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1. August 24, 2015

Algebraic topology: take “topology” and get rid of it using combinatorics and algebra.
Topological space 7→ combinatorial object 7→ algebra (a bunch of vector spaces with maps).
Applications:

(1) Dynamical Systems (Morse Theory)
(2) Data analysis. Topology can distinguish data sets from topologically distinct sets.

1.1. Euclidean topology. Working in Rn, the distance d(x, y) = ||x− y|| is a metric.

Definition 1.1. Open set U in Rn is a set satisfying ∀x ∈ U∃ε s.t.

Oε(x) = {y| ||y − x|| < ε} ⊂ U
1.2. Topological Spaces.

Definition 1.2. A topological space is a pair (X, T ) such that X is a set, and T ⊆ 2X is a set of
subsets of X that satisfy:

(1) ∅, X ∈ T .

(2) If A1, . . . , Ak ⊂ T then
⋂k
i=1Ai ∈ T . (Finite Intersection)

(3) For any collection {Ai} ⊆ T , the union
⋃
i∈I Ai ∈ T . (Arbitrary Union)

Example 1.3. Some sample topologies:

(1) Discrete topology: T = 2X .
(2) Indiscrete topology: T = {∅, X}.
(3) The induced topology on a metric space. Metric spaces have a metric which is positive-

definite, symmetric and satisfies the triangle inequality.
T = {U ⊆ X : ∀x ∈ U∃ε s.t. Oε(x) ⊆ U}.

1.3. Topology induced by a map. Let (X, TX) be a topological space. Let f : X → Y be a
map of sets. Assume f(X) = Y (unclear if necessary assumption).

Then TY = {U ⊂ Y | f−1(U) ∈ TX} is a topology. Notation: TY = f∗(TX).

1.4. Quotient Topology. Let ∼ be an equivalence relation on X. Consider π : X → X/ ∼.

Definition 1.4. Let π∗(TX) (using the induced notation) be the quotient topology on Y = X/ ∼.

Example 1.5. Let X = R1. Let x ∼ y := (x− y) ∈ 2πZ. Then Y = (X/ ∼) ∼= S1. A map to get
this would be π : R→ S1, π(θ) = eiθ.

Example 1.6. Sn = Bn/ ∼ where x ∼ y ⇐⇒ ||x|| = ||y|| = 1. Think about folding a disk of
aluminum foil over a 2-sphere, so that the edges all go to the north pole.

Definition 1.7. A map of topological spaces f : X → Y is continuous iff for all open U ∈ TY ,
f−1(U) ∈ TX .

2. August 26, 2015

2.1. Review.

• Topological space (X, TX)
• Forgotten definition: Closed set is the complement of an open set.
• Induced topologies

– by a map f : X → Y .
– by a metric (X, dX).
– by a subset A ⊂ X. (X, TX)→ (A, TA). TA = {A ∩ U where U ∈ TX}.

• Continuous maps are maps where the preimage of an open set is open.
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2.2. Homeomorphism.

Definition 2.1. Let f : X → Y be a map of spaces; f is a homeomorphism if 1) f is a bijection,
2) f is continuous, and 3) f−1 is continuous.

Remark 2.2. If f is a bijection AND f(x) is continuous, f−1 is not necessarily continuous. For
example, if f is the identity, and T1 is discrete and T2 is indiscrete.

Note that X ∼= Y is an equivalence relation. So the category of topological spaces is often defined
modulo homeomorphism.

Example 2.3. The two realizations of Sn that we defined last class are homeomorphic.

Example 2.4. The open interval is homeomorphic to R1 under the tangent function.

Example 2.5. The open interval and the half-open interval (using the induced topology) are not
homeomorphic.

2.3. Connected spaces. To prove this last example, we make two definitions:

Definition 2.6. A space X is connected if the only subsets of X that are both open and closed
are X and ∅.

A space X is disconnected if ∃U, V nonempty open s.t. X = U ∪ V and U ∩ V = ∅.

A space is connected if and only if it is not disconnected.

Proof. Let X = (0, 1) and Y = (0, 1], f : X → Y . Take x = f−1(1). Then X \ x should be
connected and open, since it is the preimage of a connected open set. However, this is not so.
Why is this true? The homeomorphism acting on a disconnection will give a disconnection of the
target. �

Definition 2.7. A space X is path-connected if given any two points x, y ∈ X there is a continuous
map [0, 1]→ X with f(0) = x and f(1) = y.

Lemma 2.8. X path-connected implies X connected.

The converse is not true but requires some pathological behavior.
There is an equivalence relation ∼ on X setting x ∼ y ⇐⇒ ∃ continuous path from x to y.

Definition 2.9. (Path-connected components of X) := X/ ∼.

Exercise 2.10. Let X ∼= the 2-sphere S2, and Y the 2-torus T 2.
Prove these are not homeomorphic. Cut a circle out of the torus, map to the sphere. The result

should be (path-)connected; however, that’s impossible.

