Math 228B Tues 1/16/07 Week 1

Numerical solutions of PDE

what is a PDE? abstractly it's an equation of the form

$$F(u, Du, D^2u, ...) = 0$$
 $Du = \begin{pmatrix} \frac{\partial u}{\partial x_i} \\ \vdots \\ \frac{\partial u}{\partial x_n} \end{pmatrix}^2 gradient$

unlike ODE's, there is

no general theory of PDE

 $\frac{\partial^{2} u}{\partial x_{1}^{2}} = \frac{\partial^{2} u}{\partial x_{1} \partial x_{1}} = \frac{\partial^{2} u}{\partial x_{1} \partial x_{1}}$ $\frac{\partial^{2} u}{\partial x_{2} \partial x_{1}} = \frac{\partial^{2} u}{\partial x_{2}^{2}}$

Each equation has its own

special properties, and the

 $= \left(\frac{\partial^2 u}{\partial x_i \partial x_j}\right)_{i,j=1..n} = \text{Hessian}$

behavior of solutions varies wildly from one PDE to the next.

2nd order, scalar, constant coefficients:

auxx + 2b uxy + C uyy + dux + euy + fu = 9

This equation may be written a,b,c,d,e,f constants g(x,y) function

 $P(\partial_x, \partial_y)u = g$ or Lu = g

where P(3,7) = a3 + 2b 37 + c n2 + d3 + en + f

is the symbol of the differential operator

1 polynomial with the coefficients of the operator

the behavior of solutions of Lu=9 is largely determined by the algebrane properties of the polynomial P(\(\xi\), \(\eta\)), in fact by the discriminant:

$$b^2 - ac < 0$$
 hyperbolie
 $b^2 - ac = 0$ parabolie
 $b^2 - ac > 0$ elliptic

note that only the principal terms (those of highest order) matter in this classification

what's special about 62-ac?

write
$$P(\xi,\eta) = (\xi\eta) \begin{pmatrix} a & b \end{pmatrix} \begin{pmatrix} \xi \\ b \end{pmatrix} \begin{pmatrix} \xi \\ \eta \end{pmatrix} + (de) \begin{pmatrix} \xi \\ \eta \end{pmatrix} + f$$

the eigenvalues of A are:

$$det \begin{pmatrix} a-\lambda & b \\ b & c-\lambda \end{pmatrix} = (a-\lambda)(c-\lambda) - b^2$$
$$= \lambda^2 - (a+c)\lambda + ac-b^2 = 0$$

when b-ac=0, at least one eigenvalue is zero (paralolic care)

since A is symmetric, we can diagonalize it:

$$A = U \Lambda U$$
, $\Lambda = \begin{pmatrix} \Lambda \\ \Lambda_2 \end{pmatrix}$, U orthogonal $(U'' = UT)$

$$V = \begin{pmatrix} c - s \\ s \end{pmatrix} = \begin{pmatrix} c = 0 & 0 \\ s = s & 0 \end{pmatrix}$$

now let's try rotating the coordinate system by O:

$$\frac{\tilde{y}}{\tilde{y}} = \frac{\tilde{x}^2 c \times + sy}{\tilde{y}^2 - s \times + cy} = \frac{1}{\tilde{y}} \begin{pmatrix} x \\ y \end{pmatrix}$$

By the chain rule, we have

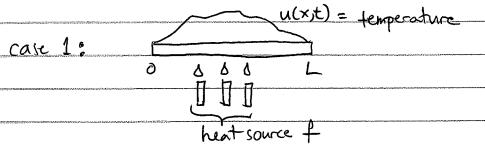
$$\frac{\partial}{\partial x} = \frac{\partial \tilde{x}}{\partial x} \frac{\partial}{\partial \tilde{x}} + \frac{\partial \tilde{y}}{\partial x} \frac{\partial}{\partial \tilde{y}} = \frac{\partial}{\partial \tilde{x}} - \frac{\partial}{\partial \tilde{y}} = \frac{\partial}{\partial \tilde{x}} \left(\frac{\partial}{\partial \tilde{x}} \right) = \frac{\partial}{\partial \tilde{x}} \left(\frac{\partial}{\partial \tilde{x}} \right) = \frac{\partial}{\partial \tilde{y}} \left(\frac{\partial}{\partial \tilde{y}} \right) = \frac{\partial}$$

so our differential operator looks like

$$P(\begin{pmatrix} \partial_x \\ \partial_y \end{pmatrix}) = P(U(\frac{\partial_{\bar{x}}}{\partial_{\bar{y}}}))$$

$$= (\partial_{\tilde{x}} \partial_{\tilde{y}}) U^{T} \begin{pmatrix} a & b \\ b & c \end{pmatrix} U \begin{pmatrix} \partial_{\tilde{x}} \\ \partial_{\tilde{y}} \end{pmatrix} + (de) U \begin{pmatrix} \partial_{\tilde{x}} \\ \partial_{\tilde{y}} \end{pmatrix} + f$$

$$\begin{pmatrix} \lambda_{1} \\ \lambda_{2} \end{pmatrix} \qquad (\tilde{a} \tilde{e})$$


```
or P(\partial_x, \partial_y) = \lambda, \partial_x^2 + \lambda_2 \partial_y^2 + \tilde{d} \partial_x + \tilde{e} \partial_y^2 + f
                            = \( \tilde{\gamma} \) (\( \partial_{\tilde{\gamma}} \) ) \( \tilde{\gamma} \)
         so we might as well assume that b=0, a=\lambda_1, c=\lambda_2
                in the first place ...
       The words hyperboln, parabolic, elliptic come from the
         graphs of the equation P(3, M) = 0
        it's really all about the eigenvalues of A...
       prototypes:
                                   Utt-Uxx=0 Shyperbolic
           Wave equation:
          telegraph equation:
                                    Utt + dut -uxx = 0
                                                                         also called
         you way wave eqn: ut + aux 20
                                                                        hyperbolic
Isolations are
          invisced Burgers: ut + uux = 0 (non-linear)
           also called transport equation
         heat equation, diffusion equation: Ut = Uxx parabolic
             Schrödinger equition: - iut = Uxx = totally different properties
                                            \frac{u_{xx}+u_{yy}=0}{u_{xx}+u_{yy}=f(x,y)} \ge \text{elliptic}
          Laplace equation
                                               \mu \Delta u + (\lambda + \mu) \nabla (\nabla \cdot u) = f
systems & linear elastruty

Stolecus
                                                -man+ 2p=f, D.u=o)
```

elliptic equations can be made parabolic or hyperbolic
elliptic equations can be made parabolic or hyperbolic by adding time dependence
unstrady Stokes: { Ut - µDu trp = f
unstrady Stokes: $\begin{cases} u_t - \mu \Delta u \ t \nabla p = f \\ (parabolic) \end{cases}$ $\begin{cases} \nabla \cdot u = 0 \end{cases}$
3d wave: $u_{tt} - \Delta u = 0$
(hyperbolic)
beam equation: Ut + Uxxxx = 0
(parabolic)
vibrations in elastic medium: $\rho Utt = \mu \Delta u + (A+\mu) P(P \cdot u)$ (hyperbolic)
(hyperbolic)
Thre are many interesting non-linear PDE
incompressible Navier-Stokes: Sut + u.Du = - Tp + plu
V.U.O
sometimes behaves like elliptic parsone or hyperbolic
Eikonal: 17ul=1 (first arrival time of a signal)
Burgers eqn: U++UUx = Uxx = a 1d version of Navier Stokes
Korteway - deVries (KdV): Ut + UUx + Uxxx = 0 = has soliton
solutions
traffic equation: $CUt - [\sigma(x)Ux]_x = 0 \leftarrow has shocks$

each type of egution has special features
that must be understood and incorporated
into the numerical method.
if the solution has shocks, the numerical puthod
must handle discontinuities,
bounday conditions are often the most difficult
bounday conditions are often the most difficult part of solving numerical PDE
Next temi: finite difference methods for the heat equation.
V
in class exercise:
heat equation $ut = u_{xx}$
solve the backward heat egn Ut = -Uxx
backward heat egn Ut = -Uxx
with initial condition $u(x,0) = sin(kx)$, $k \in \mathbb{R}$
using separation of variables.
u=0 ut=-Uxx u=0
2 how long does the solution of
the backward heat equation 0 TT
with $\begin{cases} b/c's : u(o,t) = u(\pi,t) = 0 \end{cases}$
$\lim_{x \to \infty} \frac{1}{2} \int_{-\infty}^{\infty} \frac$
50 n even
exist? $f(\pi) = \int_0^{\pi} \int_0^{\pi$

Math 228B Lec 2
Last time:
classification of PDE (hyperbolie, panbolic, elliptic)
Zoo of famous PDE's (no general theory)
tailored to the PDE you're solving
Today: Ut = Uxx 1d heat equation
setup (2 options)
1. rod of finite length O≤X≤L
2. infinite domain -∞ ≤ x ≤ ∞
u(x,t) = temperature

If you include the heat source, equation is Ut-Uxx = f Let's assume f=0

initial conditions: u(x,0) = g(x) boundary conditions: u(0) = u(L) = 0

g is the initial temperature distribution (given). we want to find u(x,t) for t>0, 0 ≤ x ≤ L

first look for special solutions of the form

$$u_t = u_{xx} \Rightarrow X(x)T'(t) = X''(x)T(t)$$

$$\Rightarrow \frac{T'(t)}{T(t)} = \frac{X''(x)}{X(x)} = C$$

must be a constant

$$X'' = CX$$
 $\Rightarrow X(x) = \sin \frac{k\pi x}{L}$, $C = -(\frac{k\pi}{L})^2$
 $X(0) = X(L) = 0$

result:
$$u(x,t) = e^{-(kT)^2 t} \sin \frac{k\pi x}{L}$$
 satisfies $u_t = u_{xx}$

Now use a Fourier sine series to represent the initial condition:

$$g(x) = \sum_{k=1}^{\infty} C_k \sin \frac{k\pi x}{L}, \quad C_k = \frac{2}{L} \int_0^L g(x) \sin \frac{k\pi x}{L} dx$$

Finally, use superposition to obtain the exact soli:

$$u(x,t) = \sum_{h=1}^{\infty} \frac{-\left(\frac{h\pi}{L}\right)^2 t}{\sin\frac{h\pi x}{L}}$$

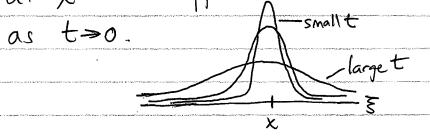
For the backward heat equation, the Fourier moder grow exponentially in time rather than decay

example: $L = \pi$, $g(x) = \pi x - x^2$ $C_k = \frac{2}{\pi} \int_0^{\pi} g(x) \sin kx \, dx = \begin{cases} 0 & \text{keven} \\ \frac{8}{\pi k^2} & \text{kodd} \end{cases}$

 $u_t = -u_{xx} \Rightarrow u(x,t) = \sum_{h \text{ odd}} \frac{8}{\pi h^3} e^{h^2 t} \sin hx$

but for any t>0, $\frac{8}{\pi k^3}e^{k^2t} \Rightarrow \infty$ as $k \Rightarrow \infty$ so the formula for u diverges for all t>0(backward heat eqn. has no solin with this initial condition)

case 2: infinite domain

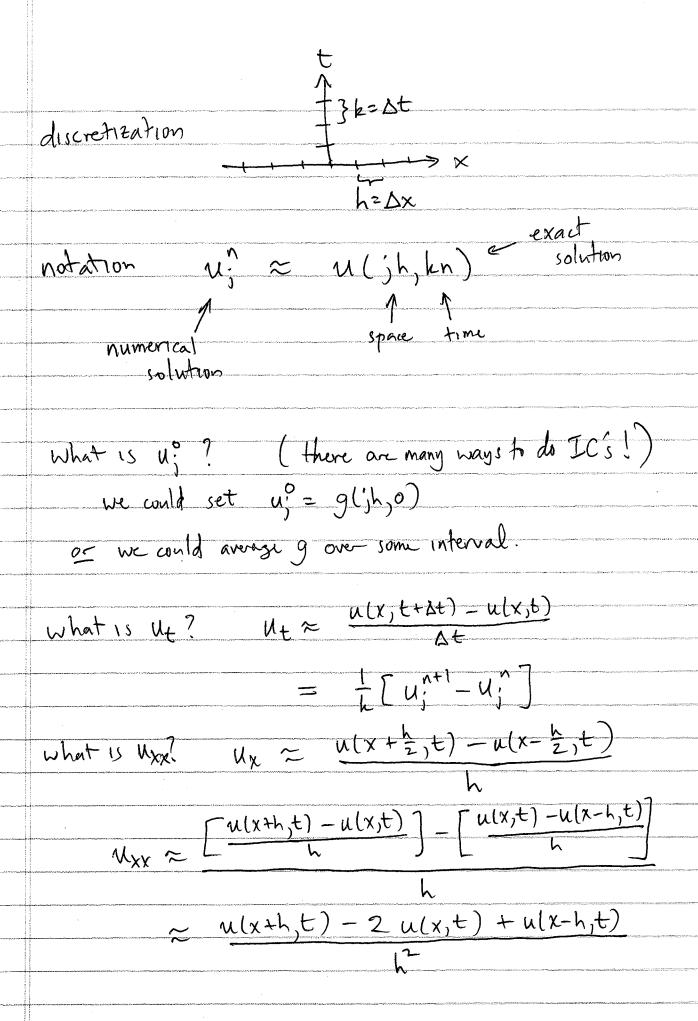

the boundary conditions u(0) = u(L) = 0 are now replaced by the requirement that u remains bounded as $x \to \pm \infty$

this problem may be solved using the Fourier Transform instead of the Fourier sine series alove. (see Fritz John's PDE Look)

exact solution:
$$u(x,t) = \frac{1}{\sqrt{4\pi t}} \int_{-\infty}^{\infty} \frac{-(x-3)^2}{4t} g(3) d3$$

requirements on q: continuous and bounded

Note: $\frac{1}{\sqrt{4\pi t}}e^{-\frac{(x-\xi)^2}{4t}}$ is a gaussian centered at x which approaches a s-function Δ -small t



observations: 1) the exact solution is a smoothed out version of the initial conditions (larger t = more smoothing)

2) the value of u at x depends on all of g(\$) — information travels infinitely fast.

numerics: why stally use finite differences when we know the exact solution?

- i. have to compute the integrals ionihow (probably numerically)
- 2. these exact soln's don't generalize to more complicated prollums

schem for
$$u_t = u_{xx}$$
:
$$\frac{1}{h} \left[u_j^{n+1} - u_j^{n} \right] = \frac{1}{12} \left[u_{j+1}^{n} - 2u_j^{n} + U_{j-1}^{n} \right]$$

$$u_{j}^{n+1} = u_{j}^{n} + \frac{k}{k^{2}} \left[u_{j+1}^{n} - 2u_{j}^{n} + u_{j-1}^{n} \right]$$

This is a recipe. given the values [Ui]=-00

we use it to find {u, } j=-00

but remember the exact solf. It depends on all of g(x)!

Let's try it:

$$k = \frac{1}{4}$$
 $k = \frac{1}{4}$
 $k =$

try again:

$$k = \frac{1}{64}$$
 $0 \frac{1}{16} \frac{4}{16} \frac{6}{16} \frac{1}{16} \frac{1}{16} 0$
 $k = \frac{1}{4}$
 $0 \frac{1}{4} \frac{1}{12} \frac{1}{12} \frac{1}{12} 0$
 $0 \frac{1}{4} \frac{1}{12} \frac{1}{12} \frac{1}{12} 0$
 $0 \frac{1}{4} \frac{1}{12} \frac{1}{12} \frac{1}{12} 0$

the breakpoint for stability happens at $\nu = \frac{1}{2}$ $u_{j}^{n+1} = \nu u_{j+1} + (1-2\nu)u_{j}^{n} + \nu u_{j-1}^{n}$ becomes negative for $y>\frac{1}{2}$ analysis in the max norm ||ulloo = max |uil when $V \leq \frac{1}{2}$ we have $|u_3^{n+1}| \leq |v||u_{j+1}^n| + |1-2v||u_j^n| + |v||u_{j-1}^n|$ $|u_3^{n+1}| \leq |v||u_{j+1}^n| + |1-2v||u_j^n| + |v||u_{j-1}^n|$ $|u_3^{n+1}| \leq |v||u_{j+1}^n| + |1-2v||u_j^n| + |v||u_{j-1}^n|$ $|u_3^{n+1}| \leq |v||u_{j+1}^n| + |1-2v||u_j^n| + |v||u_{j-1}^n|$ $\leq (|\nu| + |1-2\nu| + |\nu|) ||u^{n}||_{\infty}$ 1 since each is positive $\frac{1}{2} \cdot \frac{1}{2} \left\| u^{n+1} \right\|_{\infty} = \max \left| u^{n+1} \right| \leq \left\| u^{n} \right\|_{\infty}$

but when $y > \frac{1}{2}$ this argument doesn't work as

|V| + |1-2v| + |V| = v + (2v-1) + v = 4v-1 > 1and indeed the initial condition we = -1-11leads to exponential growth:

 $u_{i}^{2}=(-1)^{j}, \quad u_{i}^{2}=-(4\nu-1)(-1)^{j}, \quad u_{i}^{2}=(-1)^{n+j}(4\nu-1)^{n}$

so for the initial condition, if $\nu > \frac{1}{2}$, we have $\|u^n\|_{\infty} = (4\nu-1)^n \|u^n\|_{\infty}$ exponential growth def: A method is stable if the solution at a fixed time T=nk (1.e. n increases as k decreases) has norm bounded in terms of its norm at time o independent of the increments h and h our scheme is stable iff hand k satisfy the additional requirement <u>R</u> < <u>7</u>

(timestrap goes to zero faster than the space step.

In the limit you actually see all the

Initial conditions just as the exact solution does

h=H

h=T

cut space step

th=T

m half and
time step

in fourth

-2H

H

O

H

ZH

ZH

A

ZH

Last time

- 1d heat equation on finite domain (separation of variables)
- ad " " infinite domain (exact solution)
- · formal in time, contend in space finite difference method
- · preliminary definition of stability of a scheme

Today: error analysis of this schem.

step 1: show schem is consistent

strp z: show schem is stable (do Letter job of defining stability)

step 3: show that these together imply conveyence

Finite difference notation:

consider a function of defined on an evenly spaced grid x; z jh

define $D^{+}f_{j} = \frac{f_{j+1} - f_{j}}{h}$ $D^{-}f_{j} = \frac{f_{j} - f_{j-1}}{h}$

 $D^{\circ}f_{j} = \frac{f_{j+1} - f_{j-1}}{2L}$ $D^{\dagger}D^{\dagger}f_{j} = \frac{f_{j+1} - 2f_{j} + f_{j-1}}{L^{2}}$

note that $f = \{f_j\}_{j=-\infty}^{\infty}$ is a sequence and so are $D^{\dagger}f_j$ of f_j etc. (I.c. Dtf; means (Dtf);

our scheme for $u_t = u_{xx}$ 15 $D_t^+ u_i^+ = D_x^+ D_x^- u_i^+$ operates on "i" (forward in time) (centered in space)

In ODE's, the solution of y'=f(t,y) is gnaranteed to exist for $0 \le t \le T$ and be k times continuously differentiable on this interval if

1. I supschitz continuous on $[0,T] \times \mathbb{R}^d$

1. f 15 Lipschitz continuous on Eo,TJ×R

(i.e. ∃ L s.t. ||f(t,x)-f(t,y)|| ≤ L||x-y|| for ost≤T

x,y∈Rd

2. f is h times continuously differentially.

But for PDE's this is not automatic

-> high frequency modes can decay too rapidly
for u(x,t) to be differentiable at t=0.

example: if $g(x) = \frac{g^2}{2} = \frac{g^2}{2} + \frac{g^2}{2} = 0$

the solution u(x,t) will have u(0,t) blow up as t &0.

We will assume the initial condition glx) is nice enough that the exact solution u(x,t) and a few of it, derivatives (say ut, utt, ux, uxx, uxxx, uxxx) are bounded and confinuous on the strp

 $-\infty < x < \infty$, $0 \le t \le T$

if
$$fec^{r}[a,x]$$
 and $fec^{r+1}(a,x)$ then

$$f(x) = f(a) + f'(a)(x-a) + \cdots + \frac{f'''(a)}{r!}(x-a)^{r} + R_{r}(x)$$

where
$$R(x) = \int_{a}^{x} \frac{f^{(r+1)}(t)}{r!} (x-t)^{r} dt \leftarrow Cauchy form$$

$$= \frac{f(r+1)(3)}{(r+1)!} (X-a)^{r+1} \in Lagrange form$$
(for some $3 \in (a, \lambda)$)

Thus we have

$$= \frac{f(x_j) + hf'(x_j) + \frac{h^2}{2}f''(x_j + \theta h) - f(x_j)}{h}$$

$$= f'(X_i) + \frac{h}{2} f''(X_i + Oh) \quad \text{for some } O \in (O_3 1)$$

$$D^{\dagger}D^{\dagger}f_{j} = \frac{f(x_{j}+h) - 2f(x_{j}) + f(x_{j}-h)}{h^{2}} \int_{0}^{assume} f e^{c^{4}[x_{j}-h,x_{j}+h]}$$

$$= \frac{1}{h^{2}} \left\{ (1-2+1)f(x_{j}) + \left[h+(-h)\right]f'(x_{j}) + \left[\frac{h^{2}}{2} + \frac{(-h)^{2}}{2}\right]f''(x_{j}) \right\}$$

$$+ \left[\frac{h^{3}}{6} + \frac{(-h)^{3}}{6}\right]f''(x_{j}) + \frac{h}{24}f^{(4)}(x_{j}+0_{j}h) + \frac{h}{24}f^{(4)}(x_{j}-0_{j}h)$$

$$= f''(\chi'_{j}) + \frac{h^{2}}{12} \left[\frac{f'''(\chi_{j} + \theta_{1}h) + f'''(\chi'_{j} - \theta_{2}h)}{2} \right] \quad \text{for some} \quad \theta_{1,3} Q_{\epsilon}(\theta_{3}1)$$

Now define the truncation error to be what's left over when you plug the exact solution into the scheme:

 $z_i^n = D_t^+ u(x_i)t_n - D^+ b^- u(x_i)t_n$

 $= U_{t}(x_{5}, t_{n}) + \frac{R}{2} U_{t}(x_{5}, t_{n} + 0 k)$ $= U_{t}(x_{5}, t_{n}) + \frac{R}{2} U_{t}(x_{5}, t_{n} + 0 k)$

 $-u_{xx}(x_jt_n) - \frac{k^2}{12}\left[\frac{u_{xxx}(x_j+0_jt_n)+u_{xxx}(x_j-0_jt_n)}{2}\right]$

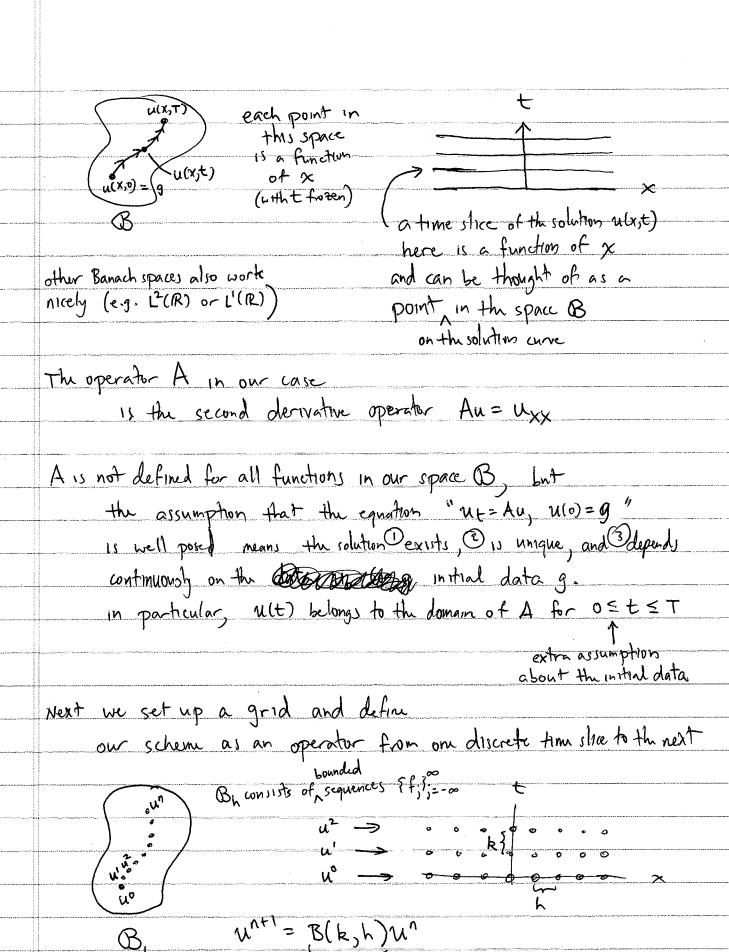
so if M is a bound on Utt, Uxxxx on the strip osts Twe have $|T_{j}^{n}| \leq \left(\frac{k}{2} + \frac{h^{2}}{12}\right)M$

If we carry the expansions one step further and take M to be a bound on Uttle, uxxxxx we get

 $T_{i}^{n} = \frac{k}{2} u_{tt}(x_{i}, t_{n}) - \frac{k^{2}}{12} u_{xxx}(x_{i}, t_{n}) + \epsilon_{i}^{n}$

with $|z|^{n} \leq \left(\frac{k^{2}}{6} + \frac{k^{4}}{360}\right)M$

but $u_t = u_{xx} = u_{txx} = u_{xxx}$ (we're dealing with)


here, after all /

so the leading term in Tig 11 killed if $\frac{h}{2} = \frac{h^2}{12}$

or, recalling that $V^{2}\frac{k}{h^{2}}$, if V^{2} /6

result: $T_{j}^{n} = \begin{cases} O(k) & \nu \neq 16 \end{cases} = holding & constant \\ O(k^{2}) & \nu = 1/6 \end{cases}$ while letting $k, k \neq 0$

	def: A scheme is consistent if t;">0 as k,h>0
stronger	a slightly stronger statement in our case is that the Aschem is first order in time and second order in space
specify	unless $v = 1/6$, in which case it's 2nd order time, 4th order space.
rate of convergo	a (the order of the method)
	Said differently:
	a scheme is consistent if the exact solution of the PDE is
	an approximate solution of the scheme
e.	It is convergent if the exact solution of the scheme is
	an approximate solution of the PDE
1 marin	·
and the second s	Law Richtmyer , theorem: A consistent finite difference scheme for
	a well-posed initial value problem is convergent iff it is stable
	The setting of the Lax-Richtmyer paper is very general:
	Ut = Au (0 stsT) ODE in a Banach space
	u(o) = 9 complete normed linear space
	W(X)+)
	in our case the Banach space B that MARY evolves in
	is BC(R), the space of bounded continuous functions
	on R with norm
	$ Q = \max_{-\infty < x < \infty} g(x) $
	U _∞<×<∞

bounded linear operator from Bh to Bh

in our case, B(ksh) u; = Vuj+1 + (1-20) u; +Vuj-1, V= 12 Finally, we choose a refinement path relating h to k. in our case we'll consider & fixed and set h= \(\frac{1}{K} \right) \). Now there is only one parameter controlling convergence, namely the timestap k. Lax & Richtmyer the operator B(k, [4/,)) a new name C(k) scheme: unti z C(h)un or un = C(h) no = you've applied the scheme n times stating with the initial condition No def: A scheme is stable if for some the operators $C(k)^n$ $0 \le k \le \varepsilon$ $C(k)^n$ $0 \le k \le T$ 0 < nk <T are uniformly bounded This means there is a constant Kindy- of k and n such that 0<h & & $\|C(u)^n\| \leq K$ osnkst (I'll talk more about norms next time, The norm of C(h)" is

the smallest number 11 cch)" | s.t. 11 cch)" ull \ 11 cch)" II lull \ Yu&Bh

In our case C(h) U; = VUj+1 + (1-2v)u; + VUj-1 doesn't depend on h, and we showed last time that 11c(h) 11 \(\leq 1 \) when 11.11 is the infinity norm ||ull = max |Uj| so this scheme is definitely stable. More generally we can have 11CCW 11 & 1+ Kk for any constact K, and the scheme will still be stalle. This is because $||C(h)^n|| \leq ||C(h)||^n \leq (1 + K_1 h)^n$ $\leq \left(1+K_{1}k+\frac{(K_{1}k)^{2}+\cdots}{21}+\cdots\right)^{\Lambda}$ $= (e^{K_i h})^n = e^{K_i (kn)} \leq e^{K_i T}$ Now let's prove convergence. define the error: e; = u; - u(jh, kn) definition of scheme: $u_{i}^{n+1} = u_{i}^{n} + h D_{x}^{+} D_{x}^{-} u_{i}^{n}$ exact: u(jh,(n+1)k)= u(jh,nk) + kD*Dx u(jh,nk) + kT; subtract: ent = ent + k Dx Dx ent + kTi recursion for the C(k) e;

now iterate backward $e_{j}^{n} = C(h) e_{j}^{n-1} + h T_{j}^{n-1}$ = C(h)[C(h)e; -2+kT,-2]+hT;-1 = C(h) e; + C(h) kt; + ... + C(h) kt; + ht; take norms, use triangle inequality, use ||Ch)2||5 K for 05l≤n 11e^11 < K [1e°11 + K [k||T°11 + k ||T'11+ ... + k||T'11] nk max 117º11
05.1<n but $nk \leq T$, K=1 and each $||T^2||$ is bounded by $(\frac{k}{2} + \frac{k^2}{12})M$ TM $\left(\frac{k}{2} + \frac{h^2}{12}\right)$ $\gamma \neq \frac{1}{6}$ TM $\left(\frac{k^2}{2} + \frac{h^2}{12}\right)$ $\gamma = \frac{1}{6}$ all n satisfying $0 \leq nk \leq T$ $\max_{n} ||e^{n}|| = \max_{n} |e^{n}|$ $-\infty < j < \infty \text{ Osak} \le T$ so the maximum value of the error on the grid
goes to zero as k,h >0 with $y \ge \frac{h}{h^2} \le \frac{1}{2}$ held fixed

Math 228B Lec 4

Last time

finite difference notation Dt, D, Do, DtD truncation error (definition and bound for heat equation) consistency, stability, and convergence setup for Lax-Richtinger paper

Today: ** crash course in functional analysis

(2) finish convergence proof for our scheme for ut = uxx

(3) alternative norms to the max norm

functional analysis

algebra in infinite dimensions. Once this is understood,
you can go on to study non-linear problems, but we
won't be so ambitious

a vector space is a collection of affects that you can add together and multiply by scalars:

f, fzeV => af,+BfzeV 1 scalars (in R or C)

a norm is a rule that
assigns a real
number 11fll to every
element of the space such that

1. $\|f\| \ge 0$ $\forall f \in V$ and $\|f\| = 0$ iff f = 02. $\|xf\| = \|x\| \cdot \|f\|$ homogenety
3. $\|f_1 + f_2\| \le \|f_1\| + \|f_2\|$ triangle meghality

A normal space is an example of a metric space where the metric (distance) is given by
$$d(f,g) = ||f-g||$$

3.
$$\mathbb{R}^n$$
, $\|x\|_1 = \sum_{i=1}^n |x_i|$ 1 norm, Manhattan norm (unit balls are diamonds $($)

4.
$$\mathbb{R}^n$$
, $\|x\|_{\infty} = \max_{1 \le i \le n} \|x_i\|_{\infty} = \max_{1 \le i \le n} \|x_i\|$

5.
$$L^{2}(0,1) =$$
 "square integrable functions on $(0,1)$ "

$$||f||_{2} = \int_{0}^{1} |f(x)|^{2} dx = \underset{\text{value is only nucessary if } f \text{ taker on } \\ \underset{\text{complex values}}{\text{complex values}}$$

6.
$$C[0,1]^2$$
 "continuous functions on $[0,1]''$ its important that this interval is closed $\|f\|_{\infty} = \max_{0 \le x \le 1} |f(x)|$

all of these spaces have complex versions (where the set
all of these spaces have complex versions (where the set of scalars is C rather than IR)
า
so C[a,b] can mean {f:[a,b]→R f is continuous}
or {f: [a,b] > C f v continuous}
depending on the context. WE will usually work over IR for
complicity except when the Fourier transform u
depending on the context. We will usually work over R for simplicity except when the Fourier transform is involved, in which case we're forced to use complex number
norms allow us to measure distances between points in
our space. We need them to talk about errors in
on numerical solutions.
convergence: A sequence of points fifty. EV conveyes to fEV
(written $f_n \rightarrow f$) if $ f_n - f \rightarrow 0$ as $n \rightarrow \infty$
alternative nobution:
lim C = f f lim f - f 1 = 0
N > O FN
a sequence of real numbers
All of these statements mean the same thing:
for any E>O ∃N s.t. if n≥N then Hfn-f /< E

Think of E as a tolerance given to you by the customer and you have to be sure that eventually all the terms in your sequence are within that tolerance. remaining

A Cauchy sequence fifty... is a sequence in which the terms eventually stay arbitrarily close to each other: YESO BUST. ANDMEN, 11fn-fm11<E It's easy to show that every convergent seguence 11 Cauchy (try it!) A space is said to be complete if the reverse is also true, i.e every Cauchy sequence converges to an element of the space. A complete space has no holes. R is complete

Q = "set of rational numbers" is not A Banach space is a complete normed vector space A Hilbert space is a Banach space where the norm comes from an inner product ||f|| = \((f,f)'). examples $\{C^n \text{ with the inner product } (x,y) = x^T \bar{y} \leftarrow Z^{complex} \text{ conjugation } \{L^2(0,1) \text{ with in in } (f,g) = \int_0^1 f(x) \, g(x) \, dx$ An inner product is a rule that assigns a scalar (f, g) to every pair of points in the space such that: 1. $(\alpha f + \beta g_3 h) = \alpha (f_3 h) + \beta (g_3 h)$ bilinearity 2. (f,g) = (g,f) conjugate symmetry 3. (f,f) > 0 if $f \neq 0$ positive definitioness In particular (f,f) is real it follows from I and 2 that { (0,f) = 0

[(f, ag+ph) = a(f, 9) + B(f,h)

Banach spaces and Hilbert spaces are the basic arena in which we do numerical analysis. Typically, the elements in these spaces are functions (solutions of PDE's or numerical approximations of these solutions), and we want bounds on the norms of the error.

In linear algebra, linear transformations are very important, and can be represented by matrices. In infinite dimensions, matrices play a lesser role and we work with the transformation directly.

Innear operator: A: $X \rightarrow Y$, A(x+y) = Ax + Ay A(x+y) = Ax + Ay A(x+y) = Ax + AyBanach spaces

Innear functional: $f: X \rightarrow \mathbb{C}$ f(x+y) = f(x) + f(y) $f(\alpha x) = \alpha f(x)$

special name for the case when the target space is TR or C (the objects in the space are often functions, so a functional is a "function of functions")

An operator is bounded if then is a constant C s.t.

|| Ax || \leq C || \times || \times \times \times |

The smallest constant C that works is the norm of the operator. $||A|| = \sup \frac{||A \times ||}{||X||} = \sup ||A \times ||$ ||X|| = 1

sup means supremum, least upper bound. (think of it as

To show that 1/A11=C (e.g. in homework), (1) first show that ||Ax|| € C ||X|) \ \ X -(2) Then show (if you can) that some choice of Xo to yields 11AXII = CIIXOll The is always possible in finite dimensions, but in infinite dimensions there may not be a maximizer (that's why we write sup instead of max). Instead, it suffices that (2) If K<C then 3xo s.t. ||Axo||>K||Xo|| in other words, you show that C works and no smaller choice works space of bounded sequences with given by Bu; = Vu;+1 + (1-2v)uj + Vuj-1 Suppose OSUS 1/2. I claim |B| = 1. step 1= for any j, |Buj| ≤ |v||Uj+1| + |1-2v||uj| + |v||Uj-1| $\leq (v + 1 - 2v + v) ||u|| = ||u||$ so IlBull = llull (C=1 works) step 2: The sequence uj= | for all j satisfics Buj = y + (1-24) +y = 1 50 ||Buo|| = 1 = ||uo|| (can't do better than C=1)

	The norm notation for operators is used because the space
	of bounded operators A:X>Y is a Banach space with
	this norm (A+B is the operator (A+B)x = Ax+Bx)
	exercise: show that A+B \le A + B
	exercise: show that A+B \le A + B (2) If Y=X, then AB \le A - B
	3 NAN E NAUM
or human landon landon	Let's get back to our convergence proof following Lax/Richtmyer.
1	
C	$u_t = u_{\infty}$
-	$u(x,0) = u_{j}^{*} = u_{j}^{*} + (i-2v)u_{j}^{*} + v_{j}^{*}$ $u(x,0) = u_{j}^{*} = u_{j}^{*} + (i-2v)u_{j}^{*} + v_{j}^{*}$ or $u_{j}^{*} = u_{j}^{*} = v_{j}^{*} + (i-2v)u_{j}^{*} + v_{j}^{*}$
	the exact solution $u(x_2t) = \frac{1}{\sqrt{4\pi t}} \int_{-\infty}^{\infty} e^{-\frac{(x-\bar{x})^2}{4t}} g(\bar{x}) d\bar{x}$
	14nt]_00
	may be thought of as a time dependent curve through the Banach space BC (IR) = bounded, continuous functions on IR (other spaces also work well)
Same Australia Accession	Banach space BC (R) - bounded, continuous functions on TR
	(other spaces also work well)
Antonio de la companio del companio della companio	the numerical solution u" = B"u.
SCANE CENTRAL CONTRACTOR	
hadder the designment of	may be thought of as repeated iterations of a bounded
Contraction of the street of t	operator B on the Banach space Bh= low = "space of bounded "sequences"
	, 0,
******	in general B depends on k and h, but after specifying a refinement path (h=JR/V) it depends only on k.
and the second second second	refinement path (h=JR/2) it depends only on k.
- Commonweal	
	(for the refinement path
- Contract	it's a constant function of k)

If we chose a different refinement path, say h=k, We would have $B(k)u_i = \frac{1}{b}u_{j+1} + (1-\frac{2}{h})u_j + \frac{1}{h}u_{j-1} \quad \left(\nu = \frac{k}{h^2} = \frac{1}{h}\right)$ (I can't stand using C as an operator since it's such a good letter for "a large constant", so today well use B(k) to represent what I called (Ch) (ast time) A schem is stable if IK, & independent of n, k s.t. ||B(k) || || || K for ock = 8 0 ≤ nk ≤ T When $y \le \frac{1}{2}$ is fixed, we have $||B||^2 1$ so our scheme is stable (K=1, Earbitrary) proof of convergence: define the error: e; = U; -u(jh, nk) scheme: $u_j^{n+1} = u_j^n + kD_x^{\dagger}D_x^{\dagger}u_j^{\dagger}$ trune. exact: u(jh,(n+1)k) = u(jh,nk) + k0*0~u(jh,nk) + kt," e; = e; + k0, D, e; + kT; subtract: Ben

now Herate backwords

$$e_{j}^{n} = B e_{j}^{n-1} + kT_{j}^{n-1}$$

$$= B \left[B e_{j}^{n-2} + kT_{j}^{n-2} \right] + kT_{j}^{n-1}$$

$$= B^{n} e_{j}^{0} + B^{n-1} kT_{j}^{0} + \cdots + BkT_{j}^{n-2} + kT_{j}^{n-1}$$

$$+ ake norms, use triangle inequality, use $\|B^{k}\| \leq K$ for $0 \leq k \leq n$:
$$\|e^{n}\| \leq K \|e^{0}\| + K \left[k \|T^{0}\| + k \|T^{1}\| + \cdots + k \|T^{n-1}\| \right]$$

$$= B^{n} e_{j}^{n} + B^{n-1} kT_{j}^{n} + k \|T^{n}\| + k \|T$$$$

" max ||en||2 max max |en|| n _∞<j<∞ o∈nk≤T

so the maximum value of the error on the grid
goes to zero as k,h >0 with $v = \frac{k}{h^2} \leq \frac{1}{2}$ held fixed.

Math 228B Lec 5

Last time

norms, Banach spaces, linear operators
convergue of DtuzDtD u in max norm (a bit rushed...)

Today: analysis in the 1 norm

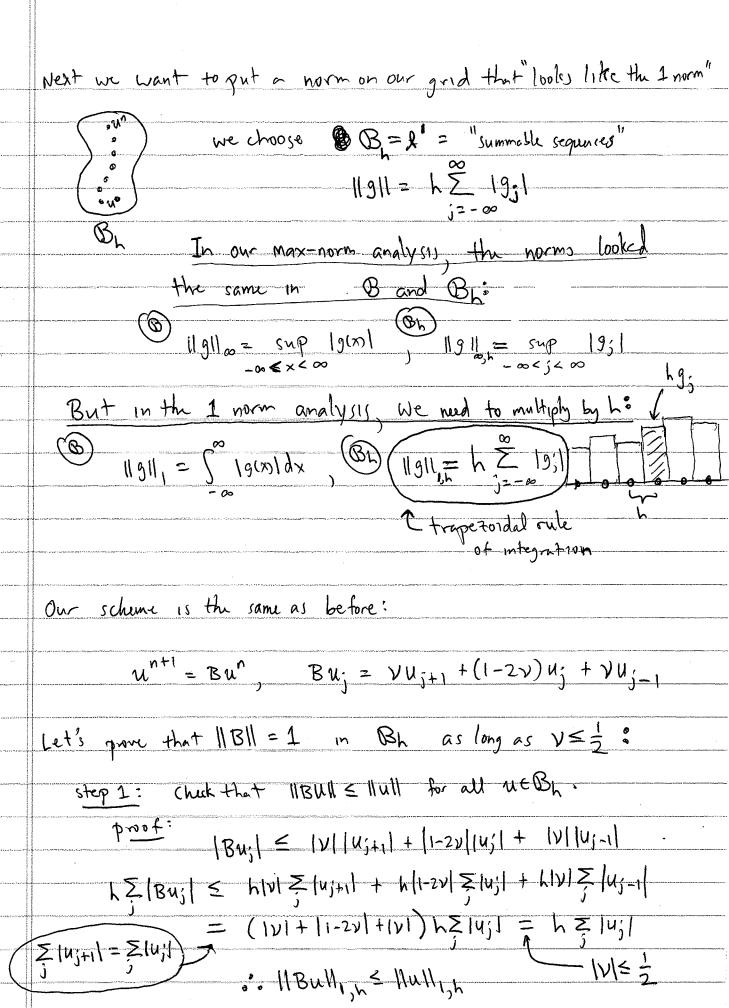
-energy estimates

-Fourier analysis (for 2 norm estimates)

so far we've measured our errors using the max norm. Today we'll explore alternatives to this choice.

1. The heat equation dow not lead to growth of the 1 norm:

$$u(x,0) = g(x) \rightarrow u(x,t) = \frac{1}{\sqrt{u\pi t}} \int_{-\infty}^{\infty} e^{-\frac{(x-x)^2}{4t}} g(x) dx$$


so
$$|u(x,t)| \leq \frac{|u(x-\overline{x})|^2}{\sqrt{1+|u(x,t)|}} e^{-\frac{|x-\overline{x}|^2}{4t}} |g(\overline{x})| d\overline{x}$$
(equality if $g(x) \geq 0$ for all x)

$$\int_{-\infty}^{\infty} |u(x,t)| dx \leq \int_{-\infty}^{\infty} \frac{1}{\sqrt{\sqrt{1+t}}} \int_{-\infty}^{\infty} \frac{(x-3)^2}{\sqrt{1+t}} |g(3)| d3 dx$$

always legal = $\int_{-\infty}^{\infty} \left(\int_{-\infty}^{\infty} \frac{1}{\sqrt{4\pi}} e^{-\frac{[x-\tilde{z}]^2}{4\pi}} dx \right) |g(\tilde{z})| d\tilde{z}$ to charge order $\int_{-\infty}^{\infty} \left(\int_{-\infty}^{\infty} \frac{1}{\sqrt{4\pi}} e^{-\frac{[x-\tilde{z}]^2}{4\pi}} dx \right) |g(\tilde{z})| d\tilde{z}$ of integrand is positive

result: for all positive times t, $\int_{-\infty}^{\infty} |u(x,t)| dx \leq \int_{-\infty}^{\infty} |g(x)| dx$ and if g(x) ≥0 \(\forall x\), this is an equality rather than an inequality.

(if we solve on a finite internal with Dirichlet B.C.'s) it's an inequality again) in our "evolution in a Banach space" picture, we have B = L'(R) = "integrable functions on R f(x) g(x) g(x) g(x)B = L'(R) = "integrable functions on R" the solution u(x,t) of [u(x,0)=g(x)] satisfies $||u(\cdot,t)|| \le ||s|| \quad (t \ge 0)$ the dot notation indicates that we're thinking of u as a function of its first argument only (with t given and fixed) So u(.,t) is the timeslice of the solution at time t: u(-jt) $u(\cdot,0)=g\rightarrow -\frac{1}{2}$

step 2: (heck that 1 is the best possible bound.

