
Intermediate subfators with no extrastruture.Pinhas Grossman and Vaughan F.R. Jones ∗20th Deember 2004AbstratIf N ⊆ P, Q ⊆ M are type II1 fators with N ′ ∩ M = Cid and
[M : N ] < ∞ we show that restritions on the standard invariants ofthe elementary inlusions N ⊆ P , N ⊆ Q, P ⊆ M and Q ⊆ M implydrasti restritions on the indies and angles between the subfators. Inpartiular we show that if these standard invariants are trivial and theonditional expetations onto P and Q do not ommute, then [M : N ]is 6 or 6 + 4

√
2. In the former ase N is the �xed point algebra foran outer ation of S3 on M and the angle is π/3, and in the latterase the angle is cos−1(

√
2 − 1) and an example may be found in theGHJ subfator family. The tehniques of proof rely heavily on planaralgebras.1 IntrodutionLet N ⊆ M be II1 fators with [M : N ] < ∞. There is a "standard invariant"for N ⊆ M whih we shall desribe using the planar algebra formalismof [17℄. The vetor spaes Pk of N − N invariant vetors in the N − Nbimodule ⊗kM admit an ation of the operad of planar tangles as in [17℄ and[19℄. In more usual notation the vetor spae Pk is the relative ommutant

N ′ ∩Mk−1 in the tower Mk of [14℄. The onditional expetation EN from Mto N is in P2 and generates a sub-planar algebra alled the Temperley-Liebalgebra. In [4℄, Bish and the seond author studied the planar subalgebra ofthe Pk generated by the onditional expetation onto a single intermediate
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subfator N ⊆ P ⊆ M . The resulting planar algebra is alled the Fuss-Catalan algebra and was generalised to a hain of intermediate subfators-see [24℄. These planar algebras are universal in that they are always planarsubalgebras of the standard invariant for any subfator possessing a hain ofintermediate subfators. If Pi ⊆ Pi+1 is the hain, there are no restriitionson the individual inlusions of Pi in Pi+1. Moreover the existene of the FussCatalan planar algebra together with a theorem of Popa in [30℄ allows one toonstrut a "free" inreasing hain where the individual inlusions Pi ⊆ Pi+1have "no extra struture", i.e. their own standard invariants are just theTemperley-Lieb algebra. Thus the standard invariants for the Pi ⊆ Pi+1 are"deoupled" from the algebrai symmetries oming from the existene of ahain of intermediate subfators.In [31℄, Sano and Watatani onsidered the angle between two subfators
P ⊆ M and Q ⊆ M whih we shall here de�ne via the square of its o-sine, namely the spetrum of the positive self-adjoint operator EPEQEP (on
L2(M)). In [23℄, Feng Xu and the seond author proved that �niteness of theangle (as a substet of [0, 1]) is equivalent to �niteness of the index of P ∩ Qin M . If we suppose that P ∩Q is an irreduible �nite index subfator of Mwe might expet that the angle is "quantized", i.e. only a ertain disreteountable family of numbers ours-at least in a range lose to 0 and π/2.Determining these allowed angle values is beoming a signi�ant question inthe abstrat theory of subfators. This paper an be onsidered a �rst stepin answering that question.In [34℄, Watatani onsidered the lattie of intermediate subfators fora �nite index inlusion and showed that if the inlusion is irreduible thelattie is �nite. He gave some onstrutions whih allowed him to realisemany simple �nite latties, but even for two latties with only six elements,the question of their realisation as intermediate subfator latties remainsentirely open.The present paper grew out of an attempt by Dietmar Bish and the se-ond author to extend the methods of [4℄ to attak both the angle quantizationand the intermediate lattie problems. The hope was to onstrut universalplanar algebras depending only on the lattie of intermediate subfators, andpossibly the angles between them, and use Popa's theorem to onstrut sub-fators realising the lattie and angle values. This projet is probably soundbut it is hugely more di�ult in the ase where the lattie is not a hain orthe angles are not all 0 or π/2. The reason is very simple-the planar alge-bra generated by the onditional expetations an no longer be deoupledfrom the standard invariants of the elementary subfator inlusions in thelattie. This is surprisingly easy to see. The spetral subspaes of EPEQEPare N − N -bimodules ontained in P so that as soon as the angle operator2



has a signi�ant spetrum the subfator N ⊆ M must have elements in itsplanar algebra that are not in the Temperley-Lieb subalgebra-a situation weshall refer to as having "extra struture" and whih we will quantify usingthe notion of supertransitivity introdued in [21℄. In partiular if there is noextra struture the spetrum of EP EQEP an onsist of at most one numberbesides 0 and 1. We will all the angle whose osine is the square root of thisnumber "the angle between P and Q. Or "dually" if PQP is not equal toall of M , it is a non-trivial P − P bimodule between P and M so that theinlusion P ⊆ M must have extra struture.Thus we are led to the question-what are the possible pairs of subfators
P and Q in M with P ∩ Q a �nite index irreduible subfator of M , forwhih the four elementary subfators N ⊆ P , N ⊆ Q, P ⊆ M and Q ⊆ Mall have no extra struture? More properly, sine we are not trying to ontrolthe isomorphism type of the individual fators, one should ask what are thestandard invariants that arise. One situation is rather easy to take are of:if the subfators form a ommuting oommuting square in the sense of [31℄,there is no obstrution-it was essentially observed by Sano and Watatanithat in this ase EP and EQ generate a tensor produt of their individualTemperley-Lieb algebras. And to realise any N ⊆ P and N ⊆ Q just takethe tensor produt II1 fators. However if we assume that the subfatorseither do not ommute or do not oommute, we will show in this paper thefollowing unexpeted result.Theorem 1.0.1. Suppose P ⊂ M

∪ ∪
N ⊂ Q

is a quadrilateral of subfators with
N ′ ∩ M = C , [M : N ] < ∞ and no extra struture. Then either thequadrilateral is ommuting or one of the following two ases ours:a) [M : N ] = 6 and N is the �xed point algebra for an outer ation of S3on M with P and Q being the �xed point algebras for two transpositions in
S3. In this ase the angle between P and Q is π/3 and the full intermediatesubfator lattie is M

N

S

RP        Q .(Note that the dual of this quadrilateral is a ommuting square.)b) The subfator N is of depth 3, [M : N ] = (2 +
√

2)2 and the planaralgebra of N ⊆ M is the same as that oming from the GHJ subfator (see[11℄) onstruted from the Coxeter graph D5 with the distinguished vertexbeing the trivalent one. Eah of the intermediate inlusions has index 2 +3



√
2 and the angle between P and Q is θ = cos−1(

√
2 − 1). The prinipalgraph of N ⊆ M is * and the full intermediate subfator lattie is

M

N

R

S

P          Q P
~

Q
~ where the angle between P̃ and Q̃ is also θbut P and Q both ommute with P̃ and Q̃. Moreover [M : R] = [S : N ] = 2and M, N, R and S form a ommuting oommuting square. The planaralgebra of N ⊆ M is isomorphi to its dual-the planar algebra of M ⊆ M1.Note that from Oneanu's paragroup point of view N is the �xed pointalgebra of an ation of the paragroup given by the planar algebra on M . Thusif the ambient fator M is hyper�nite, Popa's theorem in [29℄ guarantees thatthe subators are unique up to an automorphism of M . Also note that it isa onsequene of the theorem that any intermediate subfator lattie withfour elements and no extra struture is a ommuting square.Our methods rely heavily on planar algebras. Of ruial importane isthe diagram disovered by Landau for the projetion onto the produt PQ.We give a proof of Landau's result and some general onsequenes. Theuniqueness of the subfator of index 6 + 4

√
2 mentioned in the theorem isproved using the "exhange relation" of [25℄ - the planar algebras have a verysimple skein theory in the sense of [19℄. The no extra struture hypothesisneessary for the theorem is in fat weaker than the one we have stated above.For a preise statement of the required supertransitivity see 4.3.5 and 5.2.5.2 Bakground.2.1 Bimodules.We reall some basi fats about bimodules over II1 fators. The treatmentfollows [3℄. For more on this, look there and in [22℄.De�nition 2.1.1. Let M be a II1 fator. A left M-module is a pair (H, π)where H is a Hilbert spae and π is a unital normal homomorphism from Minto the algebra of bounded operators on H. The dimension of H over M ,4



denoted dimMH, is the extended positive number given by the Murray-vonNeumann oupling onstant of π(M). Let MOP be the opposite algebra of M(i.e. the algebra with the same underlying vetor spae but with multipliationreversed). Then a right M-module is de�ned as a left MOP -module. An
M −N-bimodule is a triple (H, π, φ), where H is a Hilbert spae and π and φare normal unital homomorphisms from, respetively, M and NOP into thealgebra of bounded operators on H, suh that π(M) and φ(NOP ) ommute.Suh a bimodule is denoted by MHN , or sometimes simply by H, if the ationis understood. We write mξn for π(m)φ(n)ξ, where m ∈ M , n ∈ N , and
ξ ∈ H.There are obvious notions of submodules and diret sums. An M − Nbimodule is in partiular both a left M -module and a left NOP -module.De�nition 2.1.2. An M −N-bimodule is bi�nite if dimMH and dimNOP Hare both �nite.All bimodules will be assumed to be bi�nite.De�nition 2.1.3. Let MH1

N and MH2
N be bimodules. The intertwiner spae,denoted HomM−N (H1, H2), is the subspae of bounded operators from H1 to

H2 onsisting of those operators whih ommute with the bimodule ation:
T ∈ HomM−N (H1, H2) i� T (mξn) = m(Tξ)n for all m ∈ M , n ∈ N ,
ξ ∈ H1.Example 2.1.4. Let M be a II1 fator. L2(M) is the Hilbert spae omple-tion of M with respet to the inner produt indued by the unique normalizedtrae on M . Then L2(M) is an M − M bimodule, and the left and rightations are simply the ontinuous extensions of ordinary left and right mul-tipliation in M . If P and Q are subfators of M , then L2(M) is a P − Q-bimodule by restrition, and it is bi�nite i� the indies [M : P ] and [M : Q]are �nite.De�nition 2.1.5. Let MHN be a bimodule. There is a dense subspae H0of H, alled the spae of bounded vetors, de�ned by the rule that ξ ∈ H0 i�the map m 7→ mξ extends to a bounded operator from L2(M) to H. To eahpair of bounded vetors (ξ, η) there is assoiated an element of M , denoted
〈ξ, η〉M , determined by the relation 〈mξ, η〉 = tr(m〈ξ, η〉M ).Remark 2.1.6. It is in fat also true that ξ ∈ H0 i� the map n 7→ nξextends to a bounded operator from L2(N) to H.Remark 2.1.7. Let M be a II1 fator, and onsider L2(M) as a bimoduleover a pair of �nite index subfators as in Example 2.0.5. Then L2(M)0 issimply the image of M in L2(M). 5