Definition 2.11. X is Hausdorff means x 6= y ∈ X then ∃ open U containing x and open V
containing y that are disjoint.

Example 2.12. Non-Hausdorff space: Take X and Y two copies of R1. Glue them together except
at the origin; i.e. X t Y/ ∼ where ∼:= x ∼ y ⇐⇒ x = y 6= 0.

3. September 2, 2015

[Some classes were missed]
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3.1. Review.

Theorem 3.1. If M is a compact 2-dimensional manifold without boundary then:

• If M is orientable, M = H(g) = #gΠ2.
• If M is nonorientable, M = M(g) = #gRP2.

Terminology: g is the genus of the surface = maximal number of closed paths one can cut out
without disconnecting.

Note: No higher-dimensional analogue exists (2-dimensions is trivial). Note: H(0) = S2 by
definition.

3.2. Gluing diagrams.

Definition 3.2. Edges are “decorated” with letter:

• a means that the orientation is clockwise.
• a−1 means that the orientation is counterclockwise.

For each letter the edges are glued according to the orientation.

Example 3.3. Below are some examples of gluing diagrams:

b−1

b

a−1

a

b

a−1

b−1

a

b−1

a

b

a

∼= S2 ∼= T 2 ∼= Klein
Bottle

w = aba−1cd · · · gf is a word describing the circumference of a polygon. Simple properties:

(1) Cyclic permutation preserves the homeomorphism class.
(2) Inserting aa−1 ∼= connected sum with a sphere; therefore, it preserves the homeomorphism

class.
(3) Concatenating two words amounts to connected sum of the corresponding manifolds (really,

concatenating the inverse of one, but the inverse is isomorphic to itself).

Example 3.4. Show that the Klein bottle is homeomorphic to RP2#RP2.

b−1

a

a

bd

b−1

a

d−1

a

bd

b

da−1

b

d

d

d
a

b

b

Flip

Proof. aba−1b ∼= abdd−1a−1b = (abd)(d−1a−1b) = (abd)(b−1ad) = (daad) ∼= RP2#RP2. �

The same logic would apply to prove that T 2#RP2 ∼= #3RP2; manipulating the perimeter words
eventually obtains the result.
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3.3. Triangulations. The topology of any 2-d manifold can be determined by a collection of
triangles and how they are glued together.

Definition 3.5. A triangulation of a 2-d manifold M is a collection of Ti ⊂M s.t. if Ti ∩ Tj 6= ∅
then either Ti ∩Tj = one edge of each triangle or Ti = Tj = a single point which is a vertex of each
triangle.

Theorem 3.6. Every compact 2-dim manifold has triangulations.

4. September 4, 2015

4.1. Review. Triangulations

Example 4.1. The 2-sphere is relatively easy to triangulate. Take three circumferences and their
points of intersection.

The resulting complex is an octahedron.

Example 4.2. The torus is a bit harder to triangulate. The triangulation on the right fails since
the two gray triangles have two vertices in common but no edge.

Definition 4.3. An Euler characteristic of a triangulation is given by χ(T ) = V − E + F

Theorem 4.4. The Euler characteristic of a triangulation depends only on the homeomorphism
class of the manifold.

Proposition 4.5. χ(H(g)) = 2− 2g and χ(M(g)) = 2− g.

Proof. The proof will only come much later. �
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4.2. (Geometric) Simplicial Complexes.

Definition 4.6. Let u0, . . . , uk ∈ Rd. An affine combination of u0, . . . , uk is

x =

k∑
i=0

λiui; λi ∈ R

with the condition
∑k

i=0 λi = 1.

The set of affine combinations of two points is a line. The set of affine combinations of 3 (linearly
independent) points is a 2-plane.

Definition 4.7. The affine hull of u0, . . . , uk is the set of all possible affine combinations.

Definition 4.8. The points u0, . . . , uk are affinely independent if

k∑
i=0

λiui =

k∑
i=0

µiui ⇐⇒ λ = µ ∈ Rk+1.

Remark 4.9. The points u0, . . . , uk are affinity independent if and only if vi = ui − u0 for i =
1, . . . , k are linearly independent.

Corollary 4.10. There are at most (d+ 1) affinely independent points in Rd.
If k ≤ d + 1 then the set of points {u0, . . . , uk} ⊂ Rd(k+1) that are dependent has zero measure

(in the standard measure on that space).

Definition 4.11. A convex combination of u0, . . . , uk is a point
∑k

i=0 λiui, where
∑k

i=0 λi = 1 and
λi ≥ 0 for all i.

Definition 4.12. A convex hull of u0, . . . , uk is

conv{u0, . . . , uk} =

{
k∑
i=0

λiui :
k∑
i=0

λi = 1, λi ≥ 0

}
Example 4.13. The convex hull of two points is a line segment.

The convex hull of three points is a triangle.
This assumes the points are not affinely independent.

