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h 2004Abstra
tQuantum groups were invented largely to provide solutions of theYang-Baxter equation and hen
e solvable models in 2-dimensional sta-tisti
al me
hani
s and one-dimensional quantum me
hani
s. Theyhave been hugely su

essful. But not all Yang-Baxter solutions �tinto the framework of quantum groups. We shall explain how othermathemati
al stru
tures, espe
ially subfa
tors, provide a language andexamples for solvable models. The prevalen
e of the Connes tensorprodu
t of Hilbert spa
es over von Neumann algebras leads us to spe
u-late 
on
erning its potential role in des
ribing entangled or intera
tingquantum systems.
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1 The representations of SU(2)Sin
e SU(2) is 
ompa
t, any 
ontinuous representation on Hilbertspa
e is unitarizable and the dire
t sum of a family of irre
uible repre-sentations, all of whi
h are �nite dimensional. The irredu
ible unitaryrepresentations (hen
eforth 
alled �irreps�) are easy to 
lassify. Thereis exa
tly one of ea
h dimension n whi
h is often written n = 2j + 1where j is the �spin� of the representation. Let Vj be the ve
tor spa
eof the spin j irrep. Expli
itly, Vj 
an be 
onstru
ted from the identityrepresentation on C
2 as the symmetri
 algebra of C

2. That is to saythat SU(2) a
ts on homogeneous polynomials of two variables x and
y of degree 2j + 1 by extending the a
tion x 7→ ax + by, y 7→ cx + dyfor a matrix ( a b

c d

) in SU(2).1.1 Clebs
h-Gordon rulesThe tensor produ
t de
omposition for the irreps of SU(2) is known asthe Clebs
h-Gordon rule and is simply the following:
Vj ⊗ Vk = ⊕j+k

i=|j−k|Viwhere the equation is as SU(2)-modules and i goes in steps of 1. Thisde
omposition is easy to prove. Observe that the 
ir
le sugroup ofdiagonal matri
es ( eiθ 0
0 e−iθ

) a
ts in Vj by diagonal matri
es withrespe
t to the basis of monomials with eigenvalues {z2j, z2j−2, ..., z−2j}(where z = eiθ. These eigenvalues are the �weights� of the represen-tation. It is 
lear then that Vj ⊗ Vk has highest weight z2j+2k withmultipli
ity one so there is exa
tly one 
opy of Vj+k. Orthogonal to itwe see the weight z2j−2 with multipli
ity one. Continuing in this waywe are done.When k = 2 the Clebs
h-Gordon rules say that Vj⊗V1/2 = Vj+1/2⊕
Vj−1/2. Sin
e any irrep is 
ontained in a tensor power of V1/2 one mayshow that this rule alone su�
es to determine all the Clebs
h-Gordonrules. We may represent this rule graphi
ally as follows:

X O o o o oHere the verti
es of the graph, known as A∞, represent the irrepsof SU(2) and an edge between two verti
es means that the irrep ofone is 
ontained in the tensor produ
t of the other with V1/2. Thispro
edure for asso
iating graphs with the irreps of an obje
t, with one2



privileged one, is obviously quite general and we will use it withoutfurther explanation below. Note that if there were multipli
ity in thede
omposition, one would use multiple edges in the graph.1.2 De
omposition of the tensor powers of ir-reps.If π is a representation of the group G on the ve
tor spa
e V , onelooks �rst for proper subspa
es of V whi
h are invariant under πg forall g ∈ G. If V is a Hilbert spa
e and π is unitary it is natural toask that the subspa
e be 
losed, hen
e also a Hilbert spa
e. Moreover
losed subspa
es of Hilbert spa
e are the same as proje
tion operators-
ontinuous linear maps p : H → H with
p = p∗ and p2 = p.To say that the subspa
e is invariant is the same as saying that the
orresponding proje
tion 
ommutes with πg for all g ∈ G. Thus thevarious ways in whi
h a unitary representation de
omposes are de-s
ribed entirely by proje
tions that 
ommute with the group. But theset of all 
ontinuous operators whi
h 
ommute with the group has thestru
ture of an algebra to whi
h many more te
hniques 
an be broughtto bear than on the set of its proje
tions. Indeed we have just given oneof the equivalent de�nitions of a von Neumann algebra, namely thealgebra of operators 
ommuting with a unitary group representation.If π is any representation of any group G on the ve
tor spa
e V ,there is always a 
anoni
al algebra of linear transformations of ⊗kV
ommutingwith⊗kπ. That is the algebra generated by the permuationgroup Sk a
ting by permuting the various tensor produ
t 
omponents(i.e. if σ is a permutation then σ(v1⊗v2⊗...⊗vk) = vσ(1)⊗vσ(2)⊗....⊗

vσ(k) � or is it σ−1?...). Sin
e the permutation group is generated byits transpositions, this algebra is generated by S12, S23, ...S(k−2)(k−1)where S : V ⊗V → V ⊗V is the map S(v⊗w) = w⊗v, and for the restof this paper we make the 
onvention that if R : V ⊗V → V ⊗V is anylinear map then for 1 ≤ i ≤ k−1 the linear map Ri(i+1) : ⊗kV → ⊗kVis de�ned by
Ri(i+1)(v1 ⊗ v2 ⊗ ...vi ⊗ vi+1...⊗ vk) = v1 ⊗ v2 ⊗ ...R(vi ⊗ vi+1)...⊗ vkThus one may de
ompose the tensor powers of π a

ording to theirreps of the symmetri
 group by proje
ting on to the subspa
e ofve
tors (the so-
alled �isotypi
al 
omponent�) of ve
tors that transforma

ording to that representation of Sk. Thus the symmetri
 powers of
π are given by the trivial irrep and the antisymmetri
 powers by the3



parity irrep. It is a well known result, sometimes 
alled �S
hur-Weylduality�, that if V = C
n and G = SU(n) then the algbebra generatedby Sk is in fa
t the algebra of all operators 
ommuting with G.2 The M
Kay 
orresponden
eThis is a relation between 
losed subgroups of SU(2) and the extendedCoxeter-Dynkin diagrams Ã, D̃, Ẽ Ã−∞,+∞ and D̃∞ drawn below (andof 
ourse A∞ drawn above).
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ase of a �nite subgroup G. By passingto the quotient SO(3) we see that G is the double 
over of eithera 
y
li
 group, a dihedral group or the symmetry group of one ofthe Platoni
 solids-the tetrahedron, 
ube/o
tahedron and the i
osahe-dron/dode
ahedron. We now form a graph for G as we did for SU(2)4



in 1.1. The verti
es of the graph are the set of irreps of G and thereare k edges between two irreps if the tensor produ
t of one by the twodimensional identity representation of G 
ontains k 
opies of the other.(In fa
t no multipli
ity higher than one o

urs here.) The M
Kay 
or-responden
e asserts that the graph obtained is ne
essarily an extendedCoxeter-Dynkin diagram a

ording to the following s
heme.
Ãn ↔ Cy
li
 Group
D̃n ↔ Dihedral Group
Ẽ6 ↔ Tetrahedral Group
Ẽ7 ↔ Cube/O
tahedron Group
Ẽ8 ↔ I
osahedral/Dode
ahedral GroupThere are three in�nite 
losed subgroups of SU(2). They are SU(2)itself, the 
ir
le group T and the in�nite dihedral groupT⋊Z/2Z. They
orrespond to the diagrams A∞, A−∞,∞ and D∞ respe
tively. Here