Let
$$u_j^0 = \begin{cases} 1 & j=0 \\ 0 & j\neq 0 \end{cases}$$

Then $Bu_j^0 = \begin{cases} \nu & j=\pm 1 \\ 1-2\nu & j=0 \\ 0 & |j| \geq 2 \end{cases}$

and so $\lambda \sum |Bu_j^0| = \lambda(|\nu| + |1-2\nu| + |\nu|) = \lambda \sum_j |u_j^0|$
 $0 - \|Bu^0\| = \|u^0\|$ in the discrete 1 norm.

Next well assume
$$g(x)$$
 is smooth enough that

$$\|T^n\|_{l,h} \leq \begin{cases} Ch^2 & v \neq 1/6 \\ Ch^4 & v = 1/6 \end{cases}$$

we'll talk more about this in a minute. -The error analysis now proceeds exactly as before.

The error e; = u, - uljh, kn) satisfies the recursion

$$e_{j}^{n+1} = e_{j}^{n} + k D_{x}^{\dagger} D_{x}^{\dagger} e_{j}^{n} - k T_{j}^{n} = B e_{j}^{n} - k T_{j}^{n}$$

50 that
$$e_{i}^{n} = B[Be_{i}^{n-2} - kT_{i}^{n-2}] - kT_{i}^{n-1}$$

$$=B^{n}e_{j}^{n}-B^{n-1}kT_{j}^{n}-\cdots-BkT_{j}^{n-2}-kT_{j}^{n-1}$$

Finally, since
$$\|B^{\ell}\| \le \|B^{\ell}\| \le$$

how reasonable was our assumption that $||T'|| \le \begin{cases} Ch^2 & v \ne \frac{16}{6} \\ Ch' & v = \frac{16}{6} \end{cases}$ On a finite domain $0 \le x \le L$, our previous assumption ?

that "g is nuc enough that the exact solution $u(x, \pm)$ has $u(x, \pm)$ continuous derivatives $u(x, \pm)$ of $u(x, \pm)$ on the rectangle $u(x, \pm)$ does the trick of $u(x, \pm)$ of $u(x, \pm)$ of $u(x, \pm)$ or $u(x, \pm)$ on the rectangle $u(x, \pm)$ of $u(x, \pm)$ or $u(x, \pm)$ or

 $h \sum_{j=1}^{m-1} |\leq h(m-1)M \leq LM$ j = 1 j = 1 j = 1 j = 1 j = 1 j = 1 j = 1This works because m + + + + + + L = mh (from the max norm analysis) 0 < x < L

But on the whole real line a uniform bound on Itin | by M does not give a bound on 117"11, (since L=00)

Let's go back to our truncation error analysis and try to bound 117" I directly. Thu time well use the Cauchy form of Taylor's theorem with remainder:

$$f(x+h) = f(x) + hf'(x) + \cdots + \frac{h^{r}}{r!} f^{(r)}(x) + R_{r}(x,h)$$

$$R_{r}(x,h) = \int_{0}^{h} \frac{f^{(r+1)}(x+3)}{r!} (h-3)^{r} d3 = \frac{r!}{r!} \int_{0}^{1} f^{(r+1)}(x+0h)(1-0) d0$$

plugging the exact solution into the scheme and simplifying:

$$T_{j}^{n} = \frac{u(x_{j}, t_{n}+k) - u(x_{j}, t_{n})}{k} - \frac{u(x_{j}+h, t_{n}) - 2u(x_{j}, t_{n}) + u(x_{j}-h, t_{n})}{h^{2}}$$

$$= (u_{t}(x_{j}, t_{n})) + k \int_{0}^{1} u_{t}(x_{j}, t_{n}+\theta k)(1-\theta) d\theta$$

$$- u_{xx}(x_{j}, t_{n}) - \frac{h^{2}}{6} \int_{0}^{1} u_{xxxx}(x_{j}+\theta h, t_{n})(1-\theta)^{3} d\theta$$

$$- \frac{h^{2}}{6} \int_{0}^{1} u_{xxxx}(x_{j}-\theta h, t_{n})(1-\theta)^{3} d\theta$$
exact
formula \rightarrow

$$T_{j}^{n} = \frac{u(x_{j}, t_{n}+k) - u(x_{j}, t_{n})}{k} - \frac{h^{2}}{6} \int_{0}^{1} u_{xxxx}(x_{j}-\theta h, t_{n})(1-\theta)^{3} d\theta$$

an exact

now we use Utt = uxxxx and take absolute values to obtain $|T_{i}^{n}| \leq \frac{k \int_{0}^{1} |u_{xxxx}(x_{i}, t_{n} + 0k)|(1-0) d0}{+ \frac{h^{2}}{6} \int_{0}^{1} |u_{xxxx}(x_{i} + 0h, t_{n})|(1-0)^{3} d0}$ $+\frac{h^2}{6}\int |u_{xxx}(x_j-0h, t_n)|(1-0)^3d0$ an integral of Uxxxx over the lines no o o o o Next we look at our favorite formula $u(x,t) = \frac{1}{\sqrt{4\pi t}} \int_{0}^{\infty} \frac{-(x-\overline{s})^{2}}{e^{-1/4}} d\overline{s}$ and differentiate under the integral sign: $\mathcal{M}_{XXXX}(X,t) = \frac{1}{\sqrt{4\pi t}} \int_{-\partial X^{4}}^{\partial 4} e^{-\frac{(X-\xi)^{2}}{4t}} g(\xi) d\xi = \frac{1}{\sqrt{4\pi t}} \int_{-\partial \xi^{4}}^{\partial 4} e^{-\frac{(X-\xi)^{2}}{4t}} g(\xi) d\xi$ integrate by parts Junt Person (3) dz so uxxxx is just the solution of the heart equation with intrail unditions good. As a result, we have the bound $|N_{XXXX}(X,t)| \leq \frac{1}{\sqrt{4t}} \int_{\sqrt{4t}}^{\infty} \frac{-(x-3)^2}{4t} |g_{XXXX}(3)| d\xi$ Let's write $\tilde{\mathbf{u}} = u_{xxxx}$ and $\tilde{\mathbf{g}} = g_{xxxx}$ to avoid all those x's

can change the order of summation and integration since integrand is positive > (k) (h > [u(x; tn+0k)]) (1-0) do Note that $\|T^{n}\|_{1,h} = h\sum_{j}|T_{j}^{n}| \leq \left(\frac{h}{6}\int_{0}^{\infty}\left(h\sum_{j}\left(x_{j}+\theta h,t_{n}\right)\right)\left(1-\theta\right)^{3}d\theta$ [+ = [(h = [[x; -0h, tn]) (1-0)3d0 $\leq C \left[k \int_{0}^{1} (1-0) d0 + \frac{h^{2}}{6} \int_{0}^{1} (1-0)^{3} d0 + \frac{h^{2}}{6} \int_{0}^{1} (1-0)^{3} d0 \right]$ $=\left(\frac{k}{2}+\frac{h^2}{12}\right)C$ worst discrete integral
of luxxxx in the strip $C \ge \max_{0 \le x \le h} h \sum_{j} |\widetilde{u}(x+jh,t)| T = 0$ o ≤ h≤ 1 = arbitrary upper limit on h. Finally, we note that $| \int_{0}^{\infty} \frac{(x-\overline{z}+jh)}{4t} | \tilde{g}(\overline{z})| d\overline{z}$ $| h \sum_{j=0}^{\infty} |\tilde{u}(x+jh,t)| \leq h \sum_{j=0}^{\infty} \frac{(x-\overline{z}+jh)}{4t} | \tilde{g}(\overline{z})| d\overline{z}$ $= h \ge \frac{1}{\sqrt{4\pi}} \int_{-\infty}^{\infty} e^{-\frac{y^2}{4\pi}} \left[\tilde{g}(x+jh+y) \right] dy$ $y = \tilde{s} - x - jh$ $= \frac{1}{\sqrt{4\pi t}} \int_{-\infty}^{\infty} e^{-\frac{y^2}{4t}} \left(\left| \sum_{j=1}^{\infty} \left| \tilde{g}(x+jh+y) \right| \right) dy$ $\leq C \left(\frac{1}{\sqrt{4\pi t}} \int_{-\infty}^{\infty} e^{-\frac{y^2}{4t}} dy \right) = C$ where $C = \max_{0 \le h \le 1} h \sum_{0 \le x \le h} |g_{xxxx}(x+jh)| = \max_{0 \le x \le h} |g_{xxxx}|$ In particular, if $g \in C^4(\mathbb{R})$ and $\exists M \text{ s.t. } |g^{(a)}(x)| \leq \frac{M}{1+x^2} = 0.52334$

then the discrete 1-norm of the trumentum error is O(h2) as required.

Last time: analysis of Dtu=DtD_u in the 1 norm

Today: energy estimates

Fourier analysis of a scheme (analysis in the 2-norm)

Last time we saw that the solution of ut=uxx, u(x,0)=gbx) satisfies

|\u(\cdot)|\sqrt\= \lightarrow \lightarro

it's also true that without absolute values,

$$\int_{-\infty}^{\infty} u(x,t) dx = \int_{-\infty}^{\infty} g(x) dx \qquad (t \ge 0)$$

proof: integrate the representation formula and change order of integration

or - differentiate the integral: $\frac{d}{dt} \int_{0}^{\infty} u(x,t) dx = \int_{0}^{\infty} u(x,t) dx = 0$

This remains true on a finite domain with insulating boundary conditions:

$$\frac{d\int u(x,t)dx}{dt} = \int u(x,t)dx = \int u_{xx}(x,t)dx = u_{x}(\cdot,t)\Big|_{0}^{1} = 0$$

Let's see what happens if we differentiate the 2-norm:

$$\frac{d}{dt} \int_{0}^{t} u^{2} dx = \int_{0}^{t} 2u_{t}u dx = \int_{0}^{t} 2uu_{xx} dx$$

 $= 2uu_{\times} \left[-2 \int_{0}^{\infty} u_{x}^{2} dx < 0 \right]$

" energy" decreases

assume either N=0 or N=0 at each end

For the infinite domain, the same is true as long as $U(x,t)U_x(x,t) \rightarrow 0$ as $x \rightarrow \pm \infty$ for fixed t. (this is guaranteed if $g(x) \rightarrow 0$ as $x \rightarrow \pm \infty$) (9 is square integrable and) so the exact solution satisfies $\|u(\cdot,t)\|_{2} \leq \|g\|_{2}$ (t20) where $||g||_2 = \int_0^\infty |g(x)|^2 dx \leftarrow L^2$ norm Our ODE in a Banach space picture looks like Bh = 12 = "square summath seguences" B= L2 (TR) = "square integrable functions" $\|\widetilde{9}\|_{2,h} = \int h \sum_{i=-\infty}^{\infty} |\widetilde{9}_{i}|^{2}$ 119112 = 150 19(x)12 dx $u^{n+1} = Bu^n$ $u^0 = \tilde{g}$ $\tilde{g}_j = g(jh)$ Ut= Nxx u(·,0) = 9

The absolute values in the integrands are there because we are about to consider complex valued functions (due to the Fourier transform)

so what's the norm of our operator B acting on Bh? In finite dimensions, the 2-norm is the hardest to compute: 1-norm: |All = "max absolute column sum" = max \(\sum \) |Aij| ∞-norm: ||A||_∞ = "max absolute row sum" = max ∑|Aij| 2-norm: 11A1/2 = largest singular value o, The singular value decomposition of an natrix looks like $A = USV^T$, $u^Tu=I$, $v^Tv=I$, S=(o; O)note that $(u^Tu)u^T = (I)u^T$ one of U and V are orthogonal so $uu^T = I$ as well The key feature of an orthogonal matrix is that it preserves norms: $\| (\mathbf{u} \times \mathbf{u})^{2} - (\mathbf{u} \times \mathbf{u})^{T} (\mathbf{u} \times \mathbf{u})^{2} - \mathbf{u}^{T} \mathbf{u}^{T} \mathbf{u} \times \mathbf{u}^{T} \times \mathbf{u}^{T} \mathbf{u}^{T} = \mathbf{u}^{T} \times \mathbf{u}^{T} \mathbf{u}^{T}$ So A and S have the same 2-norms: $\|Ax\| = \|u^TAx\| = \|SV^Tx\| \le \|S\| \cdot \|V^Tx\| = \|S\| \cdot \|x\|$ => 11A11 = 11S11 => 115H < 11AH

But the 2-norm of a diagonal months is the largest absolute value of its entries: 1) $||S \times ||_{2}^{2} = \sum_{i=1}^{n} (\sigma_{i} \times_{i})^{2} \leq \sigma_{i}^{2} \sum_{i=1}^{n} x_{i}^{2} = \sigma_{i}^{2} ||X||_{2}^{2}$ So NA11 = (1511 = 0, if A has complex entries, we use the Hermitian transpose instead $A = USV^{H}$, $U^{H}U=I$, $V^{H}V=I$, $S=\begin{pmatrix} \sigma_{1} & \sigma_{2} \end{pmatrix}$ $(U^{H})_{ij} = \overline{U}_{ji}^{t} = complex$ $(U^{H})_{ij} = \overline{U}_{ji}^{t} = complex$ complex = coand we still obtain 11A11 = 11S11 = 01 In general, the SVD is hard to compute (take math 221 to find out how) If A=AH, then the singular values are the absolute values of the eigenvalues $A = U \Lambda U^H = U S V^H, \quad \sigma_i = 1 \lambda_i I$ $V(:,i) = \operatorname{Sign}(\lambda_i) U(:,i)$ so the of A is the magnitude of the largest eigenvalue (if A=AH) Now let's get back to our scheme, On a finite interval, 13 looks like

J-1 rows and columny

11Blb = ?

Since B is symmetric, we need to find its largest eigenvalue. Note that $B = (1-2\nu) \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} = (1-2\nu)I + \nu E$ so it suffices to find the eigenvalues of E and eigenfunctions Au=VXX For the continuous problem $N_t = U \times x$, the eigenvalues of the operator are $A = \lambda U$, $U = \sin \frac{n\pi x}{L}$, $\lambda = -\left(\frac{n\pi}{L}\right)^2$, n = 1, 2, 3, ...By Wind luck, these eigenfunctions also work for B and E. $W_{11} = \sin \frac{j \ln T}{J}$ j = 1, 2, ..., J-1 $0 + \frac{1}{2} + \frac{1}$ $(EU)_{j,l} = \sum_{m} E_{j,m} U_{m,l} = S_{j,m} \frac{(j-1)l\pi}{J} + S_{j,m} \frac{(j+1)l\pi}{J}$ $V_{m,l} = S_{j,m} U_{m,l} = S_{j,m} \frac{(j-1)l\pi}{J} + S_{j,m} \frac{(j+1)l\pi}{J}$ $V_{m,l} = S_{j,m} U_{m,l} = S_{j,m} \frac{(j-1)l\pi}{J} + S_{j,m} \frac{(j+1)l\pi}{J}$ $V_{m,l} = S_{j,m} U_{m,l} = S_{j,m} \frac{(j-1)l\pi}{J} + S_{j,m} \frac{(j+1)l\pi}{J}$ $V_{m,l} = S_{j,m} U_{m,l} = S_{j,m} \frac{(j-1)l\pi}{J} + S_{j,m} \frac{(j+1)l\pi}{J}$ $V_{m,l} = S_{j,m} U_{m,l} = S_{j,m} \frac{(j-1)l\pi}{J} + S_{j,m} \frac{(j+1)l\pi}{J}$ $V_{m,l} = S_{j,m} U_{m,l} = S_{j,m} \frac{(j+1)l\pi}{J} + S_{j,m} \frac{(j+1)l\pi}{J}$ $V_{m,l} = S_{j,m} U_{m,l} = S_{j,m} \frac{(j+1)l\pi}{J} + S_{j,m} \frac{(j+1)l\pi}{J}$ $V_{m,l} = S_{j,m} U_{m,l} = S_{j,m} \frac{(j+1)l\pi}{J} + S_{j,m} \frac{(j+1)l\pi}{J}$ $V_{m,l} = S_{j,m} U_{m,l} = S_{j,m} \frac{(j+1)l\pi}{J} + S_{j,m} \frac{(j+1)l\pi}{J}$ $V_{m,l} = S_{j,m} U_{m,l} = S_{j,m} \frac{(j+1)l\pi}{J} + S_{j,m} \frac{(j+1)l\pi}{J}$ $V_{m,l} = S_{j,m} U_{m,l} = S_{j,m} \frac{(j+1)l\pi}{J} + S_{j,m} \frac{(j+1)l\pi}{J}$ $V_{m,l} = S_{j,m} U_{m,l} = S_{j,m} \frac{(j+1)l\pi}{J} + S_{j,m} \frac{(j+1)$ but $\sin x + \sin y = 2 \sin \left(\frac{x+y}{2}\right) \cos \left(\frac{x-y}{2}\right)$ so (EU) 12 = 2 sin = cos = = 2 cor = Uje EU = UN _____ columns of U are the eigenvectors of E The eigenvalues of B are $(1-2y) + 2y \cos \frac{2\pi}{J}$ d=1,...,J-1 $1 - 4\nu \left(\frac{1 - \cos\frac{4\pi}{3}}{2}\right) = \left(1 - 4\nu \sin^2\left(\frac{4\pi}{23}\right)\right)$ of these is larger in magnitude (so ||B||₂<1 if $\nu \leq \frac{1}{2}$)

Above we used the usual 2-norm in
$$\mathbb{R}^{J-1}$$
, $\|x\|_2^2 = \sum_{j=1}^{J-1} x_j^2$ we would have gotten the same answer $\|B\|_{2,h} = \max_{j=1}^{J-1} \left(\frac{1}{2J}\right)$.

Using $\|x\|_{2,h}^2 = h\sum_{j=1}^{J-1} x_j^2$ instead.

Now consider the case of an infinite domain. We need to find a way to "diagonalize" our operator B to compute its 2-norm. The tool for doing this is the Fourier series. Normally you think of Fourier series as a way to represent a function flat defined on the interval $-\pi \leq x < \pi$ via

$$f(x) = \sum_{n=-\infty}^{\infty} c_n e^{inx}$$
, $c_n = \frac{1}{2\pi} \int_{\overline{N}}^{\overline{N}} f(x) e^{-inx} dx$

Theorem: If $f \in L^2(-T,T)$ (i.e. f is square integrable) then the sequence of numbers $C_n = \frac{1}{2\pi} \int_{-T}^{T} f(x) e^{-inx} dx$, $-\infty < n < \infty$

belongs to l^2 (i.e. $\sum |C_n|^2 < \infty$) and

(2)
$$\sum_{n=-\infty}^{\infty} |c_n|^2 = \frac{1}{2\pi} \int_{-\pi}^{\pi} |f(x)|^2 dx$$
 (Parseval's identity)

We're going to turn this idea around and represent sequences
by the function that has that sequence as its Fourier
coefficients
Theorem: if cel the limit in (1) exists and the resulting

Theorem: If cel2, the limit in (1) exists and the resulting function fel2(-17,17) satisfies (2).

Now let's compute the norm of
$$Bu_{ij} = yu_{j+1} + (1-2v)u_{j} + yu_{j-1}$$

Let $\hat{u}(\xi) = \sum_{j} u_{ij} e^{ij\xi}$ $(\hat{u}_{i} \leftrightarrow c_{in})$

Then
$$Bu(x) = \sum Bu_{j}e^{ijx}$$

$$= \sum [\nu u_{j+1}e^{ijx} + (1-2\nu)u_{j}e^{ijx} + \nu u_{j-1}e^{ijx}]$$

$$= \sum [\nu u_{j+1}e^{ijx} + (1-2\nu)u_{j}e^{ijx} + \nu u_{j}e^{i(j+1)x}]$$

$$= \sum [\nu u_{j}e^{i(j-1)x} + (1-2\nu)u_{j}e^{ijx} + \nu u_{j}e^{i(j+1)x}]$$

$$= \sum [\nu u_{j}e^{i(j-1)x} + (1-2\nu)u_{j}e^{ijx} + \nu u_{j}e^{i(j+1)x}]$$

$$= (\nu e^{ix} + (1-2\nu) + \nu e^{ix}) \sum u_{j}e^{ijx}$$

$$= (1-2\nu + 2\nu \cos x) \hat{u}(x)$$

=
$$\left[1-4y\sin^2(\frac{5}{2})\right]\hat{u}(\frac{5}{2})$$

 $G(5)$ = amplification factor

the same as multiplying its

So applying B to a sequence is the same as multiplying its

Fourier series by $(\pi(\bar{z}))$. The amplification factor

plays the same role here that the singular value

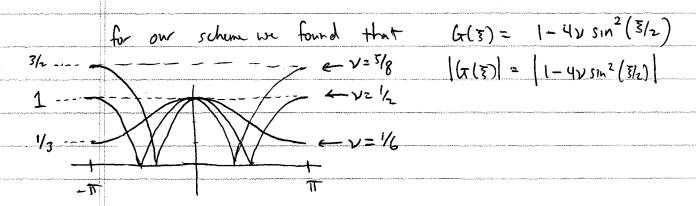
matrix $S = (\sigma_1, \sigma_n)$ played for matrices.

Claim: IIBl12,h = max |G(E)|
-TE ZETT

proof next time.

Last time: analysis in the 2-norm < finite interval: SVD infinite domain: Fourer series Today: finish stability analysis in 2-norm more about the amphification factor how to fix the broken V21/6 in the homework Clarification: if you include the constant, the 3-d hear equition looks like $\rho C \frac{\partial u}{\partial t} - \nabla \cdot (k \nabla u) = f = \frac{hert}{cn^2 \cdot s}$ ultro 2 g = initial conditions u= temperature (K) flux(cn2s) C = specific heat $\left(\frac{ca!}{g \cdot K}\right)$ V $k = \text{thermal conductivity} \left(\frac{ca!}{cm \cdot s \cdot K}\right) = J = -k \nabla u$ Former's law p z dusnty so the right thing to call energy is III p C u dV or in 1d without unstants: Judx we saw that [insulating B.C.'s => at [u dx = 0] conversation For most other equations, the energy is the integral of the square of something.

(Poisson equation, elasticity, wave equation, Manwell equations, Stokes egs., etc.)


Last time we saw that the 2-norm of a matrix is the largest singular value of the matrix) U"U=I V"V=I $A = USV^H$, $||A||_2 = ||S||_2 = \sigma$, $S = \begin{pmatrix} \zeta & \zeta & \zeta \end{pmatrix}$ The key idea was that the orthogonal 012025...504 (or unitary in the complex case) matrices U&V do not change the 2-norms of vectors or operators matrices. The same is true in infinite dimensions. The mapping between square integralle functions on (-17, T) and their former coefficients preserves the 2-norm (up to a factor of $\frac{h}{2\pi}$): 12 (square sequences) L2(-17511) (Square integrable) $\{u_j\}_{j=-\infty}^{\infty}$ $\hat{u}(\bar{s}) = \sum u_j \bar{e}^{ij\bar{s}}$ $f_{j}^{\prime} = \frac{1}{2\pi} \int_{-\infty}^{\infty} f(\overline{s}) e^{ij\overline{s}} d\overline{s}$ f(3) norm preserving The point is that this mapping is 1-1, onto, and isometric (up to the 27) $\int_{-\infty}^{\infty} |\hat{u}(\xi)|^2 d\xi = \frac{2\pi}{h} \left(h \sum_{j} |u_{j}|^2\right) \qquad \text{(IIFI)} = \int_{-\infty}^{2\pi}$ and $h \ge |\vec{f}|^2 = \frac{h}{2\pi} \left[|f(\vec{s})|^2 d\vec{s} \right] = \left[\frac{h}{2\pi} \right]$

we showed that our scheme Bu; = >uj+1+(1-2>)uj + >uj-1 maps a sequence $\{u_j\}_{j=-\infty}^{\infty}$ with Fourier series $\hat{u}(\xi) = \sum u_j \hat{e}^{ij\xi}$ to the sequence $\{Bu_j\}_{j=-\infty}^{\infty}$ with $Bu(\S) = [I-4v sin^2(\S)] \hat{u}(\S)$ (I(3) = amplification factor so now we have two ways of applying B: $L^{2}(-\pi,\pi)$ Gf(8)= G(8)f(8) G is the operator "take f(x) and L2(-11,11) multiply it by G(3)" R= FGF = just like our SVD A = USVH multiplying by a diagonal matrix is similar to & multiplying : 11B11 = 11F11.11911.1191 by a function: (Sx); = o;x; $=\int_{2\pi}^{k} ||g|| \int_{h}^{2\pi} = ||G||$ each component gets multiplied by something, 4= F B F and of the components. 11411 = 117 | 1 - 11811 - 117 | = 1/BH (just like 1/A/1=1/S/1= o] conclusion: 1/B1 = 1/91

Our amplification factors (7(3) will always be continuous functions on the interval -TS EST Claim: 11911 = max (5(8)) call the RHS C for now. proof: step 1: show || gf || = C ||f|| for all f $||gf||^2 = \int_{-\infty}^{\infty} |gf(\xi)|^2 d\xi = \int_{-\infty}^{\infty} |G(\xi)f(\xi)|^2 d\xi$ step 2: show that if K<C then I f s.t. ||Gf|| > K||f|| (1.e. no smaller constant than C will work) idea: 167(3) is a continuous function, so it som point $\xi_0 \in [-i\tau, i\tau]$ and there's a neighborhood (a,b) containing so so that |G(3)| > K for $a \le 3 \le b$ now define $f(\bar{s}) = \left\{ \begin{array}{cc} 0 & \bar{s} < a \\ 1 & a \leq \bar{s} \leq b \end{array} \right\}$. Then $||gf||^2 = \int_a^{\pi} |G(\bar{s})f(\bar{s})|^2 d\bar{s} = \int_a^b |G(\bar{s})|^2 d\bar{s} > \int_a^b K^2 d\bar{s} = K^2(b-a)$ and $||f||^2 = \int_{\pi}^{\pi} |f(\bar{z})|^2 d\bar{z} = \int_{\alpha}^{b} 1^2 d\bar{z} = b-\alpha$ so ligfli>Klifil

as claimed.

conclusion: the 2-norm of a finite difference scheme is
the maximum value of the amplification factor G(\$).
absolute

as expected, the transition from ||B|> 1 to ||B|=1 happens when v = 1/2.

The rest of the conveyance proof is the same as before:

assume g is nice enough that
$$\|T^n\|_{2,h} \le \begin{cases} Ch^2 & v \neq 1/6 \\ Ch^4 & v = 1/6 \end{cases}$$

the error e; = u; -u(jh, nk) satisfies ent = Ben-hzn

backward iteration gives max $|h\sum |e_j^n|^{2l} \le \begin{cases} cTh^2 & v \ne 1/6 \\ o \le nk \le T \end{cases}$ is $|cTh^2| = v \ne 1/6$

the condition $g \in C^4(\mathbb{R})$ and $\exists M : 1$, $|g^{(2)}(x)| \leq \frac{M}{1+x^2}$ $\ell=0,1,2,3,4$

is sufficient to ensure $\|T^n\|_{Z,h} \leq Ch^2$

and $g \in C^6(\mathbb{R})$, $|g^{(a)}(x)| \leq \frac{M}{1+x^2}$ $0 \leq l \leq 6$ ensures $|tT^n||_{z,h} \leq Ch^9$

In the homework, you'll find that v=16 is no longer magic

$$\mathcal{D}_{t}^{+}u = \mathcal{D}_{x}^{+}\mathcal{D}_{x}^{-}u + 10\mathcal{D}_{x}^{0}u$$

Let's try to figure out why and see what we can do about it.

Taylo-expansions=

$$T_{j}^{2} = \frac{k}{2} u_{tt} - \frac{h^{2}}{12} u_{xxxx} - 10 \frac{h^{2}}{6} u_{xxx} + O(h^{2} + h^{4})$$

exact solá satisfies ut = uxx +10ux

so Net 2 Nexx + 10 Nex

= Uxxxx +10 uxxx +10 (uxxx +10 uxx)

= Uxxxx +20 Uxxx +100 Uxx

:.
$$T_{i}^{n} = \left(\frac{k}{2} - \frac{h^{2}}{12}\right) u_{xxxx} + \left(\frac{10k}{6} - \frac{10}{6}h^{2}\right) u_{xxx} + \frac{50k}{6} u_{xx}$$

50 actually we want $T_{3}^{n} = \frac{h^{2}}{2} u_{tt} - \frac{h^{2}}{12} u_{xxxx} - 10 \frac{h^{2}}{6} u_{xxx} - \frac{50}{6} h^{2} u_{xx} + \cdots$

Its amplification factor may be computed as

$$\begin{array}{lll}
\overline{B} u(\overline{\xi}) &= & \sum_{j} \overline{B} u_{j} \overline{e}^{ij} \overline{\xi} \\
&= & \sum_{j} \left(\sum_{m} C_{m} u_{j} + m e^{ij} \overline{\xi} \right) \\
&= & \sum_{m} \sum_{j} C_{m} u_{j} + m e^{ij} \overline{\xi} \\
&= & \sum_{m} \sum_{j} C_{m} u_{j} \overline{e}^{ij} \overline{\xi} \\
&= & \sum_{m} \sum_{j} C_{m} u_{j} \overline{e}^{ij} \overline{\xi} \\
&= & \sum_{m} \sum_{j} C_{m} u_{j} \overline{e}^{ij} \overline{\xi} \\
&= \sum_{m} \sum_{j} C_{m} u_{j} \overline{e}^{ij} \overline{\xi} \\
&= \sum_{m} C_{m} e^{im} \overline{\xi} \sum_{j} u_{j} \overline{e}^{ij} \overline{\xi} \\
&= \sum_{m} C_{m} e^{im} \overline{\xi} \sum_{j} u_{j} \overline{e}^{ij} \overline{\xi} \\
&= \sum_{m} C_{m} e^{im} \overline{\xi} \sum_{j} u_{j} \overline{e}^{ij} \overline{\xi}
\end{array}$$

you can think of $w_j = e^{ij\xi}$ as an infinite column vector indexed by j with ξ as a fixed parameter

Thu Bw: =
$$\sum_{m} c_{m} w_{j+m} = \sum_{m} c_{m} e^{i(j+m)\tilde{s}} = \left(\sum_{m} c_{m} e^{im\tilde{s}}\right) e^{i(j\tilde{s})}$$

or $Bw = \alpha(\tilde{s})w$

so G(E) is the eigenvalue associated with the eigenvector W

only problem is, w is not square summable, so w & Bh

(the operator 13 doesn't have any eigenvalues or eigenvectors)

since none of the candidate eigenvectors

are "legal"

Math 228 B Lec 8

Last time: von Neumann stability analysis B= F'GF, 118112, = 114112=116110 fixing the broken v=1/6 scheme for Uz= uxx + 10ux

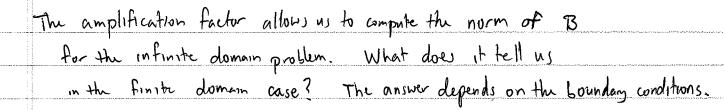
Today: amplification factors for arbitrary schemes bounds on the finite dimensional versions of B in terms of G(3) implicit methods

General explicit finite difference schemes

shift operator:
$$Su_j^2 = u_{j+1}$$
 (maps l^2 to l^2)

inverse = $S^2u_j^2 = u_{j-1}$

(the finite dimensional version
$$S=\begin{pmatrix} 0 & 1 & 0 \\ 0 & 1 \end{pmatrix}$$
 is not invertible)
but the circulant version $\Rightarrow S=\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ is mortible


we can write our previous operators in terms of S:

$$\mathcal{D}_{\chi}^{\dagger} u^{2} \frac{S-I}{h} u, \mathcal{D}_{\chi}^{\dagger} u^{2} \frac{I-S^{-1}}{h} u, \mathcal{D}_{\chi}^{\dagger} u^{2} \frac{S-2I+S^{-1}}{h^{2}} u$$

our favorite schem:
$$u^{n+1} = Bu^n$$
, $B = \nu S' + (1-2\nu)S^0 + \nu S^{-1}$

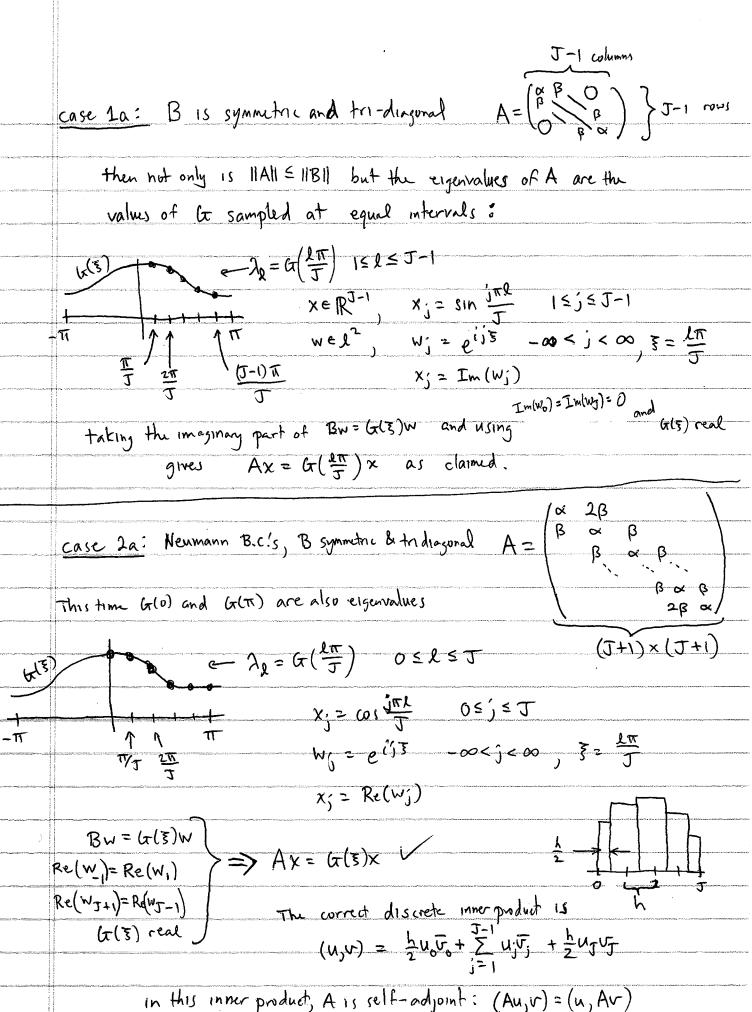
a general scheme:
$$B = \sum_{m=m_1}^{m_2} C_m S^m$$

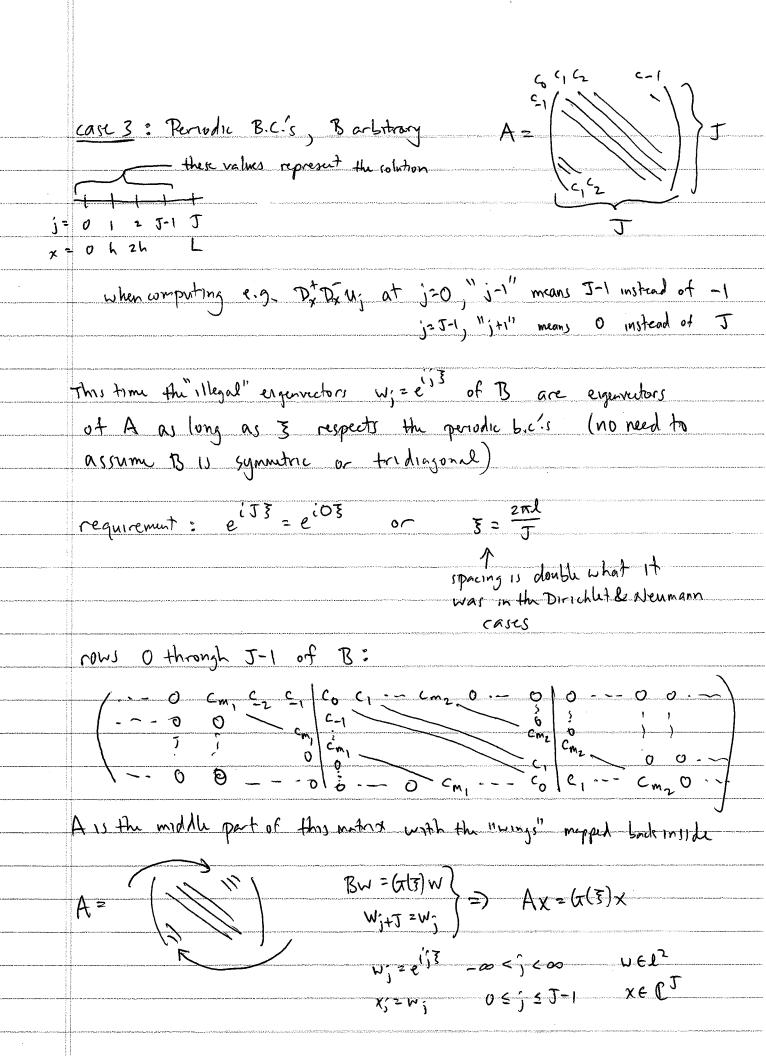
constant along diagonals (Toeplitz)

So
$$A = \begin{pmatrix} c_0 & c_1 & \cdots & c_{m_2} & 0 & \cdots & 0 \\ c_{-1} & & & & & \\ c_{m_1} & & & & & \\ c_{m_2} & & & \\ c_{m_2} & & & \\ c_{m_2} & & & \\ c_{m_2} & & & \\ c_{m_2} & & & \\ c_{m_2} & & & & \\ c_{m_2}$$

reasons if
$$x \in \mathbb{R}^{J-1}$$
, define $u \in \mathbb{R}^2$ via $u_j = \begin{cases} 0 & j \leq 0 \\ x_j & i \leq j \leq J-1 \\ 0 & j \geq J \end{cases}$

Then
$$\|u\|_{2,h}^2 = h \sum_{j=-\infty}^{\infty} |y_j|^2 = h \sum_{j=1}^{N} |x_j|^2 = \|x\|_{2,h}^2$$


and Ax 15 a subvector of Bu:


$$Bu = \begin{pmatrix} B_{11} & B_{12} & O \\ B_{21} & A & B_{23} \\ \hline O & B_{32} & B_{33} \end{pmatrix} \begin{pmatrix} O \\ \times \\ O \end{pmatrix} = \begin{pmatrix} B_{12} \times \\ A \times \\ B_{32} \times \end{pmatrix}$$

$$SO \quad \|Bu\|_{2,h}^{2} = \|A \times \|_{2,h}^{2} + \|B_{12} \times \|_{2,h}^{2} + \|B_{32} \times \|_{2,h}^{2}$$

$$SO \quad \|Bu\|_{2,h}^{2} = \|A \times \|_{2,h}^{2} + \|B\|_{2,h} \|B\|_{2,h} \|B\|_{2,h}$$

$$C_{1}C_{2} = C_{m_{2}} \qquad C_{m_{2}} \qquad C_{1}C_{2} = C_{1}C_{2}$$

result (periodic b.c.s):

(I(3) is allowed to take on complex values in both plots.

Implicit schemes

the timestep restriction
$$v = \frac{k}{12} = \frac{1}{2}$$
 makes the schemes we have stacked so far rather improvingal.

Let's see that happens if we try

 $D_{\pm}^{\dagger} u_{j}^{\dagger} = D_{\pm}^{\dagger} D_{\pm}^{\dagger} u_{j}^{\dagger} + u_{j-1}^{\dagger}$
 $u_{j+1}^{\dagger} - u_{j}^{\dagger} = \frac{u_{j+1}^{\dagger} - 2u_{j}^{\dagger} + u_{j-1}^{\dagger}}{k^{2}}$

or

 $-vu_{j+1}^{\dagger} + (1+2v)u_{j}^{\dagger} + vu_{j-1}^{\dagger} = u_{j}^{\dagger}$

Math 228B Lec 9

Last time: amplification factors for arbitrary schools
eigenvalues of finite dimensional versions of B in terms of G(3)

Today: implicit methods

higher dimensions

ADI (alternating direction implicit)

imphat schemes

the timestep restriction $v = \frac{k}{n^2} \le \frac{1}{2}$ makes the schemes we have studied so far rather impractical. Let's see what happens if we try

Dt u; = Dx Dx u; space derivative done at the

00

 $-yu_{j+1} + (1+2v)u_j^{n+1} - yu_{j-1}^{n+1} = u_j^n$

we can write this as
$$Bu^{n+1} = u^n$$
where $Buj = -\nu u_{j+1} + (1+2\nu)u_j - \nu u_{j-1}$

The applification factor for B is
$$(x(\xi) = -\nu e^{i\xi} + (1+2\nu) - \nu e^{-i\xi}$$

$$= 1 + 2\nu(1 - \cos \xi)$$

$$= 1 + 4\nu \sin^2(5/2)$$

$$= 1 + 4\nu \sin^2(5/2)$$
Since $(x(\xi) \neq 0)$ for $-\pi \leq \xi \leq \pi$
the operator $G: L^2(\pi,\pi) \Rightarrow L^2(\pi,\pi)$ is invertible. $\exists G' \leq t$.
$$G^{-1}f(\xi) = \frac{1}{(x(\xi))}f(\xi)$$

$$G^{-1}f(\xi) = \frac{1}{(x(\xi))}f(\xi)$$
we know how to compare norms of multiplication operators already:
$$\|G^{-1}\|_{L^2} \| \frac{1}{(x(\xi))} \|_{L^2} = \frac{1}{(x$$

so B is invertible and $||B'||_{2,h} = ||G'||_{L^2} = 1$ no matter what V is. $||u^{n+1}||_{B'} = ||u^n||_{S^2 \to S^2 \to S^2}$

we have B= F-1G-19

this allows us to choose a much more reasonable refinement path, e.g.

k=h (or v= 1/h instead of a constant)

remember, the requirements for stability was that

∃K, & s.t. ||B(h)"|| ≤ K for {o< k< € }

in our case E=1 and K=1 works.

problem: our truncation error to 11 still O(hth2).