Definition 4.14. Assume u0, . . . , uk ∈ Rd are affinely independent.
S = conv{u0, . . . , uk} is called a simplex. Define the dimension of S to be k.
The empty simplex is a simplex by convention, with dimension −1.

Definition 4.15. A face of a simplex S = conv{u0, . . . , uk} is a simplex T = conv{uα0 , . . . , uαk
}

where α ⊆ {0, 1, . . . , k}.
Exercise 4.16. For all x ∈ S, x is in the interior of exactly one face of S.

For this we need to define the boundary bd(S) = {∪iTi|Ti = conv{Uj |j 6= i}} Then the interior
of the face is int(S) = S \ bd(S).

Proof. Let x ∈ S. This implies that there exist λ0, . . . , λk such that x =
∑k

i=0 λiui. Then T =
unique face of S such that x ∈ int(T ) and α = supp(λ) = {i |λi > 0}. �

Definition 4.17. A (geometric) simplicial complex is a collection K = {Sa} of simplices, such that

(1) If T ≤ S, S ∈ K ⇒ T ∈ K.
(2) If S1, S2 ∈ K then S1 ∩ S2 is a face of both S1 and S2, where we consider the empty set to

be a face of every simplex.
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The dimension of K is defined as the maximal dimension of its faces. The underlying space
|K| = ⋃S∈K S = the underlying space with the induced topology.

Definition 4.18. The triangulation of a topological space X is a pair (K, f : K → X) where K is
a geometric simplicial complex and f : K → X is a homeomorphism.

Sales pitch: When we have a triangulation, everything about the topology of X is encoded in
the combinatorics of K.

Definition 4.19. An abstract simplicial complex ... will be defined next class.

5. September 9, 2015

Definition 5.1. Let V be a set, then a collection of subsets A ⊂ 2V will be called an abstract
simplicial complex if it is closed downward, i.e. if σ ∈ A and τ ⊂ σ then τ ∈ A.

Example 5.2. The following are abstract simplicial complexes: A = ∅ – no subsets; A = {∅} –
not empty: it contains the set ∅. A = {∅, {1} with the ambient set V = {1}.

An example of a non-simplicial complex is A = {{1}, {1, 2}} – this is not simplicial because even
though {2} ⊂ {1, 2}, we do not have {2} ∈ A.

Remark 5.3. For any geometric simplicial complex there exists a unique abstract simplicial com-
plex such that

K = {S(α) = conv{pi}i∈α}
V is defined as the set of 0-dimensional simplices.

Then A = {α ∈ 2V | ∃S ∈ K : S = conv{pi}i∈α}.
Example 5.4. Consider the following geometric simplicial complex.

1

2

3

4

Here V = {1, 2, 3, 4}, A ⊂ 2V is given by A = the subsets of {1, 2, 3} and {2, 3, 4}.
Definition 5.5. Such an abstract simplicial complex is called the vertex scheme.

Remark 5.6. If pi ∈ RN . Denote S(α) = conv{pi}i∈α.

Abstract Geometric
β ⊆ α T (β) ≤ S(α)
V vertices of K
dimS = card(α)− 1 dimS = d
dimA = maxα∈A(dimα) dimA = maxS∈A dimS

Table 1. Analogous Properties of Abstract and Geometric Simplicial Complexes

6
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Theorem 5.7 (Geometric Realization Theorem). Let A be an abstract simplicial complex of
dimA = d then there exists a geometric realization in (2d+ 1)-dimensional space.

Remark 5.8. 2d+1 is a tight condition for all d. There exist examples of complexes not realizable
in dimension 2d. For example with d = 2, the complete graph K5 is a 1-dimensional complex; since
it is nonplanar, it cannot be embedded in dimension 2d = 2 without self-intersections. The rules of
geometric simplicial complexes however demand that all intersections of faces are themselves faces
of the complex.

Lemma 5.9. Any (m+ 1) distinct points

γ(t0), γ(t1), . . . , γ(tm)
where γ(t) = (t, t2, . . . , tm)

are affinely independent if and only if ti 6= tj.

Proof. The determinant given by:

det


1 t0 t20 · · · tm0
1 t1 t21 · · · tm0
...

...
1 tm t2m · · · tmm

 =
∏

0≤i<j≤m
(tj − ti)

is the Vandermonde determinant which is only zero if two t-values are the same. �

Corollary 5.10. For every finite set V , there exists a map p : V → R2d+1 such that any k ≤ 2d+2
are affinely independent.

Proof. A ⊂ 2V is an abstract simplicial complex with V = the set of vertices and dimA = d given
by the maximal cardinality of a face of A.

For each r ∈ V , we have pr ∈ R2d+1 such that any 2d+ 2 points are affinely independent.
We can define ∀α ∈ A:

S(α) := conv{pr}r∈α.
This is always a simplex because the points are affinely independent.

Now we need to confirm the simplicial complex axioms.

(1) S is a simplex.
(2) T ≤ S, S ∈ K =⇒ T ∈ K. (True because if α ∈ A, β ⊂ α =⇒ β ∈ A.)
(3) S1, S2 ∈ K, then S1 ∩ S2 is either empty or a face of each.

