MATH 249 PROBLEM SET 4 (DUE OCTOBER 31)

(1) Let $M=(E, \mathcal{B})$ be a matroid and $S \subset E$. Show that

$$
(M / S)^{*}=\left.M^{*}\right|_{E-S} .
$$

(2) Let f be a function from matroids to \mathbb{C} such that:
(a) If $E=\emptyset$ then $f(M)=1$
(b) Let $A=f$ (coloop) and let $B=f$ (loop). Then

$$
\begin{aligned}
& f(M)=A f(M-e) \text { for } e \text { a coloop, and } \\
& f(M)=B f(M-e) \text { for } e \text { a loop. }
\end{aligned}
$$

(c) There exist constants $\alpha, \beta \neq 0$ such that when e is not a loop or coloop, we have $f(M)=\alpha f(M-e)+\beta f(M / e)$.
Show that for all matroids M,

$$
f(M)=\alpha^{|E|-r(E)} \beta^{r(E)} T_{M}(A / \beta, B / \alpha),
$$

where T_{M} is the Tutte polynomial.
(3) Recall that the chromatic polynomial is the polynomial enumerating proper colorings of a graph. Show that the chromatic polynomial satisfies a deletion-contraction recurrence. Then deduce that $\chi_{G}(\lambda)=(-1)^{|V|-k(G)} \lambda^{k(G)} T_{G}(1-\lambda, 0)$, where $k(G)$ equals the number of connected components of the graph.
(4) How many positroids of rank 2 on the ground set [4] are there? Hint: it might help to use the three-term Plücker relation.

