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Abstract

Quantum groups were invented largely to provide solutions of the
Yang-Baxter equation and hence solvable models in 2-dimensional sta-
tistical mechanics and one-dimensional quantum mechanics. They
have been hugely successful. But not all Yang-Baxter solutions fit
into the framework of quantum groups. We shall explain how other
mathematical structures, especially subfactors, provide a language and
examples for solvable models. The prevalence of the Connes tensor
product of Hilbert spaces over von Neumann algebras leads us to specu-
late concerning its potential role in describing entangled or interacting
quantum systems.
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1 The representations of SU(2)

Since SU(2) is compact, any continuous representation on Hilbert
space is unitarizable and the direct sum of a family of irrecuible repre-
sentations, all of which are finite dimensional. The irreducible unitary
representations (henceforth called “irreps”) are easy to classify. There
is exactly one of each dimension n which is often written n = 25 + 1
where j is the “spin” of the representation. Let V; be the vector space
of the spin j irrep. Explicitly, V; can be constructed from the identity
representation on C? as the symmetric algebra of C2. That is to say
that SU(2) acts on homogeneous polynomials of two variables z and
y of degree 2j 4+ 1 by extending the action z — ax + by, y — cx + dy

. a b\.
for a matrix ( e d > in SU(2).

1.1 Clebsch-Gordon rules

The tensor product decomposition for the irreps of SU(2) is known as
the Clebsch-Gordon rule and is simply the following:
. — oItk .

Vi®@Vie=®icyjy Vi
where the equation is as SU(2)-modules and i goes in steps of 1. This
decomposition is easy to prove. Observe that the circle sugroup of
e’ 0
0 6—2'9
respect to the basis of monomials with eigenvalues {227, 2272 .. 2721
(where z = €. These eigenvalues are the “weights” of the represen-
tation. It is clear then that V; ® Vj has highest weight 227H2F with
multiplicity one so there is exactly one copy of Vj ;. Orthogonal to it
we see the weight 2272 with multiplicity one. Continuing in this way
we are done.

When k = 2 the Clebsch-Gordon rules say that V;@V, 5 = Vi 0@
Vj_1/2. Since any irrep is contained in a tensor power of V; /5 one may
show that this rule alone suffices to determine all the Clebsch-Gordon
rules. We may represent this rule graphically as follows:

diagonal matrices ( > acts in Vj; by diagonal matrices with

Here the vertices of the graph, known as A, represent the irreps
of SU(2) and an edge between two vertices means that the irrep of
one is contained in the tensor product of the other with Vj 5. This
procedure for associating graphs with the irreps of an object, with one



privileged one, is obviously quite general and we will use it without
further explanation below. Note that if there were multiplicity in the
decomposition, one would use multiple edges in the graph.

1.2 Decomposition of the tensor powers of ir-
reps.

If 7 is a representation of the group G on the vector space V, one
looks first for proper subspaces of V' which are invariant under 7, for
all g € G. If V is a Hilbert space and 7 is unitary it is natural to
ask that the subspace be closed, hence also a Hilbert space. Moreover
closed subspaces of Hilbert space are the same as projection operators-
continuous linear maps p : H — H with

p=7p" andpzzp.

To say that the subspace is invariant is the same as saying that the
corresponding projection commutes with 7, for all g € G. Thus the
various ways in which a unitary representation decomposes are de-
scribed entirely by projections that commute with the group. But the
set of all continuous operators which commute with the group has the
structure of an algebra to which many more techniques can be brought
to bear than on the set of its projections. Indeed we have just given one
of the equivalent definitions of a von Neumann algebra, namely the
algebra of operators commuting with a unitary group representation.

If 7 is any representation of any group G on the vector space V,
there is always a canonical algebra of linear transformations of @*V
commuting with ®*7. That is the algebra generated by the permuation
group Sy acting by permuting the various tensor product components
(i.e. if o is a permutation then o (v1 @V ® ... @VE) = Vy(1) DVg(2) D.... ®
Vg(k) — OT s it o~17...). Since the permutation group is generated by
its transpositions, this algebra is generated by Si2, 523, ...S(r—2)(k—1)
where §: V@V — V@V is the map S(v®w) = w®w, and for the rest
of this paper we make the convention thatif R: V&®V — V&V is any
linear map then for 1 < ¢ < k—1 the linear map R;(; ) : FV — FV
is defined by

Rz’(z’+1)(v1 R V2 Q.0 ®Vigq1...& vk) =1 XUy &® R(vz & Uz’+1)~~ & Vg

Thus one may decompose the tensor powers of 7 according to the
irreps of the symmetric group by projecting on to the subspace of
vectors (the so-called “isotypical component”) of vectors that transform
according to that representation of Si. Thus the symmetric powers of
m are given by the trivial irrep and the antisymmetric powers by the



parity irrep. It is a well known result, sometimes called “Schur-Weyl
duality”, that if V' = C" and G = SU(n) then the algbebra generated
by Sk is in fact the algebra of all operators commuting with G.

2 The McKay correspondence
This is a relation between closed subgroups of SU(2) and the extended

Coxeter-Dynkin diagrams fl, D, EA_ o and Do drawn below (and
of course Ay, drawn above).
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Let us start with the case of a finite subgroup G. By passing
to the quotient SO(3) we see that G is the double cover of either
a cyclic group, a dihedral group or the symmetry group of one of
the Platonic solids-the tetrahedron, cube/octahedron and the icosahe-
dron/dodecahedron. We now form a graph for G as we did for SU(2)



in 1.1. The vertices of the graph are the set of irreps of G and there
are k edges between two irreps if the tensor product of one by the two
dimensional identity representation of G contains k copies of the other.
(In fact no multiplicity higher than one occurs here.) The McKay cor-
respondence asserts that the graph obtained is necessarily an extended
Coxeter-Dynkin diagram according to the following scheme.

A, < Cyclic Group

D, <« Dihedral Group

FE¢ <« Tetrahedral Group

E; « Cube/Octahedron Group

Es « Icosahedral/Dodecahedral Group

There are three infinite closed subgroups of SU(2). They are SU(2)
itself, the circle group T and the infinite dihedral group TxZ/27Z. They
correspond to the diagrams A, A_ oo and Dy, respectively. Here
A is the graph of the Clebsch-Gordon rules for SU(2) and A_

and Do, are as above.

For the lovers of the empty set we must mention the trivial group
consisiting of the identity element. It has one irreducible representa-
tion which, on tensoring with the identity representation gives 2 copies
of itself. So the graph of the McKay correspondence could be taken
as the graph with one vertex and two edges connecting that vertex to
itself...

The cyclic group Z/nZ case requires a certain amount of care as
the representation is not irreducible so corresponds actually to both
vertices on the graph adjacent to the trivial representation. The cyclic
groups exist as honest subgroups of SU(2) and as such they give rise
to A,’s. As subgroups of SO(3) they are double covered in passing to
SU(2) and what happens depends on the parity of n. We leave the
somewhat confusing details as an exercise.