The first two are trivial. Proving (2), let S1 = S(α1), S2 = S(α2).

card(α1 ∪ α2) = card(α1) + card(α2)− card(α1 ∩ α2)
=⇒ card(α1 ∪ α2) ≤ (d1 + 1) + (d2 + 1)

≤ 2d+ 2

Thus conclude that the vertices are affinely independent. We need to show: X ∈ S1 ∩ S2 =⇒ X
is a face of Si. Recall that a convex combination of affinely independent points has a unique
formulation. Thus there is a specific β1 ⊂ α1 and β2 ⊂ α2, such that X =

∑
yrpr, and β1 = β2 =

supp y; in particular β1 = β2 = α1 ∩ α2. �

6. September 11, 2015

The geometric realization theorem sets up a correspondence between abstract simplicial com-
plexes and geometric simplicial complexes.

Let K,L be two (geometric) simplicial complexes.
7
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Definition 6.1 (1). A PL-map f : K → L is a map defined on each simplex of K as:

f

(
k∑
i=0

αiUi

)
=

k∑
i=0

αif(Ui)

PL stands for piecewise linear.

Note that the map is uniquely specified by the values on the vertices.

Definition 6.2 (1*). Let A ⊂ 2V , B ⊂ 2U be two abstract simplicial complexes.
A simplicial map is a map m : A→ B that satisfies ∀σ ∈ A,

σ = (i0, i1, . . . , ik) =

k⋃
j=0

{ij} ⇒ m(σ) = (i0, i1, . . . , ik) =

k⋃
j=0

m({ij}).

Definition 6.3 (1**). Let A,B be a simplicial complex with V = vert(A), U = vert(B),
then a map m0 : V → U is simplicial if ∀σ ∈ A,⋃

V ∈σ
m0(V ) ∈ B

Remark 6.4. The following diagram commutes:

K

PL
��

// vertex scheme AK

m simplicial map
��

L // vertex scheme AL

Definition 6.5 (2). A PL map is a PL homeomorphism if it is a bijection on each simplex.

Definition 6.6 (2*). A simplicial map is a simplicial complex isomorphism iff m0 is a bijection.

Example 6.7. The image on the left and the right are not isomorphic as simplicial complexes but
a subdivision of the left complex – given by the central complex is isomorphic to the one at right.

Figure 1. Subdivision of the Simplicial Complex Yields Isomorphism

Definition 6.8. A subdivision of a geometric complex adds in faces as in Example 6.7

Conjecture 6.9 (This was FALSE!). Two compact manifolds are isomorphic if and only if their
traingulations have isomorphic schemata after a finite number of subdivisions.

Theorem 6.10. This conjecture holds for dimM ≤ 3.
8
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Definition 6.11. Let A ⊂ 2V be an abstract simplicial complex, then Sd(A), the barycentric

subdivision, is a simplicial complex Sd(A) ⊂ 2A\∅ where V ⊂ A is in Sd(A) ⇐⇒ V = {σ0, . . . , σk}
such that σ0 ( σ1 ( · · · ( σk.

Example 6.12. We perform barycentric subdivision of the 1-simplex and 2-simplex.

In general, if K = {Sa}, for each S = {u0, . . . , uk} a simplex, introduce a new vertex

US =
1

k + 1

k∑
i=0

Ui

and define simplices according to the same rule as in the abstract simplicial complex.

Exercise 6.13 (Homework Qs). (1) Why is a ∆-complex not a triangulation?
(2) Why is a triangulation not a ∆-complex?
(3) What is the role of the vertex ordering in the ∆- complex induced by a triangulation?

7. September 18, 2015

No class on September 14, notes from Sep 16 to be posted later.

7.1. Simplicial Homology of ∆-complexes. Let G be an abelian group.

Definition 7.1. The chain group

∆n(X;G) = {
∑

σ dim n

aσσ}

Without specified group, take
∆n(X) = ∆n(X;Z).

The boundary homomorphism maps:

∂n : ∆n(X;G)→ ∆n−1(X;G)

∂n(σ) =

n∑
i=0

(−1)iσ|[v0,...,v̂i,...,vn]

The homology of a complex is the direct sum of the graded homology groups:

H∗(X;G) =

∞⊕
n=0

Hn(X;G).

Now we return to the example of RP2:

9
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Example 7.2. H∗(RP2,Z/2Z). We use the ∆-complex in Figure 2 to compute the homology.

a

b

a

b

c
U

L

v

v

w

w

Figure 2. ∆-Complex for RP2

The chain groups at each step are given in this sequence:

0 ∆0
oo ∆1

oo ∆2
oo 0oo

0 (Z2)2oo (Z2)3oo (Z2)2oo 0oo

We can compute each kernel and image in order to find homology:

ker(∂2) = 〈U + L〉 Im(∂3) = 〈0〉
ker(∂1) = 〈a+ b, c〉 Im(∂2) = 〈a+ b+ c〉
ker(∂0) = 〈v, w〉 Im(∂1) = 〈w − v〉

Therefore H∗(RP2,Z2) =

{
Z2 ∗ = 0, 1, 2

0 else.