De�nition 2.1.8. Let MHN and NKP be bimodules. There is an M − Pbimodule, denoted (MHN ) ⊗N (NKP ), alled the relative tensor produt, orfusion, of MHN and NKP , whih is haraterized by the following property:there is a surjetive linear map from the algebrai tensor produt H0 ⊙K0 to
((MHN )⊗N (NKP ))0, ξ⊗η 7→ ξ⊗N η satisfying the following three onditions:(i) ξn ⊗N η = ξ ⊗N nη(ii) m(ξ ⊗N η)p = (mξ) ⊗N (ηp)(iii) 〈ξ ⊗N η, ξ′ ⊗N η′〉M = 〈ξ〈η, η′〉M , ξ′〉M(for all m ∈ M , n ∈ N , and p ∈ P ).Remark 2.1.9. Among the properties enjoyed by fusion are: it is distribu-tive over diret sums, it is assoiative, and it is multipliative in dimension:
dimM(MHN ⊗N NKP ) = (dimM H)(dimN K).Let N ⊂ M be an inlusion of II1 fators with �nite index. L2(N) anbe identi�ed with a subspae of L2(M). Let e1 denote the orrespondingprojetion on L2(M), and let M1 be the von Neumann algebra generated by
M and e1. Then M1 is a II1 fator and [M1 : M ] = [M : N ]. This proedureis alled the basi onstrution [14℄. Reall that the spae of bounded vetorsin L2(M) an be identi�ed with M . e1 leaves this spae invariant, induinga trae-preserving expetation of M onto N .Iterating the basi onstrution we get a sequene of projetions e1, e2...,and a tower of algebras M−1 ⊂ M0 ⊂ M1 ⊂ M2 ⊂ ..., where M−1 = N ,
M0 = M , ek is the projetion onto L2(Mk−2) in B(L2(Mk−1)), and Mk isthe von Neumann algebra generated by Mk−1 and ek, for k ≥ 1. Restritingthe tower to those elements whih ommute with N , we get a tower of �nitedimensional algebras, alled the tower of relative ommutants N ′ ∩ Mk.Eah L2(Mk), k ≥ 0 is an N − N bimodule, andProposition 2.1.10. L2(Mk) ∼= L2(M) ⊗N ... ⊗N L2(M), (k + 1 fators),as an N − N bimodule. Moreover, HomN−NL2(Mk) ∼= N ′ ∩ M2k+1. Soan N − N bimodule deomposition of L2(M) ⊗N ... ⊗N L2(M),(k + 1 fa-tors), orresponds to a deomposition of the identity in N ′ ∩ M2k+1. Underthis orrespondene projetions in N ′ ∩ M2k+1 orrespond to submodules of
L2(M) ⊗N ... ⊗N L2(M),(k + 1 fators), minimal projetions orrespond toirreduible submodules (those whih have no proper nonzero losed submod-ules), and simple summands of N ′∩M2k+1 to equivalene lasses of irreduiblesubmodules.2.2 Planar algebras.In [17℄ a diagrammati alulus was introdued as an axiomatisation andalulational tool for the standard invariant of a �nite index subfator. We6



will use it heavily in this paper so we reall some of the essentials The spe-i� uses of the alulus in this paper make possible a ouple of simplifyingonventions for the pitures.In its most reent formulation in [21℄ a planar algebra P onsists of vetorspaes P±
k indexed by a non-negative integer n and a sign + or −. For theplanar algebra of a subfator N ⊆ M , P+

k = N ′ ∩Mk−1 and P−
k = M ′ ∩ Mk.The vetor spaes P±

k form an algebra over the planar operad whih meansthat there are multilinear maps between the P±
k indexed by planar tangles.A planar k-tangle T onsists of(i) The unit dis D0 with 2k distinguished boundary points, a �nite num-ber of disjoint interior diss Dj ⊂ D0 for k ≥ 0, eah with an even numberof distinguished boundary points, and smooth disjoint urves alled strings,in D0 meeting the Dj exatly (transversally) in the distinguished boundarypoints.(ii) A blak and white shading of the regions of T whose boundaries onsist ofthe strings and the boundaries of the diss between the distinguished points.Regions of the tangle whose losures interset are shaded di�erent olours.(iii) For eah dis Dj there is a hoie of distinguished boundary intervalbetween two adjaent distinguished points.An example of a k-tangle is shown below (where we have used a ∗ near aboundary interval to indiate the hosen one).
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DThe multilinear map assoiated to the k-tangle T goes from the produtof the P±
kj
for eah internal dis where k is half the number of boundary pointsfor Dj to P±
k , the signs being hosen + if the distinguised boundary region isshaded and − if it is unshaded. The axioms of a planar algebra are that themultilinear maps be independent of isotopies globably �xing the boundary of7



D0 and ompatible with the gluing of tangles in a sense made lear in [17℄.To indiate the value of a tangle on its arguments one simply inserts thearguments in the internal diss. This notation for an element of Pk is alleda labelled tangle. For instane for x ∈ P+
3 , y ∈ P+

2 and a, b, c, d ∈ P−
2 , thelabelled tangle below is the element of P+

4 obtained by applying the multilin-ear map de�ned by the tangle above to the elements x, y, a, b, c, d aordingto the diss in whih they are plaed.
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We refer to [17℄ for details on the meaning of various tangles and the fatthat the standard invariant of a subfator is a planar algebra. Reall thatlosed strings in a tangle an always be removed, eah one ounting for amultipliative fator of the parameter δ whih is the square root of the indexfor a subfator planar algebra.To avoid both the shading and the marking of the distinguished boundaryinterval we will adopt the following onvention:All diss will be replaed by retangles alled �boxes". The distinguishedboundary points will be on a pair of opposite edges of eah box, alled the topand bottom. Labels will be well hose letters whih have a top and bottomwhih will allow us to say whih edge is top and whih is bottom. Thedistinguished interval will be supposed shaded and always be between the�rst and seond strings on the top of a box. This allows us to put elementsof P+
k in the boxes so we further adopt the onvention that if t is in P−

k it willbe inserted at right angles to the top-bottom axis of its retangle, whih isto be interpreted as an internal dis whose distinguished (unshaded) intervalis the edge of the retangle to whih the letter points upwards.Thus the two diagrams below, with a ∈ P−
2 and b, e ∈ P+

2 represent thesame thing aording to our onvention.8
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a *

*

e
*

b

a

*We will also from time to time simplify the diagrams further by suppress-ing the outside retangle. Thus both the above pitures are the same as theone below:
b

e

a3 Generalities.3.1 Multipliation.Let N ⊂ M be an irreduible inlusion of II1 fators with �nite index, andsuppose that P and Q are intermediate subfators of this inlusion. FollowingSano and Watatani [31℄ , we say that N ⊂ P, Q ⊂ M is a quadrilateral if
(P ∪ Q)′′ = M and P ∩ Q = N . (There is no real loss of generality heresine in any ase we an restrit our attention to (P ∪ Q)′′ and P ∩ Q.) If
N ⊂ P, Q ⊂ M is a quadrilateral, there is also a dual quadrilateral M ⊂
P̄ , Q̄ ⊂ M1, where M1 as usual is the extension of M by eN and P̄ and Q̄are the extensions of M by eP and eQ respetively.Proposition 3.1.1. The multipliation map from P ⊗N Q to M extends toa surjetive N −N bimodule intertwiner from L2(P ) ⊗N L2(Q) to L2(PQ).Proof. The extension is simply (a salar multiple of) the omposition

L2(P ) ⊗N L2(Q) → L2(M) ⊗N L2(M) ∼= L2(M1) → L2(M)where the �rst map is the tensor produt of the inlusions and the last mapis the onditional expetation eM . 9



Corollary 3.1.2. L2(PQ) is isomorphi as an N − N bimodule to a sub-module of L2(P ) ⊗N L2(Q).Remark 3.1.3. In a similar way we an de�ne a multipliation map from
⊗k

N(L2(P ) ⊗N L2(Q)) to L2((PQ)k) for any k.3.2 Comultipliation.Let N ⊂ M be an irreduible inlusion of II1 fators with �nite index.(Irreduible here means that N ′ ∩M ∼= C). Consider also the dual inlusion
M ⊂ M1.Proposition 3.2.1. The �rst relative ommutants N ′ ∩ M1 and M ′ ∩ M2have the same vetor spae dimension, and the map φ : N ′∩M1 → M ′ ∩M2,
a 7→ δ3EM ′(ae2e1), is a linear isomorphism with inverse a 7→ δ3EM1

(ae1e2),where δ = [M : N ]
1

2 and EM ′,EM1
are the onditional expetations of N ′∩M2onto M ′ ∩ M2 and N ′ ∩ M1 respetively.Remark 3.2.2. In the planar piture, φ is simply a 7→ a .Pulling bak the multipliation in M ′ ∩ M2 via φ gives a seond multi-pliation on N ′ ∩ M1. Using the inner produt given by the trae one mayidentify the vetor spae N ′∩M1 with its dual and the seond multipliationmay thus be pulled bak to the dual. If the depth of the subfator is 2 thismultipliation on the dual indues a Hopf algebra struture on N ′ ∩M1, butin general this does not work. We will abuse terminology by alling the se-ond multipliation on N ′ ∩ M1 �omultipliation" and use the symbol ◦ forit.De�nition 3.2.3. Let a and b be elements of N ′ ∩ M1. Then a ◦ b =

