L) = 〈xuyv −
xuyv|u− v ∈ L〉 in 2n variables.
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15.2. Genericity and the Scarf Complex. A Laurent monomial module M in K[x±1
1 , . . . , x±1

n ]
is generic if all its minimal first syzygies xuei − xvej have full support.

Theorem 15.6. For a generic M , the following are identical:

(1) The Scarf complex of M .
(2) The hull resolution of M .
(3) The minimal free resolution of M .

Call a lattice L generic if ML is generic.

Example 15.7. Let n = 4. Let L = ker[20 24 25 31] ⊂ Z4. IL is the ideal of the curve
(t20, t24, t25, t31).

S[L] = K[a, b, c, d][zv : v ∈ L].

ML = S[L]/〈a4 − bcdz(4,−1,−1,−1), . . . , c3 − abdz(−1,−1,−1,3)〉.
The quotiented ideal is generated by seven relations, each of full support.

By the theorem, hull = Scarf = minimal resolution of S/IL

0← S ← S7 ← S12 ← S6 ← 0.

Up to the L-action, there are 6 tetrahedra, 12 triangles, 7 edges and 1 vertex.
In the 2d lattice case, you can learn about the initial ideal by looking at the link of the lattice,

as pictured in Figure 24.

x32 x1x
2
2

x21

Figure 24. Link of the Lattice and its Initial Ideal.

We can similarly take the link of the 3d lattice, which looks like Figure 25.

Figure 25. Link of the 3-dimensional Lattice.
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Reference: “Generic Lattice Ideals”. Quote from p. 189: “The deterministic construction of
generic lattices with prescribed properties is an open problem ... difficult...”

How can we systematically deform?

16. Wednesday, October 17, 2012

16.1. Ideals of points in the plane.

Definition 16.1. The Hilbert scheme of n points in C2 is, as a set,

Hn = Hilbn(C2) = {ideals I ⊂ C[x, y] : dimC(C[x, y]/I) = n.}.
Actually Hn is a variety.

Example 16.2. Examples of points in Hn:

“most general”: Take {P1, . . . , Pn} ⊂ C2 and I its radical ideal.
“most special”: Monomial Ideals ↔ partitions of n.

Example 16.3. One such special ideal for n = 4 is as follows. Let λ = 2 + 1 + 1, a partition of 4.
Its ideal is

Iλ = 〈x2, xy, y3〉,
obtained by taking the generators of the complement of the Young diagram.

y2

y

1 x

y3

xy

x2

Figure 26. Young Diagram and corresponding Ideal Generators.

Set Vm = C{monomials of degree ≤ m} = C[x, y]≤m ∼= C(m+2
2 ).

Lemma 16.4. Given any colength n ideal I, the image of Vm span C[x, y]/I as a C-vectorspace,
provided m ≥ n.

Proof. The n monomials outside in(I) span C[x, y]/I and these monomials must be in Vm. �

Remark 16.5. I ∩ Vm is a subspace of codimension n in Vm. It determines I.

Hn is a subset of the Grassmanian Grn(Vm) of codimension n subspaces in Vm.

Definition 16.6. For a partition λ of n let Uλ ⊂ Hn be the set of ideals such that

Uλ is defined by polynomials in an open cell of the Grassmannian.

Theorem 16.7. The affine varieties Uλ form an open cover of the subset Hn ⊂ Grn(Vm) for
M ≥ n+ 1, thereby endowing Hn with the structure of a (quasiprojective) variety.

Example 16.8. Take n = 4 and λ = 2 + 1 + 1 = .

Every ideal I ⊂ Uλ has the form

〈x2 − ay2 − bx− py − q, xy − cy2 − dy − ex− r, y3 − fy2 − gy − hx− s〉.
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where a, b, . . . , s are complex numbers that satisfy certain equations.
Namely, here the generators must form a Gröbner basis. Buchberger’s S-pair criterion gives

polynomial expressions for p, q, r, s in terms of a, b, . . . , h.
This implies that Uλ = Spec C[a, . . . , h] ∼= C8.

Example 16.9 (Difficult Exercise). Let λ = 2 + 2 = . Uλ is a smooth hypersurface in C9.