The guiding light here is that the graph must somehow be made
up from extended ADFE diagrams as there is a third ingredient of the
McKay correspondence which is to p X ¢ matrices with non-negative
integer entries whose norm is equal to 2. (The norm of a matrix A is
the largest stretching factor for unit vectors, or alternatively the square
root of the largest eigenvalue of ATA.) In this correspondence one takes
a bipartite graph with n vertices, with disjoint vertex subsets X and
Y not connected to themselves, but n = #(X ) +#(Y), and constructs
the matrix with columns labelled by X and rows labelled by Y. Under
certain irreducibility assumptions, if the resulting matrix has norm 2,



the graph has to be an extended ADFE graph.The importance of norm
2 is explained as follows. From A form the square matrix

0 A
°= (4 o)

(which is actually the adjacency matrix of the graph in the usual sense).
The norm of Q is the same as that of A and the Perron Frobenius
theorem on matrices with non-negative entries implies that the norm
of €1 is the eigenvalue of the unique eigenvector with positive entries. It
suffices to exhibit such a vector (whose representation theoretic nature
we will describe) for the ADE diagrams to show they have norm 2.

In the other direction one may see an a priori connection with root
systems for Lie algebras by forming 2 — Q. Given that the norm of Q
is equal to 2 and  is symmetric, 2 — Q is positive semidefinite so has
a symmetric (real) square root A. The relation A% = Q says precisely
that the rows of A are vectors which are all of length v/2 and are either
orthogonal or at an angle of 120° to each other. Since 2 is actually an
eigenvalue of €2, the rows of 2 — ) only span a subspace of dimension
n — 1. Up to this detail we are dealing with a root system. In fact
if any vertex of the graph is removed the resulting set of vectors will
indeed be a root system all of whose roots have the same length. Thus
we expect to see the ADFE Coxeter-Dynkin diagrams. The details are
left as an exercise.

We would like to mention an amusing check on all this stuff. From
the point of view of SU(2), the reason the matrix has to have norm 2
is that tensoring a representation by the identity representation multi-
plies the dimension of the representation by 2 so that the vector whose
entries are the dimensions of the wrreps of the closed subgroup G of
SU(2) is an eigenvector for Q of eigenvalue 2. Conversely, if we take
the Perron-Frobenius eigenvector for 2 and normalise it so that the
component corresponding to the trivial representation is 1, the other
entries must all be integers, indeed they must be the dimensions of the

irreps of G ! We illustrate with the Perron-Frobenius eigenvector for
Eg below:
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Note that the sum of the squares of the dimensions is 120. The
order of the group of rotational symmetries of the dodecahedron is
obviously 60. The factor of 2 is due to the double covering when
passing from SU(2) to SO(3).



A curious question arises out of our McKay correspondence. Why
did only the extended Coxeter-Dynkin diagrams arise? Are there nat-
urally arising structures whose representations are the vertices of an
ordinary ADFE diagram and for which the tensor product rule can be
interpreted as above? If such structures exist is there a context in
which they appear just as naturally as the McKay correspondence?
The answer to these questions is provided by subfactors as we shall
see.

A more obvious way to extend the McKay correspondence is to do
the same thing for SU(3) and beyond. One will not of course obtain
the ADFE diagrams but rather graphs of norm 3, 4 and so on. Moreover
the graphs will have to be directed. The reason for undirected graphs
for SU(2) and its subgroups is that the identity representation is self-
conjugate. If we had considered U(2) instead we would have had to use
directed graphs and would have found graphs with loops and directed
edges. As a very simple example for U(3) here is the directed graph
(of norm 3 of course) resulting from a copy of Z/5Z in U(3):

3 Commuting transfer matrices, the Yang-
Baxter equation

3.1 Generalities

In statistical mechanics systems are sometimes modelled by specifying
a set of states {0} arising from a collection of locally interacting sites
placed on some lattice. An energy is assigned to each state according
to the model. If just a finite subset X of the lattice,with N sites ,
is considered, the number of states may be finite and the “partition



function” for X is

Ix = Z eifég)

oce{states of x}

Some attention will have to be given to the boundary of X to properly
define Zx. In general we will consider an increasing family of subsets
X whose union is the whole system.

For instance the simplest of all such models is the Ising model where
the lattice is Z™ and X is a product of intervals, depicted below for
instance when n = 2 and X is a 6 X 6 square:

A state of the system is specified by assigning one of two “spin”
states T and | to each site (=lattice point). The edges between the
lattice points correspond to (nearest neighbour) interactions and the
energy of a state o is the sum:

Z E(0y,0y)

edges between lattice points

where in the sum x and y are the lattice points at each end of the
edge, and E(i,7) (with i and j being 1 or |) is the local energy arising
from the interaction along the edge.

The boundary conditions can be handled in many ways-one can
wrap approximating rectangles on a torus creating periodic boundary
conditions. Or one can simply neglect the interactions of the boundary
sites with neighbours outside X, (free boundary conditions), or one
may fix all the spins along the boundary according to some specified
pattern (fixed boundary conditions). Since most of the contribution
to the partition function will not involve the boundary, the asymptotic
growth rate of the partition function should depend only on the whole
system. This rate is called the free energy per site:

1
F = lim NlogZX

N—o0

8



This free energy may depend on several parameters. Certainly the
temperature is one of them, but there may be different horizontal and
vertical interactions, an external field and so on.

We will say a model is “solved” if F is expressed as an explicit
function of its parameters. Given the complexity of the function that
may be involved in such a solution, one may question the usefulness of
a solution as opposed to the defining limit. But there are many cases
in which the explicit formula is simple enough to read off meaningful
results. There are also many other limits one might like to calculate
before saying the model is “solved”.

The most completely (non-trivial) solved model is the Ising model
in 2 dimensions. But we shall be more interested in another kind
of model called a “vertex model” on a lattice, where the state of the
system is defined by assigning values (in some indexing set) to the
edges of the lattice. The “ice-type” model is a vertex model in which

the indexing set has two elements (corresponding to the presence or
absence of some kind of bond between neighbouring molecules) which
can be conveniently represented by arrows on the edges. Thus a state
of an approximating square in a 2-d ice-type model might be as below:

0 ! O
o 0 o)
Fig. 3.1.1.
) 0 O
! ! o

The energy of a state of a vertex model is the sum of energy contri-
butions from each vertex. If the state is given each vertex is surrounded
by edges with indices on them so that the energy is specified by assign-
ing an energy to each configuration of indices. In the ice-type model
there are 16 such configurations corresponding to the arrow configura-
tions around a vertex.