φ−1(φ(b)φ(a)) = δ9EM1
(EM ′(be2e1)EM ′(ae2e1)e1e2). Diagrammatially, a ◦ bis given by the piture a b .Remark 3.2.4. Dually, there is a omultipliation on M ′∩M2, also denotedby ◦, de�ned by pulling bak the multipiation via φ−1. Consequently, all ofthe formulas involving omultipliation have dual versions.If V is a vetor subspae of M whih is losed under left and right mul-tipliation by elements of N , then the losure of the image of V in L2(M)10



is an N − N submodule of L2(M), denoted by L2(V ), and the orrespond-ing projetion (neessarily in N ′ ∩ M1) by eV . Conversely, any projetion in
N ′∩M1 is of the form eV for a strongly losed N−N submodule of M , whihis self-adjoint and multipliatively losed i� V is an intermediate subfator.Bish has shown that if eV is an arbitrary projetion in N ′ ∩ M1, then V isan intermediate subfator i� eV ommutes with the modular onjugation on
L2(M) and eV ◦ eV is a salar multiple of eV ([2℄). In that ase we all eV abiprojetion.NOTATION: In the planar algebra pitures, diss will be labelled simplyby V instead of eV .Note that the set of biprojetions inherits a partial order fron the interme-diate subfator lattie. In partiualr, e1 = eN = eNeP for any intermediatesubfator P . We will need the following tehnial result:Lemma 3.2.5. Suppose that eP ∈ N ′ ∩ M1 is an intermediate subfatorprojetion. Let eP̄ be the projetion onto P̄ =< M, eP > in L2(M1). Then
EP̄ (e1) = δ−2tr(eP )−1eP .Proof. Let x and y be elements of M . Then
tr(e1xePy) = tr(e1ePxePy) = tr(e1EP (x)y) = δ−2tr(EP (x)y) =
δ−2tr(eP )−1tr(ePEP (x)y) = δ−2tr(eP )−1tr(ePxePy).Lemma 3.2.6. With notation as above, φ(eP ) = P = δtr(eP)eP̄ .Proof. We have φ−1(eP̄ ) = δ3EM1

(eP̄e1e2) = δ3EM1
(eP̄e1eP̄e2) =

δ3EM1
(EP̄ (e1)e2) = δ3EP̄ (e1)EM1

(e2) = δ3δ−2tr(eP )−1eP δ−2 =
δ−1tr(eP )−1eP . Applying φ to both sides of the equation gives the result.Let P and Q be intermediate subfators of the inlusion N ⊂ M with or-responding projetions eP and eQ. Then P̄ = 〈M, eP 〉 and Q̄ = 〈M, eQ〉 areintermediate subfators of the dual inlusion M ⊂ M1, with orrespondingprojetions eP̄ and eQ̄ in M ′ ∩ M2.The following result is due to Zeph Landau:Theorem 3.2.7. (Landau) eP ◦ eQ = δtr(ePeQ)ePQ.Proof. We have eP ◦ eQ = φ−1(φ(eQ)φ(eP )) = δ2tr(eQ)tr(eP )φ−1(eQ̄eP̄ ) =
δ5tr(eQ)tr(eP )EM1

(eQ̄eP̄e1e2).By a small abuse of notation, we shall identifyM with its image in L2(M).Let x ∈ M . For any a ∈ N ′∩M1, we have a(x) = δ2EM(axe1). In partiular,
eP ◦ eQ(x) = δ5tr(eP)tr(eQ)EM1

(eQ̄eP̄e1e2)(x) =
δ7tr(eP )tr(eQ)EM (eQ̄eP̄e1e2xe1). Let y be another element of M . Then11



tr(eQ̄eP̄e1e2xe1y) = tr(eP̄e1eP̄e2xe2eQ̄e1eQ̄y)
= δ−4tr(eP )−1tr(eQ)−1tr(ePe2xeQy) (by 3.2.5 )
= δ−6tr(eP )−1tr(eQ)−1tr(ePxeQy).Thus EM(eQ̄eP̄e1e2xe1) = δ−6tr(eP )−1tr(eQ)−1 and eP◦eQ(x) = δEM(ePxeQ).So if x = pq, with p ∈ P and q ∈ Q, then eP ◦ eQ(x) = δEM(ePxeQ) =
δEM(ePeQ)x = δtr(ePeQ)(x).To �nish the proof, it su�es to show that eP ◦eQ vanishes on the orthog-onal omplement of L2(PQ), or equivalently, that if tr(xqp) = 0 for all p ∈
P, q ∈ Q then EM (ePxeQ) = 0. So suppose tr(xqp) = 0 for all p ∈ P, q ∈ Q.Let {pi},{qj} be Pimsner-Popa bases over N for P and Q, respetively. Then
eP =

∑

pie1p
∗
i and eQ =

∑

qieNq∗i . Suppose y ∈ M . For any i, j, we have:
tr(pie1p

∗
i xqje1q

∗
jy) = δ−2tr(p∗i xqiEN (q∗jypi)) = δ−2tr(xqiEN (q∗jypi)p

∗
i ) = 0.This implies that EM (ePxeQ) = 0.Corollary 3.2.8. ePQ(M) = PQ.Proof. From the proof we have ePQ(x) = tr(ePeQ)−1EM (ePxeQ). Moreover

eP =
∑

pie1p
∗
i and eQ =

∑

qieNq∗i with the same notation as in 3.2.7. Wesee that ePQ(M) ⊂ PQ.Corollary 3.2.9. PQ is strongly losed in M .Proof. Sine ePQ is strongly ontinuous and the identity on PQ, ePQ is theidentity on the strong losure of PQ.Lemma 3.2.10. Let a ∈ N ′ ∩ M1. Then a = a = δtr(a).Proof. Labelled tangles with two boundary points are elements of N ′ ∩ M ,whih by irreduibility must be salars.So a = tr( a ) = δ−1tr( a ) = δtr(a).One orollary of 3.2.7 is the following multipliation formula:Proposition 3.2.11. tr(ePQ)tr(ePeQ) = tr(eP )tr(eQ).Proof. δtr(ePQ)tr(ePeQ) = tr( P Q ) = δ−2 P Q

= δ−2( P )( Q )( ) = δtr(eP)tr(eQ).12



Corollary 3.2.12. tr(ePQ) = tr(eQP ).And another trae formula:Lemma 3.2.13. tr(ePeQ) =
1

dimML2(P̄ Q̄)
.Proof. 1

dimML2(P̄ Q̄)
=

1

δ2tr(eP̄ Q̄)
=

tr(eP̄eQ̄)

δ2tr(eP̄ )tr(eQ̄)
, by the (dual version of)the multipliation formula. By 3.2.6 eP̄ =

1

δtr(eP )
φ(eP), so that beomes

1

dimML2(P̄ Q̄)
=

1

δ4tr(eP̄ )tr(eQ̄)tr(eP )tr(eQ)
tr(φ(eP)φ(eQ)) = tr(φ(eP )φ(eQ))

= δ−2 P Q . On the other hand, P Q = δ3tr(e1(eP ◦ eQ)e1) =

δ4tr(ePeQ)tr(e1) = δ2tr(ePeQ). Combining these two equations gives theresult.We mention one more formula whih we will need later.Lemma 3.2.14. tr(ePQeQP ) = (δtr(ePQ))2tr((eP̄eQ̄eP̄ )2).Proof. By 3.2.7 , tr(ePQeQP ) =
tr((eP ◦ eQ)(eQ ◦ eP ))

(δtr(ePeQ))(δtr(eQeP ))
=

1

δ4(tr(ePeQ))2

QP

Q P
. On the other hand, by 3.2.6 , tr((eP̄eQ̄eP̄ )2) = tr(eP̄eQ̄eP̄eQ̄) =

1

δ4tr(eP )2tr(eQ)2 P
P

Q
Q

=
1

δ6tr(eP )2tr(eQ)2

Q
P

Q
P . By [2℄ the 2-box fora biprojetion is invariant under rotation by π, so the two trae pitures arethe same. Combining these two equations then gives tr(ePQeQP )

= δ2 tr(eP)2tr(eQ)2

tr(ePeQ)2
tr((eP̄eQ̄eP̄ )2), whih by 3.2.11 equals

(δtr(ePQ))2tr((eP̄eQ̄eP̄ )2). 13



3.3 Commuting and oommuting quadrilaterals.It is natural to onsider the ondition that a quadrilateral forms a ommutingsquare, whih means that ePeQ = eQeP . We say that a quadrilateral is aoommuting square if the dual quadrilateral is a ommuting square.Lemma 3.3.1. Let N ⊂ P, Q ⊂ M be a quadrilateral of II1 fators, where
N ⊂ M is an irreduible �nite-index inlusion. Consider the multipliationmap from L2(P ) ⊗N L2(Q) to L2(PQ). The quadrilateral ommutes i� thismap is injetive and oommutes i� the map is surjetive.Proof. The quadrilateral ommutes i� ePeQ = eQeP i� ePeQ = eN . By3.2.11 this is equivalent to 1

[M : N ]
= tr(eN) = tr(ePeQ) =

tr(eP )tr(eQ)

tr(ePQ)
, or

dimNL2(PQ) = [M : N ]tr(ePQ) = [M : N ]2tr(eP )tr(eQ) =
dimNL2(P )dimNL2(Q). But by 3.1.2 L2(PQ) is isomorphi to a submoduleof L2(P ) ⊗N L2(Q), so the two have the same N -dimension i� they are infat isomorphi, whih is equivalent to the injetivity of the multipliationmap.The quadrilateral oommutes i� eP̄ Q̄ = eQ̄P̄ = eM . By 3.2.13 , thisis equivalent to dimNL2(PQ) = 1

tr(eP̄ Q̄)
= 1

tr(eM )
= dimNL2(M), whih islearly equivalent to L2(PQ) = L2(M), or ePQ = 1.Corollary 3.3.2. The quadrilateral ommutes i�

dimNL2(PQ) = dimN(L2(P ) ⊗N L2(Q)) = [P : N ][Q : N ].Corollary 3.3.3. The quadrilateral oommutes i� L2(PQ) = L2(QP ).Proof. If the quadrilateral oommutes, then L2(PQ) = L2(M) = L2(QP ).Conversely, if L2(PQ) = L2(QP ), then ePQ = eQP . By 3.2.7 ePQ is a salarmultiple of eP ◦ eQ, so ePQ ◦ ePQ is a salar multiple of (eP ◦ eQ) ◦ (eP ◦ eQ) =
eP ◦ (eQ ◦ eP ) ◦ eQ = eP ◦ (eP ◦ eQ) ◦ eQ = (eP ◦ eP ) ◦ (eQ ◦ eQ), whih isa salar multiple of eP ◦ eQ. This implies that ePQ is a biprojetion. Theorresponding subfator has to ontain both P and Q so is all of M . So
L2(PQ) = L2(M) and the quadrilateral oommutes.In fat one doesn't need the Hilbert spae ompletion for this:Theorem 3.3.4. Let N ⊂ P, Q ⊂ M be a quadrilateral of II1 fators, where
N ⊂ M is an irreduible �nite-index inlusion. Consider the multiplia-tion map from the (algebrai) bimodule tensor produt P ⊗N Q to M . Thequadrilateral ommutes i� this map is injetive and oommutes i� the mapis surjetive. 14



Proof. (a) Injetivity. If the algebrai map from P ⊗N Q to M has a kernelthen it is obvious that the L2 map does. On the other hand the kernel K of the
L2 map µ is a losed N -N sub-bimodule of L2(M1) (under the isomorphismof L2(M) ⊗N L2(M) with L2(M1), and by the form of elements in the �rstrelative ommutant the orthogonal projetion onto K sends M1 to itself sothere are elements of M1 in kerµ. Moreover sine M1