The was fine when k was vh2, but

now it's unacceptable.

fixed constat

solutions Crank-Nicolson schene

$$\mathcal{D}_{\pm}^{\dagger} \mathcal{U}_{i}^{n} = \frac{1}{2} \left[\mathcal{D}_{x}^{\dagger} \mathcal{D}_{x}^{-} \mathcal{U}_{i}^{n} + \mathcal{D}_{x}^{\dagger} \mathcal{D}_{x}^{-} \mathcal{U}_{i}^{n+1} \right]$$

stencil not o o approximate u_{xx} at midpoint $(x_i, t_n + \frac{k}{2})$

claim:
$$T_j^n = O(k^2 + h^2)$$

(AR)

proof: plug in the exact so lin and do a Taylor expansion around the point (xi, tn+1/2)

=
$$u_t(jh,nk+\frac{k}{2}) + \frac{k^2}{24} u_{ttt}(jh,nk+\frac{k}{2}) + O(k^4)$$

$$\mathcal{D}_{x}^{\dagger} \mathcal{D}_{x}^{\dagger} \mathcal{U}_{j}^{\dagger} = \mathcal{U}_{xx}(jh, nh) + \frac{h^{2}}{12} \mathcal{U}_{xxxx}(jh, nh) + \mathcal{O}(h^{4})$$

$$D_{x}^{+}D_{x}^{-}$$
 U_{ij}^{n+1} = $U_{xxx}(jh, nk+h) + \frac{h^{2}}{12}U_{xxxx}(jh, nk+h) + O(h^{4})$

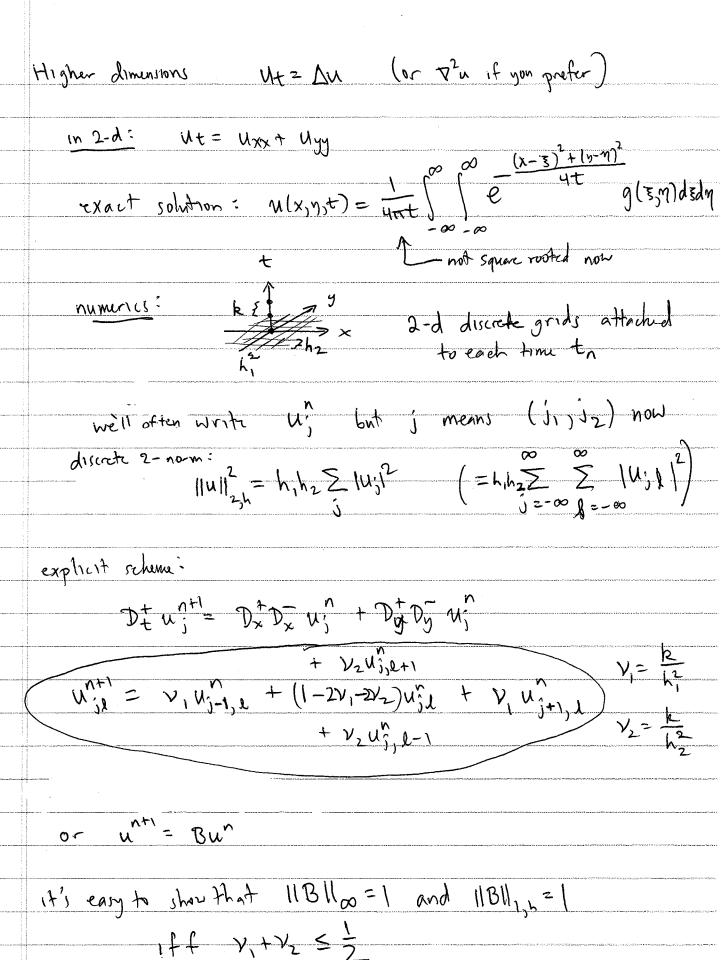
$$\frac{1}{2}(0+0) = \frac{1}{2} \frac{1}{$$

windusion:
$$T_j^n = \mathfrak{D} - \mathfrak{D}$$

$$= (u_t - u_{xx}) + \frac{k^2}{24} u_{tt} - \frac{k^2}{8} u_{xx} + 0(k^4 + k^4)$$

$$= \frac{h^2}{12} u_{xx} + 0(k^4 + k^4)$$

$$\frac{(laim)!}{(laim)!} \frac{(Creak-Micolson is unconditionedly shall.}{(laim)!} \frac{(laim)!}{(laim)!} \frac{(laim)!}$$


The finite dimensional version of Crank-Nicoloson works the same, but instead of dragonalizing the operator with Fourier series, we use the discrete sine, cosine or Fourier transform Dirichlet B.C.s: $B = \begin{pmatrix} 1 & -2 & 1 \\ 1 & -2 & 1 \end{pmatrix}$, $u^{n+1} = (I - \frac{1}{2}B)^{-1}(I + \frac{1}{2}B)u^{n}$ $\mathbb{R}^{J-1} \xrightarrow{S} \mathbb{R}^{J-1}$ $\mathbb{B}_{1} = \mathbb{S}^{1} \wedge \mathbb{S} / \mathbb{A} = \mathcal{L}_{1}(\frac{\pi \lambda}{J}), 1 \leq \ell \leq J-1$ (S) jet = 52 sin jt = columns are eigenvectors of B; RJ-1 S RJ-1 $B = \begin{pmatrix} 1 & -2 & 1 \\ 1 & -2 & 1 \\ 1 & -2 & 1 \\ 2 & -2 \end{pmatrix}, \quad U^{n+1} = \underbrace{\left(I - \frac{\nu}{2}B\right)^{-1}\left(I + \frac{\nu}{2}B\right)}_{B} U^{n}$ Neumann B.C.'s RJ+1 C RJ+1 $B_1 = C^{-1} \wedge C$ $\wedge u = G_1(\frac{\pi L}{J}), 0 \leq L \leq J$ $\begin{array}{ccc}
\mathbb{B}, & & & \downarrow & \wedge \\
\mathbb{R}^{J+1} & \xrightarrow{\mathcal{C}} & \mathbb{R}^{J+1}
\end{array}$ $(C^{-1})_{ij} = c_{\ell} \cos \frac{j\pi \ell}{J}, c_{\ell}^{2} \int_{JZ} |s| \leq J-1$ Periodic B.C.: $B = \begin{pmatrix} -2 & 1 \\ 1 & -2 & 1 \\ 1 & 1 \end{pmatrix}$ $unti_{=} (I - \frac{1}{2}B)^{-1} (I + \frac{1}{2}B) u^{n}$ $\left[\begin{array}{c} B_1 = \mathcal{F}^{-1}\Lambda\mathcal{F} \end{array}\right], \quad \Lambda_{\mathcal{U}} = G_1\left(\frac{2\pi l}{J}\right) \quad 0 \leq l \leq J-1$ $(\overline{T}^{-1})_{j,l} = e^{\frac{2\pi i j l}{J}}$ $\overline{T}_{m_{j}} = e^{\frac{2\pi i m_{j}}{J}}$ all three operators S, C, F are isometries up to

a constant factor, so B, and A have the same norm.

in particular, I-½B is invertible since its eigenvalues are ≥1

(and therefore not zero)

The second second	To implement these schemes, you can either use the
	appropriate transform (fast sine, fast cosine, or fast former transform)
	and then iterate by multiplying by the diagonal months A,
	or you can solve a tridiagonal system.
	unt = (I+ =B)un = explicit half-step (easy)
	unti = (I- \frac{1}{2}B)^{-1}unt^{\frac{1}{2}} = implicit half-step (solve triding)
+	W Town
	tridiagonal systems can be solved in O(N) time { Ax = b
	tridiagonal systems can be solved in O(N) time { Ax = b L NXN matrix
	It's a mistake to form the inverse, though, (N is J-1,J+1, or J
	since A' is a dense matrix, so applying A' to b
	by matrix multiplication requires O(N2) flops
	The Ul factorization of a banded matrix is banded
	even if you use pivoting (but the band grows a little)
	LAPACK: DUBTRF, DUBTRS & Land of Wittens
	LAPACK: DGBTRF, DGBTRS & banded systems (C,C++,Fortran) factor solve
-	This still won't handle the periodic case (not in band option 1: don't pivot the last row in
A COLUMN TO THE PARTY OF THE PA	option 1: don't pivot the last row in
-	(end up with arrow shaped matrices: L=(0) U=(0)) have to be mildly careful with stability of factorisations, numerical but for discretizations of PDE's it's often old not to prvot (diagonal dominance)
Manager or sections	have to be mildly careful with stability of feeture by
-	but for discretized in munical the offen of not to prot
	(diagonal dominance)
	aption z: USC a sparse solver (e.g. colamd, symand)
A STATE OF THE PERSON NAMED IN	matlab has these solvers built in, so just designate
	matlab has these solvers built in, so just designate your matrix $A=(I-\frac{7}{2}B)$ as sparse and solve with backslash:
************	x=A\b

2288 Lecture 10

Last time: implicit methods

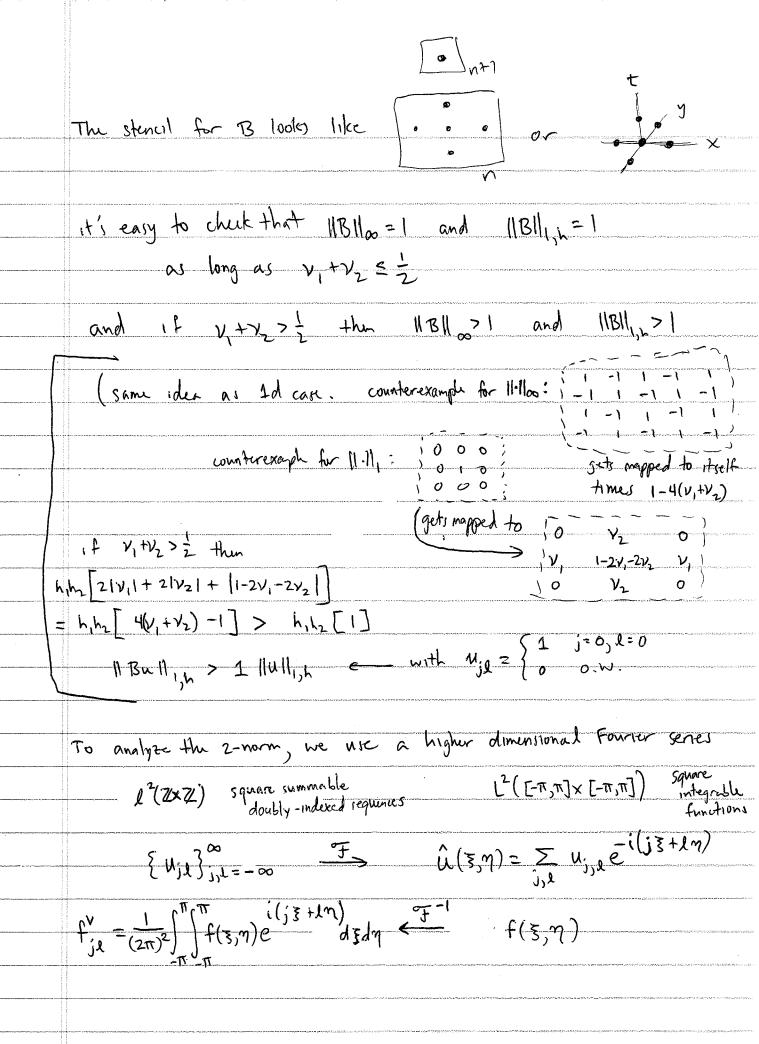
Crenk-Nicolson (O(k²+h²) and unconditional stability!)

Today: higher dimensions, ADI (alternating direction implicit)

higher dimensions: Ut = Du (or ut = \(\frac{1}{2} \text{u} \)

in 2-d: ut= Uxx + Uyy, u(x,1,0) = 9(x,0)

exact soli: $u(x,y,t) = \frac{1}{4\pi t} \int_{-\infty}^{\infty} \frac{(x-\overline{s})^2 + (y-\eta)^2}{e^2} \frac{1}{4\pi t} \int_{-\infty}^{\infty} \frac{(x-\overline{s})^2 + (y-\eta)^2}{e^2} \frac{1}{4\pi t} \frac{1}{2\pi t} \int_{-\infty}^{\infty} \frac{(x-\overline{s})^2 + (y-\eta)^2}{e^2} \frac{1}{4\pi t} \frac{1}{2\pi t} \int_{-\infty}^{\infty} \frac{(x-\overline{s})^2 + (y-\eta)^2}{e^2} \frac{1}{4\pi t} \frac{1}{2\pi t} \frac{$


numerics: k & y 2-d discrete grids attached

**The state of the conditions of the co

discrete 2-norm: ||u||_{2,h} = h,h₂∑ |u_{j,l}|²
j,l=-∞

explicit scheme = Dt uje = Dt Dx uje + Dy Dy uje

or unt = Bur

$$\int_{-\pi}^{\pi} \int_{-\pi}^{\pi} |\hat{u}(\xi, \eta)|^{2} d\xi d\eta = \frac{4\pi^{2}}{h_{1}h_{2}} \left(h_{1}h_{2} \sum_{j,k} |u_{jk}|^{2}\right) \in \left(\|f\| = \frac{2\pi}{\sqrt{h_{1}h_{2}}}\right)$$

$$h_1 h_2 \sum_{j,k} |f_{j,k}|^2 = \frac{h_1 h_2}{4\pi^2} \int_{-\pi}^{\pi} |f(\bar{z}, m)|^2 d\bar{z} dm \in \|\bar{F}\|_{2} \frac{\sqrt{h_1 h_2}}{2\pi}$$

so \mathcal{F} and \mathcal{F}' are again isometres up to a scale factor and $||\mathcal{F}|| \cdot ||\mathcal{F}'|| = 1$

Amplification factors can be computed just as before

$$B = BUjl = \sum_{p=p, q=q} CpqU_{j+p,l+q}$$
 ($\sum_{p=p, q=q} \sum_{p=p, q=q} \infty$ stencil)

the stencil

$$\widehat{Bu}(\xi,\eta) = \sum_{j,l} \left(\sum_{p,q} c_{pq} u_{j+p,l+q} \right) e^{-i(j\xi+l\eta)}$$

$$= \sum_{P,q} \frac{i(P\xi+q\eta)}{\sum_{r,s} u_{r,s}e^{-ir\xi}-is\eta}$$

$$= \sum_{P,q} \frac{i(P\xi+q\eta)}{\sum_{r,s} u_{r,s}e^{-ir\xi}-is\eta}$$

$$= \sum_{r,q} \frac{i(P\xi+q\eta)}{\sum_{r,s} u_{r,s}e^{-ir\xi}-is\eta}$$

Let's split our explicit scheme
$$u^{n+1} = Bu^n$$
 into similar paces:

 $B = I + v_1B_1 + v_2B_2$
 $B_1u_{j,1} = u_{j-1,2} - 2u_{j,1} + u_{j+1,2} \rightarrow (\pi_1(\xi,\eta) = e^{i\frac{\pi}{3}} - 2 + e^{i\frac{\pi}{3}})$
 $B_2u_{j,2} = u_{j,2-1} - 2u_{j,2} + u_{j+1,2} \rightarrow (\pi_2(\xi,\eta) = e^{i\frac{\pi}{3}} - 2 + e^{i\frac{\pi}{3}})$
 $B_2u_{j,2} = u_{j,2-1} - 2u_{j,2} + u_{j+1,2} \rightarrow (\pi_2(\xi,\eta) = e^{i\frac{\pi}{3}} - 2 + e^{i\frac{\pi}{3}})$
 $S_2u_{j,2} = u_{j,2-1} - 2u_{j,2} + u_{j+2,1} \rightarrow (\pi_2(\xi,\eta) = e^{i\frac{\pi}{3}} - 2 + e^{i\frac{\pi}{3}})$
 $S_2u_{j,2} = u_{j,2-1} - 2u_{j,2} + u_{j+2,1} \rightarrow (\pi_2(\xi,\eta) = e^{i\frac{\pi}{3}} - 2 + e^{i\frac{\pi}{3}})$
 $S_3u_{j,2} = u_{j,2-1} - 2u_{j,2} + u_{j,2-1} \rightarrow (\pi_2(\xi,\eta) = e^{i\frac{\pi}{3}} - 2 + e^{i\frac{\pi}{3}})$
 $S_3u_{j,2} = u_{j,2-1} - 2u_{j,2} + u_{j,2-1} \rightarrow (\pi_2(\xi,\eta) = e^{i\frac{\pi}{3}} - 2 + e^{i\frac{\pi}{3}})$
 $S_3u_{j,2} = u_{j,2-1} - 2u_{j,2} + u_{j,2-1} \rightarrow (\pi_2(\xi,\eta) = e^{i\frac{\pi}{3}} - 2 + e^{i\frac{\pi}{3}})$
 $S_3u_{j,2} = u_{j,2-1} - 2u_{j,2} + u_{j,2-1} \rightarrow (\pi_2(\xi,\eta) = e^{i\frac{\pi}{3}} - 2 + e^{i\frac{\pi}{3}})$
 $S_3u_{j,2} = u_{j,2-1} - 2u_{j,2} + u_{j,2-1} \rightarrow (\pi_2(\xi,\eta) = e^{i\frac{\pi}{3}} - 2 + e^{i\frac{\pi}{3}})$
 $S_3u_{j,2-1} = u_{j,2-1} - u_{j,2-1} \rightarrow (\pi_2(\xi,\eta) = e^{i\frac{\pi}{3}} - 2 + e^{i\frac{\pi}{3}})$
 $S_3u_{j,2-1} = u_{j,2-1} - u_{j,2-1} \rightarrow (\pi_2(\xi,\eta) = e^{i\frac{\pi}{3}} - 2 + e^{i\frac{\pi}{3}})$
 $S_3u_{j,2-1} = u_{j,2-1} - u_{j,2-1} \rightarrow (\pi_2(\xi,\eta) = e^{i\frac{\pi}{3}} - 2 + e^{i\frac{\pi}{3}})$
 $S_3u_{j,2-1} = u_{j,2-1} - u_{j,2-1} \rightarrow (\pi_2(\xi,\eta) = e^{i\frac{\pi}{3}} - 2 + e^{i\frac{\pi}{3}}$
 $S_3u_{j,2-1} = u_{j,2-1} \rightarrow u$

The problem is that these matrices are not tightly banded. (M-1)(J-1) (J+1)(M+1) Natural numbering of nodes . Neumann matrix representation of I - Y1 B1 - Y2 B2 tooks like (in Dirichlet case): Sub-blocks are (J-1)x(J-1) the by block matrix (M-1)x(N-1) bandwidth 15 ~I

There are very effective nurnereal methods for rohing linears system like this (multigrid, fast sine transform) but today will talk about an approach known as

ADI (alternating direction implicit)

It's also frequently referred to as "operator splitting"

ADI scheme:

$$(I - \frac{V_1}{2}B_1)(I - \frac{V_2}{2}B_2)u^{n+1} = (I + \frac{V_1}{2}B_1)(I + \frac{V_2}{2}B_2)u^n$$

multiply it out:

$$\left(I - \frac{V_1}{2}B_1 - \frac{V_2}{2}B_2 + \frac{V_1V_2}{4}B_1B_2\right)U^{\Lambda t \uparrow} = \left(I + \frac{V_1}{2}B_1 + \frac{V_2}{2}B_2 + \frac{V_1V_2}{4}B_1B_2\right)U^{\Lambda}$$

$$\left(If \text{ these terms werent}\right)$$

$$\left(Present, \text{ this would be the}\right)$$

$$\left(Crank - Nicolson \text{ scheme}\right)$$

truncation error:

$$T_{ADI}^{n} = \frac{1}{k} \left[\left(I - \frac{1}{2} B_{1} - \frac{1}{2} B_{2} + \frac{1}{4} B_{1} B_{2} \right) u^{n+1} - \left(I + \cdots \right) u^{n} \right] \\
= T_{C,N}^{n} + \frac{1}{4} B_{1} B_{2} \left(\frac{u^{n+1} - u^{n}}{k} \right) \\
= T_{C,N}^{n} + \frac{1}{4} D_{x}^{+} D_{x} D_{y}^{+} D_{y}^{-} D_{y}^{+} D_{y}^{-} D_{t}^{+} u^{n} \\
= \frac{1}{24} u_{ttt} - \frac{1}{8} u_{xxtt} - \frac{1}{8} u_{yytt} - \frac{1}{12} u_{xxxx} - \frac{1}{12} u_{yyyy} + \frac{1}{4} u_{xxyt} \\
= -\frac{1}{12} \left(h^{2} u_{ttt} + h^{2}_{1} u_{xxxx} + h^{2}_{2} u_{yyyy} - 3 h^{2} u_{xxyyt} \right) + O(k^{4} h^{4}_{1} h^{4}_{2})$$

so the additional terms don't do any essential harm.

But now the linear systems we have to solve are tri-diagonal 1d systems unty $u^{n+\frac{1}{2}} = \left(I + \frac{v_1}{2}B_1\right)\left(I + \frac{v_2}{2}B_2\right)u^n$

The two explicit steps a bunch of 1d tridingonal $u^{13} u = (I - \frac{v_1}{2} B_1)^{-1} u^{1/2}$ = a bunch of 1d tridingonal systems in the x-direction $x^{n+1} = \left(I - \frac{V_2}{2}B_2\right)^{-1}U^{n+\frac{3}{4}}$ = same story in y-direction The four operations can be done in any order since B, and Bz commute steneils: A stenent is like a column of a matrix. it tells you what the operator does to an elementary unit vector. 1d: (1) e jth slot $AB = BA \Rightarrow (I+A)B = B(I+A)$ AB=BA => BA-1 = A-1B conclusion: $(I - \frac{v_1}{2}B_1)$ $(I - \frac{v_2}{2}B_2)$ $\left(\mathbb{I} + \frac{\gamma_1}{2}\mathbb{B}_1\right), \left(\mathbb{I} + \frac{\gamma_2}{2}\mathbb{B}_2\right)$ all commute with each other.

Our book distinguishes between the various orders of applying the 1-d operators due to difficulties with non-zero boundary conditions. This makes no sense to me. I'll explain the "right way" to deal with b.c.'s next time.

remark about truncation errors:

our schemes today were all of the form $Au^{n+1} = 13u^n$

I defined
$$T^n = \frac{1}{k} [Au^{n+1} - Bu^n]$$
.

To fit in the Lax-Richtmyer convergence proof setup, we really should define

so The = A-1 That I did

and 11 Tomes det 11 5 11 A 11 - 11 Towns I did 1

1 in all the cases of interest so far

$$= O(k^2 + h_1^2 + h_2^2)$$

so it's fine to work with the definitions I used.

Last time Uphilosophy of Crank-Nicolson (discretize space first, get an ODE ("15-DtDu), use your famorite scheme for stiff equations to solve the ODE ("19. the traperoidal rule) (2) 2-d heat equation 1-norm, 00-norm analysis almost identical to the 1d care (4) 2-norm requires 2d Fourier analysis & amplification factors (5) Crank-Nicolson still gives an O(h2+h2) unconditionally stable mothod, but the matrix you have to invert is not tightly banded Today (1) discussion of truncation errors for implicit methods @ ADI muthodi (3) non-zero heat source nonzero boundary wand thous truncation errors: our schemes have always been of the form Aunt'z Bun. when talking about truncation errors for the Badeward - Euler and Crank-Nicolson methods, we defined Tr= L[Aunt-Bur]. To fit in the Lax-Richtmyer framework, we really should use Tr = 1/h [unti - A-1Bun] e.g.: (0(12+12+12)) SO Thornet = A'Tronvenient and IITwent | SIA'II . II Tronvenient . Any time A' is bounded it's fine to work often equal to 1 but actually any constant

with the more convenient definition.

Crank-Niwlson in 2-d:
$$\left(\overline{I-\frac{\nu_1}{2}B_1-\frac{\nu_2}{2}B_2}\right)u^{n+1}=\left(\overline{I+\frac{\nu_1}{2}B_1+\frac{\nu_2}{2}B_2}\right)u^n$$

sparsity structure of A

pros: T= O(k+h,+h2), ununditurally stable

con: A is not tightly banded. Expensive to solve using Gransian elimination

ADI schumi:

$$(I - \frac{\vee_1}{2}B_1)(I - \frac{\vee_2}{2}B_2)u^{n+1} = (I + \frac{\vee_1}{2}B_1)(I + \frac{\vee_2}{2}B_2)u^n$$

multiply it out:

$$\left(T - \frac{V_1}{2}B_1 - \frac{V_2}{2}B_2 + \frac{V_1V_2}{4}B_1B_2\right)U^{AH} = \left(I + \frac{V_1}{2}B_1 + \frac{V_2}{2}B_2 + \frac{V_1V_2}{4}B_1B_2\right)U^{AH}$$
(If these terms weren't present, this would be the Crank-Nicolson scheme)

truncation error:

$$= \frac{k^{2}}{24} \text{ Uttt} - \frac{k^{2}}{8} \text{ Uxxtt} - \frac{k^{2}}{8} \text{ Uyytt} - \frac{k^{2}}{12} \text{ Uxxxx} - \frac{k^{2}}{12} \text{ Uyyy} + \frac{k^{2}}{4} \text{ Uxxyyt}$$

$$= -\frac{1}{12} \left(h^2 u_{ttt} + h^2 u_{xxxx} + h^2 u_{yyyy} - 3h^2 u_{xxyyt} \right) + 0 \left(h^4 h^4 h^4 \right)$$

so the additional terms don't do any essential harm

But now the linear systems we have to solve are tri-diagonal 1d systems un+/4 $u^{n+\frac{1}{2}} = \left(I + \frac{v_1}{2}B_1\right)\left(I + \frac{v_2}{2}B_2\right)u^n$

C two explicit steps a bunch of 1d tridingonal Systems in the x-direction $u^{n+3}u = (I - \frac{v_1}{2}B_1)^{-1}u^{n+\frac{1}{2}}$ $x^{n+1} = \left(I - \frac{V_2}{2}B_2\right)^{-1}U^{n+\frac{3}{4}}$ = same story in y-direction The four operations can be done in any order since B, and Bz commute Staneils: 0000 A stenent is like a column of a matrix, it tells you what the operator does to an elementary unit B_2B_1u $\begin{bmatrix} 1 & -2 & 1 \\ -2 & 4 & -2 \\ 1 & -2 & 1 \end{bmatrix}$ B_1B_2u vector of the form 1d: () = ith slot $AB = BA \Rightarrow (I+A)B = B(I+A)$ $AB = BA \Rightarrow BA^{-1} = A^{-1}B$ conclusion: $(I - \frac{v_1}{2}B_1)^{-1}$ $(I - \frac{v_2}{2}B_2)^{-1}$ (I + YIB,), (I+ 2 B2) all commute with each other. (only for constant wefficients) Nonzero heat source

1d:
$$u(x,t)$$
 $u(x,t)$ $u(x,t)$ $u(x,0) = g(x)$ $u(x,t)$

exact solution: Let U(t) be the operator mapping an initial condition to the solution of ut = uxx at time t:

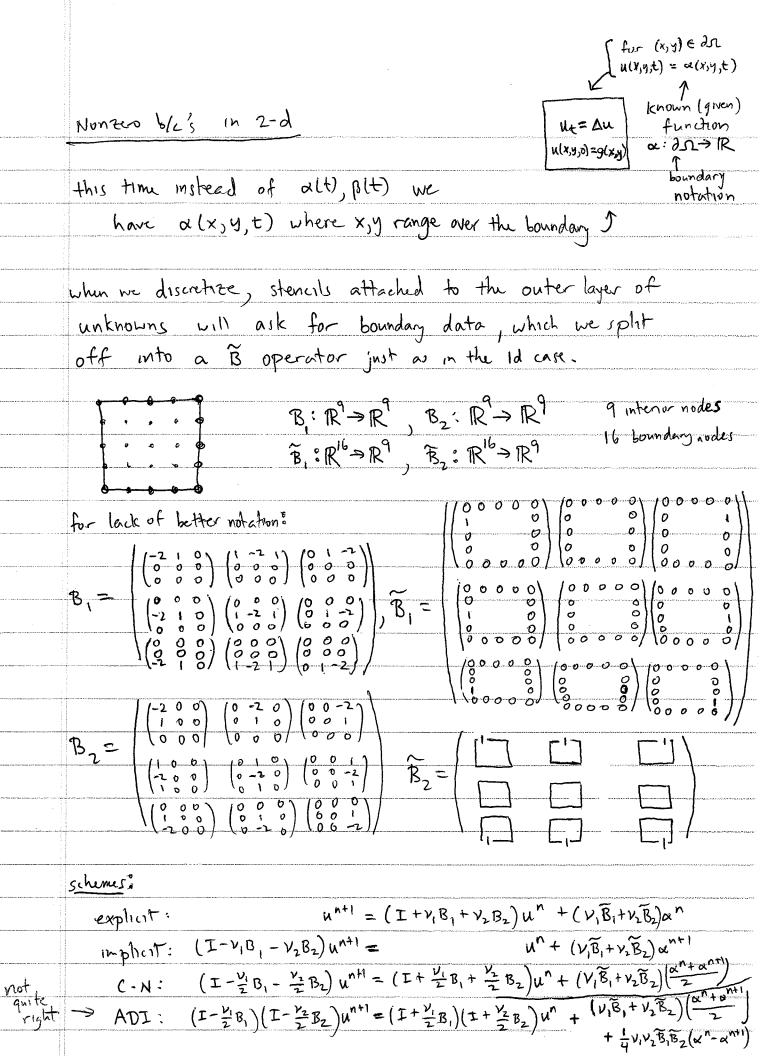
$$u = U(t)g$$
 means $u(x) = \frac{1}{\sqrt{1+t}} \int_{-\infty}^{\infty} e^{-\frac{(x-\xi)^2}{4t}} g(\xi) d\xi$

t =0 9) U(t) maps g to u for the homogeneous problem (with f=0)

The solution of the inhomogeneous problem (with f \$0) is then

$$u(\cdot,t) = U(t)g + \int_{0}^{t} U(t-s)f(\cdot,s) ds$$

t SSSSIds s was x physical interpretation: (superposition principle)
each time slice fds propagates forward
like an initial condition g for a time t-s
(The is an example of Duhamel's principle, where
you build up solutions of an inhomogeneous problem
using the representation for initial value problem
the homogeneous


if B is confusing, it just means

$$u(x,t) = \frac{1}{\sqrt{4\pi t}} \int_{-\infty}^{\infty} \frac{(x-\overline{s})^2}{4t} g(\overline{s}) d\overline{s} + \int_{0}^{\infty} \frac{1}{\sqrt{4\pi (t-s)}} \int_{-\infty}^{\infty} e^{-\frac{(x-\overline{s})^2}{4(t-s)}} f(\overline{s},s) d\overline{s} ds$$

The numerical solution works the same way: f ? = f(jh, nk) nonzero source unti = Bun +kfn homogeneous IVP (f=0) $u^{n+1} = Bu^n$ $Au^{n+1} = u^n$ explicit method: Aun+1 = un + kf n+1 fully implicit method: Aun+1 = Bun Aunt = Bun + & [fn+fn+1] Crank - Nicolson: use the "discretize space first and choose your favorite ODE method" as your gunde for where to evaluate f e.g. C-N: $(u_j)_t = D^t D u_j + f_j$ $\frac{trap.}{rule}$ $u_j^{n+1} = u_j^n + k \left[\frac{D^t D - u_j^n + f_j^n}{2} + \frac{D^t D - u_j^n + f_j^{n+1}}{2} \right]$ The final solution is then a superposition: $u^n = B^n u^0 + R \sum B^{n-1-2} f^2$ explicit : $u^{n} = A^{-n}u^{0} + k \sum_{n=1}^{n-1} A^{-(n-1)}f^{n+1}$ kf is implicit: propagated $u^{n} = (A^{-1}B)^{n}u^{0} + k \sum_{k=0}^{n-1} (A^{-1}B)^{k-1-k} - k \frac{f^{k} + f^{k+1}}{2}$ C-N: This may be thought of as a discrete version of Duhamel's principle The presence of f doesn't affect the error analysis (fis absorbed) example: (explicit scheme) $T_j^n = \frac{1}{k} \left[u(jh,(n+1)k) - B[u(h,nk)]_j - f_j^n \right]$ numeral solá: U; " = Bu; + kf;" now proceed as before to wordende that max 11en SKT max 11Tn11 osnket osnket

Nonzero boundary conditions 1d example: $\begin{cases} Ut = U \times \\ u(0,t) = \alpha(t) \\ u(1,t) = \beta(t) \end{cases}$ α,β,g given, find a $\begin{cases} u(0,t) = \alpha(t) \\ u(1,t) = \beta(t) \end{cases}$ α,β,g given, find a $\begin{cases} u(0,t) = \alpha(t) \\ u(1,t) = \beta(t) \end{cases}$ Let $B: \mathbb{R}^{J+1} \to \mathbb{R}^{J-1}$ be given by $B = \begin{pmatrix} 1 & -2 & 1 & 0 & 0 \\ 0 & 1 & -2 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$ Again we let the ODE method in time guide us in where to evaluate of B: $u^{n+1} = u^n + \nu B \left[\alpha^n; u^n; \beta^n \right]$ α"= α(nk) β" = β(nk) explicit: $u^{n+1} - yB[\alpha^{n+1}; u^{n+1}; \beta^{n+1}] = u^n$ fully implicit = $u^{n+1} - \frac{7}{2} \mathbb{B} \left[\alpha^{n+1} ; u^{n+1} ; \beta^{n+1} \right] = u^n + \frac{7}{2} \mathbb{B} \left[\alpha^n ; u^n ; \beta^n \right]$ C.N: It's a little awkward to work with non-square matrices, so let's define two columns (indexed by) o and I if you like) if we move all the known stuff to the right hand side, we get : explicit: un+ = (I+VB)un+ YB [an; Bn] implicit: $(I-VB)u^{n+1} = u^n + V\widetilde{B}[\alpha^{n+1};\beta^{n+1}]$ $C \cdot N : \left(I - \frac{1}{2}B \right) u^{n+1} = \left(I + \frac{1}{2}B \right) u^{n} + \sqrt{B} \left[\frac{\alpha^{n+1} + \alpha^{n}}{2}, \frac{\beta^{n+1} + \beta^{n}}{2} \right]$ so the boundary data appear as source terms, attached to the under a source terms, attached

to the nodes nearest the boundary (the rows where is has nonzero entires)

For the ADI scheme, this requires a little care (BiBz makes no sense) for the infinite domain, $\left(I - \frac{V_1}{2}B_1\right)\left(I - \frac{V_2}{2}B_2\right)$ = I - 1/2 B, - 1/2 B2 + V/1/2 E when the steven for E 15 (-2 m -2) The discrete versions of E $\begin{pmatrix}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
-2 & 0 & 0 & 0 \\
1 & -2 & 1 & 0 & 0
\end{pmatrix}
\begin{pmatrix}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0
\end{pmatrix}
\begin{pmatrix}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$ and our scheme 15 = (I+ \frac{1}{2}B, + \frac{1}B, + \frac{1}{2}B, + \frac{1}B, + \frac{1}B, + \frac{1}B, + \fra $\left(I - \frac{V_1}{2}B_1 - \frac{V_2}{2}B_2 + \frac{V_1V_2}{4}E\right)u^{n+1}$ $+\left(-\frac{\nu_{1}}{2}\overline{B}_{1}-\frac{\nu_{2}}{2}\overline{B}_{2}+\frac{\nu_{1}\nu_{2}}{4}\widetilde{E}\right)$ Or (SINCE E=B,B2): $\left(\mathbf{I} - \frac{V_2}{2}B_1\right)\left(\mathbf{I} - \frac{V_2}{2}B_2\right)u^{n+1} = \left(\mathbf{I} + \frac{V_1}{2}B_1\right)\left(\mathbf{I} + \frac{V_2}{2}B_2\right)u^n$ $+\left(\gamma_{1}\widetilde{B}_{1}+V_{2}\widetilde{B}_{2}\right)\left(\frac{\alpha^{n+1}+\alpha^{n+1}}{2}\right)$ 1 + 1 1/1/2 E (xn-xn+1) again the boundary of conditions enter attached to the nodes adjacent to the boundary

2288 Lec 13

Last time: introduction to the wave equation

vibrating string:
$$\rho$$
 utt = T u_{xx} , $u(0)=u(L)=0$ $\rho=1$ mear density free space: $utt=c^2\nabla^2u$ (ρ bru waves)

 $1d: \qquad \begin{cases} u_{tt} = c^2 u_{xx} \end{cases}$

$$u(x,0) = g_0(x)$$

$$u_1(x,0) = g_1(x)$$

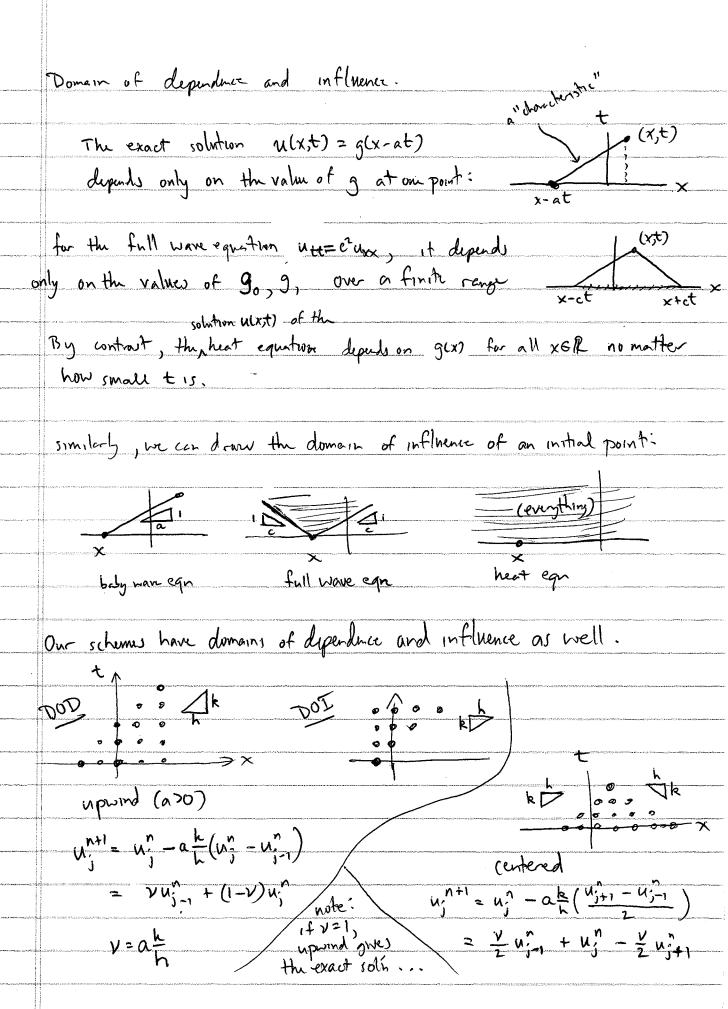
d'Alembert's formula $u(x,t) = \frac{g_0(x-ct) + g_0(x+ct)}{2} + \frac{1}{2c} \int_{x-ct}^{x+ct} g_1(\bar{s}) d\bar{s}$

today: reduction to 1st order system

domain of dependence/influence

CFL condition

reduction to 1st order system:


$$u_{tt} = c^{2}u_{xx}$$
 $v = \begin{pmatrix} u_{x} \\ u_{t} \end{pmatrix}$

$$\sqrt{t^2} \left(\frac{u_X t}{u_t t} \right)^2 \left(\frac{u_X t}{c^2 u_{XX}} \right)^2 \left(\frac{o}{c^2} \frac{1}{o} \right) \left(\frac{u_X}{u_t} \right)_X = A v_X$$

diagonalite
$$A = U \Lambda U^{-1}$$
, $\Lambda = \begin{pmatrix} c \\ -c \end{pmatrix}$, $U = \begin{pmatrix} 1 & 1 \\ c & -c \end{pmatrix}$, $U^{-1} = \begin{pmatrix} 1/2 & 1/2 \\ 1/2 & -1/2 \end{pmatrix}$

each of these schemes has

an implicit counterpart

(CFL	-)
------	----

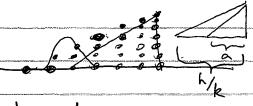
The commit-Friedrichs-Lewy A condition states that a necessary condition for a scheme to converge is that the DOD of the scheme contain that of the exact solution in the much refinement limit.

example: g(x) = 1 the left.

suppose t is in the range when the Lump passes the origin:

 $u(x_it)$

The downwind scheme has no hope of getting the answer right:


o ← numerical solutions remains zero no matter how you refin the mush since goo to x≥0.

The upwind scheme requires that k is small enough:

å dk

 $\frac{k}{h} > \frac{1}{a}$ still hopeliss.

know what gir like where it matters.

k < 1 finally it's

poisible to get a good approximate of the solution (but no guaratees, it's only a necessary condition).

```
We know from the Lax-Richtmyer they that
                                                        consisting + stasitity => conveyance
                                       our schemes are consistent (since we write them down using Dt, D, etc.)
                                                  (no CFL) => (no convergence) => (no stability)
                        Let's compute the norms of our operators B" and verify this.
                          upvind (a>0): un+1 = Bun, Buj = Vuj-1 + (1-V)uj, V = ak
                                        = y+1-v= 1 (stable)
                      note: y \le 1 is the same as \frac{k}{h} \le \frac{1}{a} = \frac{y + y - 1 = 2y - 1 > 1}{\sqrt{unstable}}
                                                                                                                                                                                                                       (unstable)
                           downwind (a>0) Bu; = (1+v)u; - vu;+1

\begin{array}{c|c}
 & | & | & | & | \\
 & | & | & | & | \\
 & | & | & | & | \\
 & | & | & | & | \\
 & | & | & | & | \\
 & | & | & | & | \\
 & | & | & | & | \\
 & | & | & | & | \\
 & | & | & | & | \\
 & | & | & | & | \\
 & | & | & | & | \\
 & | & | & | & | \\
 & | & | & | & | \\
 & | & | & | & | \\
 & | & | & | & | \\
 & | & | & | & | \\
 & | & | & | & | \\
 & | & | & | & | \\
 & | & | & | & | \\
 & | & | & | & | \\
 & | & | & | & | \\
 & | & | & | & | \\
 & | & | & | & | & | \\
 & | & | & | & | & | \\
 & | & | & | & | & | \\
 & | & | & | & | & | \\
 & | & | & | & | & | \\
 & | & | & | & | & | \\
 & | & | & | & | & | \\
 & | & | & | & | & | \\
 & | & | & | & | & | \\
 & | & | & | & | & | \\
 & | & | & | & | & | \\
 & | & | & | & | & | \\
 & | & | & | & | & | \\
 & | & | & | & | & | \\
 & | & | & | & | & | \\
 & | & | & | & | & | \\
 & | & | & | & | & | \\
 & | & | & | & | & | \\
 & | & | & | & | & | \\
 & | & | & | & | & | \\
 & | & | & | & | & | \\
 & | & | & | & | & | \\
 & | & | & | & | & | \\
 & | & | & | & | & | \\
 & | & | & | & | & | \\
 & | & | & | & | & | & | \\
 & | & | & | & | & | & | \\
 & | & | & | & | & | & | \\
 & | & | & | & | & | & | \\
 & | & | & | & | & | & | \\
 & | & | & | & | & | & | \\
 & | & | & | & | & | & | \\
 & | & | & | & | & | & | \\
 & | & | & | & | & | & | \\
 & | & | & | & | & | & | \\
 & | & | & | & | & | & | \\
 & | & | & | & | & | & | \\
 & | & | & | & | & | & | \\
 & | & | & | & | & | & | \\
 & | & | & | & | & | & | \\
 & | & | & | & | & | & | \\
 & | & | & | & | & | & | \\
 & | & | & | & | & | & | \\
 & | & | & | & | & | & | \\
 & | & | & | & | & | & | & | \\
 & | & | & | & | & | & | & | \\
 & | & | & | & | & | & | & | \\
 & | & | & | & | & | & | & | \\
 & | & | & | & | & | & | & | \\
 & | & | & | & | & | & | & | \\
 & | & | & | & | & | & | & | & | \\
 & | & | & | & | & | & | & | & | \\
 & | & | & | & | & | & | & | & | \\
 & | & | & | & | & | & | & | & | \\
 & | & | & | & | & | & | & | & | \\
 & | & | & | & | & | & | & | & | \\
 & | & | & | & | & | & | & | & | \\
 & | & | & | & | & | & | & | & | \\
 & | & | & | & | & | & | & | & | \\
 & | & | & | & | & | & | & | 
                                                                                                                                                                               = |+2y > |
                                                                                                                                                               (unstalle)
                      centered (aro)
                                                                                                    Bu; = \frac{V}{2} U_{j-1} + U_j - \frac{V}{2} U_{j+1}
B= ( 1 - 7h 
 Vh 1 - 7h 
 Vh 1 - 7h
                                                                                                        for any V) 11B110 = 11B11, = 1 + 12 + 12
                                                                                                           (unstable)
```

we can also compute amplification factors to determine the 2-norm: upwind: Bu; = VUj-1 + (1-v)U; $|u(s)|^2 = |v(1-v)|^2 = |v(1-$ G(3)= ve +(1-v)e = (1-v +v 0013) - iysm3 | (x(x)|2 = (1-v+vcosx)2+ v2sin2x = (1-V) + 2(1-V) V COS 3 + V2 COS 3 + V2 SIM 3 = $(1-2) + v^{2} + 2(1-v)v(1-2sin^{2}) + v^{2}$ 1-25 +25 + 25 -25 - 4V 52 642 52 $= 1 - 4y(1-y) \sin^2(3h)$ so if $\sqrt{51}$ $0 \le |G(3)^2 \le 1 \Rightarrow |G(0)|^2 = 1$ => (Stalle) and if Y>1, 16(10)=1+4v(v-1)>1 => 116110>1 => (unstalli) downwind: 15(3)[2=1+4x(1+x)sin2(3/2) 116110 > 1 wo note what v 11 3 (unstally) conford: Buj = \frac{1}{2} uj-1 + uj - \frac{1}{2} uj+1 $k(\bar{s}) = \frac{v - i\bar{s}}{2} = 1 - iv \frac{e^{i\bar{s}} - e^{i\bar{s}}}{2}$ = 1 - iv sm 3 11tha = /1+22 >1 (unstable)

5 . O 1 654 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Summary: Othe CFL condition tells you when the scheme is
guaranteed to be bad. Often the stability breakpoint
occurs exactly when the CFL condition is satisfied
(3) some schemes (like the forward time centered space)
are unstable even though they satisfy CFL.
(CFL does not give sufficient conditions)
(4) for the heat equation, you include the DOD only
in the limit as k and hor holding k constant.
That's OK because the effect of g decays
exponentially
numerical DOD ulxitiz with (E 4+ g(5)d)
the contribution from
the contribution from
3 onisiae the numericae
DOD goes to zero as the DOD grows.

Note: there's no way to save the downwind scheme

by using a different refinement path. It's OK for

IIB(L)|| \leq 1 + Ck

Since then we have \[||B(L)^n|| \leq (1+CL)^n \leq e \leq \leq e_1

but for the downwind scheme have

\[||B(L)||_2 = 1 + 2\nu = 1 + 2a\frac{k}{h}

So as haro, the factor \(2a\) on k goes to infinity and the C here blows up it doesn't mather how much we refine k compand to h — you're still only getting information from the right?

on the other hand we can save the centered scheme,
on the other hand, we can save the centered scheme, It's just expensive-
for example, let h= Tak be on refinement path.
Thu $\ B(k)\ _2 \sqrt{1+y^2} = \sqrt{1+(a\frac{k}{h})^2} = \sqrt{1+ak} \le 1+\frac{1}{2}ak$
so B(U)" ₂ ≤ e ½aT
.: schem is stable with this retinement path
But: (1) expensive $k=0(k^2)$
3 error bound grow exponentially in time.
Next time will see how to fox these problems using the
Lax Wendroff and Lax-Friedrichs schemes.

Last time: upwind, downwind, contered schemes for baby wave equation

CFL condition gives a necessary condition for conveyance

(tells you when a scheme is gnaranteed to be bad)

Started analyzing stability of their schemes

today: finish stability analysis

show how to rescue centered scheme with a different refinent path
postpone -> Lax Friedrichs, Lax-Wendroff, Crank-Nicolson schemes

heat equation with spherical symmetry

comment on 1-norm d 00-norm analysis: $u^{n+1} = Bu^n$

showing that $||B||_1 \le 1$ or $||B||_{\infty} \le 1$ implies the scheme is stable since $||B^n|| \le ||B||^n \le 1$ in that cast. So our upwind scheme

 $Bu_{j} = vu_{j-1} + (1-v)u_{j}$ $v = a\frac{k}{h}, a>0$

15 stable for v ≤1. But showing that |BII,>1 or |B|b>1

does not imply the scheme is unstable since 118711 can

be less than IIBII". Matrix example: A=(0 10), A=(0 0)

so ||A^n||=0 while ||A||^2 10h for n = 2.

