MATH 249 PROBLEM SET 1 (DUE SEPTEMBER 19)

(1) Let P be a finite poset, and $m \in \mathbb{N}$. Let \underline{m} be the chain poset $1<2<\cdots<m$. Show that the following numbers are equal:
(a) The number of surjective order-preserving maps $\sigma: P \rightarrow \underline{m}$.
(b) The number of chains $\hat{0}=I_{0}<I_{1}<\cdots<I_{m}=\hat{1}$ of length m in $J(P)$.
(2) Let P be a locally finite poset. Define $\eta \in I(P)$ (the incidence algebra) by $\eta(x, y)=1$ if y covers x and $\eta(x, y)=0$ otherwise. Show that $(1-\eta)^{-1}(x, y)$ is equal to the total number of maximal chains in $[x, y]$.
(3) Consider Young's lattice (the lattice of all partitions, ordered by containment). Calculate its Mobius function. That is, for each pair of partitions, $\lambda \subset \nu$, calculate $\mu(\lambda, \nu)$.
(4) Recall that for any positive integer n, the partition lattice Π_{n} is the poset of all partitions of $[n]$ (into blocks), where we define $\pi \leq \sigma$ in Π_{n} if and only if each block of π is contained in a block of σ. (In other words, π is a refinement of σ.) Find an EL-labeling of Π_{n} (and prove that it is one). Then identify the homotopy-type of the order complex $\Delta\left(\Pi_{n}-\hat{0}-\hat{1}\right)$.

Note: Don't confuse Π_{n} with Young's lattice! Π_{n} is the poset of objects $\left(B_{1}, \ldots, B_{k}\right)$, where the disjoint union of the B_{i} 's is $\{1, \ldots, n\}$. On the other hand, Young's lattice is the poset of all partitions $\left(\lambda_{1}, \ldots, \lambda_{k}\right)$, where $\lambda_{1} \geq \cdots \geq \lambda_{k}$. We typically view this kind of partition as a Young diagram.