∼= M ⊗N M the map
EP ⊗ EQ produes an element of kerµ in PeNQ.(b)Surjetivity. The algebrai map is surjetive i� PQ = M . Clearly
PQ = M implies L2(PQ) = L2(M). Conversely if L2(PQ) = L2(M), ePQ isthe identity so M = PQ by 3.2.8.Remark 3.3.5. Sano and Watatani have already shown that the quadrilateralis a oommuting square i� PQ = M under the additional hypothesis thatthe quadrilateral is a ommuting square[31℄.4 No extra struture4.1 De�nitionLet N ⊂ M be an inlusion of II1 fators with assoiated tower M−1 ⊂ M0 ⊂
M1 ⊂ ..., where M−1 = N , M0 = M , and Mk+1, k ≥ 0 is the von Neumannalgebra on L2(Mk) generated by Mk and ek+1, the projetion onto L2(Mk−1).Eah ek ommutes with N , so {1, e1, .., ek} generates a *-subalgebra, whihwe will all TLk+1, of the kth relative ommutant N ′ ∩ Mk.To motivate the following de�nition (whih �rst ours in [21℄) onsiderthe ase where N = RG, M = RH where G is a �nite group of outer automor-phisms of the II1 fator R. It is well known that, as a vetor spae, N ′ ∩Mkis the set of G−invariant funtions on Xk+1 where X = G/H. Thus thetransivity of the ation of G on X is measured by the dimension of N ′ ∩ Mk- an ation is k + 1-transitive if its dimension is the same as that for thefull symmetri group SX . Moreover any funtion invariant under SX is ne-essarily invariant under G so the relative ommutants for RG ⊆ RH alwaysontain a opy of those oming from SX . The invariants under SX in thisontext are sometimes alled the partition algebra so transivity (or ratherlak of it) is measured by how muh bigger N ′ ∩ Mk is than the partitionalgebra. Now for a general subfator N ⊆ M a similar situation ours:
N ′ ∩ Mk aways ontains TLk+1. Sine this is, for k > 3, stritly smaller indimension than the partition algebra we see that if we think of subfators as"quantum" spaes G/H they might be "more transitive" than �nite groupations. 15



De�nition 4.1.1. Call a �nite-index subfator N ⊆ M k-supertransitive(for k > 1) if N ′ ∩Mk−1 = TLk. We will say N ⊆ M is supertransitive if itis k-supertransitive for all k.Sine dimTLk is the same as the partition algebra for k = 1, 2, 3 it isnatural to all a 1, 2 or 3-supertransitive subfator transitive, 2-transitive or
3-transitive respetively.Remark 4.1.2. N ⊆ M is transitive i� it is irreduible, i.e. N ′∩M ∼= C, itis 2-transitive i� the N −N bimodule L2(M) has two irreduible omponentsand 3-transitive i� dim N ′∩M2 ≤ 5. Supertransitivity of N ⊆ M is the sameas saying its prinipal graph is An for some n = 2, 3, 4, ...,∞.Lemma 4.1.3. Suppose N ⊂ M is supertransitive. If [M : N ] ≥ 4 then thereis a sequene of irreduible N −N bimodules V0, V1, V2... suh that L2(N) ∼=
V0, L2(M) ∼= V0 ⊕ V1, and Vi ⊗ Vj

∼= ⊕i+j
k=|i−j|Vk. If [M : N ] = 4cos2(π

n
)then the sequene terminates at Vl, where l = [n−2

2
], and the fusion rule is:

Vi ⊗ Vj
∼= ⊕( n−2

2
)−|( n−2

2
)−(i+j)|

k=|i−j| Vk.In either ase, we have dimN Vk = [M : N ]kT2k+1(
1

[M : N ]
), where {Tk(x)}is the sequene of polynomials de�ned reursively by T0(x) = 0, p1(x) = 1,and Tk+2(x) = Tk+1(x)− xTk(x).Corollary 4.1.4. dimNV1 = [M : N ] − 1 and

dimNV2 = [M : N ]2 − 3[M : N ] + 1.Remark 4.1.5. If N ⊂ M is 2k-supertransitive, then there is a sequene ofirreduible bimodules V0, ..., Vk for whih the above fusion rules and dimensionformula hold as long as i + j ≤ k.Now let N ⊆ P, Q ⊆ M be a quadrilateral of �nite index subfators.We will all the four subfators N ⊆ P ,N ⊆ Q,P ⊆ M , and Q ⊆ M theelementary subfators.De�nition 4.1.6. A quadrilateral as above will be said to have no extrastruture if all the elementary subfators are supertransitive.Example 4.1.7. Let G = S3 and let H and K be distint two-element sub-groups of G. Given an outer ation of G on a II1 fator M , let N = MG,and let P = MH and Q = MK. Then N ⊂ P, Q ⊂ M is a quadrilateral whihoommutes (sine M ′∩M2
∼= l∞(G) is Abelian) but does not ommute (sine

HK 6= KH).This quadrilateral has no extra struture sine the permutations ationsof S2 and S3 are as transitive as possible. The dual quadrilateral also has noextra struture. 16



4.2 Consequenes of supertransitivity.Let N ⊂ P, Q ⊂ M be a quadrilateral of II1 fators, where N ⊂ M is anirreduible inlusion with �nite index. We also have the dual quadrilateral
M ⊂ P̄ , Q̄ ⊂ M1. Let N ⊂ P ⊂ P1... be the tower for N ⊂ P , and similarlyfor Q.Lemma 4.2.1. If N ⊆ P and N ⊆ Q are 2-transitive and the quadrilateraldoes not ommute then L2(P ) ∼= L2(Q) as N − N-bimodules, and therefore
[P : N ] = [Q : N ].Proof. By 4.1.2 write L2(P ) = L2(N) ⊕ V , where V is an irreduible N −
N bimodule. Similarly L2(Q) = L2(N) ⊕ W , for some irreduible N − Nbimodule W . Sine ePeQ is an N − N intertwiner of L2(M) whih �xes
L2(N), leaves L2(N)⊥ invariant and whose range is ontained in L2(P ), itmaps W into V . Sine W is irreduible, ker(ePeQ|W ) must either be zero orall of W . The former is impossible sine that would imply ePeQ = eN , whihis ontrary to our assumption that the quadrilateral does not ommute. Thus
V ∼= W , and dimNV = dimNW .Corollary 4.2.2. L2(P ) ⊗N L2(Q) ∼= L2(P ) ⊗N L2(P ) ∼= L2(P1).Lemma 4.2.3. If P ⊆ M is 2-transitive then L2(PQP ) = L2(M).Proof. By 4.1.2 write L2(M) ∼= L2(P ) ⊕ W for some irreduible P − Pbimodule W . Sine L2(PQP ) is a P − P submodule of L2(M) whih isstritly larger than L2(P ), it must in fat be equal to L2(M).Remark 4.2.4. Suppose all of the elementary inlusions of the quadrilateralare 2k-supertransitive for some k ≥ 1. Then the elementary inlusions ofthe dual quadrilateral are also 2k-supertransitive. Putting together 3.1.3,4.2.3, and 4.2.1, we �nd that as an N − N bimodule, L2(M) is a quotientof ⊗3

NL2(P ). If k ≥ 3 then the irreduible submodules of L2(M) belongto {V0, V1, V2, V3}, where the {Vi} are as in 4.1.5 for the 6-supertransitiveinlusion N ⊂ P . Similarly, as an M − M-bimodule, L2(M1) is a quotientof ⊗3
ML2(P̄ ). We will write U0, U1 et. for the irreduible M −M bimodulesourring in the deomposition of the �rst k tensor powers of L2(P̄ ).For onveniene we state the following rewording of a lemma in [28℄ whihwe will be using repeatedly:Lemma 4.2.5. If the N − N-bimodule deomposition of L2(M) ontains kopies of the N − N-bimodule R, then k ≤ dimNR. In partiular, L2(M)ontains only one opy of L2(N). 17



Proof. NL2(M)N
∼= (NL2(M)M ) ⊗M (ML2(M)N ), so if NL2(M)N ontains

k opies of R, then by Frobenius reiproity R ⊗N (NL2(M)M ) ontains kopies of the N − M bimodule NL2(M)M , whih implies that
dimN(R ⊗N NL2(M)M ) = dimN(R)[M : N ] ≥ kdimN(NL2(M)M )
= k[M : N ].Lemma 4.2.6. If N ⊆ P and N ⊆ Q are 4-supertransitive and the quadri-lateral does not ommute then the N − N-bimodule L2(PQ) isomorphi toone of the following: V0 ⊕ 2V1 ⊕ V2, V0 ⊕ 3V1 ⊕ V2, or V0 ⊕ 3V1, where the Viare as in 4.1.3 (for the 4-supertransitive inlusion N ⊂ P ).Proof. By 3.1.2, L2(PQ) is isomorphi to a submodule of L2(P1). A deom-position of L2(P1) into N − N -submodules orresponds to a deompositionof the identity in N ′ ∩ P3.If dim(N ′ ∩ P3) = 14 then N ′ ∩ P3

∼= M2(C) ⊕ M3(C) ⊕ C, where the�rst summand orresponds to V0, the seond to V1, and the third to V2. So
L2(P1) ∼= 2V0⊕3V1⊕V2. By 4.2.5 , L2(PQ) ontains only one opy of L2(N).Also, by 4.2.1 , L2(Q) ∼= L2(P ), but L2(P ) 6= L2(Q) so L2(PQ) ontains atleast two opies of V1. It is impossible that L2(PQ) ∼= V0 ⊕ 2V1, sine thatwould imply that L2(PQ) = L2(P + Q) = L2(QP ) = L2(M), whih wouldimply that [M : P ] =

dimNL2(M)

dimNL2(P )
< 2. That leaves the three possibilitiesabove. If dim(N ′∩P3) < 14 then the argument is essentially the same, exeptthere is no V2, so only one possibility remains.4.3 Coommuting quadrilaterals with no extra stru-ture.NOTATION: from now on the supertransitivity hypotheses willguarantee that [M : P ] = [M : Q]. We introdue the followingnotational onventions:

[M : P ] = β, [P : N ] = α, [M : N ] = γ = 1/τwhih we will use without further mention.Lemma 4.3.1. If N ⊂ P and N ⊂ Q are 2-transitive, then ePeQeP =

eN + λ(eP − eN), where λ =
tr(eP̄ Q̄)−1 − 1

[P : N ] − 1
.Proof. That ePeQeP = eN +λ(eP − eN) for some λ follows from the fat that

ePeQeP is an N − N intertwiner of L2(P ) ∼= V0 ⊕ V1 whih is the identity18



on L2(N). To ompute λ , note that tr(ePeQeP ) = tr(eN) + λtr(eP − eN) =
1

γ
+ λ

α − 1

γ
. Solving for λ and using tr(ePeQeP ) =

1

γtr(eP̄Q̄)
(by 3.2.13)ompletes the proof.Corollary 4.3.2. tr((ePeQeP )2) =

1 + λ2([P : N ] − 1)

[M : N ]
.Lemma 4.3.3. If the quadrilateral oommutes and eP̄ Q̄eQ̄P̄ = eQ̄P̄ eP̄ Q̄ then

dimML2(P̄ Q̄ + Q̄P̄ ) =

[M : P ]2(2 − [M : P ]

[P : N ]
(1 + (

[P : N ] − [M : P ]

[M : N ] − [M : P ]
)2([P : N ] − 1))).Proof. Sine eP̄ Q̄eQ̄P̄ = eQ̄P̄eP̄ Q̄, dimML2(P̄ Q̄+Q̄P̄ ) = γ(2tr(eP̄ Q̄)−tr(eP̄ Q̄eQ̄P̄ )).Sine the quadrilateral oommutes,

tr(eP̄ Q̄) =
dimML2(P̄ Q̄)

γ
=

dimML2(P̄ )dimML2(Q̄)

γ
=

α2

γ
=

β

α
.By (the dual version of) 3.2.14 , tr(eP̄ Q̄eQ̄P̄ ) = (δtr(eP̄ Q̄))2tr((ePeQeP )2) =

tr(eP̄Q̄)2(1 + λ2(α − 1)) = (
β

α
)2(1 + λ2(α − 1)). Also, sine tr(eP̄ Q̄) =

β

α
, wehave λ =

α − β

γ − β
. Putting all this together gives the result.Corollary 4.3.4. In the speial ase that [M : P ] = [P : N ]−1, the formulabeomes dimML2(P̄ Q̄ + Q̄P̄ ) = [M : P ]2 + [M : P ] − 1Theorem 4.3.5. If the quadrilateral oommutes but does not ommute, and

N ⊆ P and N ⊆ Q are 4-supertransitive then N is the �xed point algebra ofan outer S3 ation on M .Proof. Sine the quadrilateral does not ommute, L2(P ) ∼= L2(Q) as N −N -bimodules, by 3.3.3 . Sine the quadrilateral oommutes, L2(M) = L2(PQ),and sine N ′ ∩ P3 ≤ 14, by 4.2.6 the isomorphism type of L2(M) is one of:
V0⊕2V1⊕V2, V0⊕3V1⊕V2, or V0⊕3V1. For eah of these ases we an expliitlyompute β as a funtion of α using the formula β =

γ

α
=

dimNL2(M)

α
andthe dimension formulas of 4.1.4 .Case 1: L2(M) ∼= V0 ⊕ 3V1 ⊕ V2In this ase, [P̄ : M ] = β =

dimNL2(M)

α
=

1 + 3(α − 1) + α2 − 3α + 1

α
=

α− 1

α
. Sine the quadrilateral oommutes, by 3.3.2 dimM(L2(P̄ Q̄)) = ([P :

N ]− 1

α
)2. But then the dimension of its orthogonal omplement (in L2(M1))19



is dimML2(M1) − dimML2(P̄ Q̄) = [P : N ]2 − 1 − (α − 1

α
)2 = 1 − 1

α2
< 1,whih is impossible by 4.2.5 .Case 2: L2(M) ∼= V0 ⊕ 3V1In this ase, β =

1 + 3(α − 1)

α
= 3 − 2

α
, whih neessarily equals 4cos2 π

5
.(The only other admissible index value less than three is two, but that wouldimply that the total index is four and then the quadrilateral would ommute.)Then we have the identity β2 = 3β−1, and α = 2β. Sine L2(M) ∼= V0⊕3V1,any intermediate subfator must have index equal to 1 + 3(α − 1)

1 + k(α − 1)
for k = 1or k = 2. So to eliminate this ase it su�es to �nd a proper subfator of

M with an integer valued index, for whih it su�es to �nd an M − M -submodule of L2(M1) whose dimension over M is 1.
L2(P̄ + Q̄) has M -dimension 2dimML2(P̄ ) − dimML2(M) = 2β − 1. Itsorthogonal omplement in L2(P̄ Q̄), whih we shall all T , has M -dimension

dimML2(P̄ Q̄) − dimML2(P̄ + Q̄) = β2 − (2β − 1) = β. Sine β < 3, if T isreduible, one of its irreduible omponents must have M -dimension 1, andwe are �nished. Similarly, if T ′, the orthogonal omplement of L2(P̄ + Q̄) in
L2(Q̄P̄ ), is reduible then we get a submodule of M -dimension 1.If T and T ′ are both irreduible, then L2(P̄ Q̄) ∩ L2(Q̄P̄ ) = L2(P̄ + Q̄).Then if S is the orthogonal omplement of L2(P̄ Q̄+ Q̄P̄ ) in L2(M1), we have
dimMS = dimML2(M1) − (2dimML2(P̄ Q̄) − dimML2(P̄ + Q̄)) =
2β2 − (2β2 − (2β − 1)) = 2β − 1. Sine dim(M ′∩M2) = dim(N ′ ∩M1) = 10,
S must break into 3 omponents, one of whih must have M -dimension 1.Case 3: L2(M) ∼= V0 ⊕ 2V1 ⊕ V2In this ase β =

1 + 2(α − 1) + α2 − 3α + 1

α
= α−1. Note that dim(N ′∩

M1) = 6, and therefore also dim(M ′ ∩ M2) = 6. Beause L2(M) ⊂ L2(P̄ ) ⊂
L2(P̄ + Q̄) ⊂ L2(P̄ Q̄) ⊂ L2(M1) is a stritly inreasing hain of M − Mbimodules (P̄ Q̄ annot be all of M1 beause the quadrilateral does not om-mute), M ′ ∩ M2 must be Abelian. If we let x = β (so that α = x + 1), then
γ = x2 +x, and by 4.3.4 we have that dimML2(P̄ Q̄ + Q̄P̄ ) = x2 + x− 1, andso the dimension of its orthogonal omplement in L2(M1) is 1.It is then easy to see that the dimensions of the six distint irreduiblesubmodules of L2(M1) are 1, x−1, x−1, x2 −2x−1, x2−2x−1, 1. But thensumming we �nd that 2x2 − 2x − 2 = dimML2(M1) = x2 + x, whih impliesthat x = 2. So [P̄ : M ] = [Q̄ : M ] = 2, and [M1 : M ] = 6.So by Goldman's theorem, [10℄ M1 is the rossed produt of M by S3, or,equivalently, N is the �xed point subalgebra of an outer S3 ation on M .20



5 Restritions on the prinipal graphIf the quadrilateral has no extra struture then we obtain severe restritionson the prinipal graph. Spei�ally, for a nonommuting, nonoommut-ing quadrilateral with no extra struture the prinipal graph is ompletelydetermined.5.1 Strutural restritionsLemma 5.1.1. If the quadrilateral neither ommutes nor oommutes, andall the elementary subfators are 6-supertransitive, then N ′∩M1 and M ′∩M2both have more than two simple summands.Proof. First suppose that N ′ ∩ M1 and M ′ ∩ M2 both have exatly twosimple summands. Then L2(M) = V0 ⊕ kV1 for some integer k. So we have
β =

γ

α
=

dimN(V0 ⊕ kV1)

α
=

1 + k(α − 1)

α
= k − k − 1

α
< k. By 4.2.5,

k ≤ dimNV = α− 1 < α, and so [M : P ] < α. But we an perform the samealulation in the dual quadrilateral to �nd that α = [M1 : P̄ ] < [P̄ : M ] =
[M : P ], whih is a ontradition.Now suppose that only M ′ ∩ M2 has exatly two simple summands, andwrite L2(M1) ∼= U0 ⊕ lU1. Note that beause of the 6-supertransitivityhypothesis, the �rst few tensor powers of U1 deompose aording to thefusion rules of 4.1.3. By 4.2.6, L2(P̄ Q̄) ∼= U0 ⊕ 3U1, and sine the quadri-lateral does not ommute, by 3.3.3 L2(P̄ Q̄) 6= L2(Q̄P̄ ), so l must be atleast 4. By 4.2.3 and 3.1.3, L2(M1) is a quotient of L2(P̄ Q̄) ⊗M L2(P̄ ) ∼=
(U0 ⊕ 3U1) ⊗M (U0 ⊕ U1) ∼= 4U0 ⊕ 7U1 ⊕ 3U2, where the last isomorphismomes from the fusion rule U1 ⊗M U1

∼= U0 ⊕U1 ⊕U2 (If α < 3 then U2 = 0).So we �nd that 4 ≤ l ≤ 7.Similarly, L2(M) is a quotient of L2(PQ)⊗N L2(P ), whih in all ases of4.2.6 is a quotient of (V0⊕3V1⊕V2)⊗N (V0⊕V1) ∼= V0⊕8V1⊕5V2⊕V3. Thuswe may write L2(M) ∼= V0 ⊕ aV1 ⊕ bV2 ⊕ cV3, where a, b, and c are integerssuh that 2 ≤ a ≤ 8, 0 ≤ b ≤ 5, and 0 ≤ c ≤ 1, and b and c are not both 0.But beause we have dim(N ′ ∩ M1) = dim(M ′ ∩ M2), we neessarilyhave a2 + b2 + c2 = l2. A quik examination reveals that the only possibilityis that l = 5, c = 0, and {a, b} = {3, 4}. But if l = 5 then α =
γ

β
=

[M1 : M ]

[P̄ : M ]
= 5 − 4

β
< 5, whih implies that a ≤ dimNV1 < 4 (by 4.2.5), sowe may assume that a = 3 and b = 4. Then β =

dimNV0 ⊕ 3V1 ⊕ 4V2

α
=

1 + 3(α − 1) + 4(α2 − 3α + 1)

α
= 4α2 − 9α + 2, and sine α ≥ 3, we must21



have β ≥ 4, and then also α = 5− 4

β
≥ 4, so the generi fusion rules of 4.1.3apply.Then as an N − N bimodule, L2(M1) ∼= L2(M) ⊗N L2(M) ∼=

(V0⊕3V1⊕4V2)⊗N (V0⊕3V1⊕4V2) ∼= 10V0⊕39V1⊕41V2⊕12V3⊕16(V2⊗N V2),where the last isomorphism omes from the fusion rules V1⊗NV1
∼= V0⊕V1⊕V2and V1 ⊗N V2