A∞ is the graph of the Clebs
h-Gordon rules for SU(2) and A−∞,∞and D∞ are as above.For the lovers of the empty set we must mention the trivial group
onsisiting of the identity element. It has one irredu
ible representa-tion whi
h, on tensoring with the identity representation gives 2 
opiesof itself. So the graph of the M
Kay 
orresponden
e 
ould be takenas the graph with one vertex and two edges 
onne
ting that vertex toitself...The 
y
li
 group Z/nZ 
ase requires a 
ertain amount of 
are asthe representation is not irredu
ible so 
orresponds a
tually to bothverti
es on the graph adja
ent to the trivial representation. The 
y
li
groups exist as honest subgroups of SU(2) and as su
h they give riseto Ãn's. As subgroups of SO(3) they are double 
overed in passing to
SU(2) and what happens depends on the parity of n. We leave thesomewhat 
onfusing details as an exer
ise.The guiding light here is that the graph must somehow be madeup from extended ADE diagrams as there is a third ingredient of theM
Kay 
orresponden
e whi
h is to p × q matri
es with non-negativeinteger entries whose norm is equal to 2. (The norm of a matrix Λ isthe largest stret
hing fa
tor for unit ve
tors, or alternatively the squareroot of the largest eigenvalue of ΛTΛ.) In this 
orresponden
e one takesa bipartite graph with n verti
es, with disjoint vertex subsets X and
Y not 
onne
ted to themselves, but n = #(X)+#(Y ), and 
onstru
tsthe matrix with 
olumns labelled by X and rows labelled by Y . Under
ertain irredu
ibility assumptions, if the resulting matrix has norm 2,5



the graph has to be an extended ADE graph.The importan
e of norm2 is explained as follows. From A form the square matrix
Ω =

(

0 Λ
ΛT 0

)(whi
h is a
tually the adja
en
ymatrix of the graph in the usual sense).The norm of Ω is the same as that of Λ and the Perron Frobeniustheorem on matri
es with non-negative entries implies that the normof Ω is the eigenvalue of the unique eigenve
tor with positive entries. Itsu�
es to exhibit su
h a ve
tor (whose representation theoreti
 naturewe will des
ribe) for the ADE diagrams to show they have norm 2.In the other dire
tion one may see an a priori 
onne
tion with rootsystems for Lie algebras by forming 2 − Ω. Given that the norm of Ωis equal to 2 and Ω is symmetri
, 2− Ω is positive semide�nite so hasa symmetri
 (real) square root ∆. The relation ∆2 = Ω says pre
iselythat the rows of ∆ are ve
tors whi
h are all of length √
2 and are eitherorthogonal or at an angle of 120◦ to ea
h other. Sin
e 2 is a
tually aneigenvalue of Ω, the rows of 2 − Ω only span a subspa
e of dimension

n − 1. Up to this detail we are dealing with a root system. In fa
tif any vertex of the graph is removed the resulting set of ve
tors willindeed be a root system all of whose roots have the same length. Thuswe expe
t to see the ADE Coxeter-Dynkin diagrams. The details areleft as an exer
ise.We would like to mention an amusing 
he
k on all this stu�. Fromthe point of view of SU(2), the reason the matrix has to have norm 2is that tensoring a representation by the identity representation multi-plies the dimension of the representation by 2 so that the ve
tor whoseentries are the dimensions of the irreps of the 
losed subgroup G of
SU(2) is an eigenve
tor for Ω of eigenvalue 2. Conversely, if we takethe Perron-Frobenius eigenve
tor for Ω and normalise it so that the
omponent 
orresponding to the trivial representation is 1, the otherentries must all be integers, indeed they must be the dimensions of theirreps of G ! We illustrate with the Perron-Frobenius eigenve
tor for
Ẽ8 below:

1 2 3 4 5 6

3

4 2Note that the sum of the squares of the dimensions is 120. Theorder of the group of rotational symmetries of the dode
ahedron isobviously 60. The fa
tor of 2 is due to the double 
overing whenpassing from SU(2) to SO(3). 6



A 
urious question arises out of our M
Kay 
orresponden
e. Whydid only the extended Coxeter-Dynkin diagrams arise? Are there nat-urally arising stru
tures whose representations are the verti
es of anordinary ADE diagram and for whi
h the tensor produ
t rule 
an beinterpreted as above? If su
h stru
tures exist is there a 
ontext inwhi
h they appear just as naturally as the M
Kay 
orresponden
e?The answer to these questions is provided by subfa
tors as we shallsee.A more obvious way to extend the M
Kay 
orresponden
e is to dothe same thing for SU(3) and beyond. One will not of 
ourse obtainthe ADE diagrams but rather graphs of norm 3, 4 and so on. Moreoverthe graphs will have to be dire
ted. The reason for undire
ted graphsfor SU(2) and its subgroups is that the identity representation is self-
onjugate. If we had 
onsidered U(2) instead we would have had to usedire
ted graphs and would have found graphs with loops and dire
tededges. As a very simple example for U(3) here is the dire
ted graph(of norm 3 of 
ourse) resulting from a 
opy of Z/5Z in U(3):
O

o o

X

O

3 Commuting transfer matri
es, the Yang-Baxter equation3.1 GeneralitiesIn statisti
al me
hani
s systems are sometimes modelled by spe
ifyinga set of states {σ} arising from a 
olle
tion of lo
ally intera
ting sitespla
ed on some latti
e. An energy is assigned to ea
h state a

ordingto the model. If just a �nite subset X of the latti
e,with N sites ,is 
onsidered, the number of states may be �nite and the �partition7



fun
tion� for X is
ZX =

∑

σ∈{states of X}

e
−E(σ)

kTSome attention will have to be given to the boundary of X to properlyde�ne ZX . In general we will 
onsider an in
reasing family of subsets
X whose union is the whole system.For instan
e the simplest of all su
h models is the Ising model wherethe latti
e is Z

n and X is a produ
t of intervals, depi
ted below forinstan
e when n = 2 and X is a 6× 6 square:
A state of the system is spe
i�ed by assigning one of two �spin�states ↑ and ↓ to ea
h site (=latti
e point). The edges between thelatti
e points 
orrespond to (nearest neighbour) intera
tions and theenergy of a state σ is the sum:

∑edges between latti
e pointsE(σx, σy)where in the sum x and y are the latti
e points at ea
h end of theedge, and E(i, j) (with i and j being ↑ or ↓) is the lo
al energy arisingfrom the intera
tion along the edge.The boundary 
onditions 
an be handled in many ways-one 
anwrap approximating re
tangles on a torus 
reating periodi
 boundary
onditions. Or one 
an simply negle
t the intera
tions of the boundarysites with neighbours outside X , (free boundary 
onditions), or onemay �x all the spins along the boundary a

ording to some spe
i�edpattern (�xed boundary 
onditions). Sin
e most of the 
ontributionto the partition fun
tion will not involve the boundary, the asymptoti
growth rate of the partition fun
tion should depend only on the wholesystem. This rate is 
alled the free energy per site:
F = lim

N→∞
1

N
logZX8



This free energy may depend on several parameters. Certainly thetemperature is one of them, but there may be di�erent horizontal andverti
al intera
tions, an external �eld and so on.We will say a model is �solved� if F is expressed as an expli
itfun
tion of its parameters. Given the 
omplexity of the fun
tion thatmay be involved in su
h a solution, one may question the usefulness ofa solution as opposed to the de�ning limit. But there are many 
asesin whi
h the expli
it formula is simple enough to read o� meaningfulresults. There are also many other limits one might like to 
al
ulatebefore saying the model is �solved�.The most 
ompletely (non-trivial) solved model is the Ising modelin 2 dimensions. But we shall be more interested in another kindof model 
alled a �vertex model� on a latti
e, where the state of thesystem is de�ned by assigning values (in some indexing set) to theedges of the latti
e. The �i
e-type� model is a vertex model in whi
hthe indexing set has two elements (
orresponding to the presen
e orabsen
e of some kind of bond between neighbouring mole
ules) whi
h
an be 
onveniently represented by arrows on the edges. Thus a stateof an approximating square in a 2-d i
e-type model might be as below:Fig. 3.1.1. o o o o

o o o o

o o o o

o o o oThe energy of a state of a vertex model is the sum of energy 
ontri-butions from ea
h vertex. If the state is given ea
h vertex is surroundedby edges with indi
es on them so that the energy is spe
i�ed by assign-ing an energy to ea
h 
on�guration of indi
es. In the i
e-type modelthere are 16 su
h 
on�gurations 
orresponding to the arrow 
on�gura-tions around a vertex.The partition fun
tion is 
al
ulated using exponentiated energies.The exponential of the energy is 
alled the Boltzmann weight so that9