Remark 7.3. If A ⊂ 2V is an abstract simplicial complex, then

Cn(A;G) = {
∑
|σ|=n+1

aσσ|aσ ∈ G}

The boundary map and the homology groups are defined as before.
Moreover if X = |A|, the geometric realization of A, then H∗(A,G) ∼= H∆

∗ (|A|, G); the abstract
homology is the same as the ∆-complex homology.

7.2. Singular Homology.

Definition 7.4. A singular n-simplex in a topological space X is a continuous map σ : ∆n → X.

Definition 7.5. Singular chains (with coefficients in G)

Cn(X;G) = {
∑
σ∈I

aσσ|aσ ∈ G}

(only finitely many aσ are nonzero; i.e. I finite).
The boundary homomorphism

∂n : Cn(X;G) → Cn−1(X;G)
σ 7→ ∑n

i=0(−1)iσ|[v0,...,v̂i,...,vn]

10
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Definition 7.6. HSing(X;G) ∼= ker(∂n)/ Im(∂n+1).

Theorem 7.7. H∆
∗ (X;G) ∼= HSing

∗ (X;G).

Question 7.8. Why is this nicer to have?

The singular homology has nice functorial properties. For example, f : X → Y continuous
induces f∗ : Hn(X)→ Hn(Y ) group homomorphism.

For a ∈ Cn(X;G) where a =
∑

σ aσσ; then f]a =
∑

σ aσf](σ).

Remark 7.9. The maps commute: ∂nf](a) = f]∂na.

Cn(X)
f]

//

∂n
��

Cn(Y )

∂n
��

Cn−1(X)
f]
// Cn−1(Y )

Exercise 7.10 (Homework). Prove that the map f] : Cn(X)→ Cn(Y ) is a group homomorphism
that “extends” to f∗ : Hn(X)→ Hn(Y ) via f∗(a+ Im ∂n+1) := f]a+ Im ∂n+1.

Proposition 7.11. If X ∼= Y homeomorphic then if f : X → Y is a homeomorphism then
f∗ : H∗(X)→ H∗(Y ) is a group isomorphism.

8. September 21, 2015

8.1. Last few classes.

• Simplicial homology H∆
∗ (X;G)

• Singular homology Hsing
∗ (X;G)

The last theorem we discussed in class:

Proposition 8.1. If X ∼= Y homeomorphic then if f : X → Y is a homeomorphism then f∗ :
H∗(X)→ H∗(Y ) is a group isomorphism.

Definition 8.2. A graded abelian group is C =
⊕

i∈ZCi where Ci are abelian groups.

Definition 8.3. A chain complex is a graded abelian group with group homomorphisms ∂i : Ci →
Ci−1 such that ∂i−1 ◦ ∂i = 0.
Zi(C) = ker(∂i : Ci → Ci−1) are cycles.
Bi(C) = Im(∂i+1 : Ci+1 → Ci) are boundaries.
Hi(C) = Zi(C)/Bi(C).

Let C∗ =
⊕

iCi and D∗ =
⊕

iDi be chain complexes.

Definition 8.4. A chain map is a collection of group homomorphisms fi : Ci → Di such that the
following diagram commutes:

Ci
fi

//

∂i
��

Di

∂i
��

Ci−1
fi−1

// Di−1

Lemma 8.5. A chain map induces a group homomorphism f∗ : Hi(C)→ Hi(D).

Proof. Hi(C) = ker ∂i/ Im ∂i+1. Let c ∈ Ci be a cycle such that ∂c = 0. Notation: [c] := c +
Im ∂i+1 ∈ Hi(C).

Define f∗([c]) = [f(c)] = f(c) + Im ∂i+1 ∈ Hi(D). We need to show that:
11
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(1) ∂f(c) = 0. [This follows from ∂f = f∂.]
(2) If c̃ = c+ ∂a then [f(c̃)] = [f(c)]. [This follows by f being a group homomorphism.]

�

Corollary 8.6. If g : X → Y is a continuous map of topological spaces, then g] : Ci(X)→ Ci(Y )
induces a group homomorphism

g∗ : Hi(X;G)→ Hi(Y ;G)

Proof. g] : Ci(X;G)→ Ci(Y ;G) is a chain map. �

Lemma 8.7. If f : C∗ → D∗ is a chain group isomorphism (i.e. fi : Ci → Di are group isomor-
phisms) and ∂ifi = fi−1∂i, then

f∗ : Hi(C)→ Hi(D)

is a group isomorphism.

Proof. Chase some diagrams. �

Corollary 8.8. If g : X → Y is a homeomorphism, then g∗ : Hi(X;G) → Hi(Y ;G) is a group
isomorphism.