The standard monomials are xy, x, y, 1.
One difference between this example and the last is that for λ = 211, there exists a weight vector

under which the monomial ideal has higher weight than everything outside. No such order exists
in this case.

16.2. Connectedness and Smoothness.

Theorem 16.10. The Hilbert scheme Hn is smooth and irreducible of dimension 2n. (True only
for points in C2)

What about 120 points in C3? How about 8 points in C4? Both have trickier properties. The
plane is also special in the applicability of partitions.

Lemma 16.11. Every point I ∈ Hn is connected to a monomial ideal by a rational curve.

Proof. Gröbner bases. �

Example 16.12. For any t ∈ C, consider It = 〈x2 − try, xy − t2y2, x2y, xy2, y3〉. This is in U

for t 6= 0 but I0 = 〈x2, xy, y3〉 ∈ U .

Strategy for connecting two ideals I, J ∈ Hn:

(1) Send I and J to monomial ideals Iλ and Iµ respectively.
(2) Identify the sets of points corresponding to each monomial ideal.
(3) Homotope one set of points to the other.

We will see the explicit computation next class.

17. Friday, October 19, 2012

Proposition 17.1. The Hilbert scheme Hn is connected.

Proof. Every monomial ideal Iλ is the initial ideal of the radical ideal Rλ given by the points in λ.

Rλ = 〈x(x− 1), xy, y(y − 1)(y − 2)〉.
Iλ = 〈x2, xy, y3〉 = in(Rλ).

�

Proposition 17.2. For each partition λ of n, the local ring has embedding dimension ≤ 2n, i.e.
the maximal ideal mIλ satisfies

dimC(mλ/m
2
Iλ

) ≤ 2n.

Proof. The proof is a combinatorial game involving boxes and arrows. �

Together, these imply:

Theorem 17.3. Hn is a smooth, irreducible variety of dimension 2n.

In 3- or higher-dimensional space, the upper bound of dimension of the Hilbert scheme will
change, and it may be singular.
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17.1. Haiman’s Theory. Let the symmetric group Σn act on

C[x,y] = C
[
x1

y1
· · · xn

yn

]
The coordinate ring SnC2 = C2n/Σn is the invariant ring C[x, y]Σn ⊂ C[x, y].
An explicit list of generators of this ring is listed in Theorem 18.18.
For example:

C
[
x1 x2

y1 y2

]Σ2

= C[x1 + x2, x1x2, y1 + y2, y1y2, x1y2 + y1x2].

We obtain a morphism from: (C2)n

��
Hn

// SnC2

This is an isomorphism outside the diagonal locus.

Idiag = ∩1≤i<j≤n〈xi − xj , yi − yj〉.

Theorem 17.4. Idiag is generated by the polynomials

∆D(x, y) = det


xi11 y

j1
1 xi12 y

j1
2 · · · xi1n y

j1
n

xi21 y
j2
1 xi22 y

j2
2 · · · xi2n y

j2
n

...
...

xin1 y
jn
1 xin2 y

jn
2 · · · xinn y

jn
n


where D = {(i1, j1), . . . , (in, jn)} runs over n-subsets of N2.

Open Problem: Find an elementary proof. Find explicit minimal generators.

Theorem 17.5 (Haiman’s n! and (n+ 1)n−1 Theorem). (1) If λ ` n then the vector space

C
[
∂

∂x1
, . . . ,

∂

∂xn
,
∂

∂y1
, . . . ,

∂

∂yn
,

]
·∆λ

has dimension n!.
(2) The vectorspace C[x, y]/〈C[x, y]Σn+ 〉 has dimension (n+ 1)n−1.

Key Player in the Proof. Isospectral Hilbert scheme Xn is the reduced fiber product

Xn

��

// (C2)n

��
Hn

// SnC2

�

Exercise 17.6 (Exercise 18.3). Compute the equations of the isospectral Hilbert scheme X4 over
U . (Similar to computation in Exercise 18.23.)

Theorem 17.7. The isospectral Hilbert scheme is Gorenstein.