∼= V1 ⊕ V2 ⊕ V3. Sine the N − N winer spae of L2(M1) is
N ′ ∩ M3, this implies that dim(N ′ ∩ M3) ≥ 102 + 392 + 412 + 122 = 3446.On the other hand, as an M − M bimodule,
L2(M2) ∼= L2(M1) ⊗M L2(M1) ∼= L2(M) ⊕ 5U1 ⊗ L2(M) ⊕ 5U1

∼=
26U0 ⊕ 35U1 ⊕ 25U2, so dim(M ′ ∩ M4) = 262 + 352 + 252 = 2526. But thisontradits the fat that dim(N ′ ∩ M3) = dim(M ′ ∩ M4).Lemma 5.1.2. If the quadrilateral neither ommutes nor oommutes andall the elementary subfators are 6-supertransitive then [N : P ] and [M : P ]are both less than four.Proof. Suppose on the ontrary that the hypotheses are satis�ed and that
α ≥ 4. (There is no loss of generality here sine if only β ≥ 4 we may onsiderthe dual quadrilateral instead.) Then by 5.1.1 N ′ ∩ M1 has at least threesimple summands. Beause the quadrilateral is not oommuting, by 3.3.3
L2(PQ) 6= L2(QP ), but they must have the same dimension sine by 3.2.12
tr(ePQ) = tr(eQP ). We onsider three ases, orresponding to the three asesof 4.2.6 :Case 1: L2(PQ) ∼= V0 ⊕ 3V1. Then also L2(QP ) ∼= V0 ⊕ 3V1. Note thatthese two bimodules interset in L2(P + Q) ∼= V0 ⊕ 2V1, so L2(PQ + QP ) ∼=
V0 ⊕ 4V1. Sine N ′ ∩ M1 has a third summand, L2(M) must also ontainan irreduible submodule whose dimension is at least as great as that of
V2, by 4.1.3 , so we �nd that γ = dimNL2(M) ≥ dimNV0 ⊕ 4V1 ⊕ V2 ≥
1 + 4(α − 1) + (α2 − 3α + 1) = α2 + α − 2, and so β =

γ

α
= α + 1 − 2

α
> α.Case 2: L2(PQ) ∼= V0 ⊕ 2V1 ⊕ V2. Then L2(PQ + QP ) ∼= V0 ⊕ 2V1 ⊕ 2V2.So γ ≥ dimNV0 ⊕ 2V1 ⊕ 2V2 = 2α2 − 4α + 1, and again we �nd that β =

2α − 4 +
1

α
> α. (Beause α ≥ 4).Case 3: L2(PQ) ∼= V0 ⊕ 3V1 ⊕ V2. Then L2(PQ + QP ) ontains eitherat least four opies of V1 or at least two opies of V2 and again we �nd that

β > α.But sine β > α ≥ 4, we an perform these same alulations in the dualquadrilateral to dedue that α > β, whih is absurd.Lemma 5.1.3. If the quadrilateral neither ommutes nor oommutes andall the elementary subfators are 6-supertransitive, then [P : N ] = [M : P ].22



Proof. By the previous lemma we may assume that α and β are both lessthan four. Beause α < 4, dimNV1 < 3, so by 4.2.5 L2(M) ontains at most,and therefore exatly, two opies of V1, and so L2(PQ) ∼= V0 ⊕2V1 ⊕V2. Now
L2(M) is a quotient of L2(PQ) ⊗N L2(P ) ∼= (V0 ⊕ 2V1 ⊕ V2)⊗N (V0 ⊕ V1) ∼=
3V0 ⊕ 6V1 ⊕ 4V2 ⊕ V3, so it ontains at most four opies of V2 and at mostone opy of V3 (and nothing higher). Also, sine L2(QP ) is isomorphi, butnot equal, to L2(PQ), L2(M) ontains at least two opies of V2.So we may write L2(M) ∼= V0 ⊕ 2V1 ⊕ bV2 ⊕ cV3, with 2 ≤ b ≤ 4 and
0 ≤ c ≤ 1. Similarly, we may write L2(M1) ∼= U0 ⊕ 2U1 ⊕ b′U2 ⊕ c′U3, with
2 ≤ b′ ≤ 4 and 0 ≤ c′ ≤ 1. Sine 12 + 22 + b2 + c2 = dim(N ′ ∩ M1) =
dim(M ′ ∩ M2) = 11 + 22 + b′2 + c′2 and c and c′ are eah either 0 or 1, wemust have b = b′ and c = c′.De�ne the funtion

fb,c(x) = [1 + 2(x − 1) + b(x2 − 3x + 1) + c(x3 − 5x2 + 6x − 1)]/x

= cx2 + (b − 5c)x + (2 − 3b + 6c) +
(b − c − 1)

x
.Then fb,c(α) = β and fb,c(β) = α. De�ne gb,c(x) = fb,c(x) − x. Then g′

b,c(x)is either b − 1 − b− 1

x2
, or 2x + b − 6 − b − 2

x2
, depending upon whether c is

0 or 1. In either ase, g′(x) is positive when x ≥ 2 and so g(x) is then aninreasing funtion.Now if α > β, then gb,c(β) = fb,c(β) − β = α − β > 0, and sine α > βand gb,c(x) is inreasing, gb,c(α) > 0 as well, so we also have β > α, whihis a ontradition. Similarly we �nd that β > α is impossible. Therfore wemust have β = α.5.2 The prinipal graphLemma 5.2.1. There does not exist a nonommuting quadrilateral of sub-fators with L2(M) ∼= V0 ⊕ 2V1 ⊕ 2V2 and with the prinipal graph of theelementary subfators equal to A11.Proof. Suppose suh a quadrilateral exists.Then L2(M1) ∼= L2(M) ⊗N L2(M) ∼= 9V0 ⊕ 20V1 ⊕ 20V2 ⊕ 12V3 ⊕ 4V4, and
L2(M2) ∼= L2(M1)⊗N L2(M1) ∼= 89V0⊕222V1⊕254V2⊕196V3⊕108V4⊕32V5,by the A11 fusion rules. (4.1.3 with n = 12 gives Vi ⊗N Vj = ⊕5−|5−(i+j)|

|i−j| Vk.)Realling the priniple that eah level of the Bratteli diagram for thetower of relative ommutants is obtained by re�eting the previous level andadding some "new stu�", with the rule that the "new stu�" onnets only to23



the "old new stu�" (see [11℄), it is easy to dedue that the Bratteli diagrammust inlude the graph in 5.2.2 .
Fig. 5.2.2.
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89 x y

Let m and n be the number of bonds whih onnet the two "2"s inthe fourth row with "12" in the �fth row, respetively. Then we must have
2m + 2n = 12, or m + n = 6. By the re�etion priniple, there must alsobe m and n bonds onneting "12" with "x" and "y" respetively, as well as"x" and "y" with "196". This implies that x ≥ 20 + 12m, y ≥ 20 + 12n,and 196 ≥ m(20 + 12m) + n(20 + 12n) = 20(m + n) + 12(m2 + n2) whih isabsurd sine m + n = 6.Lemma 5.2.3. If the quadrilateral neither ommutes nor oommutes, andthe elementary inlusions are 6-supertransitive, then [P : N ] = [M : P ] =
2 +

√
2 and L2(M) ∼= V0 ⊕ 2V1 ⊕ 2V2 ⊕ V3.Proof. As in the proof of 5.1.3 , there are six possible isomorphism types for

L2(M) ∼= V0 ⊕ 2V1 ⊕ bV2 ⊕ cV3, orresponding to b = 2, 3, 4 and c = 0, 1. We24



will eliminate them all exept b = 2, c = 1.Let x = α. From the proof, and the onlusion, of 5.1.3 we have
cx3 + (b − 5c − 1)x2 + (2 − 3b + 6c)x + (b − c − 1) = 0.Let us onsider the ases one at a time:

c = 0, b = 2Then x = 2 +
√

3 and the only prinipal graphs possible for N ⊆ P are A11and E6. But E6 is not 4-supertansitive and A11 was eliminated in 5.2.1.
c = 0, b = 3Then 2x2 − 7x + 2 = 0, neither of whose roots is an allowed index value.
c = 0, b = 4Then 3x2 − 10x + 3 = 0 so α = 3 whih implies dimN (V2) = 1 whih isimpossible by 4.2.5.
c = 1, b = 3Then x3−3x−x+1 = 0 or x(x2−3x+1) = 2x−1 whih implies dimN (V2) < 2.Again by 4.2.5 this is impossible.
c = 1, b = 4Then x3 − 2x2 − 4x + 2 = 0. The largest root of this equation is between 3and 4 cos2 π/7 so it is not a possible index value.Finally, in the ase c = 1, b = 2, x(x2 − 4x +2) = 0 so α = 2+

√
2 (whihis 4 cos2 π/8)).Corollary 5.2.4. With the hypotheses of the previous lemma, tr(ePQ =

1√
2
,tr(ePeQ) = 1

4+3
√

2
and the angle between P and Q is cos−1(

√
2 − 1).Proof. By 2-transitivity we know that ePeQeP = eN + t(eP − eN) for somenumber t whih is the square of the osine of the angle. Moreover by 4.2.6we know that dimN (L2(PQ)) = 1+3(1+

√
2). Taking the trae, using 3.2.11and solving for t we are done.Theorem 5.2.5. Let N ⊂ P, Q ⊂ M be a nonommuting nonoommutingquadrilateral with all elementary inlusions 6-transitive. Then [M : P ] =

[P : N ] = [Q : N ] = 2 +
√

2 and the prinipal and dual prinipal graphs for
N ⊂ M are both * .Proof. Redution to this one ase is a onsequene of the previous results.We need only ompute the prinipal graph. Sine there is no subfator withprinipal graph D5, all the elementary subfators must have prinipal graph25



A7. Thus there are only the 4 possible isomorphism types V0, V1, V2 and V3for the N −N bimodules in L2(M), L2(M1), ... , i.e. the Bratteli diagram forthe tower of relative ommutants N ′ ∩ MK has at most 4 simple summandsfor k odd. Sine there are 4 simple summands in N ′∩M1 = EndN−NL2(M),the subfator N ⊂ M is of depth 3. Moreover if we let Va = V0 ⊕ V3and Vb = V1 ⊕ V2, then L2(M) ∼= Va ⊕ 2Vb, and the fusion rules are verysimple: Va ⊗ Va = 2Va, Va ⊗ Vb = 2Vb, and Vb ⊗ Vb = 2VA ⊕ 4Vb. So
L2(M1) ∼= L2(M)⊗ L2(M) ∼= 10Va ⊕ 24Vb