The partition function is calculated using exponentiated energies.
The exponential of the energy is called the Boltzmann weight so that



we have Boltzmann weights

R(a,b|c,d)
assigned to each local index configuration as below:
c
a b
d

The partition function for the rectangular subregion X is then

Zx=>_ ][] Rab

states vertices

¢, d)

Where conventions must be adopted for how the indices surround-
¢, d),

ing a vertex (in a given state) are to be used as indices in R(a,b
and the boundary conditions must be specified.

Remark 3.1.2. In a large part of the literature what we call “R” below
is called R and R = SR with S as in section 1.2. We use our notation
slightly reluctantly but it seems that the more fundamental formalism
15 the one where our R-matriz is present but S is not. And we do
have the justification that R is the letter Baxter himself uses in [2]. In
quantum group theory it is no doubt the other R that is more natural.

3.2 Transfer Matrices

Transfer matrices are a powerful method for translating the problem
of finding the partition function into a problem of linear algebra. The
basic idea is that the summation over indices in the partition function
becomes the summation over indices in matrix multiplication. For
instance if one had a one dimensional vertex model with Boltzmann
weights R(a, b) the partition function for a lattice with n sites as below
(illustrated with n = 5):

x @ ap ag ay y

Fal FaY Fal FaY O
\vJ Ao} \vJ U \vJ

is readily seen to be the (z,y) entry of the matrix R". The boundary
conditions were fixed to be x at the left and y at the right. If the
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boundary conditions were periodic the partition function would be

Trace(R™).

One is interested in the asymptotic behaviour as the subsystem X
tends to the whole infinite lattice and one can use linear algebra tech-
niques to understand the asymptotic behaviour of R™ (the behaviour
is in general governed by the largest eigenvalue. We leave the solution
of the one dimensional vertex model as an easy exercise.

To apply the transfer matrix method to a two dimensional lattice
we simply think of each row of the lattice as being an atom in a one
dimensional lattice and construct its transfer matrix. The trouble is of
course that the the size of the transfer matrix will grow (exponentially)
with the size of the system. And the boundary conditions will have to
be handled in a more complicated way. Let us first impose periodic
horizontal boundary conditions. Then the transfer matrix for a 2-d
lattice built up from horizontal rows will be

Tﬁ"lljfjj%n = Z R(an7a1|$17y1)R(a17a2|$27y2)--'-R(an717an|$n7yn)-

a1,a2;...,an

as explained diagrmattically below:

Fig. 3.2.1.

Because of the growing size of T', the problem of calculating its
largest eigenvalue becomes formidable and hopeless in general. One of
Baxter’s great ideas was to look for models in which the transfer matri-
ces commute with each other for different values of their parameters.
Then they will have to have a common eigenvector and one may try
to deduce enough about how the eigenvalue depends on the parameter
to determine it completely. This part of the Baxter program - actual
determination of the eigenvalues - has not been completely formalised,

but a great machine has evolved for producing examples of models with
commuting transfer matrices. That machineis QUANTUM GROUPS.

11



3.3 The Yang-Baxter equation.

The diagram below illustrates what it means for the transfer matrix
with value A (often called the spectral parameter) to commute with the
transfer matrix with value p (periodic horizontal boundary conditions):

e g L ) )

T

D
[

)
Q

Here we left out all indices, the convention being that indices are
implicit on the boundary edges and summed over for each internal
edge. And the value of the spectral parameter to be used for the R
matrix is indicated near to the corresponding vertex on the diagram.

If written out in full, the equations represented by the diagram
form a huge system of highly non-linear equations for the Boltzmann
weights. The Yang-Baxter equation (YBE) is a set of equations involv-
ing ony 3 vertices which implies that the transfer matrices commute.
With the same notational conventions as above the YBE asserts the
existence of a third value p of the spectral parameter (depending of
course on A and ) for which we have the following equation:

T N

12



If we use R(A) to denote the matrix of Boltzmann weights with
parameter X\ then the YBE is, in the notation of 1.2:

3.3.1.  Ria(A)Ras(p) Ri2(p) = Roz(p)Ria(p)Ras(A).

The argument that the YBE implies commuting transfer matrices
is an elegant one which is entirely diagrammatic with our summation
convention. We need to make the assumption that the matrix of Boltz-
mann weights for the third value p is invertible. This is precisely the
condition that there is another R-matrix which we will denote by the
parameter “p~1” for which:

/\

(which of course implies the same thing with p and p~! interchanged).

Note that it is rather important to associate the correct indices of
R(a,b|c,d) to the correct edges of the the diagram. How to do this
will be obvious from the following argument so we leave it to the reader.

Now take the picture representing one side of the equation for com-
muting transfer matrices and insert the picture above for p “p=1” to
obtain:

D
O
T

)
=]

This does not change the partition function. Successive applica-
tions of YBE move p clockwise around the picture, swapping a A and
a i each time. After a few steps one obtains:

13



Eventually the p comes right round the circle and meets its inverse
with which it cancels and one obtains the other side of the commuting
transfer matrix equation!!

3.4 First solution of the YBE

Apart from the most difficult question of how to proceed once we have
commuting transfer matrices (which we do not pursue here), the YBE
raises many questions. One might ask for instance if the p is uniquely
defined by A and g and if so what are the properties of the operation
(A, 1) — p. But most of all there is the question of existence- the YBE
is a system of coupled cubic equations with far more equations than
unknowns. Without any discussion at this point of how it was found,
we present the following R—matrix and claim it is a solution of YBI:

3.4.1. Ry(z) =
zq ! — a7 lg 0 0 0
v 0 e Mgt —q) z—a! 0
rq—x 1g1 0 x—x ! (g7 —q) 0
0 0 0 zq ! —x7 g

The assiduous reader may check directly that (suppressing ¢g-dependence)

Riz(7) Ros(zy) Ri2(y) = Ras(y) Riz(zy) Ros()

but we will see easier ways to check this later on. Note that the factor
1

is arbitrary but it yields the following pleasant properties:
=gl —xq

(i) Ri(z)=S9 (recall from 1.2 that S is the flip v @ w —
w ).
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(i) Ry(z)~" = Ry(z™")

(iv) If we define R to be lim, o Ry(x) then
¢ 0 0 0

0 ¢>—1 ¢ 0

0 q 0 0

0 0 0 ¢

satisfies the braid equation

R=

Ri9Ro3R12 = RozR12Ras3.

0

Note that writing 2 = e and ¢ = €? converts all the entries of the

matrix into hyperbolic sines. This R-matrix is called a trigonometric
solution of the YBE.

Since the entries of the matrix are supposed to be Boltzmann
weights, to be of interest to statistical mechanics there must be values
of x and ¢ for which the entries of the matirx are all non-negative.
The global multiplying factor is neither here nor there so we see that
it suffices to choose z and ¢ positive with > =1 and ¢! > ¢.