C
[
∂

∂x
,
∂

∂y

]
·∆λ

∼= C[x, y]/Jλ
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is a 0-dimensional Gorenstein ring. Its scheme is the fiber of Xn → Hn over Iλ ∈ Hn. Therefore,
this scheme has length n!.

18. Monday, October 22, 2012

18.1. Haiman’s Theory Continued.

Corollary 18.1. The Hilbert-Frobenius series of

C[
∂

∂x
,
∂

∂y
]∆λ
∼= C[x, y]/Jλ

is the Macdonald polynomial H̃λ(z; q, t). Hence, H̃λ(z; q, t) is an N[q, t]-linear combination of Schur
functions sµ(z).

Definition 18.2. The Hilbert-Frobenius series (in this context) is:

(n2)∑
i=1

(n2)∑
j=1

F λij(z)q
itj

where F λij(z) is the sum (with multiplicity) of all Schur functions sµ(z) for irreducible Σn-modules

indexed by µ appearing in the degree (i, j) in C[x, y]/Jλ.

Partitions index representations of the symmetric group. By duality, the same holds for the
general linear group. If you set z = q = t = 1, then the Hilbert-Frobenius series evaluates to n!.

18.2. Ehrhart Polynomials. Let P be a d-dimensional lattice polytope in Rd (i.e. the convex
hull of a finite set of lattice points).

Theorem 18.3. The function EP : N→ N,m 7→ #((m ·P )∩Zd) is a polynomial of degree d, called
the Ehrhart polynomial of P .

Example 18.4. Consider the 3-cube conv({0, 1}3). The Ehrhart polynomial is

Ecube = m3 + 3m2 + 3m+ 1 = (m+ 1)3.

Its inscribed octahedron (obtained by omitting antipodal vertices) has Ehrhart polynomial

Eoct(m) =
2

3
m3 + 2m2 +

7

3
m+ 1.

The leading coefficient is the volume of the polytope, and the final coefficient is always 1.

Consider the semigroup Q = N{(1, a) : a ∈ P ∩ Zd} in Zd+1. It need not be saturated, i.e. if Q
is an “empty tetrahedron.” (See Example 12.6).

Lemma 18.5. Ep is the N-graded Hilbert function of K[Qsat], i.e. for all

m ∈ N : Ep(m) = dimK(K[Qsat]m).

Proof. The monomials of degree m in K[Qsat] correspond to the lattice points in m ·Q. �

We need only show that the Hilbert function of K[Qsat] equals the Hilbert polynomials. By
triangulation and inclusion-exclusion, this reduces to the case of simplices.

Lemma 18.6. If P is a lattice simplex, then the N-graded Hilbert function of K[Qsat] equals the
Hilbert polynomials.
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Proof. Let a1, . . . , ad+1 ∈ Zd be the vertices of P and L be the sublattice of Zd+1 spanned by
(1, a1), . . . , (1, an).
S = [Zd+1 : L] (the index of the lattice) is the volume of the half-open “cube”

B =

{
d+1∑
i=1

λi(1, ai) | 0 ≤ λi < 1

}
.

B ∩ Zd+1 = {b1, b2, b3} is a set of representatives for the cosets of Zd+1 modulo L.

Set xi = t0 · tai ⇒ K[Qsat] is the free K[x1, . . . , xd+1] module with basis {tbi = tbi00 · · · tbidd | i =
1, 2, . . . , s}.

Note deg(tbi) = bi0 ≤ d by definition fo B.

⇒ Ep(m) =

s∑
j=1

(
(d− bj0) +m

d

)
.

Because (d− bj0) is nonnegative, this is a polynomial in m. �

18.3. Dualizing Complexes. Let Q = Qsat. The canonical module of K[Q] is the ideal

ωQ = 〈ta : a ∈ int(Q)〉.
(Related to canonical curves, canonical sheaves, etc.)

Theorem 18.7. The following dualizing complex Ω•Q is a minimal injective resolution of the canon-
ical module:

0→ K{Zd} →
⊕

facets F⊂Q
K{TF } →

⊕
ridges k⊂Q

K{Tk} → · · · →
⊕

rays L⊂Q
K{TL} → K{−Q} → 0,

where TG = G−Q is the injective hull of the face G of Q.