we have Boltzmann weights
R(a, b|c, d)assigned to ea
h lo
al index 
on�guration as below:

o
a

c

b

dThe partition fun
tion for the re
tangular subregion X is then
ZX =

∑

states

∏

vertices

R(a, b|c, d)Where 
onventions must be adopted for how the indi
es surround-ing a vertex (in a given state) are to be used as indi
es in R(a, b|c, d),and the boundary 
onditions must be spe
i�ed.Remark 3.1.2. In a large part of the literature what we 
all �R� belowis 
alled Ř and R = SŘ with S as in se
tion 1.2. We use our notationslightly relu
tantly but it seems that the more fundamental formalismis the one where our R-matrix is present but S is not. And we dohave the justi�
ation that R is the letter Baxter himself uses in [2℄. Inquantum group theory it is no doubt the other R that is more natural.3.2 Transfer Matri
esTransfer matri
es are a powerful method for translating the problemof �nding the partition fun
tion into a problem of linear algebra. Thebasi
 idea is that the summation over indi
es in the partition fun
tionbe
omes the summation over indi
es in matrix multipli
ation. Forinstan
e if one had a one dimensional vertex model with Boltzmannweights R(a, b) the partition fun
tion for a latti
e with n sites as below(illustrated with n = 5):
o o o o o

x ya1 a2 a3 a4is readily seen to be the (x, y) entry of the matrix Rn. The boundary
onditions were �xed to be x at the left and y at the right. If the10



boundary 
onditions were periodi
 the partition fun
tion would be
Trace(Rn).One is interested in the asymptoti
 behaviour as the subsystem Xtends to the whole in�nite latti
e and one 
an use linear algebra te
h-niques to understand the asymptoti
 behaviour of Rn (the behaviouris in general governed by the largest eigenvalue. We leave the solutionof the one dimensional vertex model as an easy exer
ise.To apply the transfer matrix method to a two dimensional latti
ewe simply think of ea
h row of the latti
e as being an atom in a onedimensional latti
e and 
onstru
t its transfer matrix. The trouble is of
ourse that the the size of the transfer matrix will grow (exponentially)with the size of the system. And the boundary 
onditions will have tobe handled in a more 
ompli
ated way. Let us �rst impose periodi
horizontal boundary 
onditions. Then the transfer matrix for a 2-dlatti
e built up from horizontal rows will be
T y1,y2,...yn

x1,x2,...,xn
=

∑

a1,a2,...,an

R(an, a1|x1, y1)R(a1, a2|x2, y2)....R(an−1, an|xn, yn).as explained diagrmatti
ally below:Fig. 3.2.1. o o o o oa5 a1 a3 a4 a5

x 1 x2 x3 x4
x
5

y1 y2 y3 y4 y5

a2Be
ause of the growing size of T , the problem of 
al
ulating itslargest eigenvalue be
omes formidable and hopeless in general. One ofBaxter's great ideas was to look for models in whi
h the transfer matri-
es 
ommute with ea
h other for di�erent values of their parameters.Then they will have to have a 
ommon eigenve
tor and one may tryto dedu
e enough about how the eigenvalue depends on the parameterto determine it 
ompletely. This part of the Baxter program - a
tualdetermination of the eigenvalues - has not been 
ompletely formalised,but a great ma
hine has evolved for produ
ing examples of models with
ommuting transfer matri
es. That ma
hine is QUANTUM GROUPS.11



3.3 The Yang-Baxter equation.The diagram below illustrates what it means for the transfer matrixwith value λ (often 
alled the spe
tral parameter) to 
ommute with thetransfermatrix with value µ (periodi
 horizontal boundary 
onditions):
o o o o

o o o oo

o

µ

λ λ λ λ λ

µ µ µ µ

= o o o o

o o o oo

o
µ µ µ µ µ

λ λ λ λ λHere we left out all indi
es, the 
onvention being that indi
es areimpli
it on the boundary edges and summed over for ea
h internaledge. And the value of the spe
tral parameter to be used for the Rmatrix is indi
ated near to the 
orresponding vertex on the diagram.If written out in full, the equations represented by the diagramform a huge system of highly non-linear equations for the Boltzmannweights. The Yang-Baxter equation (YBE) is a set of equations involv-ing ony 3 verti
es whi
h implies that the transfer matri
es 
ommute.With the same notational 
onventions as above the YBE asserts theexisten
e of a third value ρ of the spe
tral parameter (depending of
ourse on λ and µ) for whi
h we have the following equation:
ο

ο

ο ο

ο

ο

=

λ

µ

ρ ρ
µ

λ12



If we use R(λ) to denote the matrix of Boltzmann weights withparameter λ then the YBE is, in the notation of 1.2:3.3.1. R12(λ)R23(ρ)R12(µ) = R23(µ)R12(ρ)R23(λ).The argument that the YBE implies 
ommuting transfer matri
esis an elegant one whi
h is entirely diagrammati
 with our summation
onvention. We need to make the assumption that the matrix of Boltz-mann weights for the third value ρ is invertible. This is pre
isely the
ondition that there is another R-matrix whi
h we will denote by theparameter �ρ−1� for whi
h:
o oρ ρ =

−1(whi
h of 
ourse implies the same thing with ρ and ρ−1 inter
hanged).Note that it is rather important to asso
iate the 
orre
t indi
es of
R(a, b|c, d) to the 
orre
t edges of the the diagram. How to do thiswill be obvious from the following argument so we leave it to the reader.Now take the pi
ture representing one side of the equation for 
om-muting transfer matri
es and insert the pi
ture above for ρ �ρ−1� toobtain:

o o o o

o o o oo

o
µ µ µ µ µ

λ λ λ λ λ
o oρ

−1 ρThis does not 
hange the partition fun
tion. Su

essive appli
a-tions of YBE move ρ 
lo
kwise around the pi
ture, swapping a λ anda µ ea
h time. After a few steps one obtains:
13



o o o o

o o o oo

o
µ µ

λ

λ λ λ

µ µ µ
o o

λ
ρ−1 ρEventually the ρ 
omes right round the 
ir
le and meets its inversewith whi
h it 
an
els and one obtains the other side of the 
ommutingtransfer matrix equation!!3.4 First solution of the YBEApart from the most di�
ult question of how to pro
eed on
e we have
ommuting transfer matri
es (whi
h we do not pursue here), the YBEraises many questions. One might ask for instan
e if the ρ is uniquelyde�ned by λ and µ and if so what are the properties of the operation

(λ, µ) 7→ ρ. But most of all there is the question of existen
e- the YBEis a system of 
oupled 
ubi
 equations with far more equations thanunknowns. Without any dis
ussion at this point of how it was found,we present the following R−matrix and 
laim it is a solution of YBE:3.4.1. Rq(x) =

1

xq − x−1q−1









xq−1 − x−1q 0 0 0

0 x−1(q−1 − q) x − x−1 0
0 x − x−1 x(q−1 − q) 0
0 0 0 xq−1 − x−1q







The assiduous reader may 
he
k dire
tly that (suppressing q-dependen
e)
R12(x)R23(xy)R12(y) = R23(y)R12(xy)R23(x)but we will see easier ways to 
he
k this later on. Note that the fa
tor