Proof. g] : Ci(X;G)→ Ci(Y ;G) such that ∀σ : ∆i → X
g](σ) = g ◦ σ is a chain map. Notice that it has a chain map inverse.

Note that (g−1
] ) ◦ (g]) = IdCi(X;G). Use the Lemma. �

Remark 8.9. The converse is not true. H∗(S
1×R1) = H∗(S

1) but the spaces are not homeomor-
phic.

Another simple lemma:

Lemma 8.10. Let C∗ be a chain complex such that Ci =
⊕

αC
α
i and ∂iC

α
i ⊆ Cαi−1.

Then Hi(C) =
⊕

αHi(C
α).

Corollary 8.11. If X =
⊔
αXα where Xα are its path-connected components then

Hi(X) =
⊕
α

Hi(Xα).

Proof. Need to show that

Ci(X;G) =?
⊕

Ci(Xα;G)

and ∂Ci(Xα, G) ⊆ Ci−1(Xα, G).

Ci(X;G) = {
∑
σ

aσσ | aσ ∈ G, σ : ∆i → X}

For each σ : ∆i → X, observe that σ(∆i) must be path-connected thus lie in one of these Xα thus

Ci(X;G) ∼= Ci(Xα;G).

Note that if σ : ∆i → Xα then ∂σ ∈ Ci−1(Xα;G). �

Definition 8.12. A chain complex is called an exact sequence if the homology is trivial.

Lemma 8.13. If 0← A← B ← C is an exact sequence then A ∼= B/C.

12
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9. September 23, 2015

Corollary 9.1. If X is path connected then H0(X;G) ∼= G.

Proof. H0(X;G) ∼= C0(X;G)/ Im(∂1 : C1(X;G)→ C0(X;G)).
Define ε such that

G
ε← C0(X;G)

∂1← C1(X;G)

by sending a ∈ C0(X;G) where a =
∑

σ aσσ where σ is a point, then ε(a) =
∑

σ aσ; i.e. add up all
coefficients from the group. We claim that:

0← G
ε← C0(X;G)

∂1← C1(X;G)

is an exact sequence. The proof of the corollary follows from this claim by Lemma 8.13.

Im(ε) = G. Obvious.

Im(∂1) ⊆ ker(ε). Let a = ∂1(b) then ε(a) = ε(∂1(b)) where b =
∑

σ bσσ and σ ∈ C1 are one-

dimensional simplices. ε(a) = ε(∂1(b)) = ε(∂1(
∑

σ bσσ)) =
∑

σ bσε(∂1(σ)) where σ : [p0, p1] → X
are one-dimensional simplices.

ker(ε) ⊆ Im(∂1). Assume a ∈ C0(X;G) and ε(a) = 0. Want to Show: ∃b such that a = ∂1b.

Note that a =
∑

σ aσσ where σ is a zero-dimensional simplex, i.e. a point.
Pick any x0 then there exists a path from x0 to each xi corresponding to σ since X is path-

connected. Indeed for each σ there exists pσ : [0, 1] → X with pσ(0) = x0 and pσ(1) = xσ. Define
b =

∑
σ aσpσ Then

∂1(b) = ∂1(
∑

σ aσpσ) =
∑

σ aσ∂1(pσ)
=

∑
σ aσ(pσ|1 − pσ|0) =

∑
σ aσxσ − (

∑
σ aσ)x0

= a− 0 · x0 = a

Therefore a ∈ Im ∂1. �

10. September 25, 2015

10.1. Last class. We began the Mayer-Vietoris sequence. Short exact sequence =⇒ long exact
sequence.

X1 X2

Figure 3. Union of topological spaces

Consider the union of spaces in Figure 3. It has a short exact sequence:

0→ Ck(X1 ∩X2)→ Ck(X1)⊕ Ck(X2)→ Ck(X1 ∪X2)→ 0.

Question 10.1. If we understand H∗(Xi) and H∗(X1 ∩X2), what is H∗(X1 ∪X2)?

More generally, consider the commutative diagram of short exact sequences given below.
13
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0 Ak Bk Ck 0

0 Ak−1 Bk−1 Ck−1 0

i j

∂ ∂ ∂
δ

i j

Specify some group elements as in this diagram: b
j
//

∂
��

c

a
i // ∂b

Lemma 10.2. There is a group homomorphism (connecting homomorphism) δ : H(Ck)→ H(Ck−1)
such that δ([c]) = [a], where a is defined as above.

Proof. Need to show:

(1) ∂a = 0.
(2) Independent of choice of b.

For (1), we see that i(∂a) = ∂(ia) = ∂∂b thus ∂a = 0 by injectivity of i.