Question 18.8. What is the Hilbert series of the canonical module?

dimK(ωQ)m = #(int(m · P ) ∩ Zd) for m > 0.

Example 18.9. Cube: (m− 1)3 = m3 − 3m2 + 3m− 1. (interior lattice points)
Octahedron: 2

3m
3 − 2m2 + 7

3m− 1.

m 1 2 3 4 5 6 7
All Lattice Points 6 19 44 85 146 231 344

Interior Lattice Points 0 1 6 19 44 85 146

The Gorenstein property means that ωC is principal.

19. Wednesday, October 24, 2012

19.1. Brion’s Formula. Given a lattice polytope P in Rd, its lattice point enumerator

ΦP (t) =
∑
{ta : a ∈ P ∩ Zd}

Its interior lattice point enumerator is:

ΦP (t) = (−1)dim(P )
∑
{ta : a ∈ int(P ) ∩ Zd}.

The inner tangent cone of P at a vertex v is

Cv = R≥0(P − v).
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The vertex semigroup Qv = Cv ∩ Zd is pointed with finite Hilbert basis Hv and corresponding
polynomial ring

Sv := K[xa|a ∈ Hv] � K[Qv].

The S-module K[Qv] has K-polynomial Kv(t) and universal denominator

Dv(t) =
∏
a∈Hv

(1− ta).

Hilbert series of K[Qv] is:

Kv(t)

Dv(t)
=
∑
a∈Qv

ta.

Theorem 19.1 (Brion). For all m ∈ Z,

ΦmP (t) =
∑

v∈P vertex

tm·v
Kv(t)

Dv(t)

as a rational function in Q(t1, . . . , td).

Example 19.2. Let d = 1, P = [2, 3].

⇒ K2(t) = 1, D2(t) = 1− t,K3(t) = 1, D3(t) = 1− t−1.

⇒ ΦmP (t) = t2m
1

1− t + t3m
1

1− t−1
.

For all m ∈ Z, this is the correct Laurent polynomial.
For instance, taking m = 7, this is

Φ7P (t) = t14 1

1− t + t21 1

1− t−1
= t14

7∑
i=0

ti.

Sketch of Proof.

Q ⊂ Zd+1 generated by {(1, a) | a ∈ P ∩ Zd}
By Theorem 12.11, the Hilbert series of the canonical module is

H(ωQ; t0, t) =
∑

F⊂P faces

(−1)d−dim(F )H(K{TF }; t0, t).

where TF = F −Q.
The LHS equals

∑
t−m0 (−1)dΦmP (t−1). The F = ∅ term on RHS equals

∑
m≥0 t

−m
0 (−1)d+1ΦmP (t−1).

Bring this to the LHS, multiply by D =
∏
v∈P vertexDv(t

−1) and apply Lemma 12.15. �

Corollary 19.3 (Ehrhart Reciprocity). The number of interior lattice points in mP for m ∈ N
equals (−1)dimPEP (−m) where EP is the Ehrhart polynomial.

Idea. Substittue t1 = · · · = td = 1 into Brion’s formula, very carefully using L’Hopital’s rule. �

Software for calculating Brion’s Formula, Ehrhart polynomials – Maple not so great, but Latte
is good.
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20. Friday, October 26, 2012

20.1. Short Rational Generating Functions.

Theorem 20.1 (Barvinok). Suppose d ∈ N is fixed and P ⊂ Rd is a lattice polytope. The lattice
point enumerator

ΦP (t) =
∑

v∈P vertices

tv
Kv(t)

Dv(t)

can be computed in polynomial time in the binary bit complexity model.

Corollary 20.2. In fixed dimension, the Ehrhart polynomial of a lattice polytope can be computed
in polynomial time, specifically O(md/2).

Example 20.3 ( d= 2). Let P be the convex hull of {(0, 0), (0, a), (a, a2)}, for a ∈ N (let a be very
large).

ΦP (t1, t2) =
a∑
i=0

i·a∑
j=0

ti1t
j
2.