1

x−1q−1 − xq
is arbitrary but it yields the following pleasant properties:(i) R1(x) = S (re
all from 1.2 that S is the �ip v ⊗ w 7→

w ⊗ v).(ii) Rq(1) = −1. 14



(iii) Rq(x)−1 = Rq(x
−1)(iv) If we de�ne R to be limx→0 Rq(x) then

R =









q2 0 0 0
0 q2 − 1 q 0

0 q 0 0
0 0 0 q2







satis�es the braid equation
R12R23R12 = R23R12R23.Note that writing x = eλ and q = eθ 
onverts all the entries of thematrix into hyperboli
 sines. This R-matrix is 
alled a trigonometri
solution of the YBE.Sin
e the entries of the matrix are supposed to be Boltzmannweights, to be of interest to statisti
al me
hani
s there must be valuesof x and q for whi
h the entries of the matirx are all non-negative.The global multiplying fa
tor is neither here nor there so we see thatit su�
es to 
hoose x and q positive with x > x−1 and q−1 > q.3.5 The I
e-type model and the Potts model.Re
all that a Boltzmann weight of 0 
orresponds to in�nite energy-i.e. a forbidden 
on�guration. If we look at the positions of the zerosof our R-matrix 3.4.1 and think of the rows and 
olumns as indexingarrow 
on�gurations as in 3.1.1 we see that the 
on�gurations allowedby the R-matrix are the following:Ex
luding all but these parti
ular 
on�gurations has somethingto do with the parti
ular physi
al system under 
on�guration. Liebsolved the i
e-type model in [29℄, not by the method of 
ommutingtransfer matri
es but by the so-
alled Bethe Ansatz. For a detaileda

ount of this see [30℄. This was the �rst major 
lass of statisti
alme
hani
al models solved after Onsager's solution of the Ising model.It was in a detailed study of Lieb's solution that Baxter observedthat the transfer matri
es 
ommute and that this property extendsto a model with eight non-zero Boltzmann weights. Baxter went onto solve this model by a new method, but the theory of quantumgroups has been most su

essful in extending the six-vertex 
ase, andappli
ations to topology have not used the full eight-vertex model. so15



Lieb's work remains at the heart of the whole business. Indeed Lieb'ssolution of the i
e problem motivated Izergin, Coker and Korepin ([17℄)to solve the six-vertex model with twisted boundary 
onditions, whi
hKuperberg used to give a proof ([27℄) of the alternating sign matix
onje
ture.The Potts model is not a vertex model. It is like the Ising modelin that individual �spins� are lo
ated on the verti
es of the latti
e anda state of the system is spe
i�ed by assigning a �spin� value from 1 to
Q to ea
h of the verti
es. The intera
tions o

ur along the edges ofthe latti
e so that the total energy of a state is

∑edges of the latti
eE(σ, σ′)where we have suppressed the approximating re
tangle and σ and σ′denote the spin values at the ends of the parti
ular edge being summedover. Thus the partition fun
tion is
∑

states

∏

edges

w(σ, σ′)where the Boltzmann weights are the exponentiated energies as usual.Thus from a purely mathemati
al point of view the only data for thelatti
e model is the Q×Q matrix w(σ, σ′) of Boltzmann weights. If theedges of the latti
e are not dire
ted this must be a symmetri
 matrixthough the geometry of the latti
e may allow, say, di�erent Boltzmannweights for verti
al or horizontal intera
tions.The Potts model is de�ned by the property that the spin stateshave no stru
ture other than being di�erent so that the Boltzmannweight w(σ, σ′) depends only on whether σ = σ′ or not. If V = CQwith usual basis vσ, then the transfer matrix whi
h 
reates a new rowwith n spins of the latti
e will be a linear map from ⊗nV to itself. Toorganise the transfer matrix we introdu
e the maps p : V → V withall matrix entries equal to 1√
Q
, and the map d : V ⊗ V → V ⊗ V with

d(vσ⊗vσ′) = δσ,σ′vσ ⊗vσ. We then put E2i−1 = 1⊗1⊗ ...⊗p⊗1...⊗1with the p in the ith. tensor position, and E2i =
√

Qdi(i+1) using thenotation of se
tion 1.2. Then it is an easy exer
ise to show that, forthe Potts model, the transfer matrix with free horizontal boundary
onditions is a multiple of3.5.1. n−1
∏

i=1

(aE2i + 1)

n
∏

i=1

(bE2i−1 + 1)where a and b are determined by the horizontal and verti
al Boltz-mann weights respe
tively (note for instan
e that ne
essarily, up to a16




onstant, w = Ap + 1 where w is the matrix given by the Boltzmannweights).You may be wondering about the bizarre normalisations we haveused in de�ning p and d and the strange indexing of the Ei's. Thereason is to get the ni
est possible algebra going. It should be 
he
kedthat the Ei satisfy the following relations:3.5.2. E2
i =

√

QEi3.5.3. EiEi±1Ei = Ei3.5.4. EiEj = EjEi if |i− j| ≥ 2These relations are known as the Temperley-Lieb relations and aresomewhat magi
al. It is fun to 
he
k that P = E1E3E5...E2n−1 hasthe property that
PxP = φ(x)Pwhere x is any word on the Ei's and φ(x) is a real valued fun
tion of x.This means that if X is any element in the algebra generated by the

Ei's then PXP = φ(x)P for some linear fun
tional φ on that algebra.Moreover in terms of our statisti
al me
hani
al model this fun
tional
φ gives pre
isely the partition fun
tion for free verti
al boundary 
on-ditions! Thus in prin
iple the partition fun
tion for a re
tangularlatti
e with free boundary 
onditions is entirely determined by theTemperley-Lieb relations.So what? To answer this we return to our R-matrix 3.4.1 for thei
e-type model. Put3.5.5. E =









0 0 0 0
0 q−1 1 0

0 1 q 0
0 0 0 0







Then two things are true. First, if we de�ne Ei on ⊗n
C

2 as Ei(i+1)with the notation of 1.2, then the Temperley- Lieb relations hold, andse
ond, Rq(x) is a linear 
ombination of E and the identity. It isthus not surprising that, with the appropriate boundary 
onditions,the partition fun
tion for the i
e-type model is the same as that of thePotts model with a (physi
ally bizarre) 
hange of variables. In fa
tthis is only true if the horizontal and verti
al intera
tions of the Pottsmodel satisfy the relation a = b, known as �
riti
ality� for various17



reasons. In [37℄, Temperley and Lieb showed the equivalen
e of thei
e-type model and the 
riti
al Potts model on a square latti
e usingthe relations 3.5.23.5.3 and 3.5.4. This equivalen
e was subsequentlyunderstood on a general planar graph (for the Potts model) and its"medial graph" (for the i
e-type model). For a beautiful treatment see
hapter 12 of [2℄.3.6 How to remember the formula.My personal way of re
onstru
ting the formula 3.4.1 from simpler onesinvolves the He
ke algebra of type An. This is the algebra with gener-ators g1, g2, ..., gn−1 and relations(h1) g2
i = (q − 1)gi + qid(h2) gigi+1gi = gi+1gigi+1(h3) gigj = gjgi if |i − j| ≥ 2.Here I am faithfully reprodu
ing a 
onstant disagreement in theliterature over the meaning of q. In our He
ke algebra relations weare using q as in [6℄, whi
h is natural in its 
ontext as the number ofelements in a �nite �eld. The q in 3.4.1 is the square root of this q.The relations h2 and h3 are the braid relations whi
h we have seenas the limit of the YBE as the spe
tral parameter tends to in�nity. Inthis He
ke algebra 
ase we 
an re
onstru
t the YBE from the braidrelations as follows:Step 1: Renormalize the gi's as Gi's so that relation h1 be
omes

Gi + G−1
i = k idStep 2: De�ne

Ri(x) = xGi + x−1G−1
i. Then it is an exer
ise to prove that, in the presen
e of the braidrelations the YBE is equivalent to3.6.1. G1G

−1
2 G1 + G−1

1 G2G
−1
1 = G2G

−1
1 G2 + G−1

2 G1G
−1
2It is immediate to show 3.6.1 from Gi +G−1

i = k id. I do not knowof any other solutions to 3.6.1.Of 
ourse this begs the question of how to get appropriate solutionsof the He
ke algebra relations. One way is to obtain gi's from theTemperley-Lieb Ei's by gi = qEi − 1 (whi
h q is this??) and this isindeed how I put together 3.4.1. But there are other solutions as weshall see. 18



4 Lo
al HamiltoniansA quantum spin 
hain is a one dimensional array of spins. If theHilbert spa
e des
ribing an individual spin is C2, then a quantum spin
hain with n spins will be des
ribed by ⊗n
C