∼= 10V0 ⊕ 24V1 ⊕ 24V2 ⊕ 10V3, andthere is only one way to �ll in the N ′ ∩ M2 level of the Bratteli diagram forthe tower of relative ommutants whih will thus begin as in Fig 5.2.6.Fig. 5.2.6.
1

1

10 24 24 10

2 2 1

1

10 4

By depth 3 we are done.The dual prinipal graph has to be the same as the prinipal graph sine
M ⊂ M1 satis�es the same hypotheses as N ⊂ M .6 The 6 + 4

√
2 example.6.1 Material from �Coxeter graphs and towers of alge-bras'.We give a general onstrution for pairs of intermediate subfators whihseems to be of some interest. Reall two onstrutions of subfators from[11℄:Let Γ be a Coxeter-Dynkin diagram of type type A, D or E with Coxeternumber k, with Γ = Γ0 ⊔ Γ1 a partiular bipartite struture. Construt apair A0 ⊂ A1 of �nite dimensional C∗-algebras the underlying graph of whoseBratelli diagram is Γ. Thus the minimal entral projetions in Ai are indexedby Γi for i = 0, 1. Using the Markov trae tr on A1 iterate the basi onstru-tion to obtain the tower Ai+1 = 〈Ai, ei〉, ei being the orthogonal projetiononto Ai−1. There is a unitary braid group representation inside the tower26



obtained by sending the usual generators σi of the braid group (see [15℄) tothe elements gi = (t + 1)ei − 1 with t = e2πi/k.First onstrution-ommuting squares.If we attempt to obtain a ommuting square from the tower by onju-gating A1 inside A2 by a linear ombination of e1 and 1, we �nd that thereare preisely two hoies up to salars: g1 and g−1
1 . Then the following is aommuting square:

B1 = g1A1g
∗
1 ⊂ A2

∪ ∪
B0 = A0 ⊂ A1We may then de�ne Bi to be the C∗-algebra generated by Bi−1 and eito obtain II1 fators B∞ ⊆ A∞ with index 4 cos2 π/k. This onstrution isknown to give all subfators of index less than 4 of the hyper�nite II1 fator.The Dynkin diagram Γ is the prinipal graph of the subfator in the ases

An, D2n, E6 and E8 but not otherwise. For D2n+1 the prinipal graph is
A4n−1. See [9℄.Seond onstrution-GHJ subfators.The ei's in the II1 fator A∞ above generate a II1 fator TL and by alemma of Skau (see [11℄) TL′ ∩ A∞ = A0. Thus one may obtain irreduiblesubfators N ⊆ M by hoosing a minimal projetion p in A0, i.e. a vertex of
Γ in Γ0, and setting N = pTL and M = pA∞p. These subfators are knownas "GHJ" subfators as they �rst appeared in [11℄. We will all the subfator
TL ⊆ A∞ the "full GHJ subfator". The indies of the GHJ subfators areall �nite and were alulated in [11℄ (but note the error there: for Dn usingthe two univalent verties onneted to the trivalent one-it should be dividedby 2).Remark 6.1.1. The ut-down Temperley-Lieb projetions pe1, pe2, ... satisfythe same relations in the ut-down algebra pA∞p that the projetions e1, e2, ...do in A∞. Therefore when disussing pA∞p we will denote the ut-downTemperley-Lieb projetions simply by ei.Using Skau's lemma Okamoto in [27℄ alulated the prinipal graphsfor the GHJ subfators as follows: if TLn is the C∗ algebra generated by27



e1, e2, ..., en−1 then the inlusions:
pTLn+1 ⊂ pAn+1p

∪ ∪
pTLn ⊂ pAnpare ommuting squares for whih the Bratteli diagram of the unital inlusion

pTLn ⊆ pAnp may be alulated expliitly indutively using one simple rulewhih follows from the basi onstrution.Rule: If q is a minimal projetion in pTLn and r is a minimal proje-tion in pAnp then en+1q and en+1r are minimal projetions in pTLn+2 and
pAn+2p respetively, and the number of edges onneting q to r is equal tothe number onneting en+1q to en+1r.Thus one obtains two Bratteli diagrams depending on the parity of n.For su�iently large n the inulsion matries for these Bratteli diagrams donot hange and the prinipal graph for the GHJ subfator is the underlyingbipartite graph of the stable Bratteli diagram for the inlusion pTLn ⊆ pAnp,with distinguished vertex ∗ being the ∗ vertex in the Temperley-Lieb type
A graph. This spei�es the parity of n needed. Note that the dual prinipalgraph is not in general the inlusion graph with the other parity!Example 6.1.2. We take Γ to be the Coxeter graph D5 with the mini-mal projetion p being that orresponding to the trivalent vertex. The twovertial Bratteli diagrams are those for pA∞p and pTL, and the inlusions
pTLn ⊂ pAnp are given by approximately horizontal dashed lines, exeptthe one whih is the GHJ subfator prinipal graph whih is made up of theheavy lines at the top of the �gure. We have suppressed the dashed lines for
pTL5 ⊂ pA5p to avoid onfusion and beause this inlusion graph is not theprinipal graph. The �gure has been onstruted from the bottom up usingthe basi onstrution and the above Rule.
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Making the prinipal graph more visible we obtain:
* 29



6.2 GHJ Subfator Pairs.Looking again at the ommuting square onstrution from the original Coxeter-Dynkin diagram we see that we may in fat onstrut two subfators of A∞by onjugating initially by g and g−1! This onstrution works in great gen-erality and gives a pair of subfators whenever a subfator is onstrutedusing the endomorphism method of [11℄,[20℄. In fat there is a way to obtainthe quadrilateral with no extra struture by a simpler method, with simplerangle alulation and using only the real numbers. It seems to be a bit lessgeneral than the method using the braid group so we present it seond.De�nition 6.2.1. The full GHJ subfator pair is the pair P and Q of sub-fators of the (hyper�nite) II1 fator A∞ de�ned as the von Neumann algebrasgenerated by the Pn and Qn in the following towers:Fig. 6.2.2.
∪ ∪ ∪

Pn+1 ⊂ An+1 ⊃ Qn+1

∪ ∪ ∪
Pn ⊂ An ⊃ Qn

∪ ∪ ∪Where An is as above, P1 = Q1 = A0, P2 = g1A1g
∗
1, Q2 = g∗

1A1g1 and
Pn+1 = {Pn, en}′′, Qn+1 = {Qn, en}′′.Note that in 6.2.2, all squares involving just A's and P 's or just A's and
Q's are ommuting but squares involving P 's and Q's may not be.De�nition 6.2.3. Let TL2 be the subfator of A∞ generated by all the eiwith i ≥ 2.Proposition 6.2.4. [A∞ : P ∩ Q] < ∞.Proof. By onstrution ei ∈ P ∩ Q for all i ≥ 2. Moreover TL2 is of index
4 cos2 π/k in the full GHJ subfator TL whih is in turn of �nite index in Aby [11℄.Note that A0 is in TL′

2 ∩ A∞ and A0 ⊆ P ∩ Q. We suspet that P ∩ Qis the von Neumann algebra TL2 ⊗ A0 generated by TL2 and A0. We hopeto answer this question in a future systemati study of the GHJ subfatorpairs.Our interest in this paper has been in pairs of subfators P, Q ⊆ M with
(P ∩ Q)′ ∩ M = Cid. 30



De�nition 6.2.5. Let p be a projetion in A0 that is minimal in A1. Thenthe GHJ subfator pair orresponding to p is the pair of subfators
P = pPp, Q = pQp ⊆ M = pA∞p.Proposition 6.2.6. If P, Q ⊆ M is a GHJ subfator pair then (P∩Q)′∩M =

Cid.Proof. By Skau's lemmawe know that the ommutant of TL2 in M is A1.A projetion in A0 whih is minimal in A1 is the same thing as a univalentvertex in Γ0. Note that the subfator TL2 ⊆ A∞ is then the full GHJsubfator for the other bipartite struture on Γ, and the subfator pTL2 ⊆
pA∞p is the GHJ subfator obtained by hoosing the unique neighbour ofthe original univalent vertex. (This is beause the inlusion A1 ⊆ A2 an beused as the initial inlusion to onstrut the full GHJ subfator for the otherbipartite struture and p is a minimal projetion in A1 sine we started witha univalent vertex.)There are not too many hoies of univalent vertex, espeially up to sym-metry. We enumerate them below, the hosen univalent vertex being indi-ated with a * :

An *    o o       ................ o              o

Dn,1 * o                 o        .........       o

o

o
Dn,2

o                 o        .........       o

o

*
o

E6,1 * o            o           o           o

o

E6,2

o            o           o           oo

*
E7,1 * o            o           o           o o

o
E7,2

o            o           o           o oo

* E7,3
o            o           o           o

o

*o

E8,1
o            o           o           o o o*

o
E8,2

o            o           o           oo o o

* E8,3
o            o           o           o o

o

o *Proposition 6.2.7. The subfator pTL2 ⊆ M in the ase D5,2 has index
(2 +

√
2)2 and prinipal graph

*

.Proof. This is just the alulation done in example 6.1.2.31



At this stage it looks very likely that the D5,2 pair realises the ase 5.2.5of a no extra struture quadrilateral. In order to be sure of this we needto know that P and Q in this ase do not ommute. To do this we shallompute the angle between them. At this stage we do not even know if Pand Q are distint.6.3 Angle ComputationOur strategy for alulating the angle between P and Q will work wheneverthe subfators TL2 ⊆ P and TL2 ⊆ Q are 2-transitive so in this subsetionwe only assume that of the Coxeter graph with hosen univalent vertex.De�nition 6.3.1. Let Γ be a pointed Coxeter graph of type Dn for n > 4 or
E on the list above. Then d = d(Γ) will denote the distane from * to thetrivalent vertex.Thus d(E6,1) = 2 and d(D5,2) = 1.Theorem 6.3.2. Suppose Γ be a pointed Coxeter graph of type Dn for n > 4or E, with Coxeter number ℓ, and that the GHJ subfator with the starredvertex is 2-transitive. Then the angle between the two intermediate subfatorsis

{0, π/2, cos−1(|cos (2d + 3)π/ℓ

cosπ/ℓ
|)}Proof. The idea is as follows: by 2-transitivity EP EQEP is a multiple of theindentity on the orthogonal omplement of TL2 in P so it su�es to �ndan element x of this orthogonal omplement and alulate ||EQ(x)||2. Wewill �nd our element x in pPd+2p whih is the smallest pPkp whih is stritlybigger than pTL2k. It will be onvenient to pull bak the alulations to

pAnp so in the next lemma we give the unitaries whih onjugate An to Pn+1and Qn+1. These unitaries may be dedued from [11℄ but we give a proofhere for the onveniene of the reader.Lemma 6.3.3. Let vn = g1g2...gn and w = g−1
1 g−1