This is too big – exponential in log(a). We write equivalently:

=
K00

(1− t1)(1− t1ta2)
+

ta1
(1− t−1

1 )(1− t2)
+

ta1t
a
2

(1− t−1
1 ta2)(1− t−1

2 )
.

K00 = t1t2 + t1t
2
2 + · · ·+ t1t

a−1
2 .

This is still exponential size, but we can rewrite it as a fraction:

= 1 +
t1t2 − t1ta2

1− t2
.

Idea of Proof. Triangulate P in polynomial time (d fixed). When P is a simplex, need only compute
d+ 1 series like Kv.

Lemma 20.4. If a1, . . . , ad are linearly independent, then the Hilbert series of Q = R≥0{a1, a2, . . . , ad}∩
Zd is a short rational generating function that can be computed in polynomial time.

Idea: Write the cone Q as an alternating sum of a few unimodular cones, as demonstrated in 27.

= − +

Figure 27. Decomoposition into unimodular cones.

�

Theorem 20.5 (Barvinok-Woods). For d fixed, the Hilbert basis HQ of any saturated affine semi-

group Q ⊂ Zd can be computed in polynomial time. (We have a “short encoding”.)
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Theorem 20.6. Fix d and n. Let A ∈ Zd×n and L = ker(A). The following can be computed in
polynomial time:

(1) the Zd-graded Hilbert series of S/IL. (This would allow you to compute the Frobenius
number – the largest number not in the lattice.)

(2) Any reduced Gröbner basis of IL.
(3) A finite universal Gröbeer basis.

Example 20.7 (n=4,d=2). Given a ∈ N,

G(x, y) = x1x4y2y3x
a−2
4 ya−1

3 +
x1x3y

2
2((x1y2)a−2 − (x3y4)a−2

x1y2 − x3y4
.

Given by the matrix:

A =

[
a a− 1 1 0
0 1 a− 1 a

]
. {(sa : sa−1t : sta−1 : ta)} ⊂ P3.

21. Monday, October 29, 2012

21.1. The Complete Flag Variety. F ln = the set of complete flags of linear subspaces.

{0} = V0 ⊂ V1 ⊂ · · · ⊂ Vn−1 ⊂ Vn = Kn.

We will realize F ln as a subvariety of a product of projective spaces:

F ln ⊂ Pn−1 × P(n2)−1 × P(n3)−1 × · × P( n
n−1)−1.

For σ ⊂ [n] and Θ ∈ Kn×n let Θσ be the submatrix with rows 1, 2, . . . , d and columns σ. Their
determinants are the Plücker coordinates of Θ, and they define a point in the product of projective
spaces. This point depends only on the flag V•, where Vi is the span of the first d rows of Θ. The

projection of F ln into P(nd)−1 is the Grassmannian of d-planes in Kn.

Question 21.1. What is the dimension of F ln?

Answer: Consider each subspace as a hyperplane with normal vector unique up to scaling. Then
it is clear that we have (n− 1) + (n− 2) + · · ·+ 1 =

(
n
2

)
.

Definition 21.2. Let x be an n× n matrix of variables. The subalgebra of K[x] spanned by the
2n Plücker coordinates of x is the Plücker algebra.

21.2. Quadratic Plücker Relations. The Plucker ideal In is the Kernel of the map

K[p]→ K[x], pσ 7→ detxσ.

Example 21.3. n = 3.

I3 = 〈p23p1 − p13p2p12p3

The proof is that duplicating a row will give a 3× 3 matrix with zero determinant. This is another
expression for that determinant.

Example 21.4. n = 4. Our variety F ln ⊂ P3×P5×P3. I4 is minimally generated by 10 quadrics,
including

p234p13 − p134p23 + p123p34.

This can be alternatively written as:

2 3 4
1 3

− 1 3 4
2 3

+ 1 2 3
3 4

.
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Definition 21.5. Young’s Poset P on 2[n] is defined by

σ = {σ1 ≤ · · · ≤ σs} ≤ τ = {τ1 ≤ · · · ≤ τt}
if s ≥ t and σi ≤ τi for i = 1, . . . , t.