For (2), assume a choice of b̃ such that jb̃ = c. ã = i−1(∂b̃) Wanted: [ã − a] = 0. This means

ã − a = ∂a′. i(ã − a) = ∂b̃ − ∂b = ∂(b̃ − b). Simply set a′ to be i−1(b̃ − b) and the result has
∂a′ = ã− a by injectivity. �

Theorem 10.3 (Short → long). Let 0 → A∗ → B∗ → C∗ → 0 be an exact sequence of chain
complexes. Then, there is a long exact sequence:

Hi+1(A) Hi+1(B) Hi+1(C)

Hi(A) Hi(B) Hi(C)

· · ·

δ

δ

Proof. Remark:

i∗[a] = [ia] j∗[b] = [jb]

Need to prove:

Im i∗ ⊆ ker j∗ ker j∗ ⊆ Im i∗
Im j∗ ⊆ ker ∂ ker ∂ ⊆ Im j∗
Im ∂ ⊆ ker i∗ ker i∗ ⊆ Im ∂

The left-hand containments prove that we have a chain complex, while the right-hand containments
prove that it is exact. Diagram-chasing ensues. �

14
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11. September 28, 2015

11.1. Last class. Let 0 → A∗ → B∗ → C∗ → 0 be a short exact sequence of chain complexes.
Then there is a theorem:

Theorem 11.1. There is a long exact sequence:

Hi+1(A) Hi+1(B) Hi+1(C)

Hi(A) Hi(B) Hi(C)

· · ·

i∗ j∗

δ
i∗ j∗

δ

What are exact sequences good for?

Example 11.2. In the case of Mayer-Vietoris, Ak = Csingk (X1∩X2), Bk = Csingk (X1)⊕Csingk (X2),

and Ck = Csingk (X1 ∪X2).

If Hk(X1) = Hk(X2) = 0 for k > 0, then Hk(X1)⊕Hk(X2) = 0⊕ 0 = 0 for k > 0. So the exact
sequence, i.e. the Mayer-Vietoris sequence tells us that

0→ Hk(X1 ∪X2)
δ→ Hk−1(X1 ∩X2)→ 0

should be exact. In particular these groups are isomorphic.

Example 11.3. Again we refer to Figure 3 from earlier.

X1 X2

p1

p2

α2α1

Figure 4. Chains in the Mayer-Vietoris Sequence

What does the map δ : H1(X1 ∪X2)→ H0(X1 ∩X2) do?

It maps a pair of 1-chains from Csing1 (X1)⊕Csing1 (X2) via Csing1 (X1 ∪X2)→ Csing0 (X1 ∪X2)→
Csing0 (X1)⊕Csing0 (X2) a pair of 0-chains. For a 1-chain to survive the homology functor it needs to
have a single vertex. In other words the singular chain σ has σ(0) = σ(1). Since j(α1⊕α2) = α1−α2,
we have j(α1⊕α2) = σ. This means ∂α1 = [p2]−[p1] = ∂α2. This means that i−1δ([α1]) = [p2]−[p1].
This specifies the value of δ([σ]) = [β].

Example 11.4 (Triangualtion of a sphere). Let X1 and X2 be cones over the same triangle. Their
intersection is a triangle. A sphere has nonzero H2; here its generator would be [σ] a signed sum
of the six triangles. The map δ goes to the equator given by the intersection triangle.

15



Zvi Rosen Applied Algebraic Topology Notes Vladimir Itskov

11.2. Homotopy equivalence. “I hid the truth from you.” Recall: X ∼= Y implies H∗(X) =
H∗(Y ).

More generally:

Definition 11.5. Two continuous maps f, g : X → Y are called homotopic if there exists continuous
functions F : X × [0, 1] → Y such that F (x, 0) = f(x) and F (x, 1) = g(x). The function F :
X × [0, 1]→ Y is called a homotopy.

Example 11.6. If f, g are functions from R→ R then a homotopy is a 2-d surface in R3 as pictured
in Figure 5.

f

g

Figure 5. Homotopy from f to g.

Notation: f ∼ g means f is homotopic to g.

Lemma 11.7. Homotopy is an equivalence relation on continuous maps. In particular, f ∼ f, f ∼
g =⇒ g ∼ f , and f ∼ g, g ∼ h =⇒ f ∼ h.

Definition 11.8. f : X → X is null-homotopic if f is homotopic to idX i.e. f ∼ idX .

Definition 11.9. Let A ⊆ X be a subspace. A is called a deformation retract of X if it has a
deformation retraction, a homotopy from idX to a map sending X → A which is the identity on A.

Example 11.10. Take X to be the cylinder x2 + y2 = 1, 0 ≤ z ≤ 1 in R3 and map (x, y, z) →
(x, y, 0). The homotopy F ((x, y, z), t) = (x, y, (1− t)z) would be a deformation retraction.

Remark 11.11. If F is a deformation retraction, let r(X) := F (x, 1). and i : A ↪→ X be the
inclusion. Then r ◦ i = idA, and i ◦ r ∼ idX .

Example 11.12. Any point is a deformation retract of Rn.

Definition 11.13. X is homotopy-equivalent to Y (X ∼ Y ) if ∃f : X → Y and g : Y → X such
that g ◦ f ∼ idX and f ◦ g ∼ idY .