But the 2-norm analysis does tell you about 1/8" Il when
B 15 normal (1-2. BTB=BBT). (Finite difference operators are normal).

we simply compute amphification factors to determine the 2-norm: upwind: Buj = VUj-1 + (1-v)Uj $(\pi(\vec{s}) = \nu e^{i\vec{s}} + (1-\nu)e^{i\vec{s}} = (0 = \cos 0 + i)\cos 0$ = $(1-\nu) + \nu e^{-i\vec{s}} = (0 = \cos 0 + i)\cos 0$ = (1-v +v 013) - i y sm] (G(F))2 = (1-V+Y cos 3)2 + Y2 sin2 } = (1-V) + 2(1-V) V COS 3 + V2 COS 5 + V2 sin 3 = $(1-2v + v^2 + 2(1-v)v(1-2sin^2 \frac{\pi}{2}) + v^2$ 1-25 +25 + 25 - 25 - 40 5 640 5 $= 1 - 4y(1-y) sin^{2}(3h)$ so if $V \le 1$ $0 \le |G(\overline{s})^2 \le 1 \Rightarrow |G(\overline{s})|^2 = 1$ => (stalle) and if Y>1, 16(10) = 1+4v(v-1)>1 => 116110>1 since $\|B^n\|_2 = \|G^n\|_{\infty} = \|G\|_{\infty}$, the scheme is unstable if $v = \frac{k}{h} > 1$ is held fixed. downwind: 1(x(3)12=1+4x(1+x)sin2(3/2) 116110 > 1 m matter what v is 3 (unstable) conford: Buj = \frac{1}{2} uj-1 + uj - \frac{1}{2} uj+1 $K(\overline{s}) = \frac{v}{2}e^{i\overline{s}} + 1 - \frac{v}{2}e^{i\overline{s}} = 1 - iv\frac{e^{i\overline{s}} - e^{i\overline{s}}}{2}$ = 1 - i v sm 3 $||that = \sqrt{1 + v^2} > 1 \quad (unstable if v = \frac{k}{h} is held fixed)$

0594 9 46444	Note that the centered scheme is unstable even though
ingga signag proglementar	it satisfies the CFL condition. (CFL does not give sufficient
~	condition for convergence)
normation de militare	
	Saring the centered scheme.
	consider the refinement path h= Jak, v= a = Jak
an empanyembe	Then $\ B(k)\ _2 = \sqrt{1+y^2} = \sqrt{1+ak} \leq 1+\frac{1}{2}ak$
المستعدد ا	so $\ B(k)^n\ _2 \le (e^{\frac{1}{2}ak})^n \le e^{\frac{1}{2}aT}$ $\left(1+\varepsilon \le 1+\frac{\varepsilon^2}{4}\right)^n$
Casayo Crasson	3° o scheme is stable with this refinement path.
Teri da de provincio de	but () it's expansive (k=0(h²))
	(2) error bound grows exponentially with time.
eronosa vivia e	Note: this wouldn't have worked in the 1-norm or co-norm analysis
Sub-alassy streetest	$\ B\ _{1} = \frac{ Y }{2} + 1 + -Y ^{2} = 1 + \alpha \frac{k}{h}$
ر ده محمد وحمد و	$n = 121$ $a_1 \mapsto 0$
-	$ B^n \leq B ^2 = (1+a_h^k)^2 \geq 1+a_h^{nk} \geq 1+\frac{a_1}{2h} \rightarrow \infty$ at the
	- 5 N/C 2 1
j	game nore (1+E)^2 = \(\frac{n}{2}\) \(\frac{n}{2}\) \(\frac{1}{2}\) \(
	an equality) first two terms
	The downwind scheme can't be saved by using a different
	refinement path. $ B^n _2 = B _2^2 = (1+2\nu)^n \ge 1 + 2a\frac{nk}{h} \ge 1 + \frac{aT}{h} \Rightarrow a$
	It doesn't matter how much we refine to compared to him as his
	san's still make south, and it is a said
	you're still only getting information from the right: T < nks T

I SINKST

Better schemes for the wave equation of the schemes so far, upwind has been the best, but 1+ has 2 drawbacks: (1) it's first order in time and space (unless V=1) thun it's exact) (2) for systems you could have some waves moving L to R and others R to L ... which way's upwind? Lax-Friedrichs scheme $\frac{u_{j}^{n+1} - \frac{1}{2}(u_{j+1}^{n} + u_{j-1}^{n})}{k} = -a \frac{u_{j+1}^{n} - u_{j-1}^{n}}{2h}$ $u_{i}^{n+1} = Bu_{i}^{n} = \left(\frac{1}{2} + \frac{\nu}{2}\right)u_{j-1}^{n} + \left(\frac{1}{2} - \frac{\nu}{2}\right)u_{j+1}^{n}$ $(\pi(\xi) = (1+\nu)\frac{e^{i\xi}}{2} + (1-\nu)\frac{e^{i\xi}}{2} = \cos \xi - i\nu \sin \xi$ $|(x(\xi))|^2 = \cos^2 \xi + y^2 \sin^2 \xi = 1 - (1-y^2) \sin^2 \xi$ 1(2)7) $\frac{1}{|B^n|} = \begin{cases} 1 & v \leq 1 & \text{(stable)} \\ v^n & v \geq 1 & \text{(unstable)} \end{cases}$ truncation error of Lax Friedrichs: O(k+h2)

Lax-Wendroff scheme

this time we derive the scheme by trying to knock off more terms in the Taylor expansion (rather than using a geometric construction)

> u(x,t+k) = N+ kut + 2 utt +...

$$= u + k(-aux) + \frac{k^2}{2}(a^2uxx) + \cdots$$

scheme:

$$u_{j}^{n+1} = u_{j}^{n} - ak \frac{u_{j+1}^{n} - u_{j-1}^{n}}{2h} + \frac{a^{2}k^{2}}{2} \frac{u_{j-1}^{n} - 2u_{j}^{n} + u_{j+1}^{n}}{h^{2}}$$

or
$$u_{j}^{n+1} = Bu_{j}^{n} = \frac{1}{2}\nu(1+\nu)u_{j-1}^{n} + (1-\nu^{2})u_{j}^{n} - \frac{1}{2}\nu(1-\nu)u_{j+1}^{n}$$

the amphification factor is

$$\pi(\bar{x}) = 1 - iv \frac{e^{i\bar{x}} e^{-i\bar{x}}}{2i} + \frac{v^2}{2} (e^{i\bar{x}} - 2 + e^{i\bar{x}})$$

$$= 1 - i V \sin \overline{\xi} - V^{2} (1 - \cos \overline{\xi})$$

$$= 1 - 4\nu^{2}(1-\nu^{2})\sin^{4}\frac{3}{2}$$

$$= 1 - 4\nu^{2}(1-\nu^{2})\sin^{4}\frac{3}{2}$$

$$= 1 - 5\sin^{2}\frac{3}{2}$$

14(3)12 $\frac{1}{||B^{n}||_{2}} = \begin{cases} 1 & y \le 1 & \text{(stable)} \\ (1-2v^{2})^{n} & y > 1 & \text{(unstable)} \end{cases}$ note: if N=1 you get the exact solution, just like upwind. π

-71

Lax-Wendroff is a rece instance in mathematics where going after more accuracy by including more terms in a Taylo-expansion actually improves stability (Runge-Kutta is another example)

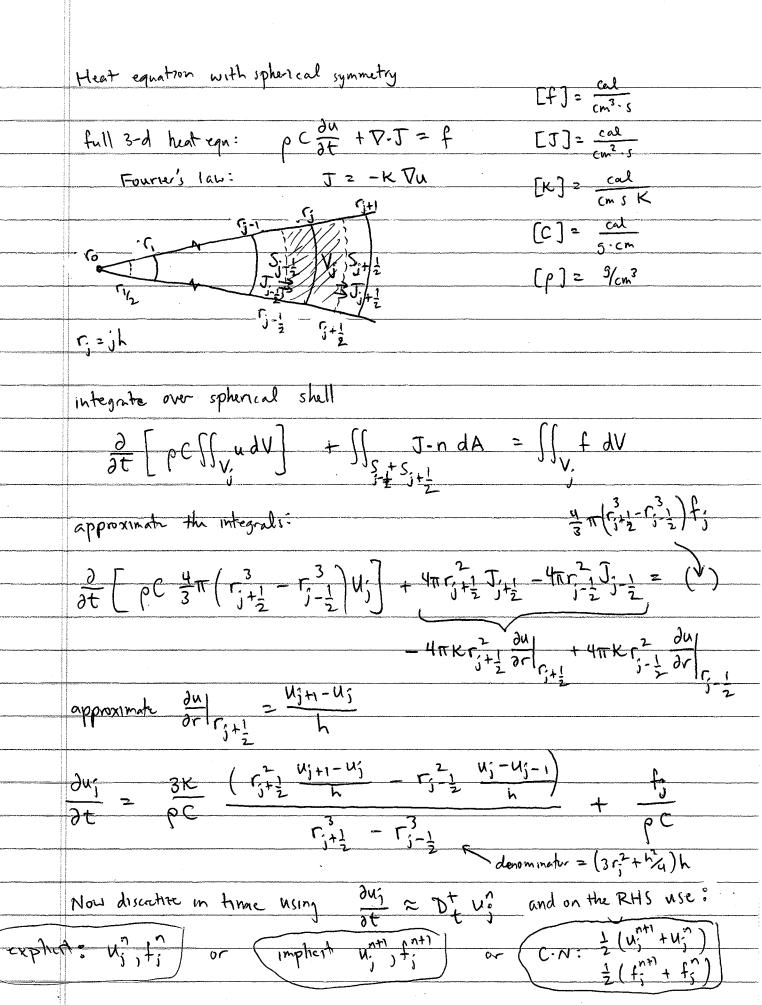
> Method is $O(k^2 + k^2)$ and stable for $v \leq 1$ with no exponential growth in the error bound or special refinement paths required. And the scheme is centered in space, so it generalizes to systems with right and left moving waves simultaneously. (more later)

Crank-Nicolson Ut = -aux

 $\frac{u^{n+1}-u^n}{k} = \frac{1}{2} \left[-a \frac{u_{j+1}^{n+1}-u_{j-1}^{n+1}}{2h} - a \frac{u_{j+1}^{n}-u_{j-1}^{n}}{2h} \right]$

 $(I + \frac{\nu}{2}B_{i})u^{n+1} = (I - \frac{\nu}{2}B_{i})u^{n}, \quad B_{i}u_{j} = \frac{1}{2}(u_{j+1} - u_{j-1})$ $(\pi_{i}(\xi) = \frac{e^{i\xi} - e^{-i\xi}}{2i} = \frac{e^{i\xi} - e^{-i\xi}}{2i}$ $u^{n+1} = Bu^{n}$

 $G(\xi) = \frac{1 - i\frac{\nu}{2} \sin \xi}{1 + i\frac{\nu}{2} \sin \xi}$


(implicit methods always satisfy CFL)

truncation error: $O(k^2 + k^2)$ as probably you'd want to take

timulteps with $h \approx ak$ anyways

(unconditional stability not as important

for wave eqn. as it is for heat eqn.)

The origin needs to be dealt with specially since thre is no	
"flow from the left, i.e. from the inside"	
integrate over sphere $\frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}$	HAZJfdl
approx. $\frac{\partial u}{\partial r} _{r_{1/2}}^{2} = \frac{u_1 - u_0}{h}$	
$\frac{\partial u_0}{\partial t} = \frac{3K}{\rho C} \frac{\frac{2}{\Gamma V_2} \frac{U_1 - U_0}{h}}{C_{V_2}} + \frac{f_0}{\rho C}$	
for definitenes, consider the fully implicit scheme:	
$\frac{u_{j}^{n+1}-u_{j}^{n}}{k} = \frac{R}{\rho C} \frac{1}{k^{2}} B u_{j}^{n+1} + \frac{f_{j}^{n+1}}{\rho C} $ (Hu 3)	ibsorbed 3 into B
Bu, 2	j=0
$\frac{(j-\frac{1}{2})^2 u_{j-1} - [(j+\frac{1}{2})^2 + (j-\frac{1}{2})^2] u_j^2 + (j+\frac{1}{2})^2 u_{j+1}}{j^2 + \frac{1}{2}}$	1 ≤ j < M
Bis tridiagonal but is not constant along diagonals s the underlying PDE (PC du - K-2 d (r2 dn) = f) docs	
have constant coefficients. Note that for large i, th	

stenal 13 close to (1-21)

(shell thickness small impared to radius of currature of shell)

shells look like planes)))

Question 1: does the implicit scheme make sense? must show that A = I - VB is involvable. $\left(V = \frac{K}{PC} \frac{R}{k^2} \right)$ Gershgorin theorem: Let A be an arbitrary matrix. Then the eigenvalues & of A are located in the union of the M disks $|\lambda - \alpha_{ii}| \leq \sum_{i \neq j} |\alpha_{ij}|$ with off diagonals of the same Now, B has the property that it's tow sums are zero sign. 0 6 27/13 -39/13 0 0 3/13 -102/49 0 0 B = 147 75/109 0 $-\frac{222}{109}$ 0 243 390 O 0 193 193 <u>243</u> 301 $a_{ii} = 1 - \nu b_{ii} > 1$ and $\sum_{i \neq i} |a_{ij}| = \sum_{i \neq i} |-\nu b_{ij}| = |\nu b_{ii}|$ wholex Etradius of Gershyonin disk is aii-1 plane (disk lies to the right of IEC) aii Example: i=0: a00= 1+6x, |a01=1-6x|=6x i = 1: $a_{11} = 1 + \frac{30}{13} \sqrt{|a_{10}| + |a_{12}|} = \frac{30}{13} \sqrt{|a_{10}| + |a_{12}|} = \frac{30}{13} \sqrt{|a_{10}|}$ 122: 02221+102V, 1021+102312 102V conclusion: All the eigenvalues of A have real part 21 so A 13 invertible (no zero eigenvalues)

Question 2: B and A are not normal (BTB + BBT) is there anything like our Fourier analysis to analyze yes. Use a weighted norm: $\|u\|_{2,h}^{2} = \frac{4}{3}\pi \left[\frac{3}{v_{2}} \frac{2}{v_{0}} + \sum_{i=1}^{M-1} \left(\frac{3}{i+\frac{1}{2}} - \frac{3}{i-\frac{1}{2}} \right) u_{j}^{2} \right]$ $(u_{1}v_{2,h}) = u^{T}W\overline{v}, \qquad W_{jj}^{2} = \frac{\pi h^{3}}{6} \qquad j=0$ $(u_{1}v_{2,h}) = u^{T}W\overline{v}, \qquad W_{jj}^{2} = \frac{\pi h^{3}}{6} \qquad j=0$ (U,BV)2, 2 UTWBF (Bu, v) 2, L = uTBTWV Claim WB = (WB)T = BTW $(WB)_{i,i+1} = \begin{cases} \pi h^{3} & i=0 \\ 4\pi(i+\frac{1}{2})^{2}h^{3} & i>0 \end{cases}$ $(WB)_{i+1,i} = 4\pi(i+1-\frac{1}{2})^{2}h^{3}$ So Bis self-adjoint in this inner product. eigenvalues of B and A are real, eigenvectors are orthonormal. 11A-11 \le 1 impligit schem is stable for any chance of V.

A

Last time: analysis of the heat equation with spherical symmetry

- non-constant wefficients prevent Fourier analysis from working
- trushgorin's theorem replaces amplification factor analysis
- much weighted norms make the matrix self-adjoint

Today: rescue the centered scheme

better schemes for the wave equation

Lax-Wendroff, Lax-Friedrichs, Crank-Nicolson, Lenpfrey

Saving the centered scheme

schem: $u_{j}^{n+1} = Bu_{j}^{n} = \frac{\nu}{2} u_{j-1} + u_{j} - \frac{\nu}{2} u_{j+1}$, $\nu = \alpha \frac{k}{h}$

we allow "a" to be postive or negative with this scheme

amplification factor: $(\tau(\bar{s})) = \frac{\nu}{2} e^{-i\bar{s}} + 1 - \frac{\nu}{2} e^{i\bar{s}}$ $= 1 - i\nu \frac{e^{i\bar{s}} - e^{-i\bar{s}}}{2i} = 1 - i\nu \sin \bar{s}$

 $|\pi(\xi)| = \sqrt{1 + \nu^2 \sin^2 \xi}$ $|\pi(\xi)| = \sqrt{1 + \nu^2 \sin^2 \xi}$ $|\pi(\xi)| = \sqrt{1 + \nu^2 \cos^2 \xi}$ $-\pi \leq \xi \leq \pi$

so if we fix $V=a\frac{k}{h}$ as we refine k and h, thun

 $\|B^n\|_2 = \|G^n\|_{\infty} = (1+v^2)^{N/2} \rightarrow \infty$ as $n \rightarrow \infty$ even keeping $0 < nk \le T$.

Note that the centered scheme is unstable even though it catisfies the CFL condition. (CFL does not give sufficient condition for convergence) Saring the centered scheme. consider the refinement parth h= Jak, v= ak = Jak sgn(a) Then $\|B(k)\|_2 = \sqrt{1 + \nu^2} = \sqrt{1 + ak} \leq 1 + \frac{1}{2} |ak|$ so $\|B(k)^n\|_2 \le \left(e^{\frac{1}{2}|a|k}\right)^n \le e^{\frac{1}{2}|a|T}$ $\left(\frac{1+\varepsilon}{1+\varepsilon} \le 1 + \frac{\varepsilon}{2} \text{ for all } \varepsilon > 0\right)$ 3. o scheme is stable with this refinement path. but () it's expensive (k=0(h2)) 2) error bound grows exponentially with time. Note: this wouldn't have worked in the 1-norm or 00-norm analysis. 11B11, = (2) + 111 + 1-21 = 1+12 = 1+12 = $||B^{n}|| \leq ||B||^{2} = \left(1 + |a|^{\frac{k}{h}}\right)^{n} \geq 1 + |a|^{\frac{nk}{h}} \geq 1 + \frac{|a|^{\frac{nk}{2h}}}{2h} \rightarrow \infty$ Jost the game here

(Sith 2-norm it's a northless an equality) it's a northless $(1+E)^n = \sum_{k=0}^n {n \choose k} e^{-kk} = 1+nE$ bound since IIBII, > 00 as has first two terms The downwind scheme can't be saved by using a different refinement path. $||B^n||_2 = ||B||_2^n = (1+2\nu)^n \ge 1+2\alpha\frac{nk}{h} \ge 1+\frac{\alpha T}{h} \rightarrow \infty$ It doesn't matter how much we refine k compared to him) as his a you're still only getting information from the right! T S NKST

Better schemes for the wave equation

of the schemes so far, upwind has been the best, but 1+ has 2 drawbacks: (1) it's first order in time and space (unless V=1.)

then it's exact)

(2) for systems you could have some waves

moving L to R and others R to L ... which way's upwind?

Lax-Friedrichs scheme

$$\frac{u_{j}^{n+1} - \frac{1}{2}(u_{j+1}^{n} + u_{j-1}^{n})}{k} = -a \frac{u_{j+1}^{n} - u_{j-1}^{n}}{2h}$$

$$u_{j}^{n+1} = Bu_{j}^{n} = \left(\frac{1}{2} + \frac{\nu}{2}\right)u_{j-1}^{n} + \left(\frac{1}{2} - \frac{\nu}{2}\right)u_{j+1}^{n}$$

$$(\pi(\xi) = (1+\nu)\frac{e^{-i\xi}}{2} + (1-\nu)\frac{e^{i\xi}}{2} = \cos \xi - i\nu \sin \xi$$

$$|(x(\xi))|^2 = \cos^2 \xi + v^2 \sin^2 \xi = 1 - (1-v^2) \sin^2 \xi$$

$$\frac{|(x(\overline{s})|^2)^2}{||B^n||} = \begin{cases} 1 & v \leq 1 & \text{(stable)} \\ v^n & v \geq 1 & \text{(unstable)} \end{cases}$$

truncation error of Lax Friedrichs: O(k+h2)

Lax- Wendroff scheme

this time we derive the scheme by trying to knock off more terms in the Taylor expansion (rather than using a geometric construction)

exact sol'n $\rightarrow u(x,t+k) = u+kut+\frac{k^2}{2}utt+\cdots$

$$= u + k(-aux) + \frac{k^2}{2}(a^2u_{xx}) + \cdots$$

scheme:

-71

$$u_{j}^{n+1} = u_{j}^{n} - ak \frac{u_{j+1}^{n} - u_{j-1}^{n}}{2h} + \frac{a^{2}k^{2}}{2} \frac{u_{j-1}^{n} - 2u_{j}^{n} + u_{j+1}^{n}}{h^{2}}$$

or
$$u_{j}^{n+1} = Bu_{j}^{n} = \frac{1}{2} \nu (1+\nu) u_{j-1}^{n} + (1-\nu^{2}) u_{j}^{n} - \frac{1}{2} \nu (1-\nu) u_{j+1}^{n}$$

the amphification factor is

$$\alpha(\xi) = 1 - i\nu \frac{e^{i\xi} - i\xi}{2i} + \frac{\nu^2}{2}(e^{i\xi} - 2 + e^{i\xi})$$

$$= 1 - iV \sin \xi - v^2(1 - \cos \xi)$$

$$= 1 - 4v^{2}(1-v^{2})\sin^{4}\frac{3}{2}$$

$$= 1 - 4v^{2}(1-v^{2})\sin^{4}\frac{3}{2}$$

$$= 1 - 4v^{2}(1-v^{2})\sin^{4}\frac{3}{2}$$

$$\frac{||h(x)||^2}{||h(x)||^2} = \begin{cases} 1 & ||M \le 1| & (stable) \\ (1-2\nu^2)^2 & ||B^n||_2 = \begin{cases} (1-2\nu^2)^n & ||\nu|| > 1 & (unstable) \end{cases}$$

The note: If IV=1 you get the exact solution, just like upwind.

Lax-Wendroff is a rea instance in mathematics where going after more accuracy by including more terms in a Taylo-expansion actually improves stability. (Runge-Kutta is another example)

> method is O(k²+k²) and stable for NI \leq I

with no exponential growth in the error bound or special refinement paths required. And the scheme is centered in space, so it generalizes to systems with right and left moving waves simultaneously. (more later)

Crank-Nicolson

Ut = -aux

$$\frac{u^{n+1}-u^n}{k} = \frac{1}{2} \left[-a \frac{u_{j+1}^{n+1}-u_{j-1}^{n+1}}{2h} - a \frac{u_{j+1}^{n}-u_{j-1}^{n}}{2h} \right]$$

$$(I + \frac{\nu}{2}B_{i})u^{n+1} = (I - \frac{\nu}{2}B_{i})u^{n}, \quad B_{i}u_{j} = \frac{1}{2}(u_{j+1} - u_{j-1})$$

$$(\pi_{i}(\xi) = \frac{e^{i\xi} - e^{-i\xi}}{2i} = i\sin \xi$$

$$u^{n+1} = Bu^{n}$$

$$G(\xi) = \frac{1 - i\frac{\nu}{2} \sin \xi}{1 + i\frac{\nu}{2} \sin \xi}$$

| (mplicit methods always satisfy CFL)

truncation error: $O(k^2 + h^2)$ < so probably you'd want to take

timesteps with $h \approx ak$ anyways

(unconditional stability not as important

for wave eqn. as it is for heat eqn.)

Leapfrog schem:
$$u_{t} = -au_{x}$$

$$u_{t}^{n+1} - u_{t}^{n-1}$$

$$u_{t}^{n+1} - u_{t}^{n-1}$$

$$2k$$

$$u_{t}^{n+1} - u_{t}^{n-1}$$

$$2k$$

$$D_{t}^{n} u_{t}^{n} = -a D_{x}^{n} u_{t}^{n}$$

how does the Fourier transform evolve?

More generally, if
$$u^{n+1} = B_1 u^n + B_2 u^{n-1}$$

then $u^{n+1}(\xi) = G_1(\xi)u^n(\xi) + G_2(\xi)u^{n-1}(\xi)$

In our case,
$$B_i u_j = -\nu u_{j+1} + \nu u_{j-1}$$
, $B_2 = I$
 $G_2(\xi) = -2i\nu \sin \xi$, $G_2(\xi) = 1$

now let's freeze ξ and suppress it in the notation. We need \hat{u}° , \hat{u}^{\dagger} to get the recursion going. After that, $\hat{u}^{n+1} = G_{*}\hat{u}^{n} + G_{z}\hat{u}^{n-1}$

This recursion may be solved in terms of the roots Γ_1 , Γ_2 of the polynomial $\rho(r) = r^2 - t_1 r - t_2$, i.e. $\Gamma_{1,2} = \frac{t_1 \pm \sqrt{t_1^2 + 4t_2}}{2}$ For leaphry, $\Gamma_{1,2} = \frac{-2i\nu \sin \frac{\pi}{3} \pm \sqrt{-4\nu^2 \sin^2 \frac{\pi}{3} + 4\nu}}{2} \pm \sqrt{1-\nu^2 \sin^2 \frac{\pi}{3}} - i\nu \sin \frac{\pi}{3}$

if 1, trz, the solution of the recursion is in Superscript an Indix ris superscript a power to match the initial conditions, we need $\begin{array}{ccc}
C_1 + C_2 &= \hat{\mathcal{U}}^0 & \text{or} & \begin{pmatrix} 1 & 1 \\ C_1 & C_2 \end{pmatrix} &= \begin{pmatrix} \hat{\mathcal{U}}^0 \\ \hat{\mathcal{U}} \end{pmatrix} \\
C_1 C_1 + C_2 C_2 &= \hat{\mathcal{U}}^1 & \begin{pmatrix} C_1 \\ C_2 \end{pmatrix} &= \begin{pmatrix} \hat{\mathcal{U}}^0 \\ \hat{\mathcal{U}} \end{pmatrix}$ which gives $\begin{pmatrix} c_1 \\ e_2 \end{pmatrix} = \frac{1}{5-c_1} \begin{pmatrix} c_2 \\ -c_1 \end{pmatrix} \begin{pmatrix} \hat{u}^0 \\ \hat{u}^1 \end{pmatrix}$ $\hat{\mathcal{N}}^{n} = (\Gamma_{1}^{n}, \Gamma_{2}^{n}) \begin{pmatrix} C_{1} \\ C_{2} \end{pmatrix} = \frac{1}{C_{1} - \Gamma_{1}} \begin{pmatrix} \Gamma_{1}^{n} \Gamma_{2} - \Gamma_{1} \Gamma_{2}^{n}, \Gamma_{2}^{n} - \Gamma_{1}^{n} \end{pmatrix} \begin{pmatrix} \hat{\mathcal{N}}^{n} \\ \hat{\mathcal{N}}^{n} \end{pmatrix}$ $=-\hat{u}\circ\frac{r_1r_2\left(r_1^2-r_2^{2-1}\right)}{r_1^2-r_2^2}+\hat{u}'\frac{r_1^2-r_2^2}{r_1^2-r_2^2}$ in the limit as risr, we can use ri-ri= (ri-ri) \sum risk to obtain: $\hat{u}^{n} = -\hat{u}^{0} \Gamma_{1} \Gamma_{2} \sum_{k=0}^{n-2} \Gamma_{k}^{k} \Gamma_{n}^{n-2-k} + \hat{u}^{1} \sum_{k=0}^{n-1} \Gamma_{k}^{k} \Gamma_{n}^{n-1-k}$ $= -(n-1) - \hat{u}_0 + n - \hat{u}_1$ es (->rz

We also could have derived this result directly:

general solution when 1,222:

$$\frac{n}{n} = c_1 r_1^n + c_2 n r_1^{n-1} = \begin{cases} c_1 & n = 0 \\ c_1 r_1 + c_2 & n = 1 \end{cases}$$

$$\begin{cases} c_1 r_1^n + c_2 n r_1^{n-1} & n \geq 2 \end{cases}$$

the metal conditions yield:

$$\frac{\binom{1}{2}}{\binom{1}{2}} = \binom{2}{2} = \binom$$

$$\hat{y}^{n} = \hat{y}^{0} r_{n}^{n} + \left(-r_{n} \hat{u}^{0} + \hat{u}^{1}\right) n r_{n}^{n-1}$$

$$= -\left(n-1\right) r_{n}^{n} \hat{u}^{0} + n r_{n}^{n-1} \hat{u}^{1}$$

Summary: for the leapfroy scheme, the Fourier coefficients û'(E)

evolve acording to a two step recurrence (i.e. difference

equition)

ûntl = Gin + Gintl

This equation can be solved in terms of the roots Γ_1, Γ_2 of the polynomial $\rho(r) = r^2 - G_1 r - G_2$.

The solution û" remains bounded for all n and all initial windstoons in it p satisfies the not condition

15,151, 152131, if 525 then 15,1<1

Last time:

- 1) The centered scheme is unstable ever though it ratisfies CFL
- The can be neede stable by choosing a different refinement path, but the resulting method is expansive and inaccurate (solutions still you exponentially in time)
- (3) analyzed Lax-Fredrich, Lax-wendsoff, Crank-Nicolian
 - (4) introduced leaphony scheme

Podej: analyze Leaphon scheme.

Leapfroj schem:
$$u_t = -au_x$$

$$u_1^{n+1} - u_1^{n-1}$$

$$u_1^{n+1} - u_1^{n-1}$$

$$2k$$

$$u_{j+1}^{n+1} - u_{j-1}^{n-1}$$

$$2h$$

$$D_t^{\alpha} u_j^{\alpha} = -a D_x^{\alpha} u_j^{\alpha}$$

how does the Fourier transform evolve?

$$\sum_{i} u_{i}^{n+1} e^{ij\xi} = \sum_{i} (u_{i}^{n} - yu_{j+1}^{n} + yu_{j-1}^{n}) e^{ij\xi}$$

$$\hat{u}^{n+1}(\xi) = \hat{u}^{n-1}(\xi) - ye^{i\xi} \hat{u}^{n}(\xi) + ye^{-i\xi} \hat{u}^{n}(\xi)$$

$$= \hat{u}^{n-1}(\xi) - (2iy \sin \xi) \hat{u}^{n}(\xi)$$

More generally, if
$$u^{n+1} = B_1 u^n + B_2 u^{n-1}$$

then $u^{n+1}(\xi) = (a_1(\xi)\hat{u}^n(\xi) + (a_2(\xi)\hat{u}^{n-1}(\xi))$

in our case,
$$B_i u_j = -\nu u_{j+1} + \nu u_{j-1}$$
, $B_2 = I$
 $G_2(\xi) = -2i\nu \sin \xi$, $G_2(\xi) = 1$

now let's freeze & and suppress it in the notation. We need \hat{u}^{o} , \hat{u}^{i} to get the recursion going. After that,

$$\hat{u}^{n+1} = G_1 \hat{u}^n + G_2 \hat{u}^{n-1}$$

This recursion may be solved in terms of the roots Γ_1, Γ_2 of the polynomial $\rho(r) = r^2 - t_1 r - t_2$, i.e. $\Gamma_{1,2} = \frac{t_1 \pm \sqrt{t_1^2 + 4t_2}}{2}$ for leaphon, $\Gamma_{1,2} = \frac{-2i\nu \sin 3 \pm \sqrt{-4\nu^2 \sin^2 3 + 4\nu^2}}{2} = \pm \sqrt{1-\nu^2 \sin^2 3} = i\nu \sin 3$

if 1, trz, the solution of the recursion is ûn = c₁ c₁ c₂ c₂ c₁ . C₁ superscript a power to match the initial conditions, we need $\frac{c_1 + c_2 = \hat{\mathcal{U}}^0}{c_1 r_1 + c_2 r_2 = \hat{\mathcal{U}}^1} \quad \text{or} \quad \left(\frac{1}{r_1} + \frac{1}{r_2}\right) \left(\frac{c_1}{c_2}\right) = \left(\frac{\hat{\mathcal{U}}^0}{\hat{\mathcal{U}}^1}\right)$ which gives $\binom{c_1}{e_2}^2 = \frac{1}{c_2 - c_1} \binom{c_2}{-c_1} \binom{\tilde{u}^0}{\tilde{u}^1}$ $\hat{\mathcal{N}}^{\circ} = (\Gamma_{1}^{\circ}, \Gamma_{2}^{\circ}) \begin{pmatrix} C_{1} \\ C_{2} \end{pmatrix} = \frac{1}{C_{1} - \Gamma_{1}} \begin{pmatrix} \Gamma_{1}^{\circ} \Gamma_{2} - \Gamma_{1} \Gamma_{2}^{\circ} \end{pmatrix} \begin{pmatrix} \hat{\mathcal{N}}^{\circ} \\ \hat{\mathcal{N}}^{\circ} \end{pmatrix}$ $=-\hat{u}_0\frac{c_1c_2(c_1^2-c_2^2)}{c_1^2-c_2^2}+\hat{u}_1\frac{c_1^2-c_2^2}{c_1^2-c_2^2}$ in the limit as $\Gamma_1 \rightarrow \Gamma_2$, we can use $\Gamma_1^n - \Gamma_2^n = (\Gamma_1 - \Gamma_2) \sum_{n=1}^{n-1} \Gamma_n \Gamma_2^n$ to obtain: $\hat{u}^{n} = -\hat{u}^{0} \Gamma_{1} \Gamma_{2} \sum_{k=0}^{n-2} \Gamma_{k}^{k} \Gamma_{n}^{n-2-k} + \hat{u}^{1} \sum_{k=0}^{n-1} \Gamma_{k}^{k} \Gamma_{n}^{n-1-k}$ $= -(n-1) = \hat{\lambda}_0 + n = n^{n-1} \hat{\lambda}_1$ ~ (-) [-)

We also could have derived this result directly:

$$\frac{n}{n} = c_1 r_1^n + c_2 n r_1^{n-1} = \begin{cases} c_1 & n \ge 0 \\ c_1 r_1 + c_2 & n \ge 1 \end{cases}$$

$$\begin{cases} c_1 r_1^n + c_2 n r_1^{n-1} & n \ge 2 \end{cases}$$

the initial conditions yield:

$$\frac{1}{(\gamma_1)} \frac{1}{(c_2)^2} = \frac{1}{(\hat{\alpha}^0)} \rightarrow \frac{1}{(c_2)^2} \frac{1}{(c_2)^2} \frac{1}{(c_1)^2} \frac{1}{(c_2)^2} \frac{1}{(c_2)$$

$$\hat{\mathcal{U}} = \hat{\mathcal{U}} \circ \Gamma_{1} + \left(-\Gamma_{1} \hat{\mathcal{U}} \circ + \hat{\mathcal{U}}^{T}\right) n \Gamma_{1}^{N-T}$$

$$= -\left(N-1\right) \Gamma_{1}^{N} \hat{\mathcal{U}} \circ + n \Gamma_{1}^{N-T} \hat{\mathcal{U}}^{T} = \frac{\text{multipli roofs}}{\text{polynomial}}$$

$$= -\left(N-1\right) \Gamma_{1}^{N} \hat{\mathcal{U}} \circ + n \Gamma_{1}^{N-T} \hat{\mathcal{U}}^{T} = \frac{\text{polynomial}}{\text{growth}}.$$

Summary: for the leapfroy schem, the Fourier coefficients û'(E)

evolve according to a two step recurrence (i.e. difference

equition)

ûntl = Gin + G

This equation can be solved in terms of the roots r_1, r_2 of the polynomial $p(r) = r^2 - G_1 r - G_2$.

The solution is remains bounded for all n and all initial windstoons in the postistics the not condition

The question we really care about is: (how by is $\|\hat{u}^{\gamma}\|_{2}$)

for $0 \le nk \le T$? so we have to look more closely at the recursion for different choices of } we saw that $\hat{u}^n = -\hat{u}^n \frac{r_1^n - r_2^n}{r_1 - r_2} + \hat{u}^n \frac{r_1^n - r_2^n}{r_1 - r_2}$ $r_1^n - r_2^n = (-i)^n (e^{in\theta} - e^{-in\theta})$ = (-i) (e - e) $= (-i)^{n}(2i) e^{in\theta} - e^{-in\theta} = 2(-i)^{n-1} \sin n\theta$ $r_1 - r_2 = (-i)(2i) \frac{e^{i\theta} - e^{-i\theta}}{2!} = 2 \sin \theta$ $\hat{\lambda}^{n} = -\hat{\lambda}^{0} \frac{(-1)(2)(-i)^{n-2} \sin((n-i)\theta)}{2\sin((n-i)\theta)} + \hat{\lambda}^{i} \frac{2(-i)^{n-1}\sin(n\theta)}{2\sin(\theta)}$ $= -(-i)^{n} \frac{\sin((n-i)0)}{\sin 0} \hat{\chi}^{0} + (-i)^{n-1} \frac{\sin n0}{\sin 0} \hat{\chi}^{1}$ note that sin 0 = VI-v2 sin2 & lies in the range $\sqrt{1-v^2} \leq \sin \theta \leq 1$ $\sqrt{\frac{\pi}{5}} = 0, \pm \pi$

if
$$|V| < 1$$
, then $\left| \frac{\sin n\theta}{\sin \theta} \right| \le \frac{1}{|\sin \theta|} \le \frac{1}{|\sin \theta|} \le \frac{1}{|\sin \theta|}$

So $\left| \hat{u}^{n}(\xi) \right| \le \frac{1}{|\cos \theta|} \left(|\hat{u}^{0}(\xi)| + |\hat{u}^{1}(\xi)| \right)$

Here we used $(n+b)^{2} = n^{2} + 2ab + 1^{2} \le 2a^{2} + b^{2}$
 $0 \le (n-b)^{2} = a^{2} - 2ab + b^{2} \Rightarrow 2ab \le a^{2} + b^{2}$
 $\left| |\hat{u}^{n}||^{2} = \int_{-\pi}^{\pi} |\hat{u}(\xi)|^{2} d\xi \le \frac{2}{|\cos \theta|} \left| |\hat{u}^{n}(\xi)|^{2} d\xi \right| \le \frac{2}{|\cos \theta|} \left| |\hat{u}^{n}(\xi)|^{2} d\xi \right|$
 $\left| |\hat{u}^{n}||^{2} \le \int_{1-\sqrt{2}}^{2} |\hat{u}^{n}(\xi)|^{2} d\xi \le \frac{2}{|\cos \theta|} \left| |\hat{u}^{n}(\xi)|^{2} d\xi \right| \le \frac{2}{|\cos \theta|} \left| |\hat{u}^{n}(\xi)|^{2} d\xi \right|$
 $\left| |\hat{u}^{n}||^{2} \le \int_{1-\sqrt{2}}^{2} |\hat{u}^{n}(\xi)|^{2} d\xi \right| \le \frac{2}{|\cos \theta|} \left| |\hat{u}^{n}(\xi)|^{2} d\xi \right|$
 $\left| |\hat{u}^{n}||^{2} \le \int_{1-\sqrt{2}}^{2} |\hat{u}^{n}(\xi)|^{2} d\xi \right| \le \frac{2}{|\cos \theta|} \left| |\hat{u}^{n}(\xi)|^{2} d\xi \right|$
 $\left| |\hat{u}^{n}||^{2} \le \int_{1-\sqrt{2}}^{2} |\hat{u}^{n}(\xi)|^{2} d\xi \right| = \frac{2}{|\cos \theta|} \left| |\hat{u}^{n}(\xi)|^{2} d\xi \right|$
 $\left| |\hat{u}^{n}||^{2} \le \int_{1-\sqrt{2}}^{2} |\hat{u}^{n}(\xi)|^{2} d\xi \right| = \frac{2}{|\cos \theta|} \left| |\hat{u}^{n}(\xi)|^{2} d\xi \right|$
 $\left| |\hat{u}^{n}||^{2} \le \int_{1-\sqrt{2}}^{2} |\hat{u}^{n}(\xi)|^{2} d\xi \right| = \frac{2}{|\cos \theta|} \left| |\hat{u}^{n}(\xi)|^{2} d\xi \right|$
 $\left| |\hat{u}^{n}||^{2} \le \int_{1-\sqrt{2}}^{2} |\hat{u}^{n}(\xi)|^{2} d\xi \right| = \frac{2}{|\cos \theta|} \left| |\hat{u}^{n}(\xi)|^{2} d\xi \right|$
 $\left| |\hat{u}^{n}||^{2} \le \int_{1-\sqrt{2}}^{2} |\hat{u}^{n}(\xi)|^{2} d\xi \right| = \frac{2}{|\cos \theta|} \left| |\hat{u}^{n}(\xi)|^{2} d\xi \right|$
 $\left| |\hat{u}^{n}||^{2} \le \int_{1-\sqrt{2}}^{2} |\hat{u}^{n}(\xi)|^{2} d\xi \right| = \frac{2}{|\cos \theta|} \left| |\hat{u}^{n}(\xi)|^{2} d\xi \right|$
 $\left| |\hat{u}^{n}||^{2} \le \int_{1-\sqrt{2}}^{2} |\hat{u}^{n}(\xi)|^{2} d\xi \right| = \frac{2}{|\cos \theta|} \left| |\hat{u}^{n}(\xi)|^{2} d\xi \right|$
 $\left| |\hat{u}^{n}||^{2} \le \int_{1-\sqrt{2}}^{2} |\hat{u}^{n}(\xi)|^{2} d\xi \right| = \frac{2}{|\cos \theta|} \left| |\hat{u}^{n}(\xi)|^{2} d\xi \right|$
 $\left| |\hat{u}^{n}||^{2} \le \int_{1-\sqrt{2}}^{2} |\hat{u}^{n}(\xi)|^{2} d\xi \right| = \frac{2}{|\cos \theta|} \left| |\hat{u}^{n}(\xi)|^{2} d\xi \right|$
 $\left| |\hat{u}^{n}||^{2} \le \int_{1-\sqrt{2}}^{2} |\hat{u}^{n}(\xi)|^{2} d\xi \right| = \frac{2}{|\cos \theta|} \left| |\hat{u}^{n}(\xi)|^{2} d\xi \right|$
 $\left| |\hat{u}^{n}||^{2} \le \int_{1-\sqrt{2}}^{2} |\hat{u}^{n}|^{2} d\xi \right| = \frac{2}{|\cos \theta|} \left| |\hat{u}^{n}||^{2} d\xi \right|$
 $\left| |\hat{u}^{n}||^{2} \le \int_{1-\sqrt{2}}^{2} |\hat{u}^{n}|^{2} d\xi \right| = \frac{2}{|\cos \theta|} \left| |\hat{u}^{n}|^{2} d\xi \right|$
 $\left| |\hat{u}^{n}||^{2} \le \int_{1-\sqrt{2}}^{2} |\hat{u$

so what happens if v =1? The roots 1, 12 still
live on the unit circle, but when \ = = T/2 we get a double
root, which spells trouble
·
$\sin \theta = \sqrt{1 - v^2 \sin^2 \xi} = 0 \text{when } \xi = \frac{\pi}{2}, v = 1$
SINNO
This time will estimate sin 0 using:
$ \sin n\theta \geq \sin ((n-1)\theta)\cos \theta + \sin \theta \cos ((n-1)\theta) $
$\leq \sin((n-1)\theta) + \sin\theta $
$\leq \sin(n-2)0 + 2 \sin\theta $
à n sin 0
$\frac{ \sin n0 }{ \sin 0 } \leq \min \left(\frac{1}{\sqrt{1-v^2 \sin^2 s}} \right) $
P 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
if we know nothing about the initial data, we can't
do much better than
11un122h ≤ √2'n (11u01121h + 11u1122h)
and in fact, this I mear growth with the number
of timesteps does actually happen
, J • • • • • • • • • • • • • • • • • •

stencil with y=1: (10 -10 untl = un1 + un1 + un1 + un1) 12-4 j=-2 j=0 j=2 j=4 on a perudic lattrice; we would get ||u"||2,h = n (||u0||2,h + ||u'||2,h) : schem is unstable, but the instability is fairly mild. Since this problem is linear, you could borrow a factor of k from the truncation error to turn n into nk & T, so the convegence tests night actually indicate that the method is O(k+h) rather than unstable. Also, only modes close to IT will get amplified indefinitely so if the initial condition happens to satisfy û°(\$)=0, û'(\$)=0 for \$ close to \$\text{\$\text{\$V}_2\$, you won't see the instability (note that initial conditions of the form g(x) = sin 2xx or sin unix or sin 2Nix for some fixed N have this property for a fine enough much). Finally, if glx) is a periodic, analytic function, its former coefficients will decay exponentially (eventually), and so for small enough h the magnitude of û°(3) for 5 near T/2 will decay as you refine the mesh, possibly saving the instability of the leaptry scheme with 1v1=1.

Last time: Analysis of leapfrog method (and other 2-step schemes)

Today & Ospectrally accurate differentiation & integration of periodic functions

(2) schemes for hyperbolic systems (3) boundary conditions for hyperbolic systems.