The chains in P are semistandard tableaux.

The Hasse diagram of the Young Poset for I4 is in Figure 28

1

2

3

4
∅

34

24

23

234

14

13

12
134

124

123

1234

Figure 28. Hasse Diagram for I4.

Theorem 21.6. The ideal In of Plücker relations has a quadratic Gröbner basis (under lex term
order), where the initial ideal in(In) is generated by products pσpτ of incomparable pairs.

Example 21.7. In I4 if we consider the simplicial complex of the Hasse diagram, the chains are
the facets. So the number of facets = the number of chains (12) is the degree of the ideal.

Outline of Proof. (1) For every incomparable pair {σ, τ} of P, there exists f ∈ In such that
in(f) = pσpτ .

(2) Fix the purely lex term order on K[x] with

x11 > x12 > . . . , x1n > x21 > · · · > x2n > · · · > xn1 > · · · > xnn.

Then in(φn(pσ)) = x1σ1x2σ2 · · ·xsσs .
(3) For any monomial pa in K[p] we have

in(φn(pa)) =

i.e. some set of variables in the upper left corner.
(4) There is a unique semistandard monomial pb such that in(φn(pb)). Hence, these pb’s are

linearly independent modulo In
�

Corollary 21.8. in(In) is the Stanley-Reisner ideal of the order complex of P.

Corollary 21.9. The semistandard monomials pa form a K-basis for the Plücker algebra.
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22. Wednesday, October 31, 2012

(We are discussing the fact that the minors form a Sagbi basis. Some material has been missed.)

23. Friday, November 2, 2012

23.1. Gelfand-Tseitlin Semigroups.

Definition 23.1. A GT Pattern is an array Λ ∈ Rn×n such that

λij ≥ λi,j+1 ≥ λi+1,j ≥ 0

for all i, j and λij = 0 if i+ j > n+ 1.

GTn = the semigroup of integer solutions. The dimension is
(
n+1

2

)
.

Proposition 23.2. The Gelfand-Tseitlin semigroup GTn has Hilbert basis H1
n consisting of parti-

tions with distinct parts fitting into an n× n array.

Theorem 23.3. There is an automorphism of Zn×n that takes GTn to the antidiagonal semigroup
corresponding tot he initial algebra in(R) of the Plücker algebra R.

Corollary 23.4. in(R) is isomorphic to the GT semigroup algebra K[GTn].

Corollary 23.5. Both in(R) and R are Cohen-Macaulay.

Example 23.6.

H1
3 =

 , , , , , ,

 .

H1
3 =

{(
1

)
,

(
1

)
,

(
1
)
,

(
1

1

)
,

(
1

1

)
,

(
1

1

)
,

(
1

1
1

)}
.

These in turn correspond to p1, p2, p3, p12, p13, p23, p123.
in(R) = K[p]/〈p12p3 − p13p2〉J3 of dimension 6.

23.2. Back to Section 14.3. Monomial map ψn : K[p]→ R ⊂ K[x], sending pσ 7→ in(det(xσ)).
The toric ideal Jn = ker(ψn).
Our quadratic Gröbeer Basis for the Plücker ideal In in Theorem 14.6 factors through a Gröbeer

Basis for Jn consisting of quadratic binomials.

Remark 23.7. Regarding the Combinatorics –
Young’s poset is a distributive lattice (P,∧,∨). If σ = {σ1 < · · · < σs} and τ = {τ1 < · · · < τt}

with s ≥ t then

σ ∧ τ = {min{σi, τi}, i = 1, . . . , t} ∪ {σt+1, . . . , σs}.
σ ∨ τ = {max{σi, τi}, i = 1, . . . , t}.

We define a partial term order on K[p] via pa ≤ pb iff in(φn(pa)) ≤diag in(φn(pb)).

Theorem 23.8. We have Jn = in(In), the reduced Gröbeer basis of Jn under revlex(P ) consists of
all binomials pσpτ − pσ∧τpσ∨τ where τ, σ are incomparable in Young’s poset.