16
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Lemma 11.14. Homotopy equivalence is an equivalence relation.

Example 11.15. For all n, Rn ∼homotopy a point. Why? If A is a deformation retract of X, then
A ∼homotopy X.

Theorem 11.16. If f, g : X → Y are homotopic (i.e. f ∼ g) then f∗ = g∗ as maps of homology
H∗(X;G)→ H∗(Y ;G).

Corollary 11.17. If X ∼ Y , then H∗(X) ∼= H∗(Y ).

12. September 30, 2015

12.1. Last class. We saw what makes two maps f, g : X → Y homotopy-equivalent. We also
defined homotopy-equivalent spaces to be connected by continuous maps f : X → Y, g : Y → X
such that f ◦ g = idY and g ◦ f = idX .

Theorem 12.1. If f, g : X → Y are homotopic (i.e. f ∼ g) then f∗ = g∗ as maps of homology
H∗(X;G)→ H∗(Y ;G).

Corollary 12.2. If X ∼ Y , then H∗(X) ∼= H∗(Y ).

Proof.

(f ◦ g)∗ = idHk(Y ;G) (g ◦ f)∗ = idHk(X;G)

but (f ◦ g)∗ = f∗g∗ = idHk(Y ;G) (g ◦ f)∗ = idHk(Y ;G)

Thus f∗ = g−1
∗ , which means we have group isomorphism. �

Remark 12.3. The converse of this Theorem is not true. In particular, there exist non-homotopy
equivalent spaces with isomorphic homology groups.

Example 12.4 (3-sphere). Y = the Poincare homology sphere. This has

Hn(Y ;G) =

{
G n = 0, 3

0 n /∈ {0, 3}

But Y has nontrivial fundamental group π1. In fact π1(Y ) is the icosahedral group.

Definition 12.5. Homotopy type is an element of the category topological spaces modulo the
equivalence relation of being connected by a homotopy.

Definition 12.6. X is contractible if X ∼ point.
In particular, X is contractible implies H̃∗(X) = 0.

Remark 12.7. The converse is not true.

The homology of X is determined by the homotopy type of X.
Let A ⊂ 2V be an abstract simplicial complex.

Definition 12.8. Homotopy type of ∗ is the homotopy type of its geometric realization.

Lemma 12.9. The homotopy type of A does not depend on the choice of a geometric realization.

Fact 12.10. Even in the case of a finite abstract simplicial complex A i.e. A ⊂ 2V for |V | <∞,
there is no algorithm deciding contractibility.
However if H̃∗(A) 6= ∅, then A is not contractible.
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12.2. Nerves and Cech complexes. Let U = {Uv}v∈V .

Definition 12.11. The nerve of U is an abstract simplicial complex nerve(U) ⊂ 2V defined as

nerve(U) = {σ ⊂ V |
⋂
v∈σ

Uv 6= ∅}. Note that
⋂
v∈∅

Uv = X.

Notation: Uσ =
⋂
v∈σ

Uv is contractible.

Remark 12.12. This is an abstract simplicial complex i.e. ν ⊂ σ, σ ∈ nerve(U) =⇒ ν ∈
nerve(U).

1 2 3

4

1

3

42

Figure 6. Nerve of a set arrangement

Definition 12.13. The collection of sets U = {Uv}v∈V is called a locally finite cover if:

(1) U is a cover, i.e.
⋃
v∈V Uv = X.

(2) the cover is locally finite: ∀x ∈ X there exists at most a finite number of Uv such that
x ∈ Uv.

Theorem 12.14 (Nerve Lemma – Open Version). Assume that U = {Uv}v∈V is a locally finite
cover of a triangulable topological space X, and moreover:

(1) Uv are open.
(2) Uσ is contractible for all σ ∈ nerve(U), for σ 6= ∅.

Then X ∼homotopy nerve(U).

Theorem 12.15 (Nerve Lemma – Closed Version). Assume that U = {Uv}v∈V is a finite cover of
a triangulable topological space X, and moreover:

(1) Uv are closed.
(2) Uσ is contractible for all σ ∈ nerve(U), for σ 6= ∅.

Then X ∼homotopy nerve(U).

Example 12.16. All open or all closed cannot be relaxed. For instance, the interval can be split
into an open interval and a closed interval, which means even though the interval is contractible,
it has a cover with nerve two points.

Remark 12.17. In the closed case, the “finite” condition cannot be dropped either.

Example 12.18. Consider the unit circle X = S1. Let

Ui = {e2πit | 1

i+ 1
≤ t ≤ 1

i
}.

Claim: Homotopy type nerve{Ui} 6= homotopy type of S1.
18
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Example 12.19. S1 × [a, b] ∼hom S1.

Remark 12.20. Contractibility of every intersection: If X ⊂ Rd is such that Ui ⊂ X ⊂ Rd. If Ui
are convex, then any intersection is also convex! Thus it is also contractible.

Convex =⇒ contractible, since you can contract all points to a fixed point along lines.
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