2. If T is a Hermitian 2×2matrix de�ning an observable for a single spin, then that observablefor the kth. spin in the 
hain is (with T in the kth. slot):
Tk = 1⊗ 1 ⊗ ...⊗ T ⊗ 1 ⊗ ...⊗ 1.If H is the Hamiltonian for the spin 
hain, the observables A evolvea

ording to At = eiHtAe−iHt. By writing down the 
orrelations be-tween observables of spin k at (dis
retized) time t one sees a strongsimilarity with expe
ted values of spins in the Ising model whose x
oordinate is given by k and y 
oordinate by the time t, provided onetakes as Hamiltonian the logarithm of the transfer matrix (times√−1).This is generalised into a powerful equivalen
e between 2-dimensionalstatisti
al me
hani
s and 1-dimensional quantum me
hani
s providedtime 
an be anaylyti
ally 
ontinued to imaginary time.This suggests that perhaps the transfer matri
es of statisti
al me-
hani
al models 
an be used to 
reate Hamiltonians for quantum spin
hains. In order to satisfy lo
ality 
onditions, a Hamiltonian shouldbe expressible as a sum of terms ea
h one only involving spins 
lose toea
h other on the latti
e. The simplest would be a nearest neighbourintera
tion and if it is translation invariant it must be of the form

∑

i Hi(i+1) in the notation of 1.2 where H is some self-adjoint operatoron C2 ⊗ C2. An ingenious way to do this is to take the logarithmi
derivative of the transfer matrix with respe
t to the spe
tral parameterat some appropriate value of the spe
tral parameter. By the 
onditionsafter 3.4.1 it is 
lear that the right value is x = 1.Sin
e the transfer matrix is multilinear in the R matri
es used atthe verti
es we see that the derivate with respe
t to λ of
o o o ooλ λ λ λ λis the sum over all ways of putting in one λ′ of19



o o o ooλ λ λ λ λ,where we have symboli
ally used λ′ to stand for the derivative of the R-matrix with respe
t to λ. If we use 3.4.1, the sign of Rq(1) is irrelevantso we see that the transfer matrix 3.2.1 is represented diagrammati
allyby:whi
h is of 
ourse a rotation if it is represented in a 
ylinder.So if we write T (x) for the transfer matrix using 3.4.1, a typi
alterm in the logartithmi
 derivative
T (1)−1dT

dx
|x=1
an be seen by multiplying the diagrams as below with R′(0) beingthe derivative of 3.4.1 with respe
t to x at x = 1:

R’(0)On 
leaning up the pi
ture we see that the logarithmi
 derivativeis the sum of all matri
es whose diagrams are as below, the 
rossingso

uring between the ith. and (i + 1)th. strings from the left, withperiodi
 boundary 
onditions so that the last term would involve a
rossing between the �rst and last strings:20



R’(0)This sum of matri
es is 
learly a Hamiltonian with nearest neigh-bour intera
tions provided it is positive self-adjoint. This positive
ondition on the R-matrix may be quite di�erent from the positivityof the Boltzmann weights so R-matri
es whi
h do not work in the sta-tisti
al me
hani
s world may work here. The moral is that if you �nda solution to the Yang-Baxter equation that does not admit positiveBoltzmann weights, don't ne
essarily 
ondemn it to the trash as itmay give you a solvable quantum spin 
hain.I have made the arguments for 
ommuting transfer matrix and lo-
al Hamiltonian 
ompletely diagrammati
 so they will work in anysituation where the diagrams make sense as multilinear maps on theirinputs. For instan
e the arguments work just as well for the Pottsmodel and other models known as �IRF models�. Several people haveaxiomatised the diagram 
al
ulus-see [28℄,[3℄. I have developed a spe-
i�
 formalism, 
alled �planar algebras� whose spe
ial features weredriven by subfa
tors. Certainly the arguments for 
ommuting transfermatri
es and lo
al Hamiltonians work in planar algebras.We should not forget what we have a
hieved with the lo
al Hamiltonian-sin
e the transfer matri
es all 
ommute among themselves, they 
om-mute also with the lo
al Hamiltonian so we are armed with a largefamily of operators 
ommuting with the time evolution whi
h shouldbe extremely useful in diagonalising it. If, for physi
al reasons, onewanted lo
al expressions for these 
onstants of the motion one 
ouldtake higher logarithmi
 derivatives of the transfer matri
es with re-spe
t to the spe
tral parameter.In the parti
ular 
ase of our R-matrix 3.4.1 of we do the 
omputa-tion we �nd the lo
al Hamiltonian
n
∑

i=1

Hi(i+1)where the indi
es are taken mod n and, up to addition of some 
onstantmatrix whi
h only 
hanges the whole Hamiltonian by addition of a
onstant, 21



Hi(i+1) =









q−1 + q 0 0 0

0 −(q−1 − q) 2 0
0 2 q−1 − q 0
0 0 0 q−1 + q







whi
h may mean more to physi
ists written in terms of the Pauli spinmatri
es:
Hi(i+1) = σx⊗σx+σy⊗σy+

1

2

(

(q+q−1)(id+σz⊗σz)+(q−q−1)(σz⊗id−id⊗σz)

)The presen
e of the term multiplied by q−q−1 is the only di�eren
ebetween this and what is known as the XXZ Hamiltonian. But infa
t as Barry M
Coy pointed out to me these terms 
an
el when oneperforms the sum over i. So the XXZ Hamiltonian admits a largefamily of expli
it matri
es that 
ommute with it.4.1 Spin ModelsAs we have mentioned, quantum groups gave a ma
hine for 
reat-ing large families of solutions of the Yang-Baxter equation and hen
estatisti
al me
hani
al models with 
ommuting transfer matri
es, andquantum spin 
hains with many 
ommuting Hamiltonians. But the R-matrix 
oming from a quantum group is that of a vertex model. I havelong wondered if there is any su
h ma
hine that would produ
e whatI 
all �spin models�, that is to say generaisations of the Potts modelwith an arbitrary (symmetri
) matrix of Boltzmann weights. Theredoes not seem to be su
h a ma
hine. Sear
hes for su
h models havebeen very 
ombinatorial and though they have led to some insights in
ombinatori
s (see [4℄) there have been few new statisti
al me
hani
almodels. The one spe
ta
ular new spin model was dis
overed by Jaegerin [19℄. He only gives the knot theoreti
 solution of the Yang-Baxterequation but it 
an be easily �Baxterised� as in [22℄ to give a solvablemodel.The idea that led to the Jaeger model was to look for models whosematrix w(σ, σ′) of Boltzmann weights was the next simplest after thePotts model. In the Potts model this matrix only has two di�erententries, one on the diagonal and one o�. The �rst generalisation of thiswould be to matri
es with three distin
t entries-one on the diagonaland two others, say x and y. One may then 
onstru
t a graph whoseverti
es are the indi
es of the matrix entries (i.e. the spin states persite) with an edge 
onne
ting σ and σ′ if w(σ, σ′) = x. This puts one in22



the world of asso
iation s
hemes and their Bose graphs. By applyingthis kind of idea Jaeger found two remarkable things:(a) That there is a solvable model as above for whi
h the underlyinggraph is the Higman-Sims graph on 100 verti
es! (The automorphismgroup of this graph is the Higman-Sims group, one of the �rst sporadi
�nite simple groups.)(b)Together with a 
ouple of simple examples, the Higman Simsgraph is the only known graph that 
an work.At this stage no-one has gone on to solve the Jaeger model. Thereis a Temperley-Lieb like duality with a quantum group R-matrix sothat the bulk free energy is not too interesting, but the 
orrelationfun
tions must support representations of the Higman-Sims group.5 Subfa
tors.5.1 Fa
torsFor a 
omplete 
hange of pa
e we treat a topi
 in analysis. Von Neu-mann algebras are self-adjoint algebras of bounded linear operators onHilbert spa
e whi
h 
ontain the identity operator and are 
losed underthe topology of pointwise 
onvergen
e on the Hilbert spa
e. Fa
torsare von Neumann algebras with trivial 
entre. We do not want to gointo the details more than that but we 
an suggest the notes from a
ourse given by the author, a

essible from his home page, for anyonewho wants to know more. Thus a subfa
tor is a pair N ⊆ M of fa
tors.To avoid te
hni
al di�
ulties we will only talk about the 
ase of �typeII1� fa
tors whi
h are those whi
h are in�nite dimensional but have atra
e tr whi
h is a linear fun
tional satisfying
tr(ab) = tr(ba)and 
an be normalised so that tr(1) = 1, in whi
h 
ase

tr(x∗x) > 0 for x 6= 0.5.2 IndexThere is a notion of index for a subfa
tor, written [M : N ]. If [M :
N ] < 4 it was shown in [21℄ that it must be one of the numbers
4 cos2 π/n for n = 3, 4, 5, .... The key ingredient in the proof of thisresult was the 
onstru
tion of a tower of fa
tors from the original pairand 
ertain operators satisfying the Temperley-Lieb relations! To bepre
ise one 
an 
onstru
t an orthogonal proje
tion eN from M to N23



de�ned by the formula
tr(xeN (y)) = tr(xy)and then show that if [M : N ] < ∞, the algebra < M, eN > of linearoperators on M generated by M (a
ting by left multipli
ation) and eNis again a II1 fa
tor and [< M, eN >: M ] = [M : N ]. This 
onstru
tsthe beginning of the tower:

N ⊆ M ⊆ M1 =< M, eN > .To 
ontinue just repeat the 
onstru
tion to obtainMi+1 =< Mi, eMi−1 >.If we write ei = eMi
for short and renormalise by Ei =

√

[M : N ] eithen relations 3.5.2,3.5.3 and 3.5.4 all hold. Moreover there is *-stru
ture for whi
h E∗
i = Ei and the tra
e has to satisfy

tr(x∗x) > 0 for x 6= 0.A 
areful examination of this property of the tra
e on the algebragenerated by the Ei's proves the result about the �quantized� indexvalues-see [15℄.To see a more 
ompelling similarity with the previous se
tions, notethat the tower Mi 
an also be 
onstru
ted as
Mi = M ⊗N M ⊗N M ⊗N ...⊗N Mwith i+1 
opies of M in the tensor produ
t. (For anyone who has notseen the tensor produ
t over non-
ommutative algebras, M ⊗N M isthe quotient of the ve
tor spa
e tensor produ
t M⊗M by the subspa
espanned by {xn ⊗ y − x ⊗ ny|x, y ∈ M and n ∈ N}.) The Ei's 
anthen be 
onstru
ted with the same asymmetry between odd and even

i as in the Potts model. Thus
E1(x ⊗ y ⊗ z...) =

√

[M : N ]eN (x)⊗ y ⊗ z...

E2(x ⊗ y ⊗ z...) =
∑

i

xyλi ⊗ λ∗
i ⊗ z...and so on, where λi is any �orthonormal basis� for M over N , i.e.

∑

i λieNλ∗
i = 1 in < M, eN >. The existen
e of the λi is an easy
onsequen
e of the original work of Murray and von Neumann-see [33℄.It is easy to show that the Ei's a
ting on Mi = M ⊗N M ⊗N M ⊗N

...⊗N M satisfy the TL relations 3.5.2,3.5.3 and 3.5.4.In their �rst paper on subfa
tors, Pimsner and Popa dis
overedpre
isely the representation of the TL relations given by 3.5.5! Not longafterwardsD. Evans noti
ed the 
onne
tion with statisti
al me
hani
almodels. 24



5.3 A spe
ulation on fusion/entanglement/intera
tion.I never fail to be stru
k by the relationship between the tensor prod-u
t M ⊗N M and two intera
ting spins on the spin 
hain. Conneshad earlier introdu
ed the notion of a �
orresponden
e� between vonNeumann algebras M1 and M2 whi
h is a Hilbert spa
e M1 − M2 bi-module and had de�ned a surprisingly subtle notion of tensor produ
tof bimodules-see [9℄ and [35℄. Perhaps the kinemati
s for a system oftwo intera
ting quantum systems with Hilbert spa
es H1 and H2 withsome 
ommon observables given by a von Neumann algebra M is theConnes tensor produ
t H1 ⊗M H2?If two quantum systems des
ribed by Hilbert spa
es H1 and H2were so entangled that an an observable x on one were equivalent toan observable y on the other then if ξ ∈ H1 and η ∈ H2 are ve
torsde�ning states, there should be no di�eren
e between xξ⊗η and ξ⊗yη.If moreover the identi�
ation of the x's with the y's were implementedby an antiisomorphism φ : M → φ(M) from some von Neumannalgbebra M on H2 to a von Neumann algebra on H1 we would havea right a
tion of M on H1 and there would be no di�eren
e between
ξx ⊗ η and ξ ⊗ xη. We would be for
ed to take the Connes tensorprodu
t H1 ⊗H2.The behaviour of the Connes tensor produ
t is very ri
h and 
on-tains the theory of subfa
tors. Thus one 
ould a

ount for physi
ists'assertions that the Hilbert spa
e whi
h des
ribes several Chern Simons�parti
les� is not the tensor produ
t but a more 
ompli
ated stru
ture.Thus this notion of fusion might be relevant for the systems proposedby Freedman et al. in [14℄ in 
onne
tion with quantum 
omputing.The approa
h of Wassermann in [38℄ to the fusion of loop group rep-resentations �ts exa
tly into our framework and produ
es the rightfusion algebra.Note that this notion of fused systems is mu
h stronger than theusual notion of entanglement where individual states of a 
ombinedsystem may be more or less entangled.The Hilbert spa
es of the Andrews-Baxter-Forester and other IRFmodels for n sites on a latti
e furnish another example. The naturalbasis for these Hilbert spa
es is a basis of paths and their dimensionsare not simply powers of a given integer. This 
ould be explained ifone supposes that proximity on the latti
e 
auses a large algebra ofobservables for one parti
le to be identi�ed with observables for itsneighbour.The Connes tensor produ
t is easy to des
ribe in �nite dimensinos.If the algebra M is the n×n matri
es and it a
ts (unitally) on the righton a �nite dimensional ve
tor spa
e V , V may be identi�ed tiwh the
p×n matri
es for some p, the right a
tion being matrix multipli
ation.25



Similarly a left M -module stru
ture on W means that W is isomorphi
to the n× q matri
es for some q. The tensor produ
t V ⊗M W is thenthe p× q matri
es. Dire
t sums behave in the obvious way so this is a
omplete des
ription of the �nite dimensional situation.A physi
al setup realising these kinemati
s would have some sur-prising properties.First of all the map ξ ⊗ η 7→ η ⊗ ξ does not pass to the Connestensor produ
t so fermioni
 or bosoni
 statisti
s would not make sense.It is known however that in many examples of systems of bimodulesthere is a unitary braiding whi
h 
ould be interpreted as playing therole of an ex
hange of parti
les.Se
ondly, the only observables for H1 that pass to the Connes ten-sor produ
t are those whi
h 
ommute with the fusing algebra M . Inparti
ular if the fusing algebra is non-
ommutative the only fusing ob-servables that remain observable on the 
ombined system are those inthe 
entre of M .Thirdly, if two sysems are so entangled that every observable of onewere equivalent to an observable for the other then the Hilbert spa
efor the fused system would 
ollapse to a one-dimensional one. This isreminis
ent of the Pauli ex
lusion prin
iple.5.4 Prin
ipal graphs.In the subfa
tor 
ontext it is natural to ask about the algebra gener-ated by the Ei's as above whi
h a
tually has a von Neumann algebrastru
ture. The algebra generated by the �rst n Ei's is �nite dimen-sional and naturally in
luded in the next one. A very visual way todes
ribe in
lusions of su
h �nite dimensional algebras is by a �Brattelidiagram� ([7℄ whi
h re
ords the ranks of the minimal proje
tions ofthe smaller algebra in the simple 
omponents of the bigger one. Thetower of algebras of the Ei's as above has the Bratteli diagram below(for index ≥ 4).
26