Discrete Fourier transform (in mattable fft, ifft. "off by 1" errors)

 $W_h = \sum_{j=0}^{N-1} e^{-2\pi i j h/N} \qquad W_{h+N} = W_h, \quad k \in \mathbb{Z}$

 $\frac{3^{2} \circ \frac{1}{N-1} \circ \frac{N-1}{2\pi i j h / N}}{N_{j} = \frac{1}{N} \circ \frac{1}{N-1} \circ \frac{N-1}{2\pi i j h / N}} = \frac{N-1}{N-1} \circ \frac{N-1}{N-1} \circ$

Now suppose U5 = U(X;), X5 = jh = jl j: 012 N X: 0 h 2h L

Then $u(x_i) = \frac{1}{N} \sum_{k=1}^{\infty} \frac{2\pi k}{N} w_k = \frac{1}{N} \sum_{k=1}^{\infty} \frac{(x_i)^2 \xi_k}{h} w_k$, $\xi_k = \frac{2\pi k}{N}$

interpolate between sampled points using same formula (x5 -> x)

spectrally accurate differentiation and intregration formulas:

 $u'(x) = \frac{1}{N} \sum_{k=-\frac{N}{2}} e^{i\left(\frac{x}{h}\right)} \frac{1}{3k} \left(i\frac{1}{3k} \frac{1}{kk}\right) \int_{0}^{x} u(s) ds = \frac{1}{N} \sum_{k=0}^{\infty} e^{i\left(\frac{x}{h}\right)} \frac{1}{3k} \left(i\frac{1}{3k} \frac{1}{kk}\right) \int_{0}^{x} u(s) ds = \frac{1}{N} \sum_{k=0}^{\infty} e^{i\left(\frac{x}{h}\right)} \frac{1}{3k} \left(i\frac{1}{3k} \frac{1}{kk}\right) \int_{0}^{x} u(s) ds = \frac{1}{N} \sum_{k=0}^{\infty} e^{i\left(\frac{x}{h}\right)} \frac{1}{3k} \left(i\frac{1}{3k} \frac{1}{kk}\right) \int_{0}^{x} u(s) ds = \frac{1}{N} \sum_{k=0}^{\infty} e^{i\left(\frac{x}{h}\right)} \frac{1}{3k} \left(i\frac{1}{3k} \frac{1}{kk}\right) \int_{0}^{x} u(s) ds = \frac{1}{N} \sum_{k=0}^{\infty} e^{i\left(\frac{x}{h}\right)} \frac{1}{3k} \left(i\frac{1}{3k} \frac{1}{kk}\right) \int_{0}^{x} u(s) ds = \frac{1}{N} \sum_{k=0}^{\infty} e^{i\left(\frac{x}{h}\right)} \frac{1}{3k} \left(i\frac{1}{3k} \frac{1}{kk}\right) \int_{0}^{x} u(s) ds = \frac{1}{N} \sum_{k=0}^{\infty} e^{i\left(\frac{x}{h}\right)} \frac{1}{3k} \left(i\frac{1}{3k} \frac{1}{kk}\right) \int_{0}^{x} u(s) ds = \frac{1}{N} \sum_{k=0}^{\infty} e^{i\left(\frac{x}{h}\right)} \frac{1}{3k} \left(i\frac{1}{3k} \frac{1}{kk}\right) \int_{0}^{x} u(s) ds = \frac{1}{N} \sum_{k=0}^{\infty} e^{i\left(\frac{x}{h}\right)} \frac{1}{3k} \left(i\frac{1}{3k} \frac{1}{kk}\right) \int_{0}^{x} u(s) ds = \frac{1}{N} \sum_{k=0}^{\infty} e^{i\left(\frac{x}{h}\right)} \frac{1}{3k} \left(i\frac{1}{3k} \frac{1}{kk}\right) \int_{0}^{x} u(s) ds = \frac{1}{N} \sum_{k=0}^{\infty} e^{i\left(\frac{x}{h}\right)} \frac{1}{3k} \left(i\frac{1}{3k} \frac{1}{kk}\right) \int_{0}^{x} u(s) ds = \frac{1}{N} \sum_{k=0}^{\infty} e^{i\left(\frac{x}{h}\right)} \frac{1}{N} \left(i\frac{1}{3k} \frac{1}{kk}\right) \int_{0}^{x} u(s) ds = \frac{1}{N} \sum_{k=0}^{\infty} e^{i\left(\frac{x}{h}\right)} \frac{1}{N} \left(i\frac{1}{3k} \frac{1}{kk}\right) \int_{0}^{x} u(s) ds = \frac{1}{N} \sum_{k=0}^{\infty} e^{i\left(\frac{x}{h}\right)} \frac{1}{N} \left(i\frac{1}{N} \frac{1}{kk}\right) \int_{0}^{x} u(s) ds = \frac{1}{N} \sum_{k=0}^{\infty} e^{i\left(\frac{x}{h}\right)} \frac{1}{N} \left(i\frac{1}{N} \frac{1}{N} \frac{1}{N} \frac{1}{N} \frac{1}{N} \left(i\frac{1}{N} \frac{1}{N} \frac{1}{N} \frac{1}{N} \frac{1}{N} \frac{1}{N} \frac{1}{N} \left(i\frac{1}{N} \frac{1}{N} \frac{1}{N}$

to make sense

schemes for hyperbolic systems (V= k - a > A, real distinct) qual: solve Üt = AÜX where is a vector $\vec{u}_{i}^{n+1} = \frac{1}{2}(I - VA)\vec{u}_{i-1}^{n} + \frac{1}{2}(I + VA)\vec{u}_{i+1}^{n}$ Lax-Friedrichs $\vec{u}_{j}^{n+1} = \vec{u}_{j}^{n} + \nu A \left(\frac{\vec{u}_{j+1}^{n} - \vec{u}_{j-1}^{n}}{2} \right) + \frac{\nu^{2}}{2} A^{2} \left(\vec{u}_{j-1}^{n} - 2\vec{u}_{j}^{n} + \vec{u}_{j+1}^{n} \right)$ Lax-Wendroff $\vec{u}_{i}^{n+1} = \vec{u}_{i}^{n-1} - vA\vec{u}_{i-1}^{n} + vA\vec{u}_{i+1}^{n}$ Leapfron The Fourier analysis of these schemes is similar to the scalar case, but the amplification factor (x13) becomes an amplification matrix

(still called (x(3)) Lax-Fredrichs: $\vec{\mathcal{U}}^{n+1}(\vec{z}) = (\pi(\vec{z}) \hat{\vec{\mathcal{U}}}^n(\vec{z}), (\pi(\vec{z}) = \frac{1}{2}(I-VA)\hat{e}^{i\vec{z}} + \frac{1}{2}(I+VA)\hat{e}^{i\vec{z}}$ = (cos 3) I + iv(sin 3) A $G(\xi) = I + i\nu(\sin \xi)A + \frac{\nu^2}{2}(e^{i\xi} - 2 + e^{i\xi})A^2$ Lax-Wendroff: = I - 2 v 2 sin2 (3/2) A2 + iv(sin3) A $\widehat{\mathcal{U}}^{n+1}(\xi) = (\zeta_1(\xi)\widehat{\mathcal{U}}^n(\xi) + (\zeta_2(\xi)\widehat{\mathcal{U}}^{n-1}(\xi))$ Leapfrog: G,(3)= 2iv(sin3)A , G2(3)=I

	These amplification matrices are diagonalized along with A:
	A= UNU => $G(\overline{s}) = U(G(\overline{s}, \lambda_1))$ scaler amplification factors for $u_1 = \lambda_1 u_2$ so fur fixed \overline{s} , Scheme applied to
	$ \hat{\pi}^{n}(s) \leq \pi(s)^{n} \cdot \hat{\pi}^{n}(s) $
	116(3) 11 & 1141 - 1411 - max (6(3,2))
gen av Nasta plante samme samme skrivet en sent gen år fra skrivet skrivet skrivet skrivet skrivet skrivet skr	and our 2-norm estimate looks like
	$\int_{-\pi}^{\pi} \vec{u}^{n}(\bar{z}) ^{2} d\bar{z} \leq \left(\max_{-\pi \leq \bar{z} \leq \pi} t(\bar{z})^{n} ^{2} \right) \int_{-\pi}^{\pi} \vec{u}^{n}(\bar{z}) ^{2} d\bar{z}$
	or $\ \vec{u}^{n}\ _{2,h} \leq \max_{i \leq l \leq N} \left(\max_{-\pi \leq \tilde{s} \leq \pi} (\tilde{s}, 2g) ^{n}\right) \ U\ \cdot \ \vec{u}^{n}\ _{2,h}$
	so stability boils down to the scalar scheme applied to each eigenvalue
	separately. The same is true for the recursion involved
instantia (1967–1984) että kautamainen kauta kaita	in the leaphor scheme.
nadel (APT () before 1000 / John B To To G of a particular to To	

.

and printed the con-

Note the Strategies.

haliff of health and have been

5600, hymnesser

distance di consistence ⁴⁸ rea que no les quistes de propriet de l'Albert d	Boundary windstwas
	periodic ble's are easy to implement, but Dirichlet deviumann conditions are tricky for wave equations.
	scalar equation: Ut = aUx solution constant along lines x + at = const = a < 0 a > 0
	aco: need a b.c. on the left wall illegal to impose on on the right
	a>o: need one on right walk, illegal on left.
	example: solve $u_t = -au_x$, $a > 0$, $u(x,0) = g(x)$ using Lax-Wendroff $u(0,t) = f(t)$
A+1	$\frac{\text{scheme: } u_{0}^{n+1} = f(t_{n+1})}{u_{0}^{n+1} - v_{0}(u_{0}^{n+1} - u_{0}^{n+1}) + \frac{v_{0}^{2}}{2}(u_{0}^{n} + u_{0}^{n})}$ $\tilde{J} = 0 1 \qquad \qquad 1 \leq j \leq J - 1$
	most common charce: just use upwind on right bdy: Uf = (1-av)uftavuf-1
Commission (Color Color	in matrix form: (a 8) /B/ a=1-0202

B =

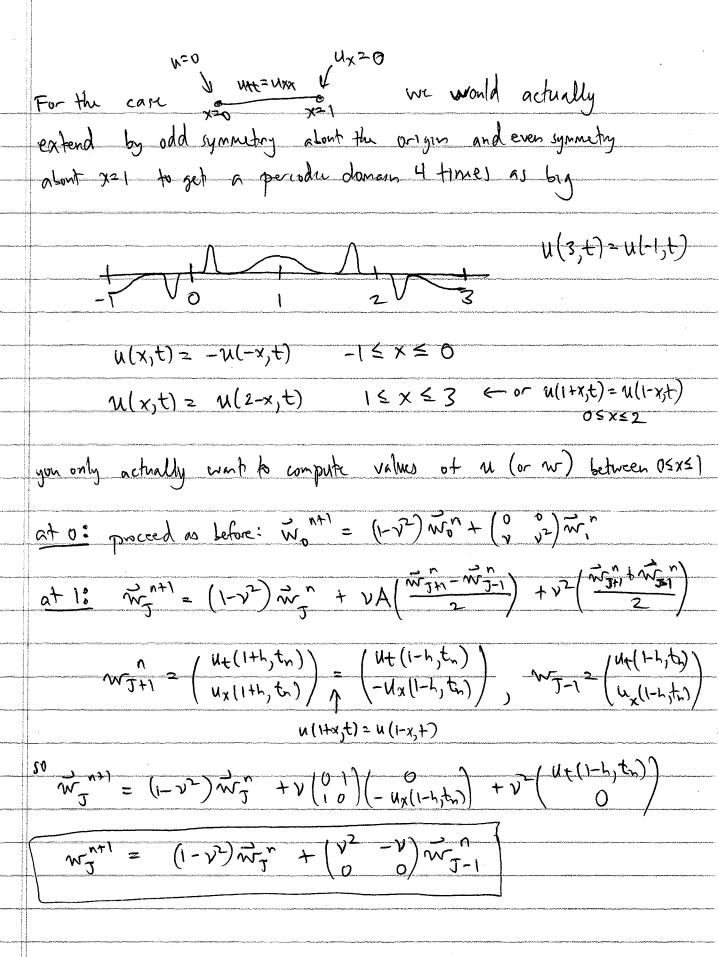
unt = Bun +Bfn

all I see that is easy to prive is ||B||_=1.

)B=

Ba

۲ 01 8= = 2 av(-1+av)


K= AV 0 = 1 - AV

obvious
it's not exect, whether introducing a first order error at
the right endpoint will wreck the 2nd order conveyance of Lax-Wardoff. Another option would be until = cz uj-z + c, uj-, + couj choosing the coefficients co, c, cz to match Taybe welficients: $u + ku_{t} + \frac{k^{2}}{2} u_{t} = C_{2} \left(u - (2h) u_{x} + \frac{(2h)^{2}}{2} u_{xx} \right)$ $f + c_{1} \left(u - h u_{x} + \frac{k^{2}}{2} u_{xx} \right)$ $-au_{x} \quad a^{2}u_{xx} + c_{0} \quad u$ (1-co-c1-c2)u + (-ka +hc, +2hc2)ux + (\frac{1}{2}a^2 - \frac{1}{2}c_1 - 2hc2)ux = 0 $\begin{pmatrix} 0 & 1 & 2 & C_1 \\ 0 & 1 & 2 & C_1 \end{pmatrix} = \begin{pmatrix} C_0 \\ C_1 \\ C_2 \end{pmatrix} = \begin{pmatrix} C_0 \\ C_1 \\ C_2 \end{pmatrix} = \begin{pmatrix} C_0 \\ 0 & 2 & -1 \\ 0 & -1/2 & 1/2 \end{pmatrix} \begin{pmatrix} \alpha V \\ \alpha^2 V^2 \end{pmatrix}$ or $u_{J}^{n+1} = -\frac{1}{2} av (1-av) u_{J-2} + av (2-av) u_{J-1} + \left(1-\frac{av}{2}(3-av)\right) u_{J}$ But I suspect the scheme is unstable, $B = \begin{pmatrix} \alpha & 8 \\ B & \alpha & 8 \end{pmatrix}$ i.e. B has an eigenvalue $|\lambda_j| > 1$; $B = \begin{pmatrix} \alpha & 8 \\ B & \alpha & 8 \end{pmatrix}$

so boundary conditions for wave equations are difficult to deal with. Fortunately, for most physically important problems you can use symmetry to derive the correct BC.'s to use.

```
Vibrating string \frac{1}{x=0} 
     idea: turn the Dirichlet conditions into periodic conditions:
                          -1 Volt = new problem: { Net = Uxx
                                                                                                                                                                      u(1,t) = u(-1,t)
                                                                                                                                                                         Ux(15t) = Ux(-15t)
                                                                                                                                                                        u(x,0)= go(x) -1 < x < 1
 for x < 0, we define
                                                                                                                                                                        4+(x,0)=1(x) -15x57
        g_n(x) = -g_n(-x)
                           g_1(x) = -g_1(-x)
 whatever the solution of this problem is, the function
                                    V(x,t) = -u(-x,t) -1< x < 1, t > 0
  11 also a solution: Ver = - Utr(-x,t)
                                                             ~ = u(-x,+)
                                                                  v_{xx} = -u_{xx}(-x,t) = -u_{tt}(-x,t) = v_{4t}
   since u & v sortify the same (periodic) bici's and the
                           sam initial conditions, they are equal (uniquences) -
So u(x,t) = -u(-x,t) -1 < x < 1, t > 0
 in particular: u(o,t) = - u(o,t) => u(o,t) = 0
                                                 u(i,t) = -u(-i,t) = -u(i,t) = 0
so the new problem gives the soln to the original problem.
```

Next we want to figure but b.c.'s to impose on the original problem to mimic the periodic problem without actually computing any values at x;<0 1st order system = $\vec{w} = \begin{pmatrix} u_t \\ u_x \end{pmatrix}$, $\vec{w}_t = A\vec{w}_x$, $A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ for the periodic system, the Lax-Wendstt update at j=0 would be $\vec{w}_{0}^{n+1} = \vec{w}_{0}^{n} + VA(\vec{w}_{1}^{n} - \vec{w}_{1}^{n}) + \frac{v^{\perp}}{2} A^{\perp} (\vec{w}_{1}^{n} - 2\vec{w}_{0}^{n} + \vec{w}_{1}^{n})$ $= (1-v^2) \vec{w_0} + vA(\frac{\vec{w_1} - \vec{w_1}}{2}) + v^2(\frac{\vec{w_1} + \vec{w_{-1}}}{2})$ $B_{N}+\frac{2}{w_{1}}\left(\frac{u_{1}(-h_{1}+h_{2})}{u_{2}(-h_{1}+h_{2})}\right)=\frac{1}{w_{1}}\left(\frac{u_{2}(h_{1}+h_{2})}{u_{2}(h_{2}+h_{2})}\right)$ $\frac{1}{2} \frac{1}{2} \frac{1}$ $\vec{W}_{0}^{n+1} = (1-\nu^{2})\vec{W}_{0}^{n} + (\nu^{2})\vec{W}_{1}^{n}$ At the right endpoint, a similar analysis gives $\overrightarrow{W}_{J} = (1-\nu^{2}) \overrightarrow{W}_{J} + (0) \overrightarrow{W}_{J-1}$

Dissipation and Dispersion

$$U_t = -au_x$$
, mital and then $u(x_10) = g(x) = e^{i \frac{x}{h}}$

exact solution:
$$u(x,t) = g(x-at) = e^{i\frac{x-at}{h}} = e^{i\frac{at}{h}} = e^{i\frac{x}{h}}$$

Sampled on god:
$$u(x_j,t_n) = (e^{-i\alpha\frac{nk}{h}\xi})e^{ij\xi} = (e^{-i\alpha\frac{k}{h}\xi})^n u(x_j,0)$$

numerical solution:
$$u_i^n = G(\xi)^n u_i^n + \{\text{special initial data} \}$$

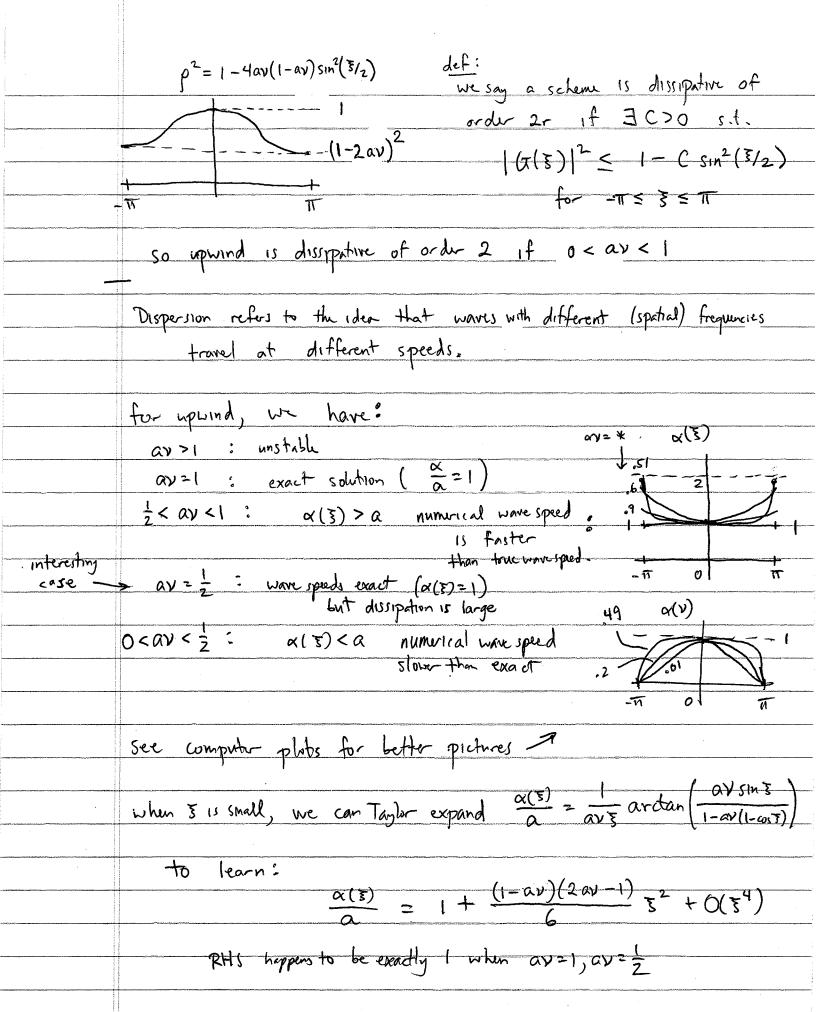
$$u_i^n = e^{ij\xi}$$

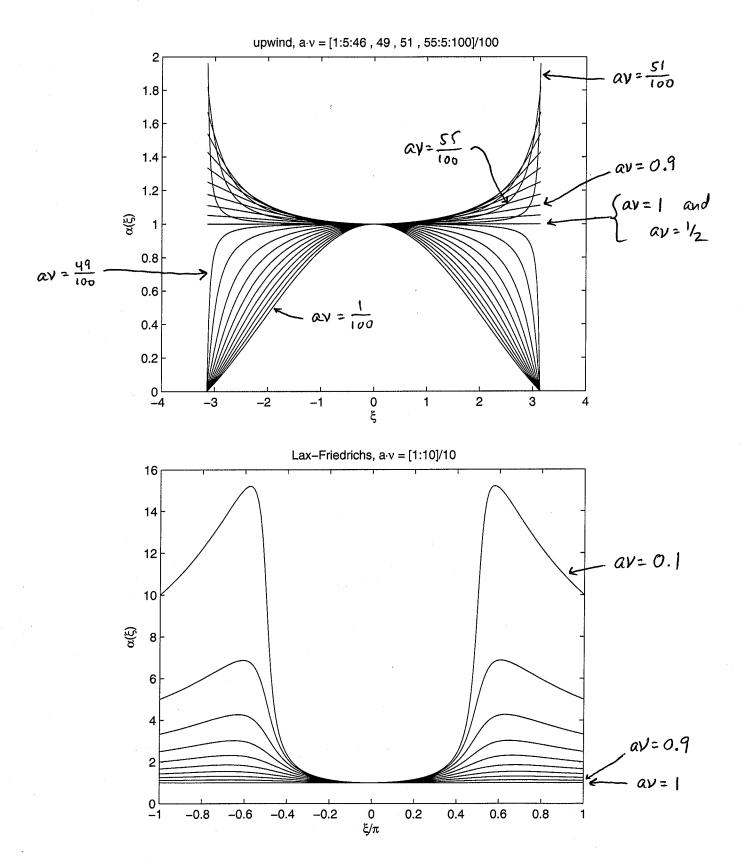
so want
$$G(3) \approx e^{-(a)}$$
 $y = \frac{k}{h}$

upwind
$$(a>0)$$
: $u_{j-1}^{n+1} = av u_{j-1}^{n} + (1-av)u_{j}^{n}$

$$G(\xi) = ave^{-i\xi} + (1-av) \sum_{i=1}^{n} \frac{1}{2} \cos \xi - i \sin \xi$$

$$=(1-\alpha v+\alpha v\cos z)-i\alpha v\sin z$$


$$av = e^{-i\alpha v}$$


$$G(\xi)$$
 $\rho^2 = |(\pi(\xi))|^2 = (1-\alpha V + \alpha V \omega) \xi)^2 + (\alpha V)^2 \sin^2 \xi$

scheme is dissipative
$$\Rightarrow \rho = \sqrt{1-4\alpha \nu (1-\alpha \nu) \sin^2(\frac{\pi}{2})}$$
 of order 2

(exact has
$$p=1$$
,) $\tan (\alpha \nu \xi) = \frac{\alpha \nu \sin \xi}{1 - \alpha \nu (1 - \omega \nu \xi)}$

wave speed
$$\Rightarrow \alpha = \frac{1}{a v \xi} \arctan \left(\frac{a v \sin 3}{1 - a v (1 - \omega v \xi)} \right)$$

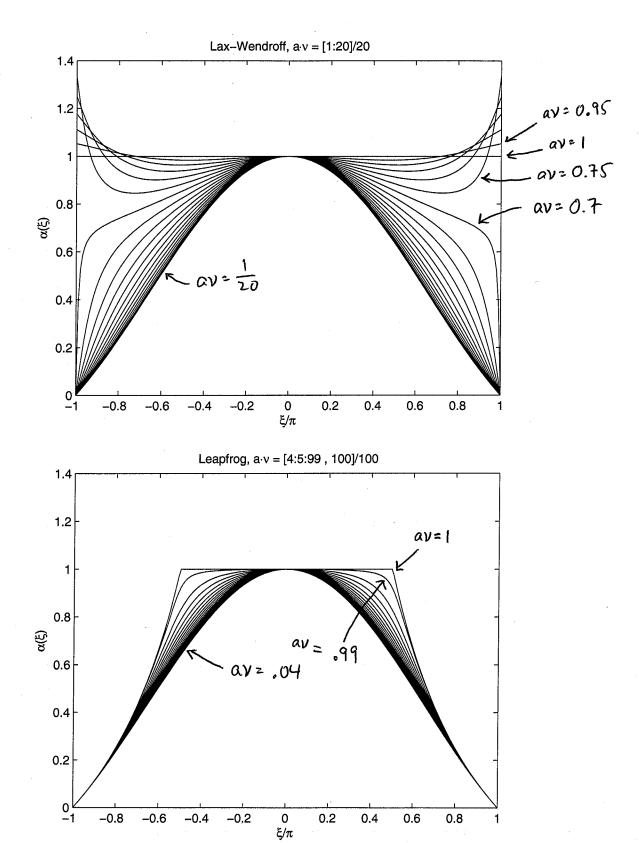
exact wave $\Rightarrow \alpha = \frac{1}{a v \xi} \arctan \left(\frac{a v \sin 3}{1 - a v (1 - \omega v \xi)} \right)$

What does a graph plotting por a vs. & tell us?) &= 12h angular (ei(12x-wt): 12 wave number, w frequency) Think of & as a wave number relative to the mush spacing $\xi = \frac{2\pi}{8} = \frac{\pi}{4}$ $\xi = \frac{2\pi}{4} = \frac{\pi}{2}$ $\frac{1}{2} = \frac{2\pi}{2} = \pi$ the biggs the r On a fixed periodic domain [O,L], the permitted wave numbers are $\chi = 0, \pm \frac{2\pi}{L}, \pm \frac{4\pi}{L}, \pm \frac{2\pi m}{L}$ -cz2+0(x2+2) once we discretize into J segments of width $h=\frac{L}{J}$, the corresponding "allowalle" values of \$ are 第= Xh= 0, ± 2m, ± 4m, … ± 2mm The corresponding functions e is on the grid are linearly independent only for - = = = m \ = = -1. For montside this range you get alianing effects (a high frequency mode looks like a lower frequency one) 5 dose to zero: lots of gridpoints to resolve the wave -> better jet p and a right for & near zero E close to ± TT: waves like this oscillate wildly on the grid.

don't expect accuracy here. Good to have p<1 to damp them out.

Ut = - aux u; = 2(1+av) u; + 1/2(1-av) u;+1 Lax-Friedrichs 6-(3) = co; 3 - i av sin 3 = pe -i av 5 $\rho^2 = \cos^2 \xi + (\alpha \nu)^2 \sin^2 \xi = 1 - (1 - (\alpha \nu)^2) \sin^2 \xi$ \rightarrow not dissipative $(p(\pi)=1)$ tan(av3) = avsin3 = av tan3 a = avs arctan (av tan 3) = always faster

and avs faster


wavespeed X(3) $\frac{1-(av)^2}{3}$ $\frac{2}{5}$ + $O(\frac{54}{5})$ 01 Lax-Wendroff (ut = - aux) u; = u; - av (1) + (1) + (1) + (1) -1 + (1) -1 + (1) + (1) + (1) 6(3) = 1-2(av) sin = - (av) sin = pe very flat here Very +1a. $\rho^2 = 1 - 4(\alpha v)^2 (1 - (\alpha v)^2) \sin^4(\frac{3}{2})$ $= = = (1-2(\alpha y)^2)^2$ (disripative of order 4) $-z = \frac{1}{av z} \arctan\left(\frac{av \sin z}{1-2(av)^2 \sin^2(z/z)}\right)$ $= 1 - \frac{1 - (av)^{2}}{2} \xi^{2} + O(\xi^{4})$ - M< == for small 3 = numerical wave speed too slow if av>= and \(\footast\) too fast 0× 42

main error in L-W is due to dispersion.

57

of is oscillating and travelling in the wrong direction. (parasitic)

(2(3)= - per going wrong way
oscillating

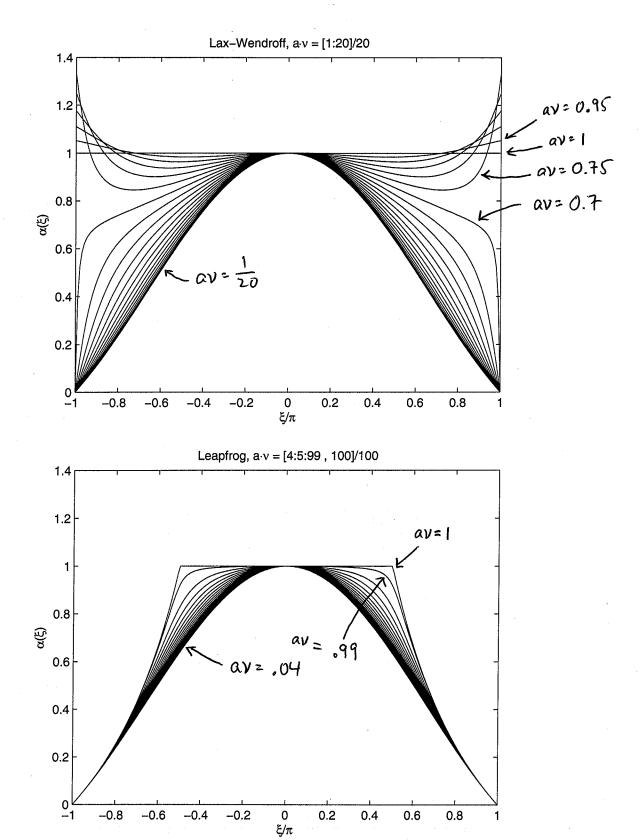
	you can add numerical dissipation to any scheme.
	U .
in the state of th	For leapfray, two natural candidates are: k2 ptp-u,"
~	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
\mathcal{O}	$u_{j}^{n+1} = u_{j-1}^{n-1} - av\left(u_{j+1}^{n} - u_{j-1}^{n}\right) + \frac{\varepsilon}{4}\left(u_{j-1}^{n-1} - 2u_{j}^{n-1} + u_{j+1}^{n-1}\right)$
<u>(2)</u>	$u_{i}^{n+1} = u_{i}^{n-1} - av(u_{i+1}^{n} - u_{i-1}^{n}) - \frac{\epsilon}{16} k^{4} (0t0 -)^{2} u_{i}^{n-1}$
and the state of t	
	the recursion $u = a, u + azu = 1$
	holds with (1) G1 = -Ziavsing G2= 1-E Stn2 5/2
	or (2) G12-21 av sin 3 G2=1- E sin 3/2
	the roots become
and (Virginia de la Hitter of Minister) and a second of the Australia and Australia an	
godine (1) gan en ei ster proposition en	$T + \frac{G_1 \pm \sqrt{G_1^2 + 4G_2}}{2} = \pm \sqrt{1 - (\alpha \nu)^2 \sin^2 \xi} - \epsilon \sin^2 \frac{\xi}{2} - i(\alpha \nu) \sin \frac{\xi}{2}$
00	
. Sida Sharin 1934 i Shiran qaalaga da arah aha, ahaa ah qaarin ah qaa ah qaa shiran isa da shiran qaa ah qaa shiran shiran qaa ah qaa	(2) $\Gamma_{\pm} = \pm \sqrt{1 - (\alpha \nu)^2 \sin^2 \xi} - \epsilon \sin^4 \xi/2 - i(\alpha \nu) \sin \xi$
	stability requires this to stay positive. Can't choose &
. Kuri sala (1987) (1984 - Milliongo, isalan kun umbahan menusuk atau kanansara kan (1987) (1984 - 1985)	dranback \$ (1): P= 1- E sin 3/2 15 not O(\$3) large
	so method is only first order now.
	drankack to (2) stencil is wider . n+1
	0 . 6 c 9 N-1
	we can probably find something better with this
The state of the s	additional degree of Freedom.

And account with the finding to the first transport of the state of the section o	on September 19 Continue and 19 Anne proper and an artifacture and apply and the property of the continue and the Continue an	2. (2.172) 18. (177) 18. (1 5 6
Last time:	dissipation & dispersion	Glz) = pe	1 x h x = x 3
		1	/ \
managan di Managan di Managan di Managan di	anolification	amplification	wave time increment
and the second s	factor	(magnitude)	Numse
t til en med i Visitad Market (1954 – en en med fræmmet eksekskilste lang om 1971 til en en en en.	(complex)		vave speed

dissipation: p(3) = decay rete of different Fourier modes dispersion: a(3) e different modes travel at different speeds

Today: dispersion of the leapfrog scheme

- @ aliasing in the grid based Fourier transform
- 3 group velocity and wave packets.


recapi if we start with a sequence u; and run the scheme unt = Bun the Fourier transform w^(3) evolus via wn+1(3) = (I(7) wn(3) and we can interpret the inversion formula

$$u_{j}^{n} = \frac{1}{2\pi i} \int_{-\pi}^{\pi} e^{ij\frac{\pi}{2}} \hat{\mathcal{U}}^{n}[\xi] d\xi = \frac{1}{2\pi i} \int_{-\pi}^{\pi} \left[\hat{\mathcal{U}}(\xi)^{n} e^{ij\xi} \right] \hat{\mathcal{U}}^{n}(\xi) d\xi$$

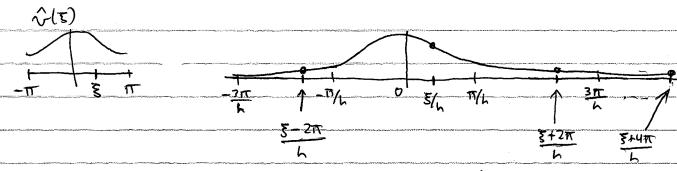
as a superposition of travelling Fourier modes on the mesh. Note that an initial condition of the form u; = e'13 with 3 frozen advances under the scheme until Bun via un = G(3) eij3 -

it advances under the PDE Mt=-aux via u; = e x; -atn } = (e a k) e ij } so we want to know how close G(3) = peians is to eians

Leaptrong:
$$Mt = -\alpha u_{x}$$
 $u_{y}^{n+1} = -\alpha v_{y}(u_{y}^{n} - u_{y-1}^{n}) + u_{y}^{n-1}$
 $\lambda^{n+1} = (\zeta_{1}\xi_{2})u_{n}^{n}(\xi_{2}) + (\zeta_{1}\xi_{2})u_{n}^{n}(\xi_{2})$
 $\lambda^{n+1} = (\zeta_{1}\xi_{2})u_{n}^{n}(\xi_{2})u_{n}^{n}(\xi_{2})$
 $\lambda^{n+1} = (\zeta_{1}\xi_{2})u_{n}^{n}(\xi_{2})u_{n}^{n}(\xi_{2})$
 $\lambda^{n+1} = (\zeta_{1}\xi_{2})u_{n}^{n}(\xi_{2})u_{n}^{$

so VII a segument and u is a function

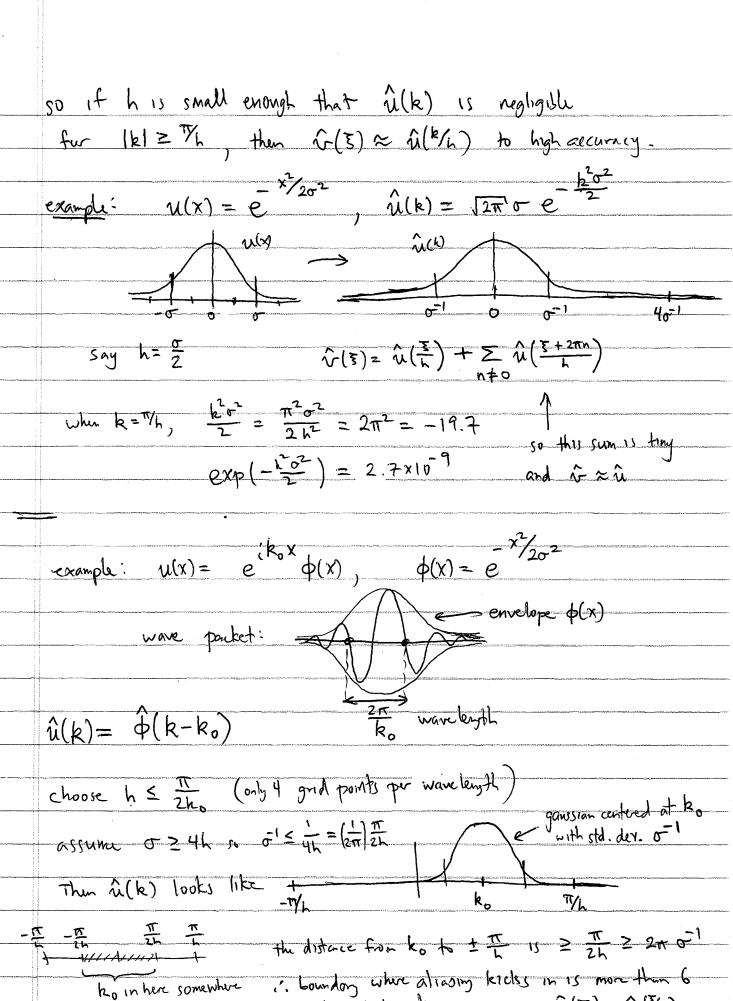
aliasing: suppose U(x) is a smooth function decaying rapidly of
to zero as x>±00, and let v;=u(x;)=u(jh).


let's modify our grid bared fourier transform a little:

Poisson summation formulas

$$h \sum_{j} e^{-ij\xi_{M(jh)}} = \sum_{h} \hat{u}\left(\frac{\xi + 2\pi h}{h}\right)$$

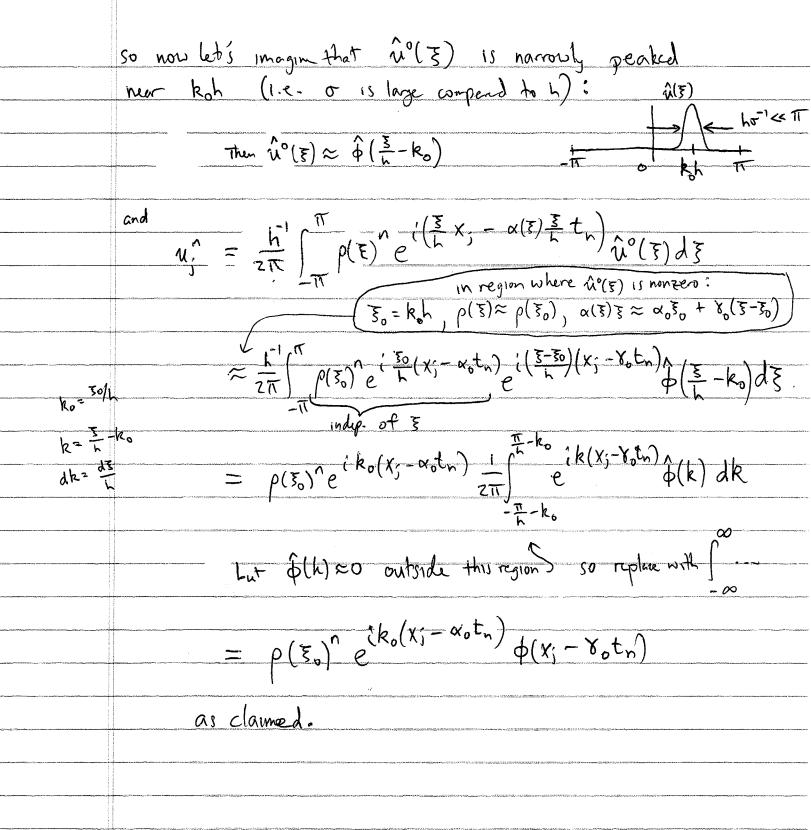
$$\hat{u}(k) = \int_{-\infty}^{\infty} e^{-ikx} u(x) dx$$
 = k is a ware number here, not a timestep


$$so \quad \hat{\mathcal{C}}(\xi) = \hat{\mathcal{N}}(\frac{\xi}{L}) + \sum_{n \neq 0} \hat{\mathcal{N}}(\frac{\xi + 2\pi n}{L})$$

The values of in outside the interval $\begin{bmatrix} -\overline{11} & \overline{11} \\ h & h \end{bmatrix}$ get mapped back into this interval when the integral, is replaced by a discrete sum. (they are aliased) in the former transform

$$\frac{\hat{\chi}(k)}{2} = \frac{1}{6} \frac{1}{12} \frac{1}$$

18= xj = xj = xj = xj k



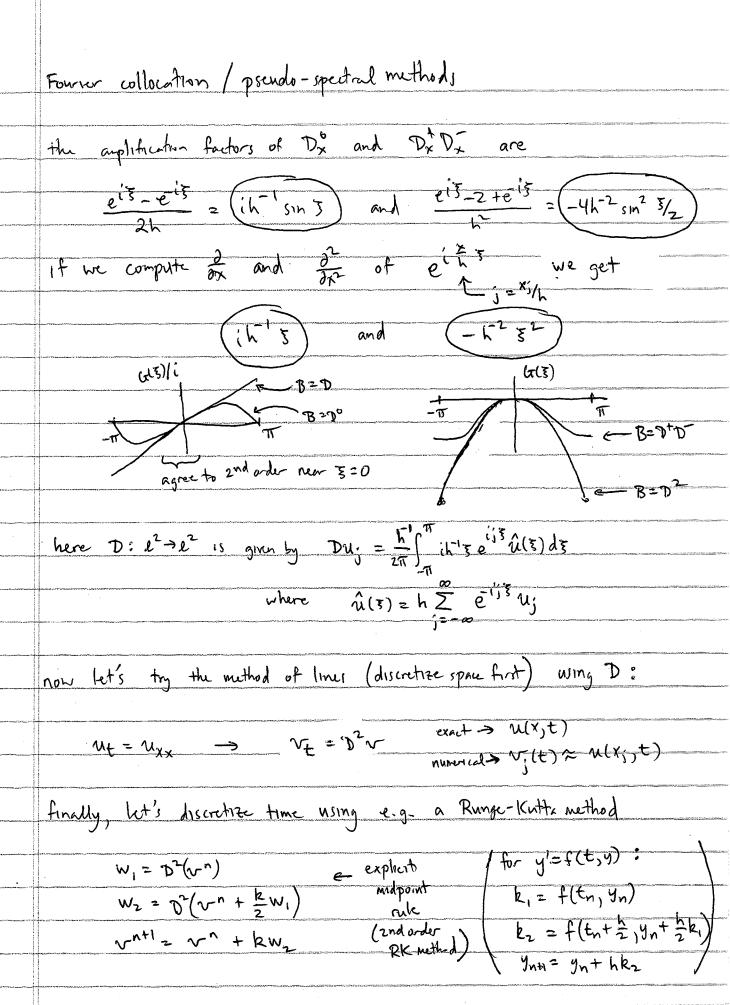
staded deviation away. : î(E) ≈ î(\$/1)

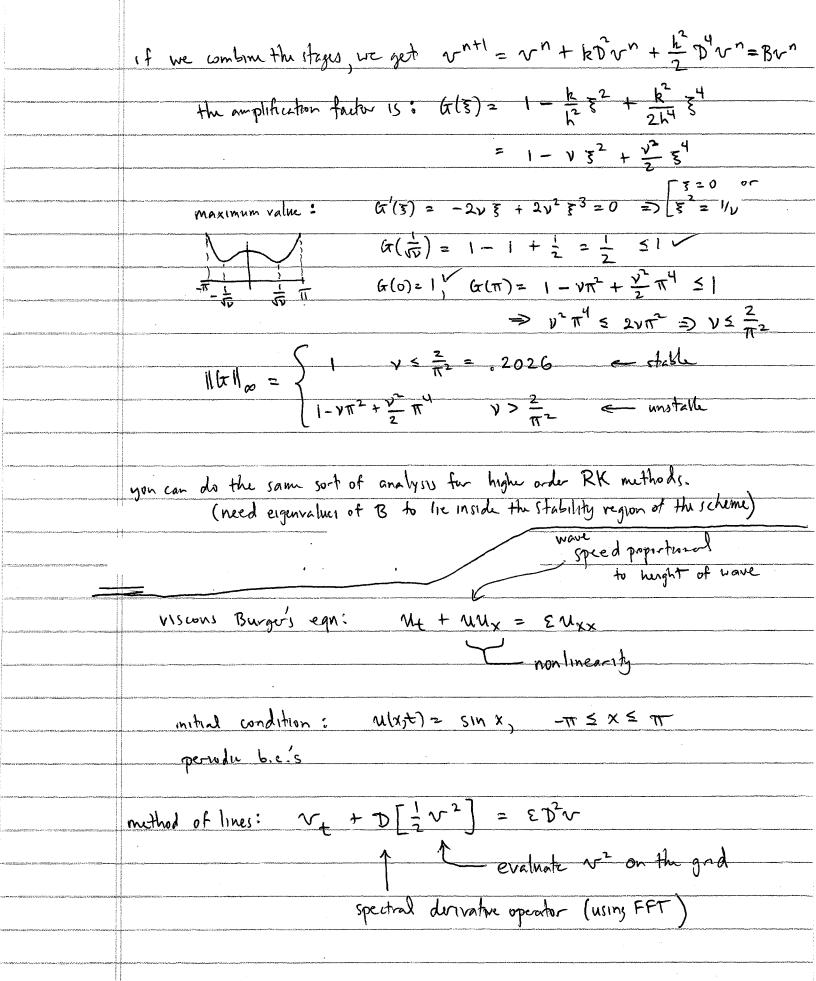
summary: you don't have to sample a wave packet very closely for the discrete fourter trusture v() to accurately approximate the continuous F.T. $\hat{\mathcal{U}}(\xi/h)$. group velocity: so what will our schemes do to a wave parket? initial and that: $u(x_10) = e^{ik_0x} \phi(x)$, $\phi(x) = e^{-x^2/20^2}$ exact solution: $u(x,t) = e^{ik_0(x-at)}\phi(x-at)$ exact solution: $u_1 \approx \rho(\xi_0)^n e^{ik_0(x-\alpha(\xi_0)t_n)} \phi(x-y(\xi_0)t_n)$ numerical solution: $u_1^n \approx \rho(\xi_0)^n e^{ik_0(x-\alpha(\xi_0)t_n)} \phi(x-y(\xi_0)t_n)$ phose velocity group