2 ...g−1
n . Then(a) Pn+1 = vnAnv

∗
n and Qn+1 = wnAnw

∗
n.(b) TL2n = vnTLnv

∗
n = wnTLnw

∗
nProof. Braid group relations give vngiv

∗
n = gi+1 and wng

−1
i w∗

n = g−1
i+1 hene

vneiv
∗
n = ei+1 and wneiw

∗
n = ei+1 for 1 ≤ i ≤ n− 1. This proves the assertion(b) about the Temperley-Lieb algebras. Sine [ei, A1] = 0 for i ≥ 2 we get

vnA1v
∗
n = g1A1g

∗
1 = P1 and wnA1w

∗
n = Q1. By the de�nition of Pn and Qnwe are done. 32



As in �gure 6.1.2 the Bratelli diagram for pA∞p is given by taking thefull Bratelli diagram for A∞ and onsidering only edges emanating from thestarred vertex. Thus by the de�nition of d(Γ) there is an element y of pAd+1pwhih is orthogonal to TLd, and is unique up to a salar multiple. We mayassume ||y||2 = 1 and y = y∗. De�ne x ∈ Pd+2 by x = vd+1yv∗
d+1. By 6.3.3 weknow that x is orthogonal to e2, e3, ...ed+1. Moreover sine tr(x) = 0 (sine

x ⊥ 1), EPd+1
(x) = 0 so ed+2xed+2 = 0 and taking the trae, x ⊥ ed+2. Bythe usual properties of the Markov trae in a tower, x ⊥ en for n > d + 2.Thus x ⊥ TL2.Sine the inlusions of pQnp in pAnp are ommuting squares we mayalulate EQ(x) by EpQd+2p(x) (inside pAd+2p ). But this element of pQd+2pis orthogonal to TL2 so is a multiple of wd+1yw∗

d+1. So the osine of the anglebetween P and Q is the absolute value of the inner produt
tr(xwd+1yw∗

d+1) = tr(vd+1yv∗
d+1wd+1yw∗

d+1).The algebras pAnp are all inluded in the planar algebra for the bipartitegraph Γ as de�ned in [18℄ so we may use the diagrams therefrom. In partiu-lar the inner produt we need to alulate is given by the following partitionfuntion (up to a power of δ = 2cos π/ℓ).
Fig. 6.3.4.

y

y

The rossings in the piture are the braid elements gi with some onven-tion as to whih is positive and whih is negative, read from bottom to top.33



We have illustrated with d = 2 for onreteness. They may be evaluatedusing the Kau�man piture:
= s −where s = eπi/ℓ.The orthogonality of y to TL is equivalent to the fat that, if any tangleontains a y box with two neighbouring boundary points onneted by aplanar urve(in whih ase we say the box is "apped o�"), the answer iszero. Thus one may evaluate 6.3.4 as follows.Using the Kau�man relation in 6.3.4 inside the dotted irle below oneobtainsFig. 6.3.5.

y

y

= s
y

y

−
y

y .Consider the �rst diagram on the right hand side of the equation 6.3.5.Following the urve in the diretion indiated by the arrow, observe thatone hoie of the two possibilities in applying the Kau�man relation at eahrossing always results in one of the y boxes being apped o�. The �rst d suhrossings thus ontribute a fator of s eah. Then one meets the situationwhih is easily seen to be the same as s2 times . One then meets
d more rossings eah of whih whih ontributes s. After this (the rossingsbelow the bottom y box in 6.3.4) the only terms in the Kau�man relationontributing just give the sign −1. Sine there are an even number of themwe dedue that the diagram of the �rst term on the right hand side of 6.3.5 is
s2d+2 times a tangle whih is tr(y2) up to a power of δ. A similar analysis ofthe diagram of the seond term gives −s−(2d+3) times tr(y2). A little thoughtonerning the powers of δ gives the �nal result that34



tr(vd+1yv∗
d+1wd+1yw∗

d+1) =
s2d+3 + s−2d−3

s + s−1This ends the proof of theorem 6.3.2Corollary 6.3.6. For the GHJ subfator pair given by D5,2, there is no extrastruture, the angle between P and Q is cos−1(
√

2 − 1), and P ∩ Q = TL2.Proof. We have [M : P ] = 4 cos2 π/8 from the D5 ommuting square. Also
pTL2 ⊆ P has the same index from a GHJ alulation, or from the onealready done for D5. So there annot be subfators between pTL2 and P or
Q, and pTL2 ⊆ P is 2-transitive. So we an apply the previous theorem toget the angle. The only possible prinipal graph with index 4 cos2 π/8 is A7so there is no extra struture.6.4 A simpler quadrilateral with no extra struture.Note that the de�nition of the GHJ pair will require the use of ertain rootsof unity. But at least in the Dn,2 ase it is possible to �nd another pair P̃and Q̃ between pTL2 and M , whih is de�ned over R! We will see that both
P̃ and Q̃ form ommuting oommuting squares with both P and Q. Oneof these two intermediate subfators is quite anonial and exists whenever
P ∩ Q = TL2.De�nition 6.4.1. Let Γ et. be as above. Let P̃ be the GHJ subfator for
p, i.e. the subfator generated by pTL2 and pe1.Proposition 6.4.2. The quadrilaterals N ⊂ P̃ , P ⊂ M and N ⊂ P̃ , Q ⊂ Mare ommuting squares.Proof. Reduing by p is irrelevant so we an do the omputation in the fullGHJ fator. As in the proof of 6.3.2 it su�es to �nd a non-zero elementof P̃ orthogonal to TL2 and show that its projetion onto P is zero. Let
x = e1−τ id where τ = (4 cos2 π/ell)−1. Then sine the Pn's form ommutingsquares with the An's and e1 ∈ A2 we need only projet onto P2 = Adg1(A1).But EP2

= Adg1EA1
Adg−1

1 and Adg1(x) = x. But EA1
(x) = 0 is just theMarkov property for the trae on A2. The same argument applies to Q̃.Lemma 6.4.3. Let Γ be Dn,2 for n ≥ 5 or E6,2. Then there is a projetion

f in pA2 with the following properties.(a)tr(f) = τ .(b)fpe1 = 0.()pe2fpe2 = τe2 and fpe2f = τf . 35



Proof. From the Bratteli diagram for pA2, it has three minimal projetions,whih are entral. One is learly pe1 and one of the other two has the sametrae by symmetry. Let f be that other one. Then (a) and (b) are obvious.The �rst part of () follows from dim(pA1) = 1 and the seond part followssine, from the Bratteli diagram, f is a minimal projetion in pA3.De�nition 6.4.4. Let Γ be Dn,2 for n ≥ 5 or E6,2. Let Q̃ be the von Neumannalgebra generated by pTL2 and the f of 6.4.3.Theorem 6.4.5. Let Γ be Dn,2 for n ≥ 5 or E6,2. Then Q̃ is a II1 fatorwith [Q̃ : pTL2] = 4 cos2 π/ℓ, and the angle between P̃ and Q̃ is cos−1(
τ

1 − τ
).Proof. Lemma 6.4.3 and the properties of the basi onstrution show that

f has exatly the same ommutation relations and trae properties with peifor i ≥ 2 as does pe1. Thus by [14℄ Q̃ is a II1 fator with the given index.Moreover the subfator pTL2 ⊂ Q̃ is 2-transitive so we an speak of the anglebetween P̃ and Q̃.The angle alulation is not hard. As in 6.3.2 it su�es to ompute thelength of the projetion onto P̃1 of a unit vetor in Q̃ orthogonal to pTL2. By6.4.3, the element x = f − τ id is orthogonal to the two-dimensional algebra
pTL2 and tr(x∗x) = τ (1 − τ ). Sine the pTLn's form ommuting squareswith the pAn's, EP̃ (x) is just the projetion E(x) of x onto pTL2. By thebimodule property of E, E(x)pe1 = −τpe1 so E(x) = τpe1 + λ(p − pe1).Using tr(x) = 0 we �nd λ = − τ 2

1 − τ
. So

||E(x)||2 = τ 3 + (
τ 2

1 − τ
)2(1 − τ ) =

τ 3

1 − τ
.And �nally ||E(x)||2

||x||22
=

τ 2

(1 − τ )2
.Observe that for τ−1 = 4cos2 π/ℓ, τ

1 − τ
=

√
2 − 1 so the angle between

P̃ and Q̃ is indeed the same as that between P and Q, and the quadrilateralformed by P̃ and Q̃ has no extra struture for the same reasons as theone formed by P and Q. As a last detail observe that the quadrilaterals
N ⊂ Q̃, P ⊂ M and N ⊂ Q̃, Q ⊂ M are ommuting squares. We leave theargument to the reader. 36



7 Uniqueness.Outer ations of �nite groups are extremely well understood so we need saynothing more in the ase [M : N ] = 6. Uniqueness up to onjugay in thehyper�nite ase follows from [13℄.So from now on we assume that [M : N ] = 6+4
√

2 and that there are twointermediate subfators P and Qwhih neither ommute nor oommute. Wewill eventually show that all the onstants in a planar algebra presentationof the standard invariant of N ⊆ M are determined by this data.From the struture of the prinipal graph we see that there is exatly oneprojetion in N ′∩M1 di�erent from e1 but with the same trae as e1. By [28℄this means that there is a self adjoint unitary in the normaliser of M in M1(and in the normaliser of M1 in M2). We reord some useful diagrammatifats about normalisers below. It is onvenient to work with the normaliserof M1 in M2 but any subfator is dual so the result an be modi�ed for thenormaliser of M .7.1 Diagrammati relations for the normaliser.IfN ⊆ M is an irreduible �nite index subfator we will onsider an elementuin the normaliser of M1 insideM ′∩M2, that is to say a unitary in M ′∩M2 with
uM1u

∗ = M1. First observe that suh a unitary de�nes an automorphism αof M1 by α(x) = uxu∗.Proposition 7.1.1. α(x) = x for all x ∈ M .Proof. Follows immediately from u ∈ M ′.The automorphism α in turn de�nes a unitary on L2(M1) whih is in
M ′∩M2 and by irreduibility di�ers from u by a salar. Thus we may alter uso that u = α as maps on L2(M1). The elementu is in N ′∩M2 so in the planaralgebra piture it may be represented by a diagram: u and therelation uxu∗ = α(x) for x ∈ N ′ ∩ M1