Remark 23.9. Standard monomial theory leads to applications in Representation Theory. This
last theorem represents the confluence of Gröbner basis theory with Standard monomial theory.
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P Q = C2 × C3

15

25

35
45

34

24

23
14

13

12

Figure 29. Hasse diagram for the Grassmannian.

Example 23.10 (Prof. Sturmfels’ Favorite Example). Consider the Grassmannian Gr(2, 5). By
the fundamental theorem of distributive lattices, every distributive lattice comes from the order
ideal of some other poset.
P = J(Q), where Q = C2 × C3.
We can take monomials to binomials to trinomials. The five incomparable pairs are in the left

column, and we grow these to Plucker relations:

p14p23 − p13p24 + p12p34

p15p23 − p13p25 + p12p35

p15p24 − p14p25 + p12p45

p15p34 − p14p35 + p13p45

p25p34 − p24p35 + p23p45

There is a bijection between order ideals in Q and partitions with two distinct parts:

, , , , , , , .

24. Monday, November 5, 2012 – Guest Lecture by Adam Boocher

Definition 24.1. Determinantal ideals are ideals generated by sub-determinants of a generic ma-
trix.

Notation 24.2.

X =

 x11 · · · x1l
...

. . .

xk1 · · · xkl

 .

Mkl = {k × l matrices/C}.
Definition 24.3. Let Xr denote the set of matrices M ∈Mkl such that rank(M) ≤ r.

Fact: This is cut out by the (r + 1)× (r + 1) minors of X.

rank M ≤ r ⇔ (r + 1)× (r + 1) minors of M vanish.

Therefore, I(Xr) =
√

(r + 1)-minors of X.

Example 24.4. Let k = l = 3. Then X3 = M33
∼= C9.

X2 = V (detX) = 8-dimensional variety.
X1 = V (∆1, . . . ,∆9) = 5-dimensional variety.
X0 − {0}.
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Proposition 24.5.
dimXr = r(k + l − r).

Proof. Let the first r rows of the matrix be linearly independent; then the next k− r rows must be
linear combinations of the first r. This gives us rl degrees of freedom in choosing the first r rows,
and r(k − r) degrees of freedom in choosing the multipliers in the final rows. �

Corollary 24.6. codim(Xr) = (k − r)(l − r).
Proof. Just subtract the dimension from kl. �

Theorem 24.7. Xr is an irreducible variety, and I(Xr) is the ideal of (r+ 1)× (r+ 1) minors of
X.

Proof. The proof proceeds in two steps:

(1) I(Xr) = a prime ideal.

(2)
√

(r + 1)-minors of X = I(Xr) = ((r + 1)-minors of X).

Let M ∈ Xr, this means that rank M ≤ r.
Cl M //

B

  

Ck

Cr

A

==

where M = AB.

Hom(Cl,Cr)×Hom(Cr,Ck) � Xr

is surjective.
A surjective image of an irreducible variety is irreducible. To see what is happening in rings, we

are factoring a matrix into:  a d
b e
c f

( g h i
j k l

)
= (xij)

Then the map of polynomial rings sends x11 7→ ag + dj, . . .
How do we show that J = (minors) is radical? It suffices to show that an initial ideal of J is

radical. Find a Gröbner basis for J . �

24.1. Matrix Schubert Varieties. Motivational note: Why should we differentiate between di-
agonal and antidiagonal term orders in a generic matrix? This is because in the generalization to
Schubert varieties, we give preference to one corner, so the difference is important.

Definition 24.8. A partial permutation matrix w is a matrix of 0s and 1s with at most one 1 in
each row and column.

Definition 24.9.
X̄w = {Z ∈Mkl| rank(Zp×q) ≤ rank(wp×q)}

where Zpq is the upper left p× q submatrix.

Example 24.10. Let w =

(
1 0 0
0 0 1

)
. We define the matrix r(w) by letting the (i, j)-th entry

be the rank of the upper left submatrix with bottom right corner (i, j). Here,

r(w) =

(
1 1 1
1 1 2

)
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In this matrix, it is obvious that the first row and column must be filled with 1’s by the rook-
placement condition. Similarly, the bottom right corner must be 2, since that contains the total
number of 1s. The only non-obvious entry is the 1 in position (2, 2). This implies that

X̄w = V (x11x22 − x12x21).