1

1

1 1

2 1

2 3 1

5 4 1

5 9 5 1

1

1

2

5

14

42

132The numbers on the diagram are the sizes of the matrix algebraswhi
h are the simple 
omponents, and the numbers to the right are thedimensions of the whole Temperley-Lieb algebra- the Catalan numbers
1

n+1

(

2n
n

).A provo
ative 
onne
tion o

urs here between this and se
tion 1.2.For if we write Fi = 1 + Si(i+1) then these Fi satisfy the relations3.5.2,3.5.3 and 3.5.4 for Q = 4. So that the algebra generated by the
Fi should have (and indeed has for index ≥ 4) , the same Brattelidiagram as 5.4! Thus the de
omposition of the tensor powers of the 2-dimensional representation of SU(2) are also des
ribed by 5.4. We seethat in fa
t 5.4 is redundant in the sense that its essential informationis the graph A∞ of 1.1. The numbers on the Bratteli diagram arejust the number of loops on the graph A∞ starting and ending at theleftmost vertex. These loops form a basis of the algebra that gives theBratteli diagram.But there is a lot more �nite dimensional algebra inside the tower
Mi. In fa
t the 
entralisers N ′ ∩ Mi = {x ∈ Mi|xn = nx ∀n ∈ N}are all �nite dimensional and obviously ea
h one is in
luded in thenext. So they also have a Bratteli diagram whi
h 
an be shown tohave the same stru
ture as that for the E ′

is - there is a graph Γ witha privileged vertex *, su
h that the algebra N ′ ∩ Mi is given by loopson Γ based at *. The graph Γ is 
alled the prin
ipal graph. There isa duality between N ⊆ M and M ⊆ M1 and the prin
ipal graph of27



M ⊆ M1 is 
alled the dual prin
ipal graph.There are subfa
tors for whi
h the prin
ipal and dual prin
ipalgraphs are both A∞. More interestingly perhaps the subfa
tors in[21℄ whi
h give the index values 4 cos2 π/n have prin
ipal graphs An−1(with one of the end points being * ). We will return to this when wedis
uss �nite �quantum� subgroups of SU(n).For another example 
hoose an outer a
tion of a �nite group G ona II1 fa
tor M and let N = MG, the subfa
tor of �xed points underthe a
tion of G. Then the prin
ipal and dual prin
ipal graphs Γ and Γ̌of MG ⊆ M are as follows: Γ has a vertex * and a vertex for ea
h irrepof G, with as many edges between * and the irrep as the dimensionof the irrep, and no other edges. Γ̌ has a vertex * and one vertex forea
h element of G with an edge between * and ea
h element of G, andno other edges. Thus for the symmetri
 group S3 the graphs are asbelow:
* *6 Braid group representations.The braid group Bn is the �nitely presented group with presentation

< σ1, σ2, ..., σn−1|σiσi+1σi = σi+1σiσi+1 for i = 1, 2, ..,n− 2,

and σiσj = σjσi for |i − j| ≥ 2 >If one puts λ = µ = ρ in the Yang Baxter equation 3.3.1 it is
lear that one obtains a braid group representation by sending σi to
Ri(i+1)(λ) on ⊗nV where R(λ) a
ts on V ⊗V , provided R(λ) is invert-ible. This was �rst done in [23℄ for the matrix of 3.4.1. The resultingbraid group representation is of 
onsiderable interest. It may well befaithful for generi
 q. This method of obtaining braid group repre-sentations was applied universally after the development of quantumgroups. It was shown by Krammer and Bigelow ([26℄,[5℄) that 
ertainof the ensuing �nite dimensional representations of the braid group areindeed faithful.The main reason for the interest in the braid group is that it hasgeometri
 interpretations. First, a

ording to its name, it is the groupof all braids on n strings. A braid is a way of tying n points on abar at the top to n points on a bar at the bottom, by strings whose28



tangent ve
tor always has a non-zero verti
al 
omponent. Thus the�gure below represents a braid on 3 strings.
Alternatively, braids 
an be thought of as motions of n points inthe plane. The position at any time t of the n points being determinedby the interse
tion of a horizontal plane with y 
o-ordinate equal to twith the strings of the braid. In this way Bn = π1((C

n \∆)/Sn) where
∆ is the set of n-tuples (z1, z2, ..., zn) with zi = zj for some pair i 6= kand the symmetri
 group Sn a
ts in the obvious way.Knots and links 
an be formed from braids by tying the tops of thestrings to the bottom. The �gure-eight knot is obtained by doing thisto the braid drawn above. It was realised in [23℄ that the tra
e 
omingfrom the subfa
tor origin of the braid group representation furnishedan invariant of knots and links.From the physi
s point of view the most interesting property ofthese representations is their unitarity. This is a di�
ult topi
 ingeneral for the representations are not unitary for real positive values of
q, even though there is a natural Hilbert spa
e stru
ture on the ve
torspa
es on whi
h they a
t. Fortunately this Hilbert spa
e stru
turepersists enough to supply, for �xed n, a small interval of q values(
ontaining 1) on the 
ir
le for whi
h the representation is unitary onthe Hilbert spa
e ⊗nV though the Hilbert spa
e stru
ture will fail if nis in
reased inde�nitely and q is left �xed. For q a root of unity of theform e

2πi
p there are other statisti
al me
hani
al models with Hilbertspa
es for whi
h the braid group representations are unitary for all

n and �xed q. These are also the values of q for whi
h subfa
tors of�nite depth o

ur - see Wenzl - [39℄ and Xu -[42℄. Subfa
tors 
an be
onstru
ted for positive real values of q as well. They are of in�nitedepth and have been analyzed by Sawin in [36℄.29



7 Dete
tive workHopefully the reader has been stru
k by 
ommon threads, notationaland otherwise, 
onne
ting all the previous se
tions. They suggest agrand stru
ture in whi
h the formulae we have 
ome up with are asmall but signi�
ant part. We are not 
onvin
ed that the last wordhas been said on this grand stru
ture but for the 
ase of the vertexmodels the notion of quantum group does the tri
k with great elegan
eand power.Beginning with the de
omposition of the tensor powers of the rep-resentations of SU(2) we have presented operators that �deform� thepermutation operators Si(i+1) of 1.2, the most general of whi
h wasthe R-matrix 3.4.1. We have only hinted that the theory goes beyond
SU(2) but in fa
t Cherednik gave R-matri
es that deform the repre-sentation of the symmetri
 group on the tensor powers of Ck for k ≥ 2and Wenzl independently dis
overed the same obje
ts in the subfa
-tor/braid group 
ontext in [40℄. Thus it was natural to hope for anobje
t that would �deform� SU(k) in a way that S
hur-Weyl dualitywould be preserved and the 
ommutant of this obje
t would be gen-erated by the R-matri
es. This was done by Jimbo and Drinfeld whowere greatly inspired also by a vision of this pro
edure as a �quanti-sation� of the theory of integrable systems in Hamiltonian me
hani
s.See [11℄,[18℄ and [13℄.There are many a

ounts of this work and we do not want to dwellon it as we are really interested here in 
ases where the quantum groupformalism does not apply easily but whi
h arise naturally in the sub-fa
tor world. Su�
e it to say that the �nal result is the 
onstru
tion of
R-matrix solutions (depending in various ways on the spe
tral param-eter) for all (�nite dimensional)simple Lie algebras and all represen-tations thereof. In the statisti
al me
hani
s formalism the horizontaland verti
al dire
tions on the latti
e may 
orrespond to di�erent rep-resentations of the Lie algebra. And there are extensions to a�ne Liealgebras.Appropriate R-matri
es 
an be evaluated at spe
ial values of theparameters so that they give braid group representations and all su
hrepresentations are known to give link invariants where a representa-tion of the Lie algebra 
an be assigned independently to ea
h 
ompo-nent of the link. The invariants are always polynomials in the quantumdeformation parameter q. See [34℄. The link invariants are powerfulbut many elementary questions remain unanswered. Perhaps the mostgalling of these is the question of whether the simplest of the invariants,
orresponding to the Lie algebra sl(2) and its 2-dimensional represen-tation, dete
ts knottedness, i.e. is there a non-trivial knot for whi
h30