3.5 The Ice-type model and the Potts model.

Recall that a Boltzmann weight of 0 corresponds to infinite energy-
i.e. a forbidden configuration. If we look at the positions of the zeros
of our R-matrix 3.4.1 and think of the rows and columns as indexing
arrow configurations as in 3.1.1 we see that the configurations allowed
by the R-matrix are the following:

I SO NS IS B

I

Excluding all but these particular configurations has something
to do with the particular physical system under configuration. Lieb
solved the ice-type model in [29], not by the method of commuting
transfer matrices but by the so-called Bethe Ansatz. For a detailed
account of this see [30]. This was the first major class of statistical
mechanical models solved after Onsager’s solution of the Ising model.
It was in a detailed study of Lieb’s solution that Baxter observed
that the transfer matrices commute and that this property extends
to a model with eight non-zero Boltzmann weights. Baxter went on
to solve this model by a new method, but the theory of quantum
groups has been most successful in extending the six-vertex case, and
applications to topology have not used the full eight-vertex model. so

15



Lieb’s work remains at the heart of the whole business. Indeed Lieb’s
solution of the ice problem motivated Izergin, Coker and Korepin ([17])
to solve the six-vertex model with twisted boundary conditions, which
Kuperberg used to give a proof (|27]) of the alternating sign matix
conjecture.

The Potts model is not a vertex model. It is like the Ising model
in that individual “spins” are located on the vertices of the lattice and
a state of the system is specified by assigning a “spin” value from 1 to
Q@ to each of the vertices. The interactions occur along the edges of
the lattice so that the total energy of a state is

Z E(o,0")

edges of the lattice

where we have suppressed the approximating rectangle and o and o’
denote the spin values at the ends of the particular edge being summed
over. Thus the partition function is

Z H w(o, o)

states edges

where the Boltzmann weights are the exponentiated energies as usual.
Thus from a purely mathematical point of view the only data for the
lattice model is the @ x Q matrix w(o, o) of Boltzmann weights. If the
edges of the lattice are not directed this must be a symmetric matrix
though the geometry of the lattice may allow, say, different Boltzmann
weights for vertical or horizontal interactions.

The Potts model is defined by the property that the spin states
have no structure other than being different so that the Boltzmann
weight w(o, 0’) depends only on whether ¢ = ¢’ or not. If V = C%
with usual basis v,, then the transfer matrix which creates a new row
with n spins of the lattice will be a linear map from ®™V to itself. To
organise the transfer matrix we introduce the maps p : V. — V with
all matrix entries equal to %, and the map d: V@V — V&V with
Ad(Ve @ Vo) = 05.51Vs V. We then put Fy; 1 =101®..0p®1..®1
with the p in the ith. tensor position, and Fy; = \/@di(iH) using the
notation of section 1.2. Then it is an easy exercise to show that, for
the Potts model, the transfer matrix with free horizontal boundary
conditions is a multiple of

n—1 n
3.5.1. [T(aB2 + 1) [J(0F2i -1 + 1)
=1 =1

where a and b are determined by the horizontal and vertical Boltz-
mann weights respectively (note for instance that necessarily, up to a
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constant, w = Ap + 1 where w is the matrix given by the Boltzmann
weights).

You may be wondering about the bizarre normalisations we have
used in defining p and d and the strange indexing of the F;’s. The
reason is to get the nicest possible algebra going. It should be checked
that the F; satisfy the following relations:

3.5.2. E? = \/QE;
3.5.3. EzEz:tlEz = Ez

3.5.4. E;E;=FE;E; if |i—j|>2

These relations are known as the Temperley-Lieb relations and are
somewhat magical. It is fun to check that P = F1E3FE5...Es,_1 has
the property that

PzP = ¢(x)P

where z is any word on the E;’s and ¢(x) is a real valued function of x.
This means that if X is any element in the algebra generated by the
E;’s then PX P = ¢(x)P for some linear functional ¢ on that algebra.
Moreover in terms of our statistical mechanical model this functional
¢ gives precisely the partition function for free vertical boundary con-
ditions! Thus in principle the partition function for a rectangular
lattice with free boundary conditions is entirely determined by the
Temperley-Lieb relations.

So what? To answer this we return to our R-matrix 3.4.1 for the
ice-type model. Put

3.5.5. E=

—_
o = O
o O O O

Then two things are true. First, if we define E; on @"C? as Eiiv1)
with the notation of 1.2, then the Temperley- Lieb relations hold, and
second, Ry(x) is a linear combination of E and the identity. It is
thus not surprising that, with the appropriate boundary conditions,
the partition function for the ice-type model is the same as that of the
Potts model with a (physically bizarre) change of variables. In fact
this is only true if the horizontal and vertical interactions of the Potts
model satisfy the relation a = b, known as “criticality” for various

17



reasons. In [37], Temperley and Lieb showed the equivalence of the
ice-type model and the critical Potts model on a square lattice using
the relations 3.5.23.5.3 and 3.5.4. This equivalence was subsequently
understood on a general planar graph (for the Potts model) and its
"medial graph" (for the ice-type model). For a beautiful treatment see
chapter 12 of [2].

3.6 How to remember the formula.

My personal way of reconstructing the formula 3.4.1 from simpler ones
involves the Hecke algebra of type A,,. This is the algebra with gener-
ators g1, g2, ..., gn—1 and relations

(h1) g2 =(q—1)gi+ qid
(h2) 9i9i+19i = Gi+19i9i+1
(h3) 9i9; = 9;9; if |i—j| >2.

Here T am faithfully reproducing a constant disagreement in the
literature over the meaning of ¢. In our Hecke algebra relations we
are using ¢ as in [6], which is natural in its context as the number of
elements in a finite field. The ¢ in 3.4.1 is the square root of this q.

The relations h2 and h3 are the braid relations which we have seen
as the limit of the YBE as the spectral parameter tends to infinity. In
this Hecke algebra case we can reconstruct the YBE from the braid
relations as follows:

Step 1: Renormalize the g;’s as G;’s so that relation A1 becomes
Gi+G'=kid

Step 2: Define
Ri(z) = 2G; + 271Gt

2

Then it is an exercise to prove that, in the presence of the braid
relations the YBE is equivalent to

3.6.1. G1G7 G + G GoGT! = GoGT Gy + G 1G1G5 !

It is immediate to show 3.6.1 from G; —|—GZ-_1 = k id. I do not know
of any other solutions to 3.6.1.

Of course this begs the question of how to get appropriate solutions
of the Hecke algebra relations. One way is to obtain g;’s from the
Temperley-Lieb E;’s by g; = ¢F; — 1 (which ¢ is this??) and this is
indeed how I put together 3.4.1. But there are other solutions as we
shall see.
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4 Local Hamiltonians

A quantum spin chain is a one dimensional array of spins. If the
Hilbert space describing an individual spin is C?, then a quantum spin
chain with n spins will be described by ®"C?. If T is a Hermitian 2 x 2
matrix defining an observable for a single spin, then that observable
for the kth. spin in the chain is (with 7" in the kth. slot):

I, =191®..0T®1®..0 1.