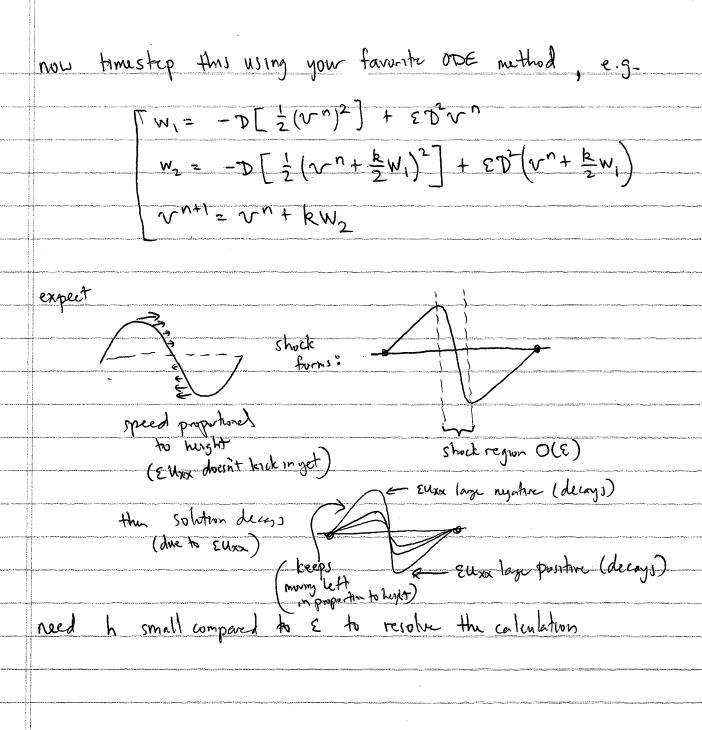
velocity what is & and why is it not equal to a? $u_j^n = \frac{h'}{2\pi} \int_{-\pi}^{\pi} \left(p e^{-i\alpha \sqrt{\xi}} \right)^n e^{ij\frac{\xi}{2}} \hat{u}^0(\xi) d\xi$ based F.T. here (ctopsed union. V for this $= \frac{h'}{2\pi} \int_{-\pi}^{\pi} \rho e^{i\left(\frac{3}{h}x_{i}^{2} - \alpha + \frac{3}{h} + \frac{1}{h}\right)} \hat{u}^{0}(5) d5$ wave number angular frequency $k = 3/h \qquad \omega = \alpha \frac{5}{h}$ rwe'll write At for the timestep today

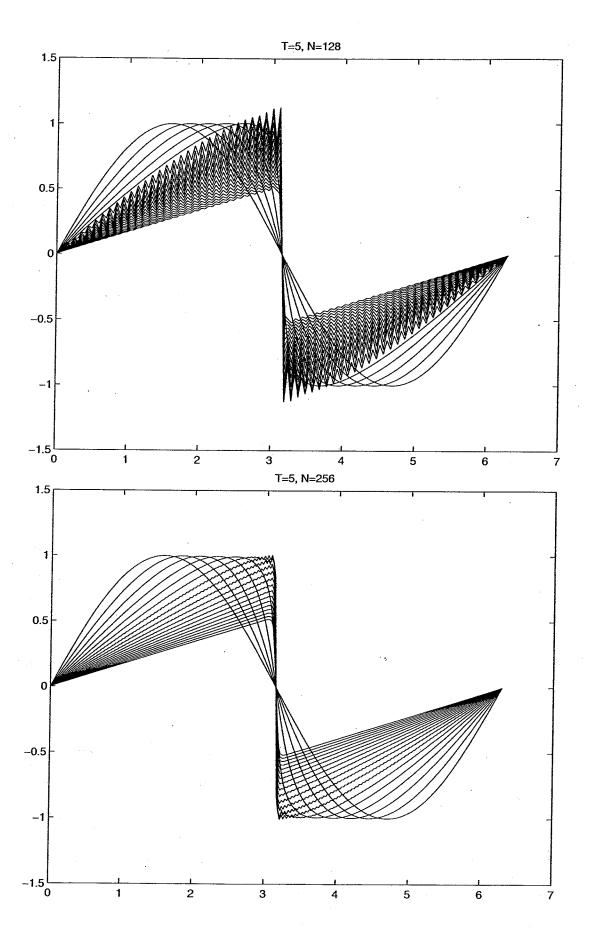
Phose velocity: $\frac{\omega}{k} = \alpha$ group velocity: $\frac{d\omega}{dk} = \frac{d\xi}{dk} \frac{d\omega}{d\xi} = h \cdot h^{-1} \frac{d}{d\xi} (\alpha \xi) = \frac{d}{d\xi} (\alpha \xi) = \gamma$

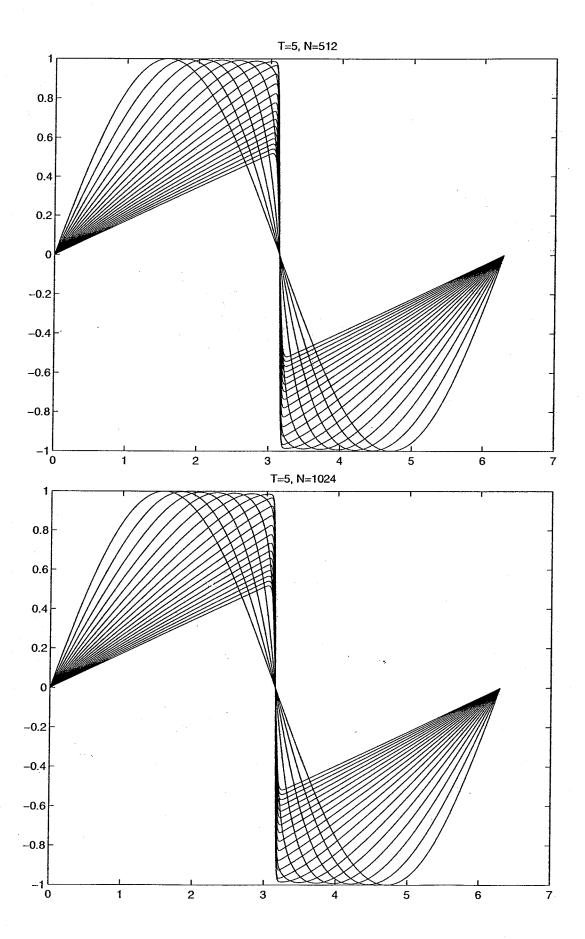

```
Lee 20, mark 228 B
```

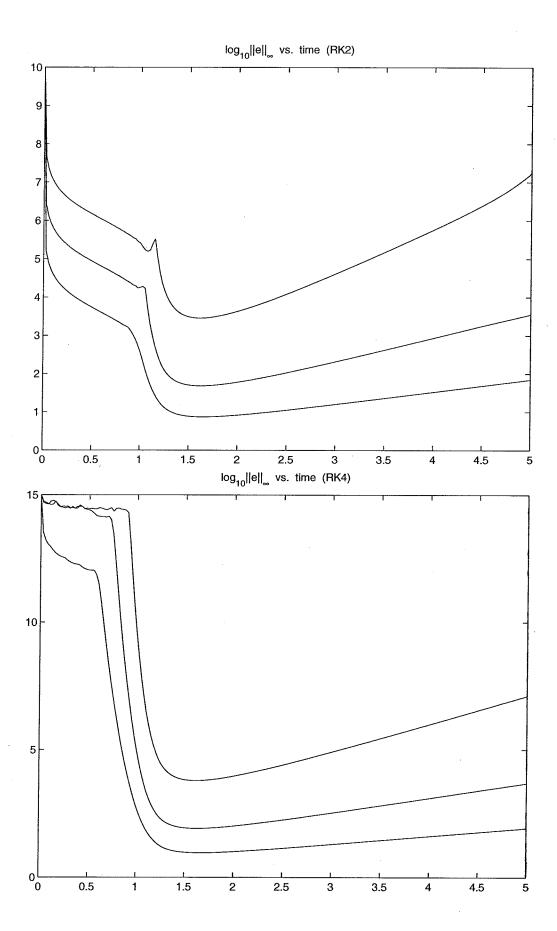

\$(k) = √2πσ e = 2 group velocity and wave parkets $\frac{1}{x^2/z_0^2}$ $\frac{1}{x^2/z_0^2}$ $\frac{1}{x^2/z_0^2}$ exact solution: $u(x,t) = e^{ik_0(x-at)} \phi(x-at)$ numer cal 101/2; v; = p(50) eiko(x; - x(30)tm) p(x; - x(30)tm) scheme: $V_0^o = U(x_0^o) \in \text{sample initial condition on grid}$ $V^{n+1} = Bv^n \in \text{apply finite difference scheme}$ $\hat{\mathcal{V}}^{n}(\xi) = h \sum_{i=1}^{\infty} e^{ij\xi} v_{i}^{n}$, $\hat{u}(k,t) = \int_{-\infty}^{\infty} e^{ikx} u(x,t) dx$ $\hat{V}^{\circ}(\xi) = h \xi e^{ij\xi} u(jh,0) = \hat{u}(\xi,0) + \xi \hat{u}(\xi,0)$ extremely small e.g. if $hk_0 \leq \frac{\pi}{2}$ then $\hat{v} \cdot \hat{v}^{\circ}(\xi) \approx \hat{\phi}(\xi - k_{o})$ $1 < \frac{\sigma}{4} \Rightarrow (\frac{\Sigma}{10}) \leq \sigma e^{-18}$ our Founer analysis tells us | h<\\(\frac{\sigma}{6} \rightarrow (\varepsilon ...) \leq \sigme^{43} ν, = = = (ρείαν) (ξ) dξ G(3)=peiar3 $=\frac{h^{-1}}{2\pi}\int_{-\pi}^{\pi}\rho^{n}e^{i\left(\frac{\pi}{h}X_{j}-\alpha\frac{\pi}{h}t_{n}\right)}\hat{v}^{o}(\xi)d\xi$ k= 3/h w= 03/L phase velocity $\alpha = \frac{\omega}{k}$ group velocity: $\gamma = \frac{d\omega}{dk} = \frac{d}{d\xi} \left(\xi \alpha(\xi) \right)$


so now let's imagine that $\hat{v}^{\circ}(\xi)$ is narrowly peaked near \(\xi_0 = hk_0 \) (1-e. ho=1 << \frac{\pi}{2}) well approximate $p(\overline{z}) \approx p(\overline{z}_0) = P_0$ In the region where $\alpha(\overline{z}) \equiv \alpha(\overline{z}) \equiv \alpha(\overline{z}) \approx \alpha(\overline{z} + \gamma_0(\overline{z} - \overline{z}_0))$ $\hat{\mathcal{U}}^0(\overline{z})$ is significant So $v_j^n = \frac{h^{-1}}{2\pi} \int_{\pi}^{\pi} \rho(\xi)^n e^{i\left(\frac{\xi}{h}X_j^n - \alpha(\xi)\frac{\xi}{h}t_n\right)} \hat{V}^o(\xi) d\xi$ $\approx \frac{1}{2\pi} \int_{\pi}^{\pi} \int_{\pi}^{(\frac{\pi}{2}o)} e^{(\frac{\pi}{2}o)} e^{(\frac{\pi}{2}-\frac{\pi}{2}o)} e^{(\frac{\pi}{2}-\frac{\pi}{2}o)} (x_{j}-x_{o}+x_{o}) dx$ $= \rho(\overline{s_0})^n e^{ik_0(x_5' - \alpha_0 t_n)} \frac{1}{2\pi \sqrt{\frac{n}{k} - k_0}} e^{ik(x_5' - \overline{s_0 t_n})} \frac{h = \frac{\pi}{h} - k_0}{e^{ik(x_5' - \overline{s_0 t_n})}} \frac{h = \frac{\pi}{h} - k_0}{e^{ik(x_5'$ but \$(k)≈0 outside this region I so replace with [... v; n = p(fo) e (ko(x; -vota)) $\phi(x; -vota)$ numerical carrier signal wave envelope travels


dissipation travels at at group velocity,


phase velocity in practice this is exactly what you see happen.


```
Stability analysis for PDE's with politions that grow ( 1811 \is 1 sink solution grows
     example: Ut = -Ux + U exact solin: u(x,t) = e^{t}g(x-t)
       schemi let's look for something like Lax-Wendroff
            u(x,t+k) = u(x,t) + k u_{+}(x,t) + \frac{k^{2}}{2} u_{+}(x,t) + \cdots
                  Ut = -Ux +u
                   Utt = - Uxt + Ut = Uxx - Ux - Ux + u = Uxx - Iux +u
         u_{j}^{n+1} = u_{j}^{n} + k \left[ -\frac{u_{j+1}^{n} - u_{j-1}^{n}}{2k} + u_{j}^{n} \right] + \frac{k^{2}}{2} \left[ \frac{u_{j+1}^{n} - 2u_{j}^{n} + u_{j-1}^{n}}{k^{2}} + u_{j}^{n} \right] 
                    = u_{j}^{n} - v \frac{u_{j+1}^{n} - u_{j-1}^{n}}{2} + \frac{v^{2}}{2} \left(u_{j+1}^{n} - 2u_{j}^{n} + u_{j-1}^{n}\right) \leftarrow \frac{L \cdot w}{for}
u_{\xi z} - u_{x}
                                 + k \left[ (1 + \frac{k}{2}) \mathcal{U}_{i}^{n} - \mathcal{V} \frac{\mathcal{U}_{i+1}^{n} - \mathcal{U}_{i-1}^{n}}{2} \right] \leftarrow \frac{\text{terms}}{\text{associated}}
with + \mu
                                                                                               part of
                                                                                              equation
          G(\xi) = (1-2y^2 \sin^2 \frac{3}{2} - iv \sin \xi) + k[(1+\frac{k}{2}) - iv \sin \xi]
         |G(3)| ≤ √1-402(1-2) sin4 3/2 + k√(1+ ½)2+225m23
||B||_2 = ||L||_{\infty} \le 1 + 2k = assuming v \le 1 and k \le 1
     is schem is state. (numerical solution un=Bnus grows exponentially
                                   in time, but that's OK. The true solution does, too.
                                   Bad schemes grow exponentially in n without a ke to balance it.)
```



Spectral integration in mottal (for differentiation, mult by it is a rather than divide)
example 000 utt=4xx u=0 Dirichlet conditions
suppose you have computed (un) on the grid and now you want to
vecour $u(x_i)$ from $u_x(x_i)$, $x_j = (j-1)h$
Known: $UX(j) = U_X((j-1)h)$ $1 \le j \le J+1$ wanted: $U(j) = U(X_j)$ $y = 0 \ h \ 2h$ $y = 1$
1 ² 1 2 3 th
Let $N=25$ and extend by even symmetry $u_{X}(J+1+j)=u_{X}(J+1-j) \qquad 1\leq j \leq J-1$
Now define wefftlu), i.e.
Now define $w = fft(u)$, i.e. $w_{k} = \sum_{j=1}^{N} e^{-2\pi i (j-1)(k-1)/N} u_{j} = \sum_{j=1}^{N} e^{-ij\xi_{k}} u_{j}$ $1 \le k \le N$
$\frac{2\pi}{5} = \frac{2\pi}{N} \cdot \begin{cases} k-1 & 1 \le k \le N/2 \\ k-1-N & \frac{N}{2} + 1 \le k \le N \end{cases} $ $k = \begin{cases} 1 & 2 \le 4 \le 6 \ne 8 \end{cases}$
$\frac{N}{2\pi} \xi_h = 0 + 2 + 3 + 2 - 1$
using Ex avoids actually re-shuffling the Nyguist frequency always
Components of W causes trouble just zero out that mode.
Now we can integrate the inversions formule excifft(w) term by term:
$u_{x}(x_{j}) = \frac{1}{N} \sum_{k=1}^{N} e^{i x_{j}} \xi_{k} w_{k} \implies u(x_{j}) = \frac{1}{N} \sum_{k=1}^{N} e^{i y_{j}} \xi_{k} \left(\frac{w_{k}}{i k^{-1} \xi_{k}} \right) + C$
algorithmically, you just have to set (C chosen so ulo)=u(1)=D
$\widetilde{W}_{h} = \frac{h}{i \Im h} W_{L} \qquad \leq h \leq N \qquad \text{in fact, } C=0 \text{ since the even} $ and thus define $u=ifft(\widetilde{w})$. Easy Symmetry of $u \propto gives \ m \text{ odd symmetry} $ when C is $o = mitted$

the Finite element method

Poisson equation

-Du = f on Sh u=0 on dr = Dirichlet B.C.'s

 $\left(\Delta = \nabla^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} = Laplacian\right)$

mathematical questions: do solutions exert?

are they unique?

how nice are they? (regularity)

computational quiotions: how can I find an approximate solution? how close is the in to the true solis?

how tast can I compute the solution?

how much memory does the computer need, etc...

There are several approaches to studying existence, uniqueen and regularity of elliptic equations. They all have numerical counterparts.

- (1) fundamental solutions, Green's fundions, potential theory > boundary integral methods
- 2) maximum principh subhamonic functions bounds in finite different methods
- (3) Hilbert space methods -> finite elements.

	idea of 3rd approach = multiply by a test function v and integrate by parts
	J-vou dx = frfdx = dx means dxdy or dA
man and the second seco	divergence theorem: $\int \nabla \cdot \vec{w} dx = \int \vec{w} \cdot \vec{n} ds$
	y
	vector identity: $\nabla \cdot (\nabla \nabla u) = \nabla v \cdot \nabla u + \nabla \Delta u$
	so ∫-vsudx= ∫r·Vudα - ∫r.(vvu)dx
	= \int Dr. \text{\tint{\text{\tint{\text{\tintett{\tex
	normal dervative
	Green's identity
- (- ₁ - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	so it v=0 on 252, the bounday term is zero and we get
المراجعة	
	Dr. Du dx = I fr dx
ager and group or the control of the control	We now introduce the Sobolev spaces
	H'(r) = "space of L' functions with one defined) weak derivative in L" (defined)
	weak derivative in L" (later)
•	Ho(n) = "H' functions that vamsh on the Loundary"
	weak formulation of the Dirichlet problem.
	weak formulation of the Dirichlet problem: find ueHo(s) such that for all test functions veHo(s)
	[Ru. Dv dx = [fvdx

The theoretical book that are world to study the weak formulation

(and provide error estimates)

of the continuous problem carry over directly to the discrete problem

what are these theoretical books? [today: high level overview later: details The spones H'(1) and H'o(1) are Hilbert spaces with

Inner product spaces) $(u_3v)_1 = \int uv dx + \int \nabla u \cdot \nabla v dx$ as always, the norm of a Hilbert space is given by IIull, = \(\int(u,u)\), warning: the derivatives here are neak derivatives (defined later). if you consider only differentiable functions, the spaces are not amplite. Our finite dimensional subspace $S_h \subseteq H_0^1(\Omega)$ inherits the inner product from the ambient space. (S_h is also a Hilbert space in its own right) The equation we're trying to solve has the structure: find net sit. a(u,v) = <1,v> YveH Here a(.,.) is a bilinear form and (l,.) is a linear functional l: H→R a:HXH -> R $\langle l, \alpha u + \beta v \rangle = \alpha \langle l, u \rangle + \beta \langle l, v \rangle$ Q(u, xv+Bw) = x a(u,v)+B(u,w) $\alpha(\alpha u + \beta u, w) = \alpha \alpha(u, w) + \beta(u, w)$ for any u, we H and a, BER

for any u, v, well and a, BER

in our case,
$$a(u,v) = \int vu \cdot \nabla v \, dx$$

Show that says that if $a(\cdot,\cdot)$ is a bounded, I mean functional than there is a unique solution of satisfying $a(u,v) = \langle e_3v \rangle$ for $e_4v = \langle e_4v \rangle$ from the same than the space of t

If t dx < upper bound for Hell

	coercivity is harder to prove, i.e. that $\exists \alpha > 0$ s.t.
	« u , ≤ a(u,u) Yu∈Ho(12)
	(proof 1) based on the Poincaré-Friedrichs inequality next week)
	summary: the Lax-Malgran theorem gives us constructe and uniqueness of the continuous and discrete systems:
	$\alpha(u,v) = \langle \ell,v \rangle \forall v \in H_0^1(SL)$ $\alpha(u_1,v) = \langle \ell,v \rangle \forall v \in S_h$
(3)	we now want to estimate the error, 114-411,
	from 8, we have
true John	a(u-uh,v)=O Avesh
4	Sh Galerkin orthogonality (closest solution in the a-norm.
uh F	Esolú
	using coercivity, we have 0 for any NESL
	« u-u _h ² ≤ a (u-u _h , u-u _h)
	$= \alpha (u-u_h, u-v_h+v_h-u_h)$
	= a (u-un, u-vn) + a(u-un, vn-un)
. Nu	-Unll, \(\leq \)

this reduces the error analysis to determining how well the true solu can be approximated by any function in the FE space. Now we look for other functions in Si that we can grantee are close to u, namely N= Inu By (ea: (||u-uh|) 5 = ||u-I|u||) interpolation operator. Evalute the exact solution at the modes we will see that there is a constant C2 and interpolate on the elements dipeding on the much quality K hT ≤ K ∀T in the triangulation - (Mu-Ihull 1, h < c2h Iul2, h YNEH2 (Nh) Sobolev space of here $|U|_{2,L^2} \int u_{xx}^2 + u_{xy}^2 + u_{yy}^2 dx$ Squar integrable tunctum with two weak dervatives finally, there's a theorem (the elliptic regularly theorem) that says that If I is convex, there is a constant Cz sitthe solution of the Dirichlet problem [Su=f m sz] Satisfies > 11x112 < C3/1/100 find error estante: | (14-4/11/5 = CC2C3 h 1/1/100

(A=Dh= workx polygon)

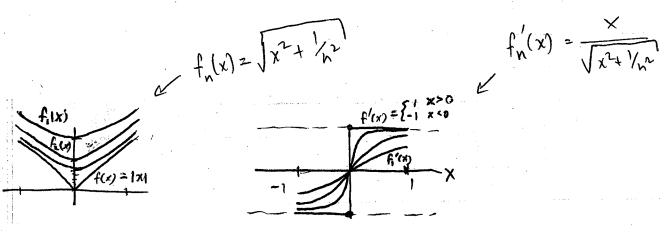
||u||2

= llullo

 $+|u|_{1}^{2}+|u|_{2}^{2}$

Soboler spaces Let 15pco, defin l'(s) = (f:s)=R: (If(x)) dx <0) function which are equal c.l. are identified (ve don't distriguish between f & g if filf-gldx=0 must common case): P=1,2,00 L[∞] = {f: sip |f(x) < ∞ } The worms on the LP spans are: 11 f 11/p(n) = ([1f(x)1] dx) 1/p 15p< 00 11 + 11 00 2 sup 1 + (x) 1 The space (Yor) 11 special. Not only 11 it a Banach space, it's also a Halbert space with the inner product for ff(x) good dx $(f,g) = \int f(x) y(x) dx$ fens an command 11/11 = 1(+,+)

une will write IIfllo to mean IIfllo(n)
and (fig)o to mean fifg de


A Hilbert space 11 a complete inner product space.

completiness is the reason for

studying weak derintives.

For example, we can endow $C'(I), I^{2}(-1,1) \text{ with the inner product}$ $(f,5)^{2} \int_{-1}^{1} f(x)g(x) dx + \int_{-1}^{1} f'(x)g'(x) dx$

but the sequence $f_n(x) = \sqrt{\chi^2 + 1/h^2}$ is a cauchy sequence which doesn't conveye to any fretion $f \in C'(I)$. (it conveyes to f(x) = |x| which is not differentiable at x = 0)

[fn] is Cauchy:

If $-f_m \| \le \|f_n - f\| + \|f_m - f\| \to 0$ as $m, n \to \infty$ Since $\|f_n - f\|^2 = \int_{-1}^{1} (f_n(x) - f(x))^2 dx + \int_{-1}^{1} (f_n'(x) - f(x))^2 dx \to 0$ as $n \to \infty$ by dominated conveyance theorem.

weak derivatives

spt
$$\phi = \{x : \phi(x) \neq 0\}$$
 \subset closure in Ω

$$= \{x \in \Omega : \exists \text{ sequence } x_n \Rightarrow x \text{ s.t. } A\phi(x_n) \neq 0\}$$
spt ϕ is compact if it is closed and bounded.

motivation: suppore uec'(
$$x$$
) and $\phi \in C_{c}^{\infty}(\Lambda)$

$$\operatorname{div}\left(\begin{array}{c} 0 \\ 0 \\ 0 \end{array}\right) e^{ith slot} = \left(\partial_{i} u\right) \phi + u \, \partial_{i} \phi \qquad \partial_{i}^{2} \frac{\partial}{\partial x_{i}}$$

So
$$\int (\partial_i u)b + u \partial_i b dx = \int div (\stackrel{\circ}{u}o) dx = \int (\stackrel{\circ}{u}o) \cdot n dA = 0$$

then

 $d = 0$ on

conclusion: Let I = R" be open and connected. if uec'(r) and ofeco(r) the $\int_{\Omega} u \, d_i \phi \, dx = -\int_{\Omega} (\partial_i u) \, \phi \, dx \qquad (i^2 1, ..., n)$ more generally, if uf C'(N) and az (d), ,, dn) is a multi-index, the $\int_{\Omega} u \partial^{\alpha} \phi dx = (-1)^{|\alpha|} \int_{\Omega} (\partial^{\alpha} u) \phi dx$ Here each of 11 an integer 20 and Jane Jan U further notation: latz at + ... + an for x6R we write x 2 x, x, x, x, ... Xn α = α , α how many way) α≤β means α, ≤β, , ..., α, ≤βn how many the k balls in 1 n bins? the number of multi-indices of order k is $\#\{\alpha: |\alpha| = k\} = \binom{n-1+k}{n-1} = \frac{(n-1+k)!}{(n-1)!k!}$ example: choosing 2 from 6 leaves 4 algets partitioned into 3 groupsis n=3, k=4

 $\mathfrak{G} \circ \mathfrak{G} \circ$

def: Suppose u, v el (n) and a 1s a multi-index.
We say v 1s the ath partial derivation of in (v=204)
provided that

 $\int_{\Omega} u \, \partial^{x} \phi \, dx = (-1)^{|\alpha|} \int_{\Omega} v \, \phi \, dx$

for all test functions $\phi \in C^{\infty}_{c}(\Omega)$. Note: this is the definition of $\partial^{\alpha}u$.

we just saw that classical dervatures are weak dervatures.

Thm: weak derivatives are unique.

pf: Sp $v = \partial^{\alpha}u$ and $\overline{v} = \partial^{\alpha}u$.

This (-1) 1 x 1 for dx = \int 1 x \phi dx = \int 1 x \phi dx

1.e. $\int_{\infty} (v - \tilde{v}) \phi dx = 0 \quad \forall \phi \in C_{c}^{\infty}(x)$

.. $V = \widetilde{V}$ a.e. V = V (see e.g. Evans, PDE Lieb & Low, Analysis)

Ph:

The definition only really requires $u, v \in L^1_{loc}(\Omega) = \{u: \Omega \ni R: \int_{K} |u \cos l \, dx < \infty \ V \in L^1_{loc}(\Omega)\}$ but we will orish ever need the 12 theory of weak derivatives.

Sobolar spaces:
$$H^{m}(\Omega) = \{u: \Omega \rightarrow \mathbb{R} \mid \forall \alpha \text{ with lastern} \}$$

Scalar product:

 $(u,v)_{m} = \sum_{|\alpha| \leq m} (\partial^{\alpha}u, \partial^{\alpha}v)_{0} = (h^{0} = l^{2})$
 $(h,0)_{0} = \int_{|\alpha| \leq m} f_{1} dx$

Norm:

 $\|u\|_{m} = \sqrt{(u,u)_{m}} = \sqrt{\sum_{|\alpha| \leq m} \|\partial^{\alpha}u\|_{0}^{2}}$
 $(h,0)_{0} = \int_{|\alpha| \leq m} f_{1} dx$

Norm:

 $\|u\|_{m} = \sqrt{(u,u)_{m}} = \sqrt{\sum_{|\alpha| \leq m} \|\partial^{\alpha}u\|_{0}^{2}}$
 $(h,0)_{0} = \int_{|\alpha| \leq m} f_{1} dx$
 $(h,0)_{0} = \int_{|\alpha| \leq m} |\partial^{\alpha}u|_{0}^{2}$
 $(u,v)_{0} = \int_{|\alpha| \leq m} |\partial^{\alpha}u|_{0}^{2}$
 $(u,v)_{1} = \int_{|\alpha| \leq m} |\partial^{\alpha}u|_{0}^{2}$
 $(u,v)_{2} = (u,v)_{1} + \int_{|\alpha| \leq m} |\partial^{\alpha}u|_{0}^{2}$
 $(u,v)_{2} = \partial^{\alpha}u|_{0}^{2}$
 $(u,v)_{2} = \partial^{\alpha}u|_{0}^{2}$
 $(u,v)_{3} = \partial^{\alpha}u|_{0}^{2}$
 $(u,v)_{4} = \partial^{\alpha}u|_{0}^{2}$
 $(u,v)_{5} = \partial^{\alpha}u|_{0}^{2}$
 (u,v)

Last time: weak derivatives, definition of Sobolev spaces Today: finish discussing Soboler spaces. a=(di)--, dn)
non-negative
integers recaps weak derivatives: Suppose u, we L2(IL) and a is a multi-index. we say is the ath partial derivative of in (v= 2 u) provided that $\int_{\Omega} u \, \partial^{\alpha} \phi \, dx = (-1)^{(\alpha)} \int_{\Omega} v \, \phi \, dx$ for all test functions be C. (IL). Note: this is the definition of da. Sobolev spaces: Hm(IL) = {u: 1 > R | you with |al < m 7
and belongs to L'(IL) scalar product: (u,v)_m= \(\langle \l (f,9)= f f dx norm: 11u11_ = \(\(\lambda_1 u)_m\) = \(\sum_{\text{12}} \frac{11\d^2 u 11^2}{2}\) seninorm proputicis

NX1120

11x+y115 11x11+ 11y11 Seninorn: lulm = J = 11 daullo ltxh | Rl = llxR | limportant cases $(u_1v)_0 = \int_{\Omega} uv dx$, $(u_1v)_1 = \int_{\Omega} uv dx + \int_{\Omega} vu dx$ | ux = 0 if x = 0note that [(day, dar) = (din, dir) + + (din, dir) = [Du. Du dx

Remark: In 1d, there's already a general Battone of
derivative beyond $C^{k}(a,b)$ $\Omega = (a,b) + t$ open interval a b
open interval a b
The Harmon of Colombia Continue has been been
Fundamental theorem of Calculus for Lebesgue integrals:
if a < b and F: [a, b] > R, TFAE:
(i) F is absolutely continuous on [a, b)
(2) FIM-F(a) = \(\frac{x}{a} f(t) dt \text{ for some } f \in L'(a,b)
(3) F is differentiable almost everywhere on [a,b], $F' \in L'(a,b) \text{ , and } F(X) - F(a) = \int_{a}^{x} F'(t) dt$
a
Here (1) means that VEDO 3870 s.t.
if (a, b,),, (a, b,) is any disjoint
collection of intervals in [a, 6) with \$\(\(\begin{array}{c} (b;-a;) < 8 \end{array}\)
thun $\sum_{i=1}^{N} F(b_i) - F(a_i) \leq \varepsilon$
proof of themen: see Folland's book on Real Analysis
Lemma: if Fit are abs. cont. on [9,6] then so is Ft and
$\int_{a}^{b} (FG' + F'G) dx = FG \Big _{a}^{b}$
Theorem: $u \in H'(a,b)$ if $f(u)$ equal a.e. to an
absolutely continuous function on [a, 1], and
$u' \in L^2(a,b)$
· •

E) Let \$6 Cc (a, b), Since u and & are als cont. the lemma gives ∫ ω θ dx = u θ | a | - ∫ a u φ dx

so u' (defind are as him ulath) - nlos) is a weak derivation of u. Since u, u' ELZ, uEH1.

=>) Green u,v el(a,b) s.t. | not da = -] v & dx 4 4 6 CO (N) U(x) = structide.

Then is 11 abs. with and is = or a.e. and have weakly by <= 1 above. $\int (u-\widetilde{u}) \phi' dx = 0 \quad \forall \phi \in C_c^{\infty}(a_3b).$

Choose any $\phi_0 \in C_c^\infty(a, b)$ with $\int_a^b \phi_0(x) dx = 1$ For any $\phi \in C_c^{\infty}(a, b)$ we have

 $\phi(m = \phi(x) - \alpha \phi_0(x) + \alpha \phi_0(x)$ a = S & sm dx has mea zeo hence equels $\psi'(x)$ for $\psi(x) = \int_{A}^{x} \phi(t) - \alpha \phi(t) dt$

:] (u- u) d dx = [(u-u) a bo(x) dx = ac = c] danda = [(n-ti-c) pdazo +b. :- u= te a.e. c = (1 - 1) \$ dx

· Trus cla cont.

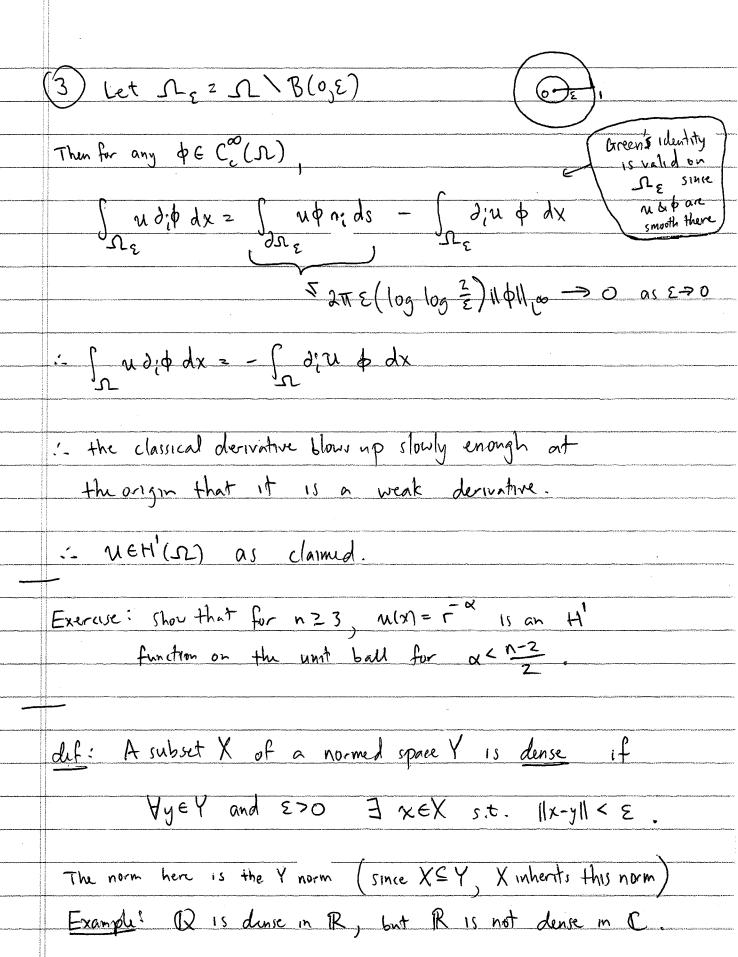
In 2-d there are unbdd form H!

Claim
$$u(x,y) = log log = belogs to H'(x), \(\omega = \frac{2}{r} \text{ty}^2 \text{21} \)

white disk

$$\frac{1}{r} = \sqrt{x^2 + y^2}, \quad \partial_x r = \frac{x}{r} \quad \partial_y r = \frac{y}{r}$$$$

$$\nabla u = \frac{-1}{r^2 \log^2 r} \begin{pmatrix} x \\ y \end{pmatrix}$$


$$|\nabla u|^2 = \frac{1}{r^2 \log^2 z}$$

1)
$$\int_{\Omega} |\nabla u|^{2} dx = \int_{0}^{2\pi} \int_{0}^{1} \frac{1}{r^{2} \log^{2} r^{2}} r dr d\theta = 2\pi \int_{0}^{1} \frac{1}{r \log^{2} r^{2}} dr$$

$$\int_{0}^{1} |\nabla u|^{2} dx = \int_{0}^{1} |\partial u|^{2} \int_{0}^{2\pi} r dr d\theta = 2\pi \int_{0}^{1} \frac{1}{r \log^{2} r^{2}} (-\frac{1}{r})$$

$$\int_{0}^{1} |\nabla u|^{2} dx = \int_{0}^{1} |\partial u|^{2} \int_{0}^{2\pi} r dr d\theta = 2\pi \int_{0}^{1} |\partial u|^{2} \int_{0}^{2\pi} r dr d\theta = 2\pi \int_{0}^{1} |\partial u|^{2} \int_{0}^{2\pi} r dr d\theta = 2\pi \int_{0}^{1} |\partial u|^{2} \int_{0}^{2\pi} r dr d\theta = 2\pi \int_{0}^{1} |\partial u|^{2} \int_{0}^{2\pi} r dr d\theta = 2\pi \int_{0}^{1} |\partial u|^{2} \int_{0}^{2\pi} r dr d\theta = 2\pi \int_{0}^{1} |\partial u|^{2} \int_{0}^{2\pi} r dr d\theta = 2\pi \int_{0}^{1} |\partial u|^{2} \int_{0}^{2\pi} r dr d\theta = 2\pi \int_{0}^{1} |\partial u|^{2} \int_{0}^{2\pi} r dr d\theta = 2\pi \int_{0}^{1} |\partial u|^{2} \int_{0}^{2\pi} r dr d\theta = 2\pi \int_{0}^{1} |\partial u|^{2} \int_{0}^{2\pi} r dr d\theta = 2\pi \int_{0}^{1} |\partial u|^{2} \int_{0}^{2\pi} r dr d\theta = 2\pi \int_{0}^{1} |\partial u|^{2} \int_{0}^{2\pi} r dr d\theta = 2\pi \int_{0}^{1} |\partial u|^{2} \int_{0}^{2\pi} r dr d\theta = 2\pi \int_{0}^{1} |\partial u|^{2} \int_{0}^{2\pi} r dr d\theta = 2\pi \int_{0}^{1} |\partial u|^{2} \int_{0}^{2\pi} r dr d\theta = 2\pi \int_{0}^{1} |\partial u|^{2} \int_{0}^{2\pi} r dr d\theta = 2\pi \int_{0}^{1} |\partial u|^{2} \int_{0}^{2\pi} r dr d\theta = 2\pi \int_{0}^{2\pi} r d$$

$$\frac{1}{2} 2\pi \left(|v_0|^2 \right)^{-1} \Big|_0^1 = \frac{2\pi}{|v_0|^2} - 0 < \infty$$

Theorem: Let on CR be an upon set with preceive smooth boundary, and let m20. The COCOINHMIN)

13 description HM(N).

PE: see e.g. Evans' PDE book.

det: Ho(s) = the closure of Co(s) in Hm(s) v.r.t. the norm 11.11m.

Theorem: (Poincaré-Friedrichs megality)

Suppose SL is contained in an n-dimle cube with SIDE legal S. Then SIDE legal S. Then SIDE legal S. Then

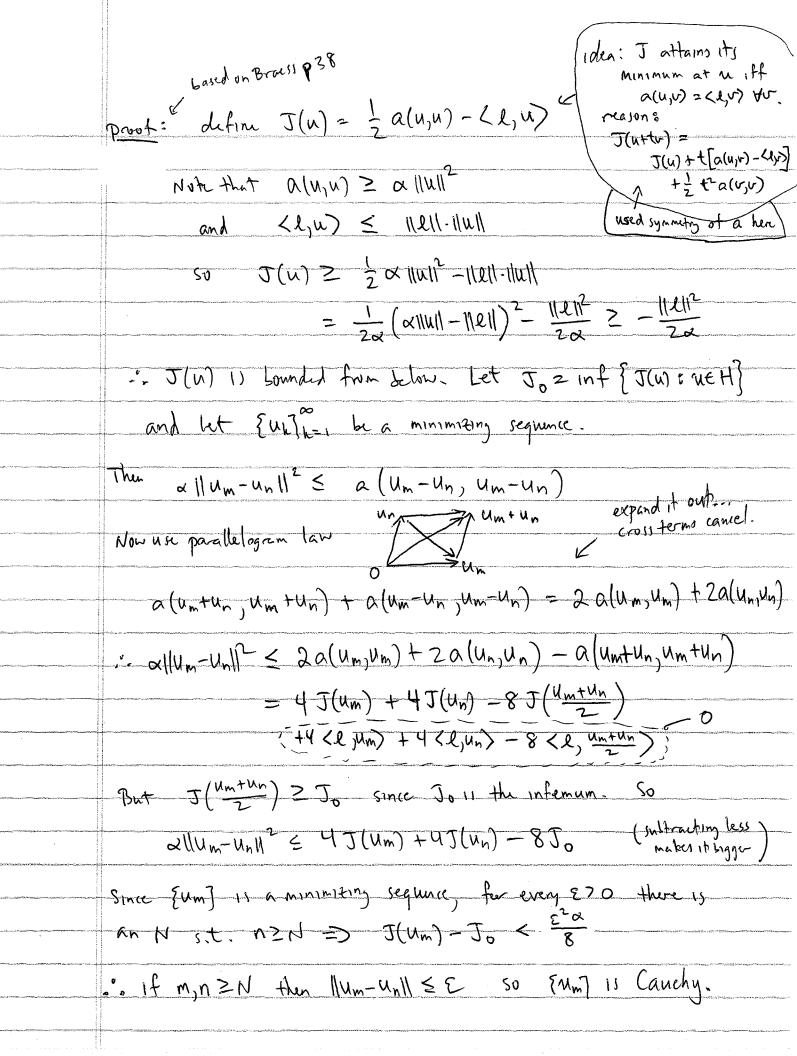
Pf: may assume ICQ = {xERn; O<x; <s, i=1,...,n}
by translation and rotation if necessary. (IIII) and IUI, are
invariant under such changes of coordinates)

Let uc color).