Example 24.11. Xr = Xw when

w =


1

r

. . .

1


Example 24.12. Consider the set M33, i.e. k = l = 3. There are six permutation matrices (S3).
Each one indicates a different ideal. The most special one is:

w =

 1 0 0
0 0 1
0 1 0

 .

Unlike the other permutations which require specified entries to be 0, this one requires the upper
2× 2 minor to be 0.

Proposition 24.13. Every partial permutation matrix w can be extended to a full square “honest”
permutation matrix w′ such that

mingens(Iw) = mingens(Iw′).

25. Wednesday, November 7, 2012 / Guest Lecture by Pablo Solis

Last time: we defined Matrix Schubert varieties Xw and Schubert Ideals Iw = I(Xw).
Today, we will discuss multidegree of Xw, and C(Xw, t, s).

Theorem 25.1. (Theorem/Defintion)

Sw = C(Xw, t, s).

We will

• review Xw, Iw.
• Explain the multidegree Xw0 .
• Bruhat order on Sn.
• Double Schubert polynomials.

25.1. Schubert Varieties and Ideals. Let w ∈ Ck×l, for example w1 = [ 0 0 ], w2 = [ 0 1 ].

The variety Xw is the set {
A ∈ Ck×l | rk(Apq) ≤ rk(wpq)

}
.

where Apq and wpq are given by the upper-left submatrices − Apq

 ,
 − wpq


For our cases above: Xw1 = [ 0 0 ], Xw2 = [ 0 a ], for any a ∈ C.

w3 =

[
0 0 1 0
0 0 0 0

]
⇒ R(w3) =

[
0 0 1 1
0 0 1 1

]
.
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In this case,

Xw3 =

{[
0 0 a b
0 0 c d

]
ad− bc = 0

}
.

⇒ Iw3 = (x11, x12, x21, x22, x13x24 − x14x23).

25.2. Multidegree. Let w0 =

 0 1

. .
.

1 0

 ∈ Sn.

Then, Adam proved last time that Xw0 has Iw0 = (xij | i+ j ≤ n).
Grading on k[xij ]. Let

Zl+k =

k⊕
i=1

tiZ
l⊕

j=1

sjZ.

Then the deg(xij) = ti − sj .
Remark 25.2 (Important point). It is enough to consider w ∈ Sn, since any partial permutation
w extends to w̃ ∈ Sn such that mingens(Iw) = mingens(Iw̃).

Theorem 25.3.
C(S/(xi1 , . . . , xim), t) = deg(xi1) · · · deg(xim).

⇒ C(Xw0 , t, s) =
∏

i+j≤n
ti − sj .

Example 25.4. Take w0 =

 0 0 1
0 1 0
1 0 0

. Then, C(Xw0 , t, s) = (t1 − s1)(t1 − s2)(t2 − s1).

The general idea going forward is that any permutation w can be factored as a sequence of
transpositions. These transpositions can then be considered as operators acting on the ts in the
multidegree of our w0. Let f = f(t1, . . . , tk, s1, . . . , sl). Then,

∂if =
f − f(t1, . . . , ti−1, ti+1, ti, ti+2, . . .)

ti − ti+1
.

Sw = ∂i1 · · · ∂im
∏

i+j≤n
(ti − sj).

This is called the double Schubert polynomial.

Theorem 25.5 (Definition/Theorem). Sw is well-defined and equal to C(Xw, t, s).

25.3. Bruhat Order. Let σi = ( i i+ 1 ) be a generator of Sn.
Any permutation can factor as a sequence of transposition in a minimal way, this is called a

reduced expression.

Example 25.6. Let w0 =

 0 1 0
0 0 1
1 0 0

. Then, σ1w0.

C(Xσ1w0 , t, s) = ∂1(t1 − s1)(t1 − s2)(t2 − s1) = (t1 − s1)(t2 − s2).

The Bruhat order helps us figure out a reduced expression for the permutation.
If you take a permutation with all zeros, except for an r× r upper-left identity matrix, then the

Sw = the Schur polynomial.
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