If H is the Hamiltonian for the spin chain, the observables A evolve
according to A; = et Ae="t By writing down the correlations be-
tween observables of spin k at (discretized) time t one sees a strong
similarity with expected values of spins in the Ising model whose x
coordinate is given by k and y coordinate by the time ¢, provided one
takes as Hamiltonian the logarithm of the transfer matrix (times /—1).
This is generalised into a powerful equivalence between 2-dimensional
statistical mechanics and 1-dimensional quantum mechanics provided
time can be anaylytically continued to imaginary time.

This suggests that perhaps the transfer matrices of statistical me-
chanical models can be used to create Hamiltonians for quantum spin
chains. In order to satisfy locality conditions, a Hamiltonian should
be expressible as a sum of terms each one only involving spins close to
each other on the lattice. The simplest would be a nearest neighbour
interaction and if it is translation invariant it must be of the form
>_i Hi(i11) in the notation of 1.2 where H is some self-adjoint operator
on C? ® C2. An ingenious way to do this is to take the logarithmic
derivative of the transfer matrix with respect to the spectral parameter
at some appropriate value of the spectral parameter. By the conditions
after 3.4.1 it is clear that the right value is x = 1.

Since the transfer matrix is multilinear in the R matrices used at
the vertices we see that the derivate with respect to A\ of

is the sum over all ways of putting in one A" of
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where we have symbolically used X’ to stand for the derivative of the R-
matrix with respect to A. If we use 3.4.1, the sign of R,(1) is irrelevant
so we see that the transfer matrix 3.2.1is represented diagrammatically

A aalalala

which is of course a rotation if it is represented in a cylinder.

So if we write T'(z) for the transfer matrix using 3.4.1, a typical
term in the logartithmic derivative

dz '°71

T(1)
can be seen by multiplying the diagrams as below with R'(0) being
the derivative of 3.4.1 with respect to x at x = 1:

J ,( )
/ AN
’ \
/ \

/ \
' \
! \
' v
' BN '
I , i !
l / \ '
' ' \ '
! ' ' i
| \ ' /
\ \ , ’
\ /
N S /

\ N . /

On cleaning up the picture we see that the logarithmic derivative
is the sum of all matrices whose diagrams are as below, the crossings
occuring between the ith. and (i + 1)th. strings from the left, with
periodic boundary conditions so that the last term would involve a
crossing between the first and last strings:
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This sum of matrices is clearly a Hamiltonian with nearest neigh-
bour interactions provided it is positive self-adjoint. This positive
condition on the R-matrix may be quite different from the positivity
of the Boltzmann weights so R-matrices which do not work in the sta-
tistical mechanics world may work here. The moral is that if you find
a solution to the Yang-Baxter equation that does not admit positive
Boltzmann weights, don’t necessarily condemn it to the trash as it
may give you a solvable quantum spin chain.

I have made the arguments for commuting transfer matrix and lo-
cal Hamiltonian completely diagrammatic so they will work in any
situation where the diagrams make sense as multilinear maps on their
inputs. For instance the arguments work just as well for the Potts
model and other models known as “IRF models”. Several people have
axiomatised the diagram calculus-see [28],[3]. 1 have developed a spe-
cific formalism, called “planar algebras” whose special features were
driven by subfactors. Certainly the arguments for commuting transfer
matrices and local Hamiltonians work in planar algebras.

We should not forget what we have achieved with the local Hamiltonian-
since the transfer matrices all commute among themselves, they com-
mute also with the local Hamiltonian so we are armed with a large
family of operators commuting with the time evolution which should
be extremely useful in diagonalising it. If, for physical reasons, one
wanted local expressions for these constants of the motion one could
take higher logarithmic derivatives of the transfer matrices with re-
spect to the spectral parameter.

In the particular case of our R-matrix 3.4.1 of we do the computa-
tion we find the local Hamiltonian

Z Hiiq1y
=1

where the indices are taken mod n and, up to addition of some constant
matrix which only changes the whole Hamiltonian by addition of a
constant,

21



_ 0  —(¢'—=q 2 0
HZ(H—I) - 0 9 q—l —q 0
0 0 0 g t+q

which may mean more to physicists written in terms of the Pauli spin
matrices:

1
Hii1y = Uz®az+ay®ay+§ ((Q+q_1)(z’d+az®az)+(q—q‘1)(az®id—z’d®az)>

The presence of the term multiplied by ¢—¢ ! is the only difference

between this and what is known as the XXZ7 Hamiltonian. But in
fact as Barry McCoy pointed out to me these terms cancel when one
performs the sum over i. So the XX7 Hamiltonian admits a large
family of explicit matrices that commute with it.

4.1 Spin Models

As we have mentioned, quantum groups gave a machine for creat-
ing large families of solutions of the Yang-Baxter equation and hence
statistical mechanical models with commuting transfer matrices, and
quantum spin chains with many commuting Hamiltonians. But the R-
matrix coming from a quantum group is that of a vertex model. I have
long wondered if there is any such machine that would produce what
I call “spin models”, that is to say generaisations of the Potts model
with an arbitrary (symmetric) matrix of Boltzmann weights. There
does not seem to be such a machine. Searches for such models have
been very combinatorial and though they have led to some insights in
combinatorics (see [4]) there have been few new statistical mechanical
models. The one spectacular new spin model was discovered by Jaeger
in [19]. He only gives the knot theoretic solution of the Yang-Baxter
equation but it can be easily “Baxterised” as in [22] to give a solvable
model.

The idea that led to the Jaeger model was to look for models whose
matrix w(o, o’) of Boltzmann weights was the next simplest after the
Potts model. In the Potts model this matrix only has two different
entries, one on the diagonal and one off. The first generalisation of this
would be to matrices with three distinct entries-one on the diagonal
and two others, say  and y. One may then construct a graph whose
vertices are the indices of the matrix entries (i.e. the spin states per
site) with an edge connecting o and o’ if w(o, ¢’) = x. This puts one in
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the world of association schemes and their Bose graphs. By applying
this kind of idea Jaeger found two remarkable things:

(a) That there is a solvable model as above for which the underlying
graph is the Higman-Sims graph on 100 vertices! (The automorphism
group of this graph is the Higman-Sims group, one of the first sporadic
finite simple groups.)

(b)Together with a couple of simple examples, the Higman Sims
graph is the only known graph that can work.

At this stage no-one has gone on to solve the Jaeger model. There
is a Temperley-Lieb like duality with a quantum group R-matrix so
that the bulk free energy is not too interesting, but the correlation
functions must support representations of the Higman-Sims group.