Extend it to $C_c^{\infty}(Q)$.
Via NZO on QII

Then $u(x_1,...,x_n) = u(0,x_2,...,x_n) + \int_0^{x_1} \partial_1 u(t,x_2,...,x_n) dt$ Cauchy- Schwarz= |u(x)|2 \le \(\int \frac{1}{2} dx \int \frac{x_1}{n} | \partial_i u(t, x_2, ..., x_n)|^2 dt $\leq x_1 \int_{a}^{s} |\partial_1 u(b_1 x_2, ..., x_n)|^2 dt$ for fixed x2,..., xn: $\int_{0}^{s} |u(x)|^{2} dx, \leq \left(\int_{0}^{s} x_{1} dx_{1}\right) \left(\int_{0}^{s} |\partial_{1}u(t_{1}x_{2}, \dots, x_{n})|^{2} dt\right)$ 52/2 integrate over other words: $\|\chi\|_{0}^{2} = \int_{Q} |\chi|^{2} d\chi \leq \frac{s^{2}}{2} \int_{Q} |\partial_{1} u(t_{1} x_{2},...,x_{n})|^{2} dt dx_{2} - dx_{n}$ $= \frac{s^2}{2} \int_{\Omega} |\partial_1 u|^2 dx \le \frac{s^2}{2} \int_{\Omega} |\nabla u|^2 dx = \frac{s^2}{2} |u|_1^2$ This established the result (IIullo & [Iuli) for all NEC (12) which is a denn subset of Ho(12). Nou let v be any function in Ho(se) and let E>O. Since $C_c^{\infty}(\Omega)$ is dust in $H_o(\Omega)$, $\exists u \in C_c^{\infty}(\Omega)$ s.t. $||u-v|| \in E$ Thun 11v11, 5 11 ull, + 11v-ull, 5 5 1u1, + 8 \[
 \frac{12}{5} \left(|M-\right| + |M| + \right) + \(\xi \) \(\frac{12}{5} \right| \right) + \(\frac{12}{5} + \right) \(\xi \)
 \[
 \frac{12}{5} \left(|M-\right| + |M| + |M| + \\ \frac{12}{5} \right| \right| + \\ \frac{12}{5} + \right| \) Since & is arbitrary, 11/10 & 5/2/1/1 as claimed corollary: 1.1, 15 a norm equivalent to 11.11, on Ho(SL) simportant. $|u| \leq ||u||_1 = (||u||_0^2 + |u|_1^2)^{1/2} \leq (\frac{s^2}{2} + 1)^{1/2} |u|_1 = |u|_1^2$ constant functions corollay: a(u,v) 2 fr Du. Dudx 1) coercon on Ho(1). a ||u||2 (u,u), x2 (1+ 52

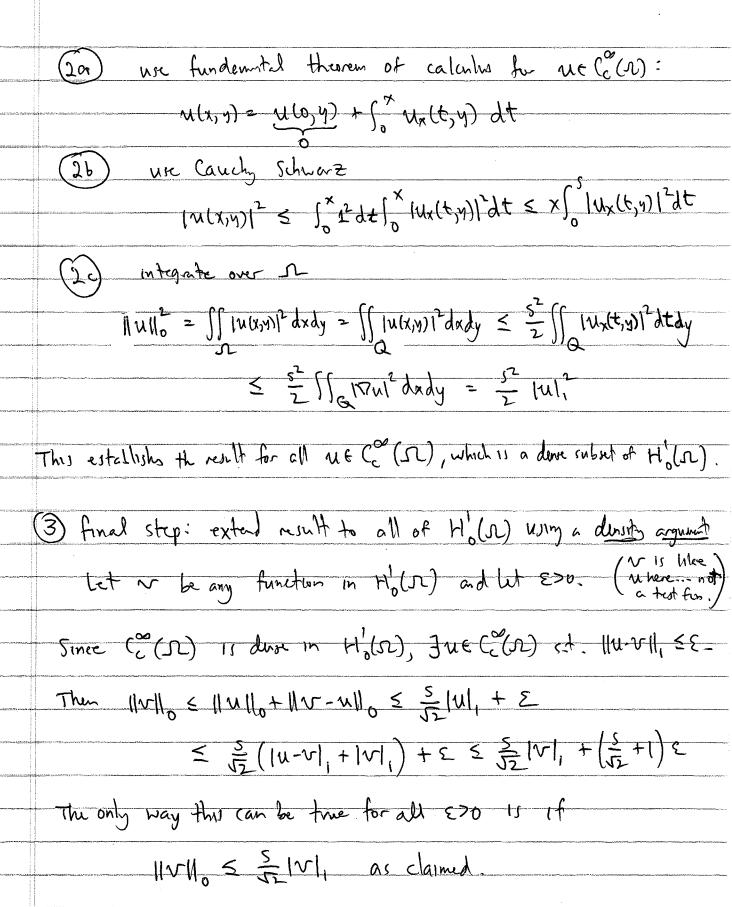
-	Jacobson as a southly
	Last time. In 1d; $H'(a_1b) = \{ \mathcal{U}: (a_1b) \to \mathbb{R} \mid \text{ continuous for on } [a_1b] \text{ and } \mathcal{U}_{x} \in L^{2}(a_1b) \}$
	· In higher dimensions, H'(N) contains functions that blow up
and the same of the same	
	Today: Coercivity and the Lax-Milgram theorem
-	postporto page 3.
	Theorem: Co(r) nHm(r) is dure in Hm(r) for any open set IZ S R"
4	
	exercise: fill in the blank: this means: YNEHM(IL) and E>O,
of a day constraint	
-	def: Hom(n) = the closure of Com(n) in Hom(n)
4	$= \left\{ u \in H^{m}(\Omega) : \exists v_{1}, v_{2}, \in C_{c}^{\infty}(\Omega) \text{ s.t. } v_{k} \rightarrow u \text{ in } H^{n}(\Omega) \right\}$
-	
	exercise: V, > u in Hm(I) means: YE>O =N s.t.
-	
Action and a second contract	in words:
-	Ho(N) is the set of all functions w: N→R such that due [2(N)
	for lal ≤ m and u=0 on da.
	i.e. these mak derivatives
	N=0 is imposed by requiring that you exist and belong to 12(12).
	can get ansitrantly close to u by a Confunction v
	with compact support in sh
	(i.e. v is zero outside of a closed and Lounded, set K = sl)
	compact


The weak formulation of the Dirichlet problem is: find ueHo(s) s.t. a(u,v) = <e,v) YveHo(s) where a(u,v) = I Pu. Dv dx, (l,v) = I fv dx we need to show that a(·,·) is bounded and coercine and that I is bounded. To prove boundedness of a and I, we use Cauchy-Schwarz: Theorem: Let H be a vector space with inner product (.j.). Then |(x,y)| \le ||\alpha || . ||\y|| \forall x,y \in H pt: if x or y is zero, we have 050 othermse let 2211XII, m= sgn((x,0)) livil and check that $o \in (\mu x - \lambda y), \mu x - \lambda y) = \mu^2(x,x) - 2\lambda \mu(x,y) + \lambda^2(y,y)$ = $2 ||x||^2 ||y||^2 - 2 ||x|| - ||y||(x,u)|$ $|(x,y)| \leq ||x|| \cdot ||y||$ $(\alpha(x,x) \geq 0 \quad \text{but } \alpha(x,x) \geq 0 \quad \text{does})$ $\text{not imply } x \geq 0$ 50 Corollay: Let a(:,:) be a symmetric, positive semidefinite bilinear form on H. then |a(x,y)| \le ||x|| a ||y|| a where ||x|| a = \a(x,x) pf: define the new inner product ((x,y)) = (x,y) + a(x,y) Cauchy-Schwarz implies $|((x,y))| \leq \int ((x,x)) \int ((y,y))^{-1}$ Now take the limit as E > 0.

note: 11.11a is only a semi-norm if a is not positive definite

Claim: a(U,V) 2 In Ru Ru dx is bounded on H'(1) (hence on H'o(1)) $\frac{pf:}{\text{for any u,ve H}^1(\Omega)} \leq \sqrt{a(u,v)} \sqrt{a(v,v)} \leq \sqrt{\|u\|_o^2 + a(u,u)} \sqrt{\|v\|_o^2 + a(v,v)}$ $= \|u\|_1 \|v\|_1$ so C=1 works in |alu,v) | & C ||ull, ||v||, (13 a unstat) Claim: (l,v) = [frdx is bounded on H'(1) <u>pf</u>: |⟨l,v⟩| ≤ ||f||₀ ||v||₀ ≤ ||f||₀ ||v||₁ so C=11fllo works in (2,v) & Cllv11, (so 11211, & 11fllo) Now we want to prove that al.,) is coercive on Hola, i.e. Ja>o s.t. allull? ≤ a(u,u) YueH'o(s) This isn't true on all of H'(2) as the function u(x)=1 satisfies 11u11= Ju2dx = volume(12) >0 while a(u,u) = \ \ Pu-mdx = 0 Note that the issue in @ 15 whether 18416 can be bounded by 1411: $\alpha \|\mathbf{u}\|_{1}^{2} = \alpha \left(\|\mathbf{u}\|_{0}^{2} + |\mathbf{u}|_{1}^{2}\right) \leq \alpha(\mathbf{u}_{1}\mathbf{u}) = |\mathbf{u}|_{1}$ need Hullo < (1/2-1) |W|2 YUEH'6(D) go back to page 1.

	Theorem & (Pomcare Friedrichs inequality)
	Suppose SL 13 contained in an n-dimensional cute with
- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	side length s. Then
	Mullo & 5 ml, AneHo(v)
	proof in 2d: (see Lee 23 for n dimensions)
	may assume . SLEQ= {(x,y): O< x<5, O< y<5} by translation 6 rotations of necessary - (114110 and 11411)
Philippe Programme and Program	are invariant under such changes of coordinates)
	Let ue Co (sz). Extend it to Co(Q) via u=0 on Q\S
5 Q Q	Thu $u(x,y) = u(0,y) + \int_0^x u_x(t,y) dt \in FTOC$
0 10 × 5 110×11/20	cauchy-schwarz: u(x,v) 2 (x 12 dt (x ux(t,v)) 2 dt
	$\leq \times \int_{0}^{s} u_{x}(t,y) ^{2} dt$
	holding y fixed: 5/2 a constant indep. of x
	$\int_0^s u(x,y) ^2 dx \leq \left(\int_0^s \times dx\right) \left(\int_0^s u_x(t,y) ^2 dt\right)$
t TOTATION IN THE STATE OF THE	now integrate in y-direction:
	$ u _{0}^{2} = \int_{0}^{s} \int_{0}^{s} u(x,y) ^{2} dx dy \leq \frac{s^{2}}{2} \int_{0}^{s} \int_{0}^{s} u_{x}(t,y) ^{2} dt dy$
	$=\frac{s^2}{2}\iint_{Q} u_x ^2dxdy \leq \frac{s^2}{2}\iint_{Q} \nabla u ^2dxdy = \frac{s^2}{2} u _1^2$
	This establishes the result (114110 ≤ \ [141]) for all ue (\(\alpha\)
	which is a dense subsect of H'o(s)


شار المراجعة	Now let v be any function in H'o(s) and let EDO.
	Since Co(r) 1) duce in Ho(r), Ju ∈ Co(r) s.t. 114-1/1/28
	Thun W1/0 < Mullo + 1/2 - ullo < = [ul, + 2
	≤ 5 (u-v , + v ,)+ε ≤ 5 v , + (5 +1) ε
	since & 1) arbitray, IIVII, as claimed.
	corollarg: 1-1, 11 a norm on H'o(12) equivalent to 11-11,
	$ u _{1} \leq u _{1} = (u _{0}^{2} + u _{1}^{2})^{1/2} \leq (\frac{s^{2}}{2} + 1)^{1/2} u _{1}$
	Corollan: $\alpha(u,v) = \int \nabla u \cdot \nabla v dx$ is coercive on $H_p(\Omega)$ with $\alpha = (1 + \frac{s^2}{2})^{-1}$
	(Let H be a Hilbert space.
	Lax-Milgran theorem: } Suppose a: HXH>IR is bounded, wereive & bilinear.
	and l: H > IR is bounded and linear.
-	Then 3! NEH s.t. a(U,V) = <l,v) aveh.<="" th=""></l,v)>
THE PARTY NAMED IN COLUMN TWO IS NOT THE PARTY N	() A A A A A A A A A A A A A A A A A A
_	we'll prove it in the special case that $\alpha(\cdot,\cdot)$ is also symmetric.
	(see e.g. Evans' PDE book for general case)

A No. of Street, Square, Street, Stree	11 201.1
	since His complete, um converges to somethy, say u.
_	Since J is continuous (land a are bounded) we have
*	1 1 Refund
-	continuity un is a minimizing sequence
The state of the s	$J(u) = J(\lim u_n) = \lim_n J(u_n) = J_0$
-	
	Since a minimizes J, it satisfies a(u,v)=(e,v) AveH.
	U 13 unique because two such minimites u, uz could be
-	Strung together into a sequence U, Mz, Uz, U, Uz,
	which is also a minimizing sequence, hence is Cauchy
	and converges. This is a contradiction until 4,242.
	Note: We've actually proved the RIEST representation
The same of the sa	theorem as a special case:
	Let $a(u_j v) = (u_j v)$
	given LEH' and space of H
And in contract to the second	3! u s.t. (u,v) = (1,v) AveH
	Thus the canonical map from H to H' given by
	u > (U, ·) is onto (it's an isometry, actually)
The state of the s	(in the complex case, M+) (0, W) is conjugate linear from H to H')

er en	
Last time's	discussed HW problem 4
	generalization of Cauchy-Schworz to symmetric, positive remidefinite
	a(:) and (1,:) are bounded Lilinear forms
	a(·,·) is not coercine on all of H'(x)
	definition of Ho(R) (closure of Co(R) in H'(r))
	started proving Poincaré Friedrichs inequality
Today:	finish Poincan-Frichols proof
	Lax-Milgran theorem
	stability of finite elements
	Céas temma
ktopen er til Millioning som inn med hand i komputer i blindelse til komputer i en det bekommen av	
and a strong and a strong section as a st	Notational issues and hint on homework pullers 3.
— до се стойново помощени рего чено част пред пред пред до се	
Theorem: (T	Porncar-Friedrichs inequality)
Suppose	I is contained in a square with side length s.
- The second	

Then $\|u\|_0 \le \frac{s}{\sqrt{2}} \|u\|_1$ for all $u \in C_c^{\infty}(\Omega)$ Proof so far: translate and rotate Ω to $\Omega = C_0(s) \times C_0(s)$ 2 show that \otimes holds for $u \in C_c^{\infty}(\Omega)$

Corollay: 1.1, 1) a norm on $H_0(x)$ equivalent to $\|\cdot\|_1$ P^{f} : $|u|_1 \leq |u|_1 = (|u|_0^2 + |u|_1^2)^{1/2} \leq (\frac{5^2}{2} + 1)^{1/2} |u|_1$

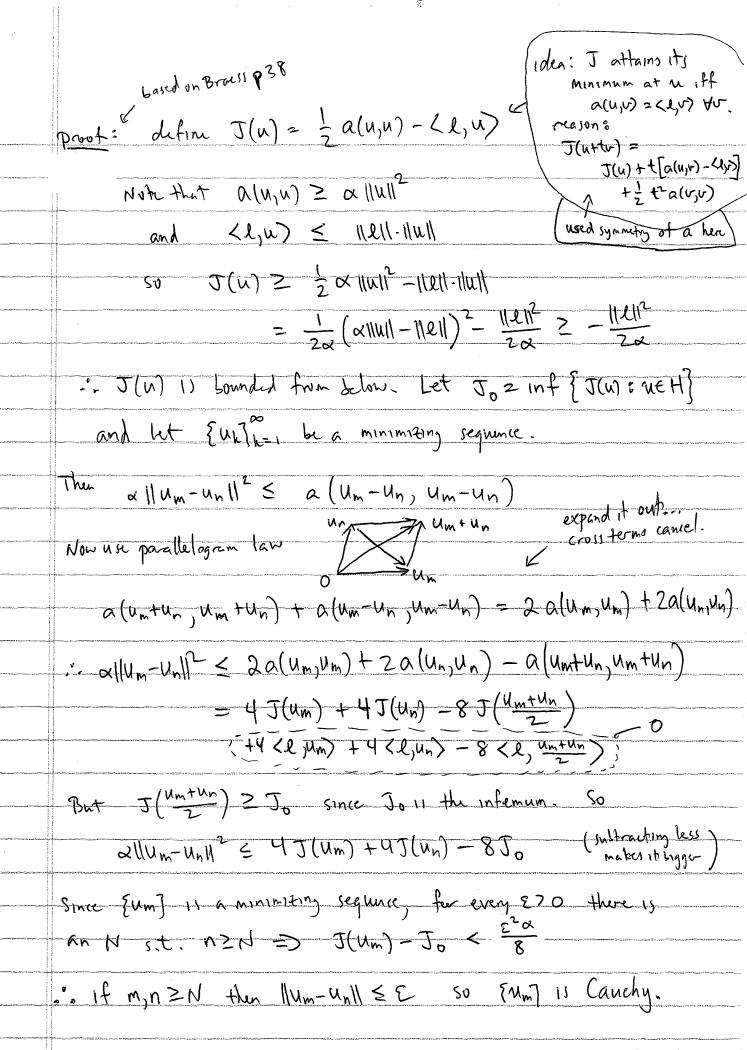
wrolley: $\alpha(u,v) = \int_{\Omega} \nabla u \cdot \nabla v \, dx dy$ is coeruse on $H_0(\Omega)$ with $\alpha = (1+\frac{s^2}{2})^{-1}$

Remak: this post would work for so contained in a rectangle

Q whose shortest orders. It would ever

work over an infinite stop of width s.

(D2 infinite stop.)


Remark: for a square (or n-cube in n dimensions) we can average the result in each direction and obtain $\| u \|_0 \le \frac{5}{\sqrt{2n}} \| u \|_1 + \| u \in H_0^1(\Omega)$

Lax-Milgram theorem: Let H be a Hilbert space.

suppose a: HxH → IR is bounder, coercine and bilinear
and l: H→IR is bounded and linear
Then I! u∈ H s.t. a(u,v) = (l,v) ∀v∈H

Lunique

we'll prove it in the special cost that a(·,·) Is also symmetric. (see e.g. Evans' PDE book for the general case)

since His complete, um converges to somethy, say u.
Since I is continuous (I and a are bounded), we have
continuity un is a minimizing sequence
$J(u) = J(u) = \lim_{n \to \infty} J(u_n) = J_0$
Since a minimites J, it satisfies a(u,v)=(u,v) Avet.
U is unique because two such minimites u, uz could be
strung together into a sequence U, 2,2,1,2,1,2,2,
which is also a minimizing sequence, hence is Cauchy
and converges. This is a contradiction unless 4,242.
Note: We've actually proved the RIEST representation
theorem as a special case:
Let $\alpha(u_1v) = (u_1v)$
given LEH* e duel space of H
3! u s.t. (u,v) = (hv) YveH
Thus the canonical map from H to H* given by

NH (U,.) Is onto (It's an isometry, actually)

(in the complex case, Mt) (o, m) is conjugate linear from H to Ht)

	finit elemet space
	✓
22.8.5	Note: Lax-Milgran applies equally well to the subspace Sh & H'o(12)
-	so we get existence and imaginess of the weak formulations
1	of the continuous and direct problems:
)	3! NEH'(r) s.t. a(u,v) = <l,v) th="" yveh'(r)<=""></l,v)>
w.e.rs	3! ule 2 st. v(n'n) = < (n) Are2
7-8-10	Stability: the solutions u and up are bounded by the norm of f
	pf^{2} $\alpha u _{1}^{2} \leq \alpha(u_{1}u) = \langle l_{1}u \rangle \leq l _{1}^{2} u _{1}^{2} \left(-\Delta u^{2} f^{2} + u^{2} u^{2}\right)$
	< n+110.11ully
	:, u , < \frac{1}{\alpha} f _0
	similarly, Ilunil, & - Ilfilo
	Error analysu (Cea's lemma) the FE solution is within a
	constatt of the Lest possible approximation in the FE space Sh:
***************************************	$ u-u_h \leq \frac{c}{\alpha} \inf u-v_h _1$ $\frac{clorest}{solution}$ $\frac{clorest}{solution}$ $\frac{clorest}{solution}$
-	whe St Land St
-	pf: from @ we have a(u-uh,v) = 0 yveSh. (tralerking)
	Thus allu-uhling & a (u-uh, u-uh) O (vieSh is arthray)
	= a(u-uh, u-vh+vh-uh)
	$= a(u-u_h, u-v_h) + a(u-u_h, v_h-u_h)$
	≤ CHU-Uhll·HU-Uhll Oby Galukin
-	5° - 114-4211 € GILU-VAN for every VAESh. Nov take infimum of RHS.

Notational issues! ((u,v)) < (lull : llv) < Cauchy School (inner product) (LLV) & HAH: NVI) and definition of norm of l (the brakets are anoth way to write llv)) subscripts & \mathbb{R}^n : $\|x\|_p = \left(\frac{\hat{\Sigma}}{\sum_{i=1}^{n} |x_i|^p}\right)^{1/p}$ LP: 11 WILP = | SI (war) 1P dxdy) 1P Hm: 11411 Hm = (\(\sum \) [181 \sum 1] (\dady) 11/41/2 could mean 1/41/12 or 1/41/42 _ Ho=12 Lately I have been writing flullo = 1121/2 1/21/2 = 1/41/42 we have: L2(N) = H0(N) 2 H1(N) 2 H2(N) 2. $H_{0}^{1}(x) = H_{0}^{1}(x) = H_{0}^{2}(x) = -1$ Hölders inequality generalites Cauchy-Schwarz for LP spaus. In R? It looks like 16x1 & 11611911x11p, 116119= (= 16;19)19 with wi= sgn(xi)|xi|p, zi=sgn(bi)|bi|q|p q = (pbq an conjugate exponuti)

	vector	
	dual spaces: If X is a normed Timear space, its dual space is	
	X = { bounded linear fundaments on X}	
	the norm on $\chi^{\frac{1}{4}}$ is $\ f\ = \sup_{x \neq 0} \frac{ f(x) }{ x }$	
	X* is complet even if X is not complete.	
	continuity and Loundelmss: a linear impping f: X> 1R is	
	bounded iff it is continuous.	
<	$= \int f(x) - f(y) = f(x-y) \leq f x-y $	
	=>] if f is continuous at 0, 38>0 (t. f(y)-f(o) < Ally1 <8.	
	so if $x \neq 0$, then $y = \frac{1}{2} \frac{8}{11 \times 11} \frac{\times}{11 \times 11} \frac{6}{11 \times 11} \times $	
	and $ f(y) = \frac{1}{2} 8 \frac{ f(x) }{ x } < 1 \Rightarrow \frac{ f(x) }{ x } \le \frac{2}{8} \forall x \ne 0$	
	Subspaces and extresions. If MSX and FEX*	
The state of the s	then f = F(M E M* restriction of F to M and II file II File (i.e. F(x) = f(x) + xeM)	
	The Hahn-Banach theoren says that every linear functional	
2 1 m m m	on Mis of this form:	
HBT	: Given fem* 3 FEX* s.t. Flm=f and 11F11=11f11.	
11		

In polem 3a, we have $M = C^{\infty}(x) \cap H'(x)$
$\chi = H'(v)$
and I gave you a linear functional f on M that
is bounded when Mii equipped with the 12 horm:
If(u)) & CHUILO & YNEW H"=12
to apply the HBT you need to show f is bounded
with respect to the norm inherited from X, namely 11.11,
> to be shown: 3C, r.t. If (w) { C, Mull, YUEM
Now HBT => 3 FEX* st. F(u) = f(m) YNEM
In problem 36, we have $M = C^{\infty}(II) \cap H^{1}(II)$
X = L ² (-\(\Omega\))
Now all you know is that femt when Miseguipped with the H'norm
If(n) ≤ CHull, YneM
and before we can apply the HBT we have to show that fis bold wiret. The norm inherted from X:
> to be shown: ∃Cy sit. If(m) ≤ Cy llullo YUEM
Now HBT => FEXT GA. F(m) = f(m) HuEM
Zemak; the FIBT is not really necessary in this proplem since Mis duse in X; but it makes the proofs a lot case.

The second control of	50 how would you prove that
	here's an example to model your proof on &
	Let M= C[0,1], X= L'(0,1)
	given f \(\text{M} who M is equipped with the max norm, i.e.
Control and and an area of the second	$ f(v) \leq C u _{\infty}$ can $f = x^*?$
***************************************	Answer: no. Counterexample: f(u) = u(o).
A TOTAL PROPERTY OF THE PARTY O	we have $g(f(u)) \leq \max_{0 \leq x \leq 1} u(x) $ so $C=1$ works how.
+	but f is not bounded on M when Misegrapped with L' norm.
	Try to reach contradiction: Suppose 3C, s.t. If(m) < C, llully Yue)
and the second s	look for bad u: Ju lage value here
And the second s	how alout $M(X) = \frac{1}{E + J \overline{X}}$
	The $ f(w) = \frac{1}{\epsilon}$ while $ u _{L^{1}} = \int_{0}^{1} u(x) dx \leq \int_{0}^{1} \sqrt{ x } dx = 2$
	With $\varepsilon = \frac{1}{2}(C_1+1)^{-1}$ we have $ f(m) = 2C_1+2$
	so fait extend to FEX* since the proposed Fisht ever bonded on M.
The state of the s	In your homework, Moder consider $f(n)=u(i)-u(o)$. \leftarrow why is it bounded (o- in the homework notation, $< u,u > = u(i) - u(o)$.) in $H'(o,i)$?
STATE STATE	() () () () () () () () () ()

Last time: finished pum Poincine Fredrichs inequality ||MIIO \(\frac{S}{\sqrt{lul}} \) proved Lar-Milgran theorem in the symmetric case a(u,v) = a(v,u) established connection between minimizing \(\text{J}(u) = \frac{1}{2}a(u,u) - (l,u) \) and solving \(a(u,v) = (l,v) \) \(\text{V} \in H.

Today: stability of finite elements

Céa's temme

Implimitation issues

Recap: Lax-Milgren: Let H be a Hilbert space, a: HXH > IR

a bounded, coercin bilinear form, l:H>R a bounded linear fractional.

Then 3! ueH s.t. a(n,v) = < e,v) VVEH.

 $\frac{pf:}{\int (u)^{2}} \frac{1}{2} a(u,u) - \langle l,u \rangle \qquad \text{in used symmetry of a here.}$ $\frac{1}{\int (u+tv)} = \frac{1}{\int (u)} + \frac{1}{2} \left[\frac{1}{2} a(v,v) - \langle l,v \rangle \right] + \frac{1}{2} t^{2} a(v,v)$

first varietion of J in V direction: V minimizes J iff P = 0 Avet. DJ(u)v = a(u,v) - (2,v) $\frac{SJ}{\delta u} = -Du - f = \iint \frac{SJ}{\delta u} v \, dx \, dy$

- 2) correivity & parallelogram law > any minimiting seglurice for J is a Cauchy segme
- (3) completeness of H => this sequence conveyes to somethy, say u.
- (4) u minimites J, hunce satisfies aluju)=(lyu) AveH
- To will unique since two minimiters up le uz can be strong together to form a minimiting regionce (which is then cauchy)

Example: coercivity is important!
$$H=L^2$$
, $\|x\|=\sum_{k=1}^{\infty} \chi_k^2$
 $\alpha(x,y):=\sum_{k=1}^{\infty} \frac{1}{2} \chi_k y_k$

is positive and continuous, but not overcive.

$$\langle f, \times \rangle := \sum_{k=1}^{\infty} 2^{-k} x_k$$

11 a bounded linea fundronal since (\frac{1}{2}, \frac{1}{4}, \frac{1}{8},...) \in \biggle 2

But J(x) = \frac{1}{2}a(x,x) - (f,x) does not attain a

minimum in 2?: the only way for

 $a(x,y) = \langle f, y \rangle \quad \forall y \in \ell^2$

1) for x = (1,1,1,...), which downst belong to l?

Remunisor, the notation (f, \cdot) is just a fancy way of writing $f(\cdot)$. Here $f(\cdot)$ just a linear functional on $H(we don't always have to use the letter <math>d(\cdot)$ in this notation.)

finit element space
✓
Note: Lax-Milgran applies equally well to the subspace Sh& Holse)
so we get existince and imigmess of the weak formulations
of the continuous and discrete problems:
3! NEH'(r) s.t. a(u,u) = <1,u) AVEH'(r)
3! ULE SI St. a(ULIV) = < liv) AVESI
Stability: the solutions u and up are bounded by the norm of f
$pf' \propto u _{1}^{2} \leq \alpha(u,u) = \langle l,u \rangle \leq l \cdot u _{1} \qquad \left(-\delta u^{2} f^{-1} \int l^{2} du $
$pf^2 \propto u ^2 \leq \alpha(u,u) = \langle l,u \rangle \leq l \cdot u $
≤ 11ft, · ((u))
:, null, < \frac{1}{\pi} 117110
similarly, 11411, 5 = 11fllo
Error analysu (Cea's lemma) the FE solution is within a
constat of the Lest possible approximation in the FE space Sh:
Cloud \ cloud
$ u-u_h _1 \leq \frac{c}{\alpha} \inf u-v_h _1$ or $\frac{c \cdot c \cdot c \cdot c}{solution}$ in fivila
pf: from @ we have a(u-uh,v) = 0 yvesh. (traterkin orthogonality)
Thus all u-uhling sa (u-uh, u-uh) O (viesh is arbitrary)
= a(u-uh, u-vh+vh-uh)
$= a(u-u_h, u-v_h) + a(u-u_h, v_h-u_h)$
€ CHUNHII · HU-ULII 6 by Galler of thog.
5° - 114-4211 € Q 114-421 for every VIESL. Now take infimum of RHS.

So how do we actually solve the discrete system: find upeSh s.t

@ a(un,v) = (l,v) Yres,?

Choon a basis for Sh; say 4, 42, --, 4N. Then & is equivalent to

 $a(u_h, q_i) = \langle \ell, q_i \rangle$ i= \land i=\land \land \la

writing who E wife, we obtain the system of equations

Au=b, $A_{i,j}=a(P_{j,j},P_{i,j})$, $b_{i,j}=(P_{i,j},P_{i,j})$

A 13 symmetre, positive definite (hence muetisle):

uTAu = Z u; A; u; = a(Zu; 9;, Zu; 9;)

= a(uh,uh) ≥ a||uh||², >0 unkes u=0.

Which basis should we choose?

right now we're doing conforming FE, so we require the q. (x,y) to belong to H'o(x).

one may show that a precedure polynomial for belongs to H'(s) iff it is continuous across the edges of the mesh. (discontinuities in slope are OK: but the value can't jump)

····· (www.monthson.com/s		A convenient basis to un 13 a model bais: P; (x;) = Si;
		the support of these boos functions is limited moder of the mish be the elements function the relevant mode 4; $\Leftrightarrow \vec{x}$;
		for triangles, there's a 1-1 correspondence between polynomials of degree p and their values at uniformly spaced points: # nodes = #ofpolynomials
		nodus = #ofpolynomials 1 P=0 constant fins
		3 Dp21 linear fins 1 x y
SOURCE LOCKET FRANCISCO		6 p=2 quadratic fins 1 x y x2 xy y2
	8,	10 $p=3$ cubic fins $(x,y,x^2,xy,y^2,x^3,x^2y,xy^2,y^3)$
		For linear and lingue elements, the value of the function along
STEED STATE OF THE		an edge is uniquely determined by its values at the nodes
a para tambério de la companya de l Na la companya de la	arati via ele ele de harriorezz hoz harriorez de ele	on that edge. So continuity across edges (between
a de estat e e e e e e e e e e e e e e e e e e	و المستحد والم والمستوالة المستحدة المستحدة والمستحدة المستحد المستحدة المستحددة المستحددة المستحددة المستحدات المستحددة المس	nodes) is automatic.
	W	for ob cubic for of (X, Y)
	the grant of the second of the	along this edge, the cubic functions
t en mensional de la company		of two variables on either side Match
والمستوارة	ours and the street title state out of the street of the s	up with the unique culic function
ern laar de sûerseklikker (1965) fol tr	andro a transitua de en escata de escata	of I variable passing through, thuse 9
trans trans a trans and training to the contract of the		nodal value

for quadrilatural elements, the # of dyraes of freedom don't match is nicely:
bilinear quadrilational element (Q1) 1, x, y, xy (so not all 2nd order polynomials are und
sevendipity 1 x y xy x² y² x² x² x² x²
bignadeho elemet (Qz) 1 x y xy x² y² x²y xy² x²y²
Theor on the most commonly used Co elements. For some problems, we need C' elements (so the basis functions below
problems, we need C' elements (so the basis functions belong to H2(x)) Example: biharmonic equation Duzf (all 5th order)
Argyris triangle, 21 d.o.f., (all 5th order) means match normal derivative match value
o match graduats (Ux, Uy) O match 2nd derve (Uxx, Uxy, Uyy)
Clough-Tochur 12 dof
maen-element (cutic on each sub-element)
30 = 3(6) + 3 + 3 + 2(3)

Rather than compute Ai; = a(4; 4;)	basis function
be born function (i.e. woods be mode)	it's mare.
by boon funtum (1.e. node by mode) efficient po do it element by element	<u> </u>
germen so on it sommer by some	1
$A : C = \sum_{\alpha} \alpha_{\alpha}(\varphi, \varphi_{\alpha})$	T = set of trangles in mush
$A_{ij} = \sum_{T \in \mathcal{I}} a_T(\varphi_j, \varphi_i)$	in mish
ar(u,v)= II Tu. Tv dxdy	
- ,	
On each triangle we compute a local stiffne	u matrix (with
nodes numbered 1. np) and then add 1	the seventrum to the
global stiffness metrix in the appropriate	roll and collims
1. 1	numbers la li
local numberry 16,805 global	l ₁ l ₂
Advi - 100 00 for 121-6	1, 24 kz .6 += A 1
Alor $= Q_{\tau}(\theta_i, \theta_j)$ for $i \ge 1 - 6$	b
1 Alie	1 + - M ()
Aloc is a full upanp matrix	we add because several triangles T are likely to affect each entry of A
Am is a tall whamb many	we add scans likely to
nt A is very sparse (so he sure	affect each entry of A
to use a spare matrix for A)	
Assembly of the beal stiffness matrix is usually	da illina
the change of vertables formula.	in the reference though
Jur dxdy=	fr nv Tout DF d 3 de
1x >	i.e. Not, vot
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	(\(\nabla u . (DF) ') \((D\f) \) (dt)

D(NOF) = Du ODF -> Vzu = Du OP

disan

R

	Numeral quadrabur
	to actually do the integrals over the reference transle, we use transman quadratur:
	trangle, we use transman quadrature:
	eaample 3 pants G.Q. rule: York-tri.
	cample is point to Q. M.
	equal weights $W_1^2 = \frac{A}{3} = \frac{1}{6}$ Integrates polynomials of $deg \leq 2$
17 7,	$\left(\frac{3}{3},\frac{1}{6}\right)$
(636	exactly
1.1	exactly-
2	example from book: 7 pt G.Q. rule
got appears and strongs to be an extended these about and resident contract.	$ \frac{(6-\sqrt{15} 9+2\sqrt{15})}{(21)} \text{wt}_{\Box} = \frac{9}{180} $ $ \frac{(11)}{(3,3)} \text{wt}_{\Box} = \frac{155+\sqrt{15}}{2400} $ $ \frac{(9+2\sqrt{15} 6-\sqrt{15})}{(21)} \text{wt}_{\Box} = \frac{155-\sqrt{15}}{2400} $ $ \frac{(9+2\sqrt{15} 9-2\sqrt{15})}{(21)} \text{wt}_{\Box} = \frac{155-\sqrt{15}}{2400} $
, managang panggang magan	21) 21 / WO - 100
	(3,3) Wto = 1331VIS
agenta agrecia y agusto e sente Pine na agrecia de sente de sente de compresa de compresa compresa de compresa	(9+2VIS 6-JIS) wt = 155-VIS
9-251 6	$\frac{1}{1} \left(\frac{9+2\sqrt{15}}{21} \right) = \frac{9+2\sqrt{15}}{2\sqrt{15}}$ $\frac{1}{21} \left(\frac{6+\sqrt{15}}{21} \right) = \frac{9+2\sqrt{15}}{2\sqrt{15}}$ $\frac{1}{21} \left(\frac{6+\sqrt{15}}{21} \right) = \frac{1}{2\sqrt{15}}$
(21)	$\left(\frac{21}{21},\frac{21}{21}\right)$
	Integrates polynomals of dig 55 exactly
	in hw7 directory, I give you several G.Q. rules:
	nd gansoz thuse high order
	3/2 Jac / ones aren't so
	7 5 08 (eary to find 137) In the
	16 8 37 13 19 Interdure!
	73 113

Last tim: coverity is important in Lax-Milgram (example)

stability: FE solin up is bodd in terms of data f: || Mip || \leq \frac{1}{\alpha} \pi || f ||_0

Cé a's lemm: || (M-Un)| \times \alpha \sqrt{inf} || (M-Vi)| \rightarrow || best possible approx in Sp

choose a basis, get position definite linear system Au = b

today: implementation details

def: a function $U: \Omega_h \rightarrow \mathbb{R}$ is piecewise smooth if its restriction to each triangle is a C^{∞} function with derivatives that extend continuously to the boundary of the triangle. The limit need not be the same when approached from a different triangle.

e-g. $(x,y) = \begin{cases} x^2 + 7y & (x,y) \in T_1 \\ 3e^y & (x,y) \in T_2 \end{cases}$

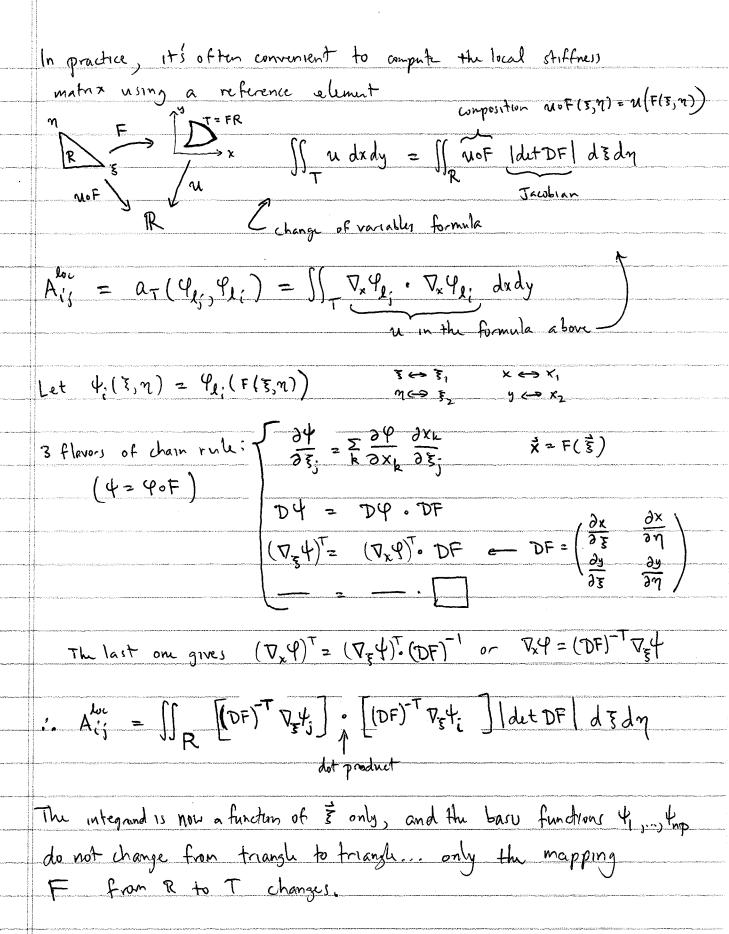
is preceive smooth. It doesn't matter how you define the function on the boundaries of the triangles. What does matter is that once you pick a triangle T, you can be define a and its derivatives on 2T to get continuous functions on all of T (including 2T)

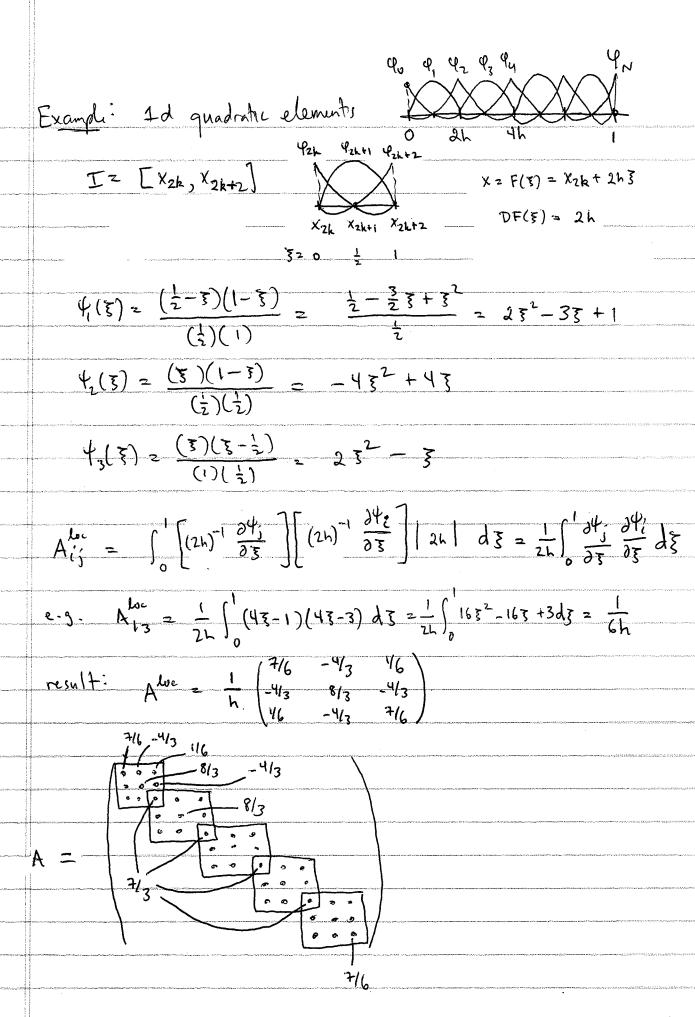
theorem⁸ A precessic smooth function u. sch R belongs to

H^m(sq) iff u∈c^{m-1}(sch), i.e. the limit of

day on the boundary of adjacent trangles is the

same when approached from either triangle for |x|≤m-1.

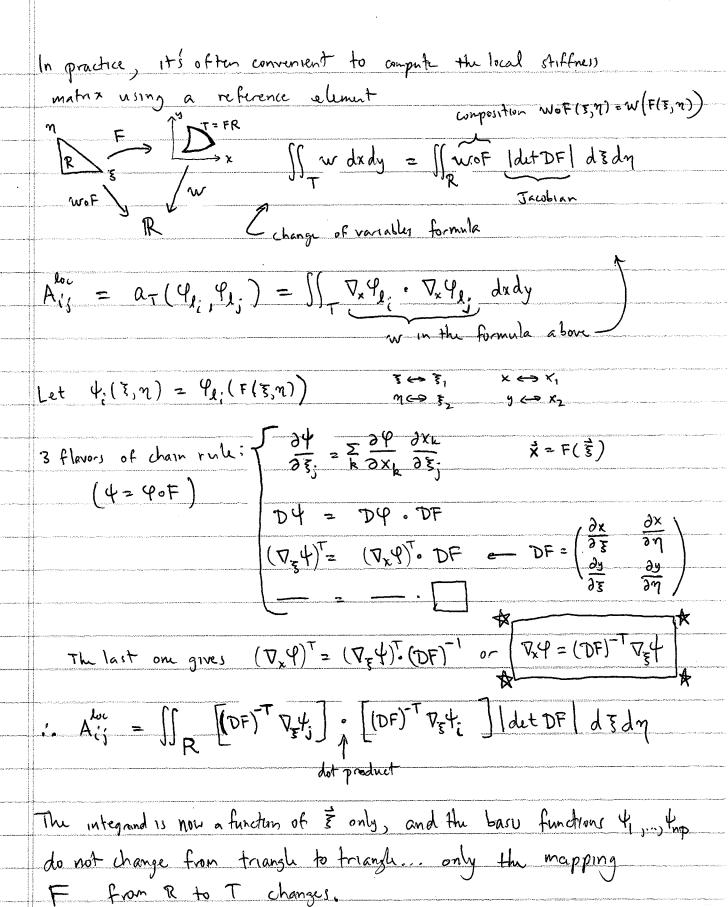

in particular, if u is precessees smooth, then ueH'(n) (=> ueC°(n)

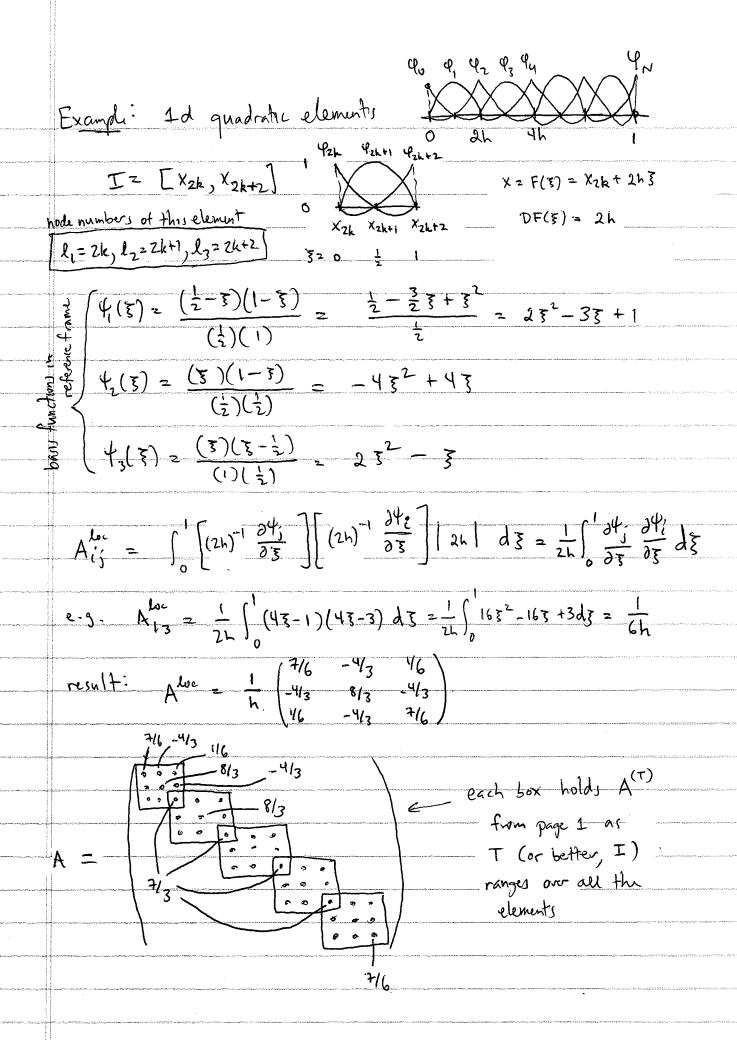

1.e. u is continuous across trangles but its derivatives conjump.