this polynomial is the same as for the unknot? The answer is knownfor links (see [12℄) and all knots up to 17 
rossings have been 
he
ked.Kohno showed in [25℄ that the braid group representations 
omingfrom quantum groups 
ould be obtained using only the data of the�
lassi
al� Yang-Baxter equation (as formulated by Drinfeld) whi
h
ould be used to de�ne a �at 
onne
tion on 
on�guration spa
e (Cn \
∆)/Sn.In a remarkable demonstration that quantum groups were an ideawhose time had 
ome, a notion that was essentially the same was dis-
overed simultaneously by Woronowi
z(in [41℄) working within opera-tor algebras! He 
alled the obje
t a �
ompa
t matrix pseudogroup� andwas motivated by duality 
onsiderations in the representation theory ofgroups and Hopf algebras. His ideas have proved extremely fruitful inthe analyti
 side of the subje
t and have stimulated many dis
overiesin operator algebras. We have not presented the Woronowi
z approa
hhere as the 
onne
tion with subfa
tors, while 
ertainly present, is notas 
ompelling.8 The Haagerup and Haagerup-Asaedasubfa
tors.In the light of the huge su

ess of quantum groups and 
onne
tionswith 
onformal �eld theory and σ-models whi
h we have not men-tioned here, one is entitled to ask if all interesting theories are some-how obtainable from Lie groups and �geometry�. This is an importantquestion, parti
ularly for subfa
tors whose utility would be broughtinto question if one 
ould obtain all examples from stru
tures outsidesubfa
tor theory. In this se
tion and the next we o�er two examples ofhow subfa
tors 
an produ
e examples independently of any geometri
input, the �rst pioneered by Haagerup and the se
ond by O
neanu.Haagerup asked the question: what is the (irredu
ible) subfa
torof smallest index greater than 4 that o

urs for a II1 fa
tor? In fa
tPopa has shown that any index value greater than 4 o

urs but thoseexamples have A∞ as prin
ipal graph. So Haagerup's real questionwas to �nd the smallest index subfa
tor with prin
ipal graph di�erentfrom A∞. This he solved in spe
ta
ular fashion. He �rst showed in[16℄ that the smallest index value is 5+

√
13

2 and identi�ed the prin
ipalgraph and dual prin
ipal graph as being one of the two below (whi
hare dual to ea
h other): 31
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oThen in [1℄ Haagerup and Asaeda showed that there is indeed asubfa
tor of the hyper�nite II1 fa
tor whi
h has these graphs as dualprin
ipal graphs. They further showed that the next possible indexvalue is 5+
√

17
2 , 
onstru
ted the subfa
tor and 
al
ulated the prin
ipalgraphs.The te
hniques for eliminating other graphs and 
onstru
ting theexamples were highly 
al
ulatory, relying on O
neanu's theory of 
on-ne
tions. It is a major 
hallenge in the theory to 
ome up with aninterpretation of these subfa
tors subfa
tors as members of a familyrelated to some other mathemati
al obje
ts. Izumi in [20℄ made somegood progress in this dire
tion. In [24℄ we have taken a diagrammati
approa
h and 
al
ulated 
ertain parameters that show that the sub-fa
tors of indi
es 5+

√
13

2 and 5+
√

17
2 are of a very di�erent kind.9 Finite �quantum� subgroups of Lie groups.Subfa
tors of index less than 4 have prin
ipal graphs equal to one ofthe A,D or E Coxeter-Dynkin diagrams. (O
neanu showed that infa
t only the diagrams D2n and E6 and E8 
an a
tually o

ur- andhe 
onstru
ted subfa
tors for ea
h of these diagrams.) We saw in the�rst se
tion how the extended Coxeter-Dynkin diagrams are 
onne
tedwith �nite subgroups of SU(2). There is also a subfa
tor 
onne
tedwith a �nite subgroup of SU(2) as follows: Constru
t a II1 fa
tor

R as ⊗∞M2(C) (
ompleted using the normalised tra
e to get a vonNeumann algebra). The subfa
tor R0 is the subalgebra of all elementsof R of the form id ⊗ x where id is the 2 × 2 identity matrix. Thegroup SU(2) a
ts on R by the in�nite tensor produ
t of its a
tion on
M2(C) by 
onjugation. This a
tion preserves the subfa
tor R0. Sofor any subgroup G of SU(2) one may form the subfa
tor N ⊆ M of�xed points for G: N = RG

0 and M = RG. The prin
ipal graph for
N ⊆ M is then the extended Coxeter-Dynkin graph for the subgroup!The index is [M : N ] = 4.This suggests that one should be able to interpret the verti
es of theprin
ipal graph as representations of something and the edges as indu
-tion/restri
tion. This is indeed possible and is inevitable in Connes'pi
ture where bimodules over a II1 fa
tor repla
e representations of32



a group. The verti
es of the prin
ipal graph are a 
ertain family of
N − N bimodules and N − M bimodules and the edges 
ount indu
-tion/restri
tion multipli
ities. This point of view was �rst pointed outby O
neanu.Putting together the index < 4 and index 4 
ases above we see thatit is natural to think of the index < 4 subfa
tors as being some kindof quantum version of subgroups of SU(2) whose �representation the-ory� is a trun
ation of the representation theory of the 
orrespondinggenuine subgroup of SU(2).Cappelli, Itzykson and Zuber in [8℄ also ran into the A − D − ECoxeter-Dynkin diagrams in their attempt to understand modular in-variants in 
onformal �eld theory. In extending that work DiFran
es
oand Zuber in [10℄ looked for trun
ations of the representation theorygraphs of subgroups of SU(3) that 
ould give modular invariants. Zu-ber presented a list of su
h graphs satisfying 
ertain 
riteria and 
onje
-tured that it was 
omplete. O
neanu used the subfa
tor point of viewto exhibit the 
omplete list for SU(3) and beyond, with slight 
hangesin the requirements for a graph to be on the list. Unfortunately the sit-uation is a little too ni
e for SU(2) be
ause all its representations areequivalent to their 
onjugates. To do justi
e to the subfa
tor point ofview would require a detour beyond the prin
ipal graphs so we simplyrefer to O
neanu's paper [32℄ for those interested in this topi
.10 The dire
t relevan
e of subfa
tors tophysi
s.The 
onne
tion between subfa
tors and physi
s that we have outlinedabove has been somewhat indire
t, passing from 
ertain elements in
entraliser towers to quantum spin 
hains and/or statisti
al me
han-i
al models. However probably von Neumann's main motivation forstudying his algebras was be
ause of their relevan
e to the quantumme
hani
al formalism. So one might hope for a more dire
t 
onne
tionbetween subfa
tors and quantum physi
s. This does exist and is asso-
iated with many names. It goes ba
k to the pioneering work of Haagand Kastler who sought to develop a non-perturbative framework forquantum �eld theory by taking as basi
 ingredients the algebras ofobservables lo
alised in various regions of spa
e-time.I feel unable to give a satisfa
tory a

ount of this theory and it isto be hoped that a book on it will appear in the near future. I will justsay the following-a subfa
tor naturally appears by looking at the vonNeumann algebras asso
iated to 
ertain regions of spa
e-time. If tworegions of spa
e time are su
h that no light ray 
an 
onne
t them (they33



are not 
ausally 
onne
ted), then their von Neumann algebras of lo
alobservables should 
ommute. These von Neumann algebras are knownto be fa
tors (of type III) so one may obtain a subfa
tor by taking Nto be the algebra of observables lo
alised in a region and M to be the
ommutant of all observables lo
alised in the 
ausal 
omplement ofthat region.Using this and other motivations, Wassermann and I looked forsubfa
tors in the theory of loop group representations. A unitary (pro-je
tive) representation of the group LSU(2) of smooth fun
tions fromthe 
ir
le to SU(2) 
an be thought of as a one-dimensional quantum�eld theory whose 
urrents are given by fun
tions from the 
ir
le intothe Lie algebra su(2) and whose algebra of observables lo
alised in aninterval I of the 
ir
le is the von Neumann algebra generated by thenormal subgroup LISU(2) of loops supported in that interval. In thisway we were led to the subfa
tor (where Ic is the interval 
omplemen-tary to I on the 
ir
le)
LISU(2)′′ ⊆ LIcSU(2)′.Wassermann subsequently showed in [38℄ that the set of indi
es ofsubfa
tors so obtained does indeed 
ontain the set {4 cos2 π/n} andextended this work to SU(n), the di�eomorphism group of the 
ir
le,and beyond.Referen
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