5 Subfactors.

5.1 Factors

For a complete change of pace we treat a topic in analysis. Von Neu-
mann algebras are self-adjoint algebras of bounded linear operators on
Hilbert space which contain the identity operator and are closed under
the topology of pointwise convergence on the Hilbert space. Factors
are von Neumann algebras with trivial centre. We do not want to go
into the details more than that but we can suggest the notes from a
course given by the author, accessible from his home page, for anyone
who wants to know more. Thus a subfactor is a pair N C M of factors.
To avoid technical difficulties we will only talk about the case of “type
I1;” factors which are those which are infinite dimensional but have a
trace tr which is a linear functional satisfying

tr(ab) = tr(ba)
and can be normalised so that ¢r(1) = 1, in which case

tr(z*z) > 0 for z # 0.

5.2 Index

There is a notion of index for a subfactor, written [M : N|. If [M :
N] < 4 it was shown in [21] that it must be one of the numbers
4cos’m/n for n = 3,4,5,.... The key ingredient in the proof of this
result was the construction of a tower of factors from the original pair
and certain operators satisfying the Temperley-Lieb relations! To be
precise one can construct an orthogonal projection ey from M to N
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defined by the formula

tr(zen(y)) = tr(zy)

and then show that if [M : N] < oo, the algebra < M, exn > of linear
operators on M generated by M (acting by left multiplication) and ey
is again a II; factor and [< M, ey >: M| = [M : N]. This constructs
the beginning of the tower:

NCMCM =<M,ey>.

To continue just repeat the construction to obtain M; 1 =< M;, e, | >.

If we write e; = ey, for short and renormalise by E; = \/[M : N]e;
then relations 3.5.2,3.5.3 and 3.5.4 all hold. Moreover there is *-
structure for which E} = E; and the trace has to satisfy

tr(z*z) > 0 for  # 0.

A careful examination of this property of the trace on the algebra
generated by the FE;’s proves the result about the “quantized” index
values-see [15].

To see a more compelling similarity with the previous sections, note
that the tower M; can also be constructed as

M, =MINMINMSpN.. N M

with 741 copies of M in the tensor product. (For anyone who has not
seen the tensor product over non-commutative algebras, M @y M is
the quotient of the vector space tensor product M ® M by the subspace
spanned by {zn ® y — x @ ny|lx,y € M and n € N}.) The E;’s can
then be constructed with the same asymmetry between odd and even
i as in the Potts model. Thus

Ei(z@y®z..)=+[M: Nlen(z) @y ® z...

E)z@y®z..) = Za:y)\,- R A ® z...
i

and so on, where )\; is any “orthonormal basis” for M over N, i.e.
YoiAienAr = 1in < M,eny >. The existence of the \; is an easy
consequence of the original work of Murray and von Neumann-see [33].
It is easy to show that the E;’s acting on M; = M Qy M @y M ®@n
... ®n M satisfy the TL relations 3.5.2,3.5.3 and 3.5.4.

In their first paper on subfactors, Pimsner and Popa discovered
precisely the representation of the TL relations given by 3.5.5! Not long
afterwards D. Evans noticed the connection with statistical mechanical
models.
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5.3 A speculation on fusion/entanglement /interaction.

I never fail to be struck by the relationship between the tensor prod-
uct M ®y M and two interacting spins on the spin chain. Connes
had earlier introduced the notion of a “correspondence” between von
Neumann algebras My and Ms which is a Hilbert space M; — Ms bi-
module and had defined a surprisingly subtle notion of tensor product
of bimodules-see [9] and [35]. Perhaps the kinematics for a system of
two interacting quantum systems with Hilbert spaces H; and Ho with
some common observables given by a von Neumann algebra M is the
Connes tensor product Hy ®p; Ho?

If two quantum systems described by Hilbert spaces Hi and Ho
were so entangled that an an observable x on one were equivalent to
an observable y on the other then if £ € H; and n € Hy are vectors
defining states, there should be no difference between x£®n and £®yn.
If moreover the identification of the z’s with the y’s were implemented
by an antiisomorphism ¢ : M — ¢(M) from some von Neumann
algbebra M on Hs to a von Neumann algebra on H; we would have
a right action of M on H; and there would be no difference between
(xr @n and € ® zn. We would be forced to take the Connes tensor
product Hy ® Hs.

The behaviour of the Connes tensor product is very rich and con-
tains the theory of subfactors. Thus one could account for physicists’
assertions that the Hilbert space which describes several Chern Simons
“particles” is not the tensor product but a more complicated structure.
Thus this notion of fusion might be relevant for the systems proposed
by Freedman et al. in [14] in connection with quantum computing.
The approach of Wassermann in [38] to the fusion of loop group rep-
resentations fits exactly into our framework and produces the right
fusion algebra.

Note that this notion of fused systems is much stronger than the
usual notion of entanglement where individual states of a combined
system may be more or less entangled.

The Hilbert spaces of the Andrews-Baxter-Forester and other IRF
models for n sites on a lattice furnish another example. The natural
basis for these Hilbert spaces is a basis of paths and their dimensions
are not simply powers of a given integer. This could be explained if
one supposes that proximity on the lattice causes a large algebra of
observables for one particle to be identified with observables for its
neighbour.

The Connes tensor product is easy to describe in finite dimensinos.
If the algebra M is the n xn matrices and it acts (unitally) on the right
on a finite dimensional vector space V', V may be identified tiwh the
p X n matrices for some p, the right action being matrix multiplication.
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Similarly a left M-module structure on W means that W is isomorphic
to the n x ¢ matrices for some q. The tensor product V ®; W is then
the p x ¢ matrices. Direct sums behave in the obvious way so this is a
complete description of the finite dimensional situation.

A physical setup realising these kinematics would have some sur-
prising properties.

First of all the map £ ® n — 1 ® & does not pass to the Connes
tensor product so fermionic or bosonic statistics would not make sense.
It is known however that in many examples of systems of bimodules
there is a unitary braiding which could be interpreted as playing the
role of an exchange of particles.

Secondly, the only observables for H; that pass to the Connes ten-
sor product are those which commute with the fusing algebra M. In
particular if the fusing algebra is non-commutative the only fusing ob-
servables that remain observable on the combined system are those in
the centre of M.

Thirdly, if two sysems are so entangled that every observable of one
were equivalent to an observable for the other then the Hilbert space
for the fused system would collapse to a one-dimensional one. This is
reminiscent of the Pauli exclusion principle.

5.4 Principal graphs.

In the subfactor context it is natural to ask about the algebra gener-
ated by the F;’s as above which actually has a von Neumann algebra
structure. The algebra generated by the first n E;’s is finite dimen-
sional and naturally included in the next one. A very visual way to
describe inclusions of such finite dimensional algebras is by a “Bratteli
diagram” (|7] which records the ranks of the minimal projections of
the smaller algebra in the simple components of the bigger one. The
tower of algebras of the E;’s as above has the Bratteli diagram below
(for index > 4).
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132
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The numbers on the diagram are the sizes of the matrix algebras
which are the simple components, and the numbers to the right are the
dimensions of the whole Temperley-Lieb algebra- the Catalan numbers
o ()

A provocative connection occurs here between this and section 1.2.
For if we write F; = 1 + S;;41) then these F; satisfy the relations
3.5.2,3.5.3 and 3.5.4 for Q = 4. So that the algebra generated by the
F; should have (and indeed has for index > 4) | the same Bratteli
diagram as 5.4! Thus the decomposition of the tensor powers of the 2-
dimensional representation of SU(2) are also described by 5.4. We see
that in fact 5.4 is redundant in the sense that its essential information
is the graph A, of 1.1. The numbers on the Bratteli diagram are
just the number of loops on the graph A, starting and ending at the
leftmost vertex. These loops form a basis of the algebra that gives the
Bratteli diagram.

But there is a lot more finite dimensional algebra inside the tower
M;. In fact the centralisers N'NM; = {x € M;|zn = nxz Vn € N}
are all finite dimensional and obviously each one is included in the
next. So they also have a Bratteli diagram which can be shown to
have the same structure as that for the Els - there is a graph I' with
a privileged vertex *, such that the algebra N’ N M; is given by loops
on I' based at *. The graph T is called the principal graph. There is
a duality between N C M and M C M; and the principal graph of
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M C Mj is called the dual principal graph.

There are subfactors for which the principal and dual principal
graphs are both A.. More interestingly perhaps the subfactors in
[21] which give the index values 4 cos? 7/n have principal graphs A,,_;
(with one of the end points being * ). We will return to this when we
discuss finite “quantum” subgroups of SU(n).

For another example choose an outer action of a finite group G on
a II; factor M and let N = M, the subfactor of fixed points under
the action of G. Then the principal and dual principal graphs I and T
of M@ C M are as follows: T has a vertex * and a vertex for each irrep
of G, with as many edges between * and the irrep as the dimension
of the irrep, and no other edges. I" has a vertex * and one vertex for
each element of G with an edge between * and each element of G, and
no other edges. Thus for the symmetric group S3 the graphs are as
below:

Q

6 Braid group representations.
The braid group B, is the finitely presented group with presentation
< 01,02, ..., On-1|0i0i410; = 044100541 for i=1,2,..,n—2,

and oj05 =ojo; for [i—j>2>

If one puts A = u = p in the Yang Baxter equation 3.3.1 it is
clear that one obtains a braid group representation by sending o; to
Rii41)(A) on @™V where R()) acts on V@V, provided R() is invert-
ible. This was first done in [23] for the matrix of 3.4.1. The resulting
braid group representation is of considerable interest. It may well be
faithful for generic ¢. This method of obtaining braid group repre-
sentations was applied universally after the development of quantum
groups. It was shown by Krammer and Bigelow ([26],[5]) that certain
of the ensuing finite dimensional representations of the braid group are
indeed faithful.

The main reason for the interest in the braid group is that it has
geometric interpretations. First, according to its name, it is the group
of all braids on n strings. A braid is a way of tying n points on a
bar at the top to n points on a bar at the bottom, by strings whose
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tangent vector always has a non-zero vertical component. Thus the
figure below represents a braid on 3 strings.

\

Alternatively, braids can be thought of as motions of n points in
the plane. The position at any time ¢ of the n points being determined
by the intersection of a horizontal plane with y co-ordinate equal to ¢
with the strings of the braid. In this way B, = m1((C™\ A)/S,,) where
A is the set of n-tuples (21, 22, ..., 2,) With 2z; = z; for some pair i # k
and the symmetric group S, acts in the obvious way.

Knots and links can be formed from braids by tying the tops of the
strings to the bottom. The figure-eight knot is obtained by doing this
to the braid drawn above. It was realised in [23] that the trace coming
from the subfactor origin of the braid group representation furnished
an invariant of knots and links.

From the physics point of view the most interesting property of
these representations is their unitarity. This is a difficult topic in
general for the representations are not unitary for real positive values of
q, even though there is a natural Hilbert space structure on the vector
spaces on which they act. Fortunately this Hilbert space structure
persists enough to supply, for fixed n, a small interval of ¢ values
(containing 1) on the circle for which the representation is unitary on
the Hilbert space @™V though the Hilbert space structure will fail if n
is increased indefinitely and ¢ is left fixed. For g a root of unity of the
form e% there are other statistical mechanical models with Hilbert
spaces for which the braid group representations are unitary for all
n and fixed ¢. These are also the values of ¢ for which subfactors of
finite depth occur - see Wenzl - [39] and Xu -[42]. Subfactors can be
constructed for positive real values of ¢ as well. They are of infinite
depth and have been analyzed by Sawin in [36].
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7 Detective work

Hopefully the reader has been struck by common threads, notational
and otherwise, connecting all the previous sections. They suggest a
grand structure in which the formulae we have come up with are a
small but significant part. We are not convinced that the last word
has been said on this grand structure but for the case of the vertex
models the notion of quantum group does the trick with great elegance
and power.

Beginning with the decomposition of the tensor powers of the rep-
resentations of SU(2) we have presented operators that “deform” the
permutation operators Sj;11) of 1.2, the most general of which was
the R-matrix 3.4.1. We have only hinted that the theory goes beyond
SU(2) but in fact Cherednik gave R-matrices that deform the repre-
sentation of the symmetric group on the tensor powers of C* for k > 2
and Wenzl independently discovered the same objects in the subfac-
tor/braid group context in [40]. Thus it was natural to hope for an
object that would "deform” SU (k) in a way that Schur-Weyl duality
would be preserved and the commutant of this object would be gen-
erated by the R-matrices. This was done by Jimbo and Drinfeld who
were greatly inspired also by a vision of this procedure as a “quanti-
sation” of the theory of integrable systems in Hamiltonian mechanics.
See [11],[18] and [13].

There are many accounts of this work and we do not want to dwell
on it as we are really interested here in cases where the quantum group
formalism does not apply easily but which arise naturally in the sub-
factor world. Suffice it to say that the final result is the construction of
R-matrix solutions (depending in various ways on the spectral param-
eter) for all (finite dimensional)simple Lie algebras and all represen-
tations thereof. In the statistical mechanics formalism the horizontal
and vertical directions on the lattice may correspond to different rep-
resentations of the Lie algebra. And there are extensions to affine Lie
algebras.

Appropriate R-matrices can be evaluated at special values of the
parameters so that they give braid group representations and all such
representations are known to give link invariants where a representa-
tion of the Lie algebra can be assigned independently to each compo-
nent of the link. The invariants are always polynomials in the quantum
deformation parameter q. See [34]. The link invariants are powerful
but many elementary questions remain unanswered. Perhaps the most
galling of these is the question of whether the simplest of the invariants,
corresponding to the Lie algebra sl(2) and its 2-dimensional represen-
tation, detects knottedness, i.e. is there a non-trivial knot for which
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this polynomial is the same as for the unknot? The answer is known
for links (see [12]) and all knots up to 17 crossings have been checked.

Kohno showed in [25] that the braid group representations coming
from quantum groups could be obtained using only the data of the
“classical” Yang-Baxter equation (as formulated by Drinfeld) which
could be used to define a flat connection on configuration space (C™\
A)/Sp.

In a remarkable demonstration that quantum groups were an idea
whose time had come, a notion that was essentially the same was dis-
covered simultaneously by Woronowicz(in [41]) working within opera-
tor algebras! He called the object a “compact matrix pseudogroup” and
was motivated by duality considerations in the representation theory of
groups and Hopf algebras. His ideas have proved extremely fruitful in
the analytic side of the subject and have stimulated many discoveries
in operator algebras. We have not presented the Woronowicz approach
here as the connection with subfactors, while certainly present, is not
as compelling.

8 The Haagerup and Haagerup-Asaeda
subfactors.

In the light of the huge success of quantum groups and connections
with conformal field theory and o-models which we have not men-
tioned here, one is entitled to ask if all interesting theories are some-
how obtainable from Lie groups and “geometry”. This is an important
question, particularly for subfactors whose utility would be brought
into question if one could obtain all examples from structures outside
subfactor theory. In this section and the next we offer two examples of
how subfactors can produce examples independently of any geometric
input, the first pioneered by Haagerup and the second by Ocneanu.

Haagerup asked the question: what is the (irreducible) subfactor
of smallest index greater than 4 that occurs for a 11y factor? In fact
Popa has shown that any index value greater than 4 occurs but those
examples have A, as principal graph. So Haagerup’s real question
was to find the smallest index subfactor with principal graph different
from As. This he solved in spectacular fashion. He first showed in
[16] that the smallest index value is %ﬁ and identified the principal
graph and dual principal graph as being one of the two below (which
are dual to each other):
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Then in [1] Haagerup and Asaeda showed that there is indeed a
subfactor of the hyperfinite II; factor which has these graphs as dual
principal graphs. They further showed that the next possible index
5417

2

value is , constructed the subfactor and calculated the principal
graphs.

The techniques for eliminating other graphs and constructing the
examples were highly calculatory, relying on Ocneanu’s theory of con-
nections. It is a major challenge in the theory to come up with an
interpretation of these subfactors subfactors as members of a family
related to some other mathematical objects. Izumi in [20] made some
good progress in this direction. In [24] we have taken a diagrammatic
approach and calculated certain parameters that show that the sub-

5+2\/ 13 and 5+2\/ 17

factors of indices

are of a very different kind.

9 Finite “quantum” subgroups of Lie groups.

Subfactors of index less than 4 have principal graphs equal to one of
the A,D or E Coxeter-Dynkin diagrams. (Ocneanu showed that in
fact only the diagrams Do, and FEg and Eg can actually occur- and
he constructed subfactors for each of these diagrams.) We saw in the
first section how the extended Coxeter-Dynkin diagrams are connected
with finite subgroups of SU(2). There is also a subfactor connected
with a finite subgroup of SU(2) as follows: Construct a II; factor
R as ®°Ms(C) (completed using the normalised trace to get a von
Neumann algebra). The subfactor Ry is the subalgebra of all elements
of R of the form id ® x where id is the 2 x 2 identity matrix. The
group SU(2) acts on R by the infinite tensor product of its action on
M5(C) by conjugation. This action preserves the subfactor Ry. So
for any subgroup G of SU(2) one may form the subfactor N C M of
fixed points for G: N = Rg; and M = RY. The principal graph for
N C M is then the extended Coxeter-Dynkin graph for the subgroup!
The index is [M : N|] = 4.

This suggests that one should be able to interpret the vertices of the
principal graph as representations of something and the edges as induc-
tion/restriction. This is indeed possible and is inevitable in Connes’
picture where bimodules over a II; factor replace representations of
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a group. The vertices of the principal graph are a certain family of
N — N bimodules and N — M bimodules and the edges count induc-
tion /restriction multiplicities. This point of view was first pointed out
by Ocneanu.

Putting together the index < 4 and index 4 cases above we see that
it is natural to think of the index < 4 subfactors as being some kind
of quantum version of subgroups of SU(2) whose “representation the-
ory” is a truncation of the representation theory of the corresponding
genuine subgroup of SU(2).

Cappelli, Ttzykson and Zuber in [8] also ran into the A — D — FE
Coxeter-Dynkin diagrams in their attempt to understand modular in-
variants in conformal field theory. In extending that work Dikrancesco
and Zuber in [10] looked for truncations of the representation theory
graphs of subgroups of SU(3) that could give modular invariants. Zu-
ber presented a list of such graphs satisfying certain criteria and conjec-
tured that it was complete. Ocneanu used the subfactor point of view
to exhibit the complete list for SU(3) and beyond, with slight changes
in the requirements for a graph to be on the list. Unfortunately the sit-
uation is a little too nice for SU(2) because all its representations are
equivalent to their conjugates. To do justice to the subfactor point of
view would require a detour beyond the principal graphs so we simply
refer to Ocneanu’s paper [32] for those interested in this topic.

10 The direct relevance of subfactors to
physics.

The connection between subfactors and physics that we have outlined
above has been somewhat indirect, passing from certain elements in
centraliser towers to quantum spin chains and/or statistical mechan-
ical models. However probably von Neumann’s main motivation for
studying his algebras was because of their relevance to the quantum
mechanical formalism. So one might hope for a more direct connection
between subfactors and quantum physics. This does exist and is asso-
ciated with many names. It goes back to the pioneering work of Haag
and Kastler who sought to develop a non-perturbative framework for
quantum field theory by taking as basic ingredients the algebras of
observables localised in various regions of space-time.

I feel unable to give a satisfactory account of this theory and it is
to be hoped that a book on it will appear in the near future. I will just
say the following-a subfactor naturally appears by looking at the von
Neumann algebras associated to certain regions of space-time. If two
regions of space time are such that no light ray can connect them (they
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are not causally connected), then their von Neumann algebras of local
observables should commute. These von Neumann algebras are known
to be factors (of type I1I) so one may obtain a subfactor by taking N
to be the algebra of observables localised in a region and M to be the
commutant of all observables localised in the causal complement of
that region.

Using this and other motivations, Wassermann and I looked for
subfactors in the theory of loop group representations. A unitary (pro-
jective) representation of the group LSU(2) of smooth functions from
the circle to SU(2) can be thought of as a one-dimensional quantum
field theory whose currents are given by functions from the circle into
the Lie algebra su(2) and whose algebra of observables localised in an
interval I of the circle is the von Neumann algebra generated by the
normal subgroup L;SU(2) of loops supported in that interval. In this
way we were led to the subfactor (where ¢ is the interval complemen-
tary to I on the circle)

L;SU(2)" C LiSU(2).

Wassermann subsequently showed in [38] that the set of indices of
subfactors so obtained does indeed contain the set {4 cos®7/n} and
extended this work to SU(n), the diffeomorphism group of the circle,
and beyond.
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