1	A convenient basis to un 15 a model Lasis: 4: (x;) = 8ij	
	the support of these boos functions is limited moder of the mish to the elements function the relevant mode $Y_1 \iff \tilde{\mathbf{x}}_1^1$	
	to the elements functing the relevant mode 4; 4 x;	
The state angles, we are the consequence of Color and Color angles.	for trangles, there's a 1-1 correspondence between polynomials	
than the participation of the state of the s	of degree p and their values at uniformly spaced points:	
The second secon	nodus = #ofpolynomals 1 P=0 constant fins 1	
	3 A p21 linear fins 1 x y	
P2	6 p=2 quadratic fins 1 x y x2 xy y2	
5,	10 $p=3$ cubic fins $(x,y,x^2,xy,y^2,x^3,x^2y,xy^2,y^3)$	
	For linear and higher elements, the value of the function along	
	an edge is uniquely determined by its values not the nodes	
গারিকারিকারে এর বাংলাশালার বাংলা বাংলা বাংলা বাংলা বিশ্বর রীক	on that edge. So continuity across edges (between	
ada karataran pada pada da karataran da da da karataran da	nodes) is automatic.	
w\$	cutic for of (X, Y)	
والمراجعة	along this edge, the cubic functions	
ومنافع والمساورة والمراوية والمواجعة والمساومة والمساورة	of two variables on either side Match	
enden had the till till att at a coll a stay hillion of made 1770 1788 23	up with the amque cute function	
	of I variable passing through those 4	
	modal value	

for quadrilateral elements, the # of dyraes of freedom don't match is nicely:
bilinear quadrilational element (Q1) 1, x, y, xy (so not all 2nd order polynomial are used
Screndippy 1 x y xy x² y² x²y xy² element
biquadatic element (Q2) 1 x y xy x² y² x²y xy² x²y²
Theor on the most commonly used Co elements. For some
problems, we need C' elements (so the basis functions below
problems, we need C'elements (so the basis functions below to H2(x)) Example: biharmonic equetion D2==f
Argyris triangle, 21 d.o.f., (all 5th order) means match normal derivative match value
o match graduents (Ux, Uy)
O mitch 2nd derve (Max, May, Myy)
Clough-Tocher 12 dof maen-element (cubic on each
Sul-element)
30 = 3(6) + 3 + 3 + 2(3)

	Rather than compute Ai; = a(Pj, Pi) basis function
TO DESCRIPTION OF THE PARTY OF	
land make best of a manager school and the second of the s	by boons function (i.e. node by node), it's more efficient to do it element by element.
ee taalaan sahaa ka baalaan ka ba	Aij = $\sum_{T \in \mathcal{I}} a_T(\varphi_j, \varphi_i)$ $T = \text{set of translet}$ in much
	ar(u,v)= II Tu. Pv dxdy
nderlânsselde (e.d. der e.d. (felere e. e.de.)	On each triangle we compute a local stiffness matrix (with
277 CONTO CONTO DE LO CONT	nodes numbered 1. mp) and then add these extres to the global stiffness metrix in the appropriate rows and columns
) 	
	local numbery by 2 global numbery lights
n x gn	Alvi = $Q_{\tau}(q_{j}, q_{i})$ for $i > 1 - 6$ for $j = 1 - 6$ $Alil_{j} + Ali_{j}$
	This - will for jet - loc Alice += Aii
	Aloc is a full uponp matrix we add because several
uatostos estados pero el enquisido de	1.7 000
	but A is very sparse (so he sure affect each entry of A to use a sparse matrix for A)
<u> </u>	
	Po Pi
	Example: 1 d linear elements
	Let $I = [x_k, x_{k+1}]$ — in 1d the elements are intervals instead of triangles
	Then are two basis functions with support on this interval: 0 1/k+1 of k=-1
	$A_{ij}^{loc} = \alpha_{I}(q_{ij}, q_{i}) = \int_{x_{k}}^{x_{k+1}} \frac{\partial q_{ij}}{\partial x} \frac{\partial q_{ij}}{\partial x} dx \rightarrow A_{loc} = \frac{1}{h} \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix} \xrightarrow{x_{k}}^{x_{k}} \frac{\partial q_{k+1}}{\partial x} = \frac{1}{h}$
12.00	sum the contribution from each interval $\Rightarrow A^2 \stackrel{[-1]}{\downarrow} \stackrel{[-1]}{\downarrow} \stackrel{[-1]}{\downarrow} \stackrel{[-1]}{\downarrow}$


Example: 2d 100 personnetwic elements


$$R: \frac{1}{\sqrt{15}} \frac{1}{\sqrt{15}} \frac{1}{\sqrt{15}} = \frac{1}{\sqrt{15}} \frac{1}{\sqrt{1$$

and the second of the second has the second and the second advantage of the second and the second and the second	Numerical quedratur	des solven en la communicació de la colonidad del secución de la compositiva de la compositiva de la compositi	
	to orthally do the	integrals over	the reference
	to actually do the	Gaussian quadrel	tw:
A to the contract of the contr			Az h W
	easurple 3 point		
	(t, 2) (t, 2) (t, 2) (3, 76)	equal weigh	$V W_i^2 \frac{A}{3} = \frac{1}{6}$
(6,5)	3,6	integrates poly	romals of deg < 2
		от предистория дення в него в подать в <mark>одника в так продер</mark> ентероваться дення в техноваться в податься в податься	exactly
7	example from book:	7pt G.Q.	cul
	(6-VIS 9 (3) 3 (3) 3 (4) (3) 3	+2415)	wtn = 9/180
	(3)3		wto = 155 + 155
6 35 (9+2415 6-515)	wt. = 155-515
7-201 6	$(\frac{6+\sqrt{1}}{21}, \frac{9-2\sqrt{1}}{21})$	<i>)</i>	2400
			JHM 2 1/2
	integrates polyn	omals of dig 55	exactly
	in hw7 directory, I	- Sive you sever	el G.Q. rules:
A single Pro-	n L d	9 auss 02	_ thuse high order
	3 2 7 5		easy to find
	16 8	(137)	in the
	37 13 73 19	13	literature!
900	•		

Last time: Dif u is piecewise smooth, then ufth (sq) (=) we cm-1(sigh)
2) nodal basis >> Co elements () matching values at common acrossientine edge
3 C'elements are tricky (have to avoid jump in normal derivative)
(9) element by element orssembly
today: 1) reference element for computing local stiffness motion
2 numerical quadrature
(3) interpolating f (use of a mass matrix)
(9) non-zero dirichlet data
Recap: element by element assembly
global stiffness matrix: $A_{ij} = a(\Psi_i, \Psi_j) = \sum_{T \in \mathcal{I}} \iint_{T} \nabla \Psi_i \cdot \nabla \Psi_j dx dy$
or $A_{ij} = \sum_{\tau} A_{ij}^{(\tau)}$, $A_{ij}^{(\tau)} = \iint_{\tau} \nabla \theta_i \cdot \nabla \theta_j dx dy$
Note: Aij is zero unless nodes i &; both belong to triangle T
1444
hode 17 A(T)
node 5
all other entries of A ^(T) are zero 1
To represent A(T), we just need the node numbers libzilz (linge
and the 3×3 local stiffness matrix Also:

Aij = Alilj = MT P40. P40 dxdy. global A-spare(n, n) eq. np sec Aij = Alilj = MT P40. P40 dxdy. assembly: pread for for Alili = Alili = Alili

Example: 2d isoparametric elements

$$R: \eta \mapsto \frac{1}{4} \int_{0}^{\infty} \frac{1}{5} \left(\frac{1}{5}, \eta\right) = (1 - 5 - \eta)(1 - 25 - 2\eta)$$

$$O \in 1 \quad \text{if}_{5}(5, \eta) = (1 - 5 - \eta)(1 - 25 - 2\eta)$$

$$F \left(\frac{1}{5}, \eta^{3}\right) = \frac{1}{5} \left(\frac{1}{5}, \eta^{3}\right) = (25)(2 - 25 - 2\eta)$$

$$F \left(\frac{1}{5}, \eta^{3}\right) = \frac{1}{5} \left(\frac{1}{5}, \eta^{3}\right) = \frac{1}{5} \left(\frac{1}{5}, \eta^{3}\right) = \frac{1}{5} \left(\frac{1}{5}, \eta^{3}\right) = \frac{1}{5} \left(\frac{1}{5}, \eta^{3}\right)$$

$$\left(\frac{1}{5}, \eta^{3}\right) = \left(\frac{1}{5}, \eta^{3}\right) = \frac{1}{5} \left(\frac{1}{5}, \eta^{3}\right) + \frac{1}{5} \left(\frac{1}{5}, \eta^{3}\right)$$

$$\left(\frac{1}{5}, \eta^{3}\right) = \left(\frac{1}{5}, \eta^{3}\right) = \frac{1}{5} \left(\frac{1}{5}, \eta^{3}\right) + \frac{1}{5} \left(\frac{1}{5}, \eta^{3}\right)$$

$$\left(\frac{1}{5}, \eta^{3}\right) = \left(\frac{1}{5}, \eta^{3}\right) = \left(\frac{1}{5}, \eta^{3}\right) + \frac{1}{5} \left(\frac{1}{5}, \eta^{3}\right) + \frac{1}{5} \left(\frac{1}{5}, \eta^{3}\right)$$

$$\left(\frac{1}{5}, \eta^{3}\right) = \left(\frac{1}{5}, \eta^{3}\right) + \frac{1}{5} \left(\frac{1}{5}, \eta^{3}\right) +$$

	Now that we have DFT and 4, tz,, 46 we can compute
	$A_{ij}^{loc} = \iint_{\mathcal{R}} \left[(DF)^{-7} \nabla_{\xi} \psi_{i} \right] \cdot \left[(DF)^{-7} \nabla_{\xi} \psi_{j} \right] \left[det DF \right] d\xi d\eta$
The state of the s	There are 36 integrals to be performed here. It turns out a lot
1	of the work can be re-used:
	step 1: get rid of the dot product (do the x and y derivatives separately)
	Aij = $A_{ij}^{loc,k}$ + $A_{ij}^{loc,k}$ = $\int (\partial_{k}P_{i})(\partial_{k}P_{i})dxdy$ remember $\nabla_{x}\varphi = (DF)^{-T}\nabla_{y}\psi$ $A_{ij}^{loc,k} = \int (\partial_{k}P_{i})(\partial_{k}P_{i})dxdy$ so $k=1 \leftrightarrow \partial_{x}\varphi$ $k=2 \leftrightarrow \partial_{y}\varphi$
	Aij = IIR [rowk(DFT) V. +;][rowk(DFT) Vz 4;] Idet DF dzdm
	step 2: use Gaussian quadrature to do the integrals over R
• \	$\iint_{R} w(\xi,\eta) d\xi d\eta \approx \sum_{m=1}^{9} W(\xi_m,\tilde{\eta}_m) W_m \qquad \text{in weights}$
	In our case we find that $A_{ij}^{loc_jk} = \sum_{m=1}^{3} E_{mi} E_{mj}$
2 2 3 4 4 7 7 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	where $E_{mj}^{(k)} = \left[row_{k} \left(DF(\xi_{m}, \eta_{m})^{-T} \right) \nabla_{\xi} t_{j} (\xi_{m}, \eta_{m}) \right] \sqrt{\left[det DF(\xi_{m}, \eta_{m}) w_{m} \right]} $
	1 these numbers can be
	1 \le j \le np = 6 Computed once and for all (derivatives of the basis)
3 3 4 4	- Francisco de la companya della companya della companya de la companya della com
\$:	$O(g \cdot np)$ work to compute $A^{loc,h} = E^{(h)T}E^{(h)}$ (at Level 3 BLA) speed)
	() (g.(np)) work to compare 11 - L L (the start

Numercal quedrabur to actually do the integrals over the reference transle, we use Gaussian quadratur: eaample 3 point G.Q. rule: 2 ref.tr. (t, 1) (t equal weight $W_i^2 = \frac{A}{7} = \frac{1}{6}$ integrates polynomals of deg < 2 exactly. example from book: 7 pt G.Q. rule $\frac{6-\sqrt{15}}{21}, \frac{9+2\sqrt{15}}{21}$ $\frac{1}{3}, \frac{1}{3}$ $\frac{1}{3}, \frac{1}{3}$ $\frac{9+2\sqrt{15}}{2400}$ $\frac{9+2\sqrt{15}}{2400}$ $\frac{9+2\sqrt{15}}{2400}$ $\frac{9+2\sqrt{15}}{2400}$ $\frac{155-\sqrt{15}}{24000}$ $\frac{155-\sqrt{15}}{24000}$ $\frac{155-\sqrt{15}}{24000}$ $\frac{155-\sqrt{15}}{24000}$ $\frac{155-\sqrt{15}}{24000}$ $\frac{155-\sqrt{15}}{24000}$ $\frac{155-\sqrt{15}}{24000}$ Sum = 1/2 Integrates polynomals of dig 55 exactly in hw7 directory, I give you several G.Q. rules: thuse high order ganso2 08 137 e.g. this is chem integrated all polynomials of degree \$19 exactly ones aren't so easy to find in the literature!

Interpolating f: We need to some ally up) = < l, up 7 tupeV where a (un, vi) = II Juh. Dun dxdy In practice, we usually replace f by $\widetilde{f}(x,y) = \sum_{h} f(x_{h},y_{h}) f_{h}(x_{h}y)$ i.e. we interpolate of from its values at the modes using the

same basis functions we use to represent the solution.

error: $a(u_h-\widetilde{u}_h,v_h) = \langle \ell-\widetilde{\ell},v_h \rangle = \iint (f-\widetilde{f})v_h dxdy$ choosing vi= uh- uh we get [|| uh- uhll, 5 = || f - f || b (Lec 25)

Innear elements: $f \in H^2(\Omega_h)$ then $||f-\tilde{f}|| \leq C||f||_2 h^2$ quadratic " if f \(+H^3(SCh) the | |f-\(\varepsilon \) \(\text{II f | |3h}^3 \)

so the error committed by interpolating I is one order higher in h than the error estimates well derive for un next week.

is interpolating f does not significantly affect convergence of the FE method.

mass motorx: $u_h(x,y) = \sum u_k \ell_k(x,y)$ $\widetilde{f}(x,y) = \sum f_k \ell_k(x,y)$

 $a(u_h, \theta_i) = \langle \tilde{e}, \theta_i \rangle$ is is in

Zα(9k, 9;) uk = E((), 9k9; dxdy)fk

Au = Mf, $A_{ij} = a(\varphi_i, \varphi_j)$, $M_{ij} = \int \varphi_i \varphi_j dxdy$

M should be assembled element by element as well, but the formulas are simpler since there are no derivatives involved $M = \sum_{i} M_{ij}^{(\tau)}$, $M_{i,l_j}^{(\tau)} = M_{i_j}^{(\tau)} = \iint_{\tau} \Psi_{l_i} \Psi_{l_j} dxdy$ = SIRY, 4; ldetDFldsdy bassi fons in = \(\frac{1}{N} \) \(\text{E}_{\mi} \) \(\text{E ref. trangle a 3m, Mm, Wm Emj = t:(\$m, mm) / (det DF(\$m, mm) | wm quadrature points and weights Nonzero ble's: want to solve - Duzf in se idea: pick any function No that equals g on Dr. (U, EH! (r)) decompose u= u0+u, , u, EH'o(s) Thu $-\Delta u = -\Delta u_0 - \Delta u_1 = f$ so u, should ratisfy -bu = f + buo m on $U_1 = 0$ on $\partial \Omega$ hit with test fun, integrate by parts:

 $a(u_1,v) = \iint f v dx dy - a(u_0,v)$ $\forall v \in H'_0(x)$

the RHS is a bounded linear functional on Ho(r), so Lax-Milgram gives a unique solution U, EHo(s) such that u= No+U, solves the original problem. The finite element approach is identical Let ShCH'(I) contain all basis fundons on the much (even those corresponding to noder on the Loundary) and let $S_o^h = H_o'(\Omega) \cap S_h$ be the linear span of the base functions corresponding to interior nodes. We use the basis functions on the boundary to represent you Kbdy = {k: (xh, 4h) EdMh $N_{o,h}(x,y) = \sum_{k \in K_{bdry}} g_k \varphi_k(x,y)$ = sct of boundary node numbers 9h2 g(xh,yh) = presented values on we decompose up = Non+U1, h and solve boundary $\alpha(u_{1,k},v_{k})=\langle \tilde{a},v_{k}\rangle-\alpha(u_{0,k},v_{k})$ $\forall v_{k}\in S^{h}$ Note that U, and Vh only involve interior basis functions while I (the interpolated version of f) and Uosh also mvolve bounday nodes.

Last time: (1) reference element for compre	my local stiffmers matrix			
(a) change of variables formula for the integral				
D chain rule to correct derentions from $\frac{\partial}{\partial a_1} \frac{\partial}{\partial y}$ into $\frac{\partial}{\partial \bar{z}} \frac{\partial}{\partial \eta}$				
@ numerical graduature is used to do the integrals				
(most of the worle boils down to matrix-matrix multiplication)				
Today: O finish discussing implementation issues				
a interes and boundary males				
(b) interpolating f				
_ a non-zero druhlet data _ a computing errors in the homework				
comment on Dirichlet conditions:				
I've been writing Aij = II Pyi. Pyi dxdy				
but actually the stiffness matrix only involves interior modes i&;				
2 aptions: (1) number the modes so that inferior modes come first				
- (3) mointain a separate number of the interior notes				
or (3) maintain a separate numbering of the interior nodes (sweep through the mush once to set up the numbering)				
Course Course				
k=1,b=1	to avoid excessive notation, let's			
for (21N	pretend that the interior nodes			
ean(i) = k++ c-interior	come first in the list, i.e.			
eqn(i)=k++ c-interior numbering elk	equ(i)= i 15 i 5 N int			
equiti) = 6++ < boundary numbering	eqn(i) = i-Nint Nint+1 < i < N			

Interpolating f: We need to solve allhoun) = < loung to the where a (un, vi) = (Tun. Dun dxdy In practice, we usually riplace f by $\tilde{f}(x,y) = \sum_{k} f(x_{k},y_{k}) Y_{k}(x_{k}y)$ i.e we interpolate of from its values at the nodes using the same basis functions we use to represent the solution. error: $a(u_h-\widetilde{u}_h,v_h) = \langle \ell-\widetilde{\ell},v_h \rangle = \iint (f-\widetilde{f})v_h dxdy$ choosing vi= uh- uh we get [|uh-unll, = = |f - flo (Lec 25) linear elements: if $f \in H^2(\Omega_h)$ then $||f-\widetilde{f}||_2 \leq C||f||_2 h^2$ quadratic " : if f \(+H^3(Sch) the 11f-\(F \) \(C \) [f \) sh so the error committed by interpolating of is one order higher in h than the error estimates well derive for up shortly ... interpolating f does not significantly affect convergence of the FE method. mass motorix: $u_h(x,y) = \sum_{k=1}^{N} u_k \ell_h(x,y)$, $\widetilde{f}(x,y) = \sum_{k=1}^{N} \ell_k \ell_k(x,y)$ $a(u_h, \theta_i) = \langle \tilde{e}, \theta_i \rangle$ is is Nont Zα(qk, qi) uk = Z(() qkqi dxdy)fk Au = Mf $A_{ij} = a(\varphi_i, \varphi_j)$ $M_{ij} = \iint \varphi_i \varphi_j dxdy$

(Isis Nint, 15) & N

(15 i, j & Nint)

M should be assembled element by element as well, but the formulas are simpler since there are no derivatives involved. $M = \sum_{i} M_{ij}^{(T)}$ $M_{i,k'} = M_{ij}^{(C)} = \iint_{T} \varphi_{k} \varphi_{k} dxdy$ = SigtitildetDFIdidy balli fons in = \(\sum_{\mathbb{m}_{i}} \) ref. trangle on 3mm mm wm Emj = 4:(3m, mm)/(detDF(3m, mm)) wm quadrature points and weights Nonzero ble's: want to solve - Duzf in se idea: pick any function No that equals g on Dr. (U, EHI (I)) decompose $U = V_0 + V_1$, $U_1 \in H^1_0(\Omega)$ Then $-\Delta u = -\Delta u_0 - \Delta u_1 = f$ so u, should ratisfy -Du = f + Duo in a $U_1 = 0$ on $\partial \Sigma$ het with test for, integrate by parts:

 $a(u,v) = \iint fv dx dy - a(u_0,v) \quad \forall v \in H_0(x)$

the RHS is a bounded linear functional on Ho(r), so Lax-Milgram gives a unique solution U, EHo(se) such that u= No+U, solves the original problem. The finite element approach is identical Let Sh CH (I) contain all basis fundrons on the much (even those corresponding to nodes on the Loundary) and let 50°CHO(SV) nSh be the linear span of the basis functions corresponding to interior modes. We use the basis functions on the boundary to represent you Kbdy = {k: (x,y,) Ed (2) $\mathcal{U}_{o,h}(x,y) = \sum_{k \in K_{bdry}} g_k \varphi_k(x,y)$ = sctof boundary node numbers 9h2 g(Xh,yh) = presented values on we decompose up = No, h + U, h and solve boundary $\alpha(u_{1}, v_{1}, v_{1}) = \langle \tilde{\ell}, v_{1} \rangle - \alpha(u_{0}, v_{1}, v_{1}) \quad \forall v_{1} \in S^{h}$ Note that U, and Vh only involve interior basis functions while I (the interpolated version of f) and Uosh also mvolve boundary nodes.

M(eqnili), L;) += Mis

described in Control of the Control	computing errors in the homework. Once you get the solution,
	you need to computer
-	$\ u_n - u\ _0 = \int \int \int (u_n(x,y) - u(x,y))^2 dxdy$
	Man allo 133 (alexi) aran
	and $ u_n-u _1 = \int \int \int \left[\nabla (u_n(x,y)-u(x,y))\right]^2 dxdy$
	These integrals may be broken up as \$\iiii. \dady2 \text{\text{findady}} + \text{\text{\text{Signadady}}} \text{T and dy}
	over each sliver , up(x,n) is zero
of continue and the second	aver each sliver of, $u_{k}(x,y)$ is zero and you should integrate $u(x,y)$ or $ \nabla u(x,y) ^{2}$ by hand. Mush.
	Over each triangle, we use the reference element to do the integration
Έ የአ	$\sum_{x,y} \sum_{x,y} w(x,y) = u_{x}(x,y) - u(x,y)$
> >1	$\sum_{x,y} F = \sum_{x,y} w(x,y) = u_{x}(x,y) - u(x,y)$ $\sum_{x,y} V = \sum_{x,y} w(x,y) = u_{x}(x,y) - u(x,y)$ $\sum_{x,y} V = \sum_{x,y} v(x,y) = u_{x}(x,y) - u(x,y)$ $\sum_{x,y} V = \sum_{x,y} v(x,y) = u_{x}(x,y) - u(x,y)$ $\sum_{x,y} V = \sum_{x,y} v(x,y) = u_{x}(x,y) - u(x,y)$
The state of the s	$= \sum_{m} w(F(\tilde{s}_{m}, \eta_{m}))^{2} dt DF(\tilde{s}_{m}, \eta_{m}) w_{m}$
1 de la companya de l	so you just have to evaluate depends on & on only quadrotive
Daving Constitution of the	the errors or at the images depends on \$, 9 only quadrative weights of the ganss points in T
The second secon	(note that w (F(\$m, nm)) = \(\frac{5}{12} \lambda_i + (\frac{5}{12} m, nm) - \(\text{u}(F(\frac{5}{12} m, nm)) \)
. !	(1 (c(E, Mm))
7-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	Similary
	[[I Twi dxdy = [] Dw o F dt DF dsdy = [[Txw (F(Im, 7m)) dt DF (Im, 7m) Wm
in the second se	where 5 11 DE/5 m) T 4/18 m) - 7/1 (F/8- m)
A Section of the Control of the Cont	$\nabla_{x}w\left(F(\xi_{m},\eta_{m})\right) = \sum_{i=1}^{2} u_{i} DF(\xi_{m},\eta_{m}) \nabla_{\xi}\psi_{i}(\xi_{m},\eta_{m}) - \nabla_{x}u\left(F(\xi_{m},\eta_{m})\right)$ $\nabla_{x}\psi_{i}\left(F(\xi_{m},\eta_{m})\right) \qquad \left(u_{x}\right) \text{ evaluated }$ $\nabla_{x}\psi_{i}\left(F(\xi_{m},\eta_{m})\right) \qquad \left(u_{x}\right) \text{ at } F(\xi_{m},\eta_{m})$
	VxT((F(Em, Mm)) (uy) at f(Em, Mm)

Last time: U two ways of setting up the date structure for solving the @ eliminate the bounday nodes to get an Nint x Nint rystem or 6 zero out the rows and columns of A corresponding to bounday modes and put I's on the diegonal there 2) nonzero s/c's: decompose $u = \sum_{k \in K_{int}} u_k l_k + \sum_{k \in K_{bridy}} u_k l_k$ solve $a(u_h^{(i)}, v_h) = \langle l, v_h \rangle - a(u_h^{(o)}, v_h^{(o)})$ $\forall v_h \in S_o^h \leftarrow test functions$ or Au(1) = Mf - Bu(0) <-in the & strategy above, you've simply corrected the error you made by zeroing out the boundary node columns: (x * *) (1) = Au = Mf = (* * * *) (1) I want this column to be zero in stiffness matrix 1) symmetric. you know the value of u; for this column since (x5, 45) 11 on the boundary. So just none it to the RHS (* 0 × 000 o (u) = Mf - (*) u; (also need to zero ont)
(* 0 * 000 o (u) = Mf - (*) u; (that row of M) doing this for all the Edg mady give a system like for the unknown interior values. (3) compity eros on the much.

Remark: method @ 13 not difficult to implement either, and 15

particularly useful for problems in flood mechanics where you use quadratic elements for velocity and linear elements for pressure.

Today: last steps of the error analysis. we know ||un-ull, \le \frac{1}{\alpha} \text{ inf } ||\nabla_n - \nu|| \le \frac{1}{\alpha} ||\overline{\lambda} | \overline{\alpha} ||\overline{\lambda} || so our final task is to estimate the interpolation error /u-Inul, main steps: (1) on the reference triangle, for integers t = 2 dc, depending on t such that $\| u - \mathbf{I} \mathbf{u} \|_{t,R} \le C_1(t) \| \mathbf{u} - \mathbf{I} \mathbf{u} \|_{t,R} = C_1(t) \| \mathbf{u} \|_{t,R}$ where In 15 the polynomal of degree t-1 that agrees with a at the t(t+1) uniformly spaced points on the triangle. examples: t=2 [Iu(\(\xi,\eta\)) = \(\var{x}_2\xi + u_3\eta + u_1(1-\xi-\eta)\) t=3 6 In(3,m)= & uk4k(3,7) (Uk= U(Ek, Mh)) this is a Poincaré-Friedrichs type of result. It says

this is a Poincaré-Friedrichi type of result. It says
that the lower derivatives of any function that is zero
at the interpolation points are controlled by the highest
derivatives (those of order t):

 $V = u - Iu \quad IS \quad ||V||_{t,R}^2 = \sum_{|\alpha| < t} ||\partial^{\alpha} v(\xi,\eta)|^2 d\xi d\eta + \sum_{|\alpha| < t} ||\partial^{\alpha} v(\xi,\eta)|^2 d\xi d$

just as the constant functions prevent ||u||_0 & C|u|, MuEH'(n) without restricting u to be zero on the boundary, the polymonials prevent |W||_t-1 \le C|U|_t \ \UEH^t(IL).

Pinning down the values of u to be zero at the nodes removes these lower order polynomials from the space.

step 2. . Suppose Ti and Tz are any two triangles in the plane.

o Let F be an affine mapping of
$$T_1$$
 onto T_2 .

(i.e. $F(\xi,\eta) = {a_0 \choose b_0} + {a_1 \choose b_1} \xi + {a_2 \choose b_2} \eta$

To for switch constants a_0,b_0,a_1,b_1,a_2,b_2)

· Let U: TZ > R and V: Ty > R satisfy v= uoF

Then there are constants C2(t) for t=0,1,2,... ruch that

$$|V|_{t,T_1} \leq C_2(t) |DF|^t |dit DF|^{-1/2} |u|_{t,T}$$

To prove this, it's useful to think of higher derivatives as multilinear maps:

$$u: \mathbb{R}^2 \to \mathbb{R}$$
 function

$$u: \mathbb{R}^{2} \to \mathbb{R}$$
 function

 $Du(\vec{x}): \mathbb{R}^{2} \to \mathbb{R}$ linear operator

 $Du(\vec{x}) \vec{w} = \frac{d}{ds} u(\vec{x} + s\vec{w}) = \frac{\partial u}{\partial x} (\vec{x}) w' + \frac{\partial u}{\partial y} (\vec{x}) w^{2}$
 $D^{2}u(\vec{x}): \mathbb{R}^{2} \times \mathbb{R}^{2} \to \mathbb{R}$ symmetric, bilinear operator

Du(x): RxR2 > R symmetrie, bilinear operator

$$\mathcal{D}^{2}u(\vec{x})(\vec{w}_{1},\vec{w}_{2}) = \frac{d}{ds_{1}} \left| \frac{d}{ds_{2}} \left| u(\vec{x} + s_{1}\vec{w}_{1} + s_{2}\vec{w}_{2}) \right| = W_{1}^{2} \left(\frac{\partial^{2}u}{\partial x^{2}} \frac{\partial^{2}u}{\partial x^{2}} \right) W_{2}^{2}$$

or
$$D^2u(\vec{x})(\vec{w}_1,\vec{w}_2) = \sum_{i=1}^{2} \sum_{j=1}^{2} \frac{\partial^2u}{\partial x_i \partial x_j} \vec{w}_i^{\top} \vec{w}_j^{\top}$$

In general: $D^mu(\vec{x}): (\mathbb{R}^2)^m \to \mathbb{R}$ symmetric, multilinear operator

$$D^mu(\vec{x})(\vec{w}_1,...,\vec{w}_m) = \sum_{i_1=1}^{2} \frac{\partial^mu}{\partial x_i} (\vec{x}) \vec{w}_i^{(i_1}...\vec{w}_m^{(i_m)})$$

So a formy way of writing $\frac{\partial^mu}{\partial x_i} (\vec{x})$ is $D^mu(\vec{x})(\vec{e}_i, \vec{e}_{i_2},...,\vec{e}_{i_m})$

$$\frac{\partial^mu}{\partial x_i} (\vec{x}) = u(\mathbf{F}(\vec{x}))$$

$$\frac{\partial^mu}{\partial x_i} (\vec{x}) = u(\mathbf{F}(\vec{x}))$$

Chain rule: $v(\vec{x}) = u(\mathbf{F}(\vec{x}))$

$$\frac{\partial^mu}{\partial x_i} (\vec{x}) = u(\mathbf{F}(\vec{x}))$$

$$\frac{\partial^mu}{\partial x_i} (\vec{x}) =$$

the matrix DF is constant since F is affine

$$|V|_{\xi,T_{1}}^{2}|^{2} \int_{T_{1}}^{\xi} \frac{1}{2} \int_{S}^{t} \frac{1}{2} \int_{T_{2}}^{t} \frac{1}{2} \int_{S}^{t} \frac{1}{$$

$$\leq C_2(t)^2 \|DF\|^{2t} \|\Delta t Df|^{-1} \|u\|_{t,T_2}$$
 $\left[c_2(t) = \int \frac{(t+1)!}{[\frac{t}{2}]!} \right]$

@ follows from the definition of norm of a multilinear functional:

$$B = D^{\dagger}u(x,y), \quad ||B|| = \sup_{\|\vec{w}_i\|=1} |B(\vec{w}_i,...,\vec{w}_e)|$$

3.46

11.8

112 130 160

step 3 derve a bound on NDFII in terms of the mesh quality, K.
for a trangle T, define two radii:
Support F: TI > Tz Is an affin map
prok any WER2 st. w = 2p,
Prode \$ 5 = ET, on inscribed and so $\vec{w} = \vec{\xi}_1 - \vec{\xi}_2$
$F(\vec{\xi}_1)$ $F(\vec{\xi}_0)$
Then $\ DF\vec{w}\ ^2 \ F(\vec{\xi}_1) - F(\vec{\xi}_0)\ \le 2r_2^2 \frac{2r_2}{2p_1} \ \vec{w}\ ^2$
29 29 29
reverse TyTz.
11DF 11 \(\frac{26}{2} \)
condition number of DF: DF · DF' \frac{12}{p} \frac{12}{p}
det: The mesh quality parameter K is defined via
$K = \max_{PT} \frac{\Gamma_T}{P_T}$ (a smaller K is better)

	Step 4: For t22 3 c3 depending on t s.t.			
	u-Ihu ≤ c3(t) kmht-m u t Yu∈Ht(12h)			
	0 < m & t			
	1 nterpolation by precessive polynomials of deg t-1.			
esse et a la alaba y estrephormet plant et el el el para 77 an rich mental a la filmente debenda				
T TO TO TO THE COURT OF THE COU	proof: it suffices to establish the estimate on each triangle TEX			
ng palaura a samura camma han dalah Mililah Mililah Mililah Mililah Mililah Mililah Mililah Mililah Mililah Mi	Pick j between 0 and m			
R				
	ref. tri. Ju From step 2 in the reverse direction, we have			
	ref.tri. / u From step 2 in the reverse direction, we have $ \left[\frac{1}{ u-I_hu _{j,T}} \le C_2(j) \ DF^{-1}\ ^{j} \ dutDF\ ^{1/2} \ v-Iv\ _{j,R} \right] $			
**************************************	12- In 135 S C2(1) 1101 11 1201 11 133K			
	From step 1, we have $[v-Iv]_{j,R} \le c_i(t) v _{t,R}$ from step 2 in the forward direction, we learn:			
CONTRACTOR				
	[1~1t, R ≤ C2(t) DF1 t d+DF -1/2 u t,T			
stringing there byether, we obtain:				
	$ \mathcal{U}-\mathcal{I}_{h}\mathcal{U} _{j,T} \leq c_{1}(t)c_{2}(j)c_{2}(t)\left(\ \mathcal{D}F\ \cdot\ \mathcal{D}F^{'}\ \right)^{j}\ \mathcal{D}F\ ^{t-j}\ \mathcal{U} _{t,T}$			
	1 M 2 M 1 1 1 2 0 2 1			
	ref tri: $R^{2} = \frac{\sqrt{2}}{2} \cdot R^{2} = \frac{\sqrt{2}}{2} \cdot \frac{\sqrt{2}}{2} \cdot \frac{\sqrt{2}}{2} = \frac{\sqrt{2}}{2 - \sqrt{2}} = \sqrt{2} + 1$			
aaa	5tg3 DF -11DF ≤ \(\frac{\range R}{\range P} \)\(\frac{\range R}{\range R} \)\(\frac{\range R}{\range P} \)\(\range			
a=2(1/2)				
= 1 - 2				
2 2-2e+	IR Z			
(2 2 ±1/2	7: radius, hr: diameter			

 $|u-I_h u|_{j,T} \leq c_1(t) c_2(j) c_2(t) (1+f_2)^j (1+f_2)^j (1+f_2)^j \kappa^j \kappa^{k-j} |u|_{t,T}$ $|u-I_h u|_{m,T} \leq c_3(m,t) \kappa^m k^{t-m} |u|_{t,T}$ $\int_{j=0}^{\infty} \frac{1}{j^2} d^{-j} \kappa^j \kappa^{k-j} |u|_{t,T}$ $C_3(m,t) = \sum_{j=0}^{m} C_j(t) C_2(j) C_2(t) (1+\sqrt{2})^j (1+\frac{\sqrt{2}}{2})^{t-j}$ for simplicity, we set m=t and drop them dependence of C3(t) now we have the error estimate ||Uh-U|| ≤ = || || U-Inull, ≤ = c3(t) K h - | |u|t which bounds the H' norm of the error in the F.E. salution in terms of the Ht seminor of the solution. Regular by theorem: 1. If It is convex, I Cy(A) s.t. ||u||_2 < Cy ||f||_0 2. IF are is Ct with t=2, ICy(12, t) sit ||MIIt & Cyllflit-2 3. If I is a rectangle and f=0 in a neighborhood of the corners, then I Cy(2, x,t) st. Hull = Cyllfllt-2, x We haven't quite done enough to analyze 150 parametric elements) To ass (since we assumed F was affine) but at least we a compact set that stays away from the have proved the following:

COMMIS

Theorem: suppose of is a convex polygon and we use
linear or higher order elements. Then
$\ u_n - u\ _1 \leq C_5(\Omega) + \ f\ _0 \qquad C_5(\Omega) = \frac{1}{\alpha}C_3(2)C_4(\Omega)$
(corner singularities prevent improved estimates) (corner singularities prevent improved estimates) (corner singularities prevent improved estimates) (coercivity constant depends on \Omega.
Theorem: Suppose A is a rectangle and A CCA "compact subset of"
Thun if we use triangular elements of degree p (linear: P=1)
Thun if we use triangular elements of degree p (linear: P=1) Then
mu , ≤ c ₅ (12, 5,p) κ f _{p-1} 4 f ∈ H ^{p-1} (5)
$C_{5-2} = \frac{1}{2} C_{3}(p+i) C_{4}(n, \overline{n}, p+i)$
The isopanistric theorem should look something like:
The isopanietric theorem should look something like:
The isopanietric theorem should look something like:
The isoparametric theorem should look something like: Theorem: Suppose 252 is Ct and we use isoparametric elements of digree pzt-1. Then
The isoparametric theorem should look something like: Theorem: Suppose 252 is Ct and we use isoparametric elements of digree pzt-1. Then

(2) we need to estimate the errors in the slivers between I and Ih. Also, Ih is probably not strictly workamed in I, so need to small non-conforming clements.

no longer affine

111111	
district the second	Last time: error analysis, how the H" seminorm transforms under an affine map
	interpolation on the reference alement
***********	shape regular mesher (bounding 11DF11, 11DF-11 in terms of K)
Name and Address of	interpolation on the much
	2 mt-mpalt
Maria Cara Cara Cara Cara	today: { Verman problem
The second secon	Neumann prosen
Book and the second	elliptic regularly theorem Le error estimates Today: {Veumann problem Le error estimates. Le error estimates.
	recall the method of proof for H' errors:
	u-un & = inf u-vill, & = u-Inull, & = kh u 2
	E C3C4 KNAFILO
	& KN III III)
	A strl works for L2: (intuitively expect)
	stell works for 12: (IM-Inullo 5 C3(2)K°h²-0 u 2 = C3h²/u 2 in a thin Du
	11/11 - 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	but the bilinear form a(:s:) is not continuous (ar even defined) on 2
-	
	so Cea's lemma breaks down.
-	It turns out you do get an extra powe of h in
-	th L'error.
-	

proof (Nitsche's trick, a duality argument)
define e = U-UL Galekin orthogonality
as in proof of Cea, a(e,v)=0 YvESL
Let φ solve $-D\varphi$ ze in Ω $\qquad \qquad $
onvex=> 119112 & Cyllello- Cyndup. of e
Green's formula: (e,e) = -(e, sq) = a(e, q)
Note that In 9 ESh, so a (e, In 9) = 0
$(e,e) = a(e, \varphi - I_h \varphi)$
Nello = (e,e) = a(e,4-In4) € 11ell,114-In41,
finally we get to use the interpolation theorem: $\ \Psi - \text{In} \Psi \ _{1} \leq C_{3} \text{Kh} \ \Psi \ _{2} \leq C_{3} \text{CyKh} \ \Psi \ _{0}$
dunde through by llello:
Nello € Chillell, € Ch'lulo € Ch'llflo Afferent C's second order in L ²

first order in H

Mixed Lounday conditions - Duz f NZO on To assume To has
positive length for now du 29 on T chiure in H' norm) define Hilbert space $V = \{u \in H'(\Omega) \cap C^{\infty}(\Omega) : u = 0 \text{ in a neighborhood} \}$ in other words, V is the set of all H'(r) functions

that can be gotten to arbitrary closely by confunctions that vamil near To not that Ho(s) < V < H'(s) Any classical soli of this problem satisfaces II = Nou dady = I = v Puonds + II Pu-Tv dady for VEV, the integral over To 15 zero since V=0 there. det a weak solf of the moved bir.p. is a function $a(u,v) = \iint_{\Gamma} fv dxdy + \iint_{\Gamma} gv ds$

To apply Laa-Milgran, we need to show that a(',') is covered on V and that Stigards is bounded on V.			
coercine on V and that Ingras is bounded on V.			
coercivity: Claim: Pomcaré-Fredrichs holds as long			
coercivity: Claim: Pomcaré-Fredrichs hilds as long as To has positive length. (i.e. JC70 s.t.			
IIullos Clul, AueV)			
proof: this is had to prove in general, but suppose I is			
proof: this is had to prove in general, but suppose I is a square and To is a lime segment of length L.			
a squar and T_0 is a lim segment of length L . Let $R = (0,s) \times (0,L)$ be the shaded region shown. Let $u \in C^{\infty}(\Omega) \cap H^{1}(\Omega)$ s.t. $u \ge 0$ near T_0 . To choose $(\alpha, \gamma) \in \Omega$ and $y \in (0,L)$.			
18/1/// Let ue (°(1) nH'(1) s.t. uzo near To.			
To chook (x,y) EST and ye(o,L).			
Thus $u(x_1y_1) = u(x_1y_1) + \int_{y_1}^{y} u_y(x_1t) dt$ F.T.O.C.			
for any number, $(a+1)^2 \le 2a^2 + 2b^2$ Young's inequality			
$\frac{1}{2} \left(\frac{1}{2} \left$			
Camby-Schnorz:			
((y, my dt) E (y, 12dt (y, ny dt			
S S S Ny dt			

50 u(x,y) = 2u(x,y) = +25 [uy(x,t) dt Now let's integrate with respect to x, y and y' (3 integrals) [... dy': Lulx, y) & 2 [u(x, y) dy' +2 sl] u(x+) 2dt L[[u(x,n) dnd < 25][u(x,n) dy'dx +252[][u,u,n) dtlx Ji'-dxdy: LHUllogs & 25 Hullog +252 | W/1,2 Mullo, a & 2 = 11/2 + 25/11/1, a over the rectangle R, the previous proof works & $\|u\|_{0,R}^{2} \leq \frac{s^{2}}{2} \|u\|_{1,R}^{2} \leq \frac{s^{2}}{2} \|u\|_{1,L}^{2}$ 50 || MNIO, 2 ≤ 2 € (€ | MI, 2) + 25 | MI, 2 $\leq \left(\frac{S}{L} + 2\right) S^2 |W|_{L^{\infty}}$ durity of (CONH' ramshing new To) in V gives the result for all WEV. $\|u\|_{1}^{2} = \|u\|_{0}^{2} + |u|_{1}^{2} \le \left[1 + (2 + \frac{1}{2})^{2}\right] = a(u,u) \quad \forall u \in V, \quad \alpha = \frac{1}{2}$

Last step: the linear functional (1,0) 2	Strads
15 bounded on V	- 1
Theorem: (trace theorem): there is a	bounded linea operator
Y, H(st) -> L(T) su	ut that 8v2V/TI
traceron	restricts operate
proof? agam for the rectifie. so	5
$u(x,0) = u(x,y) - \int u_y(x,t) at$	
$u(x,0)^{2} \leq 2 u(x,y)^{2} + 2(\int_{0}^{y} u_{y}^{2} dt)^{2} \leq$	2 u(x,y) + 25 uy (x,t) d
$s \int_{0}^{1} u(x_{10})^{2} dx \leq 2 \ u\ _{0}^{2} + 2 s^{2} \ u\ $	$\frac{1}{1} \leq \max(2,25^2) \ u\ _1^2$
repeat on other 3 sides	1 2(1+12)
$\int u^2 ds \leq 8(s+\frac{1}{5}) u _1^2$	
$ u _{o,T} \leq \sqrt{8(s+\frac{1}{s})} u _{1}$	
LHS 15 Wall of . This shows X: C'C	元) → じ(下)
· 13 bounded when C(CT) 13 given +	
Since C'(IT) 11 dure in H'(SL)	
15 complete Y extent untromonty.	•

increasing its Morm-

so (lyv) = STrgds is a composition of two Londed operators: H'(12) -> L'(T) -> R 1. I is bounded. July st a(u,v) = sfrdxdy + f grds
for all veV. : If there is a classical solution, we have found it.

(classical solutions are weak solutions and

weak solutions are unique.) In the finite element framework, Neumann bic's are imposed "naturally", i.e. you just leave them as variables like the interior unknown and the solution ends up having the right slope in the mush refinement limit. Call of our conveyen theorems work the same for the Mixed problem, except there could be singularities,
preverting 1/W/2 < C // 1/0. where To meets T, a(un, vn) = If y downy + In grand of principle of virtual work in mechanics. Dirichlet wondstrong Remove them from the system. (Impore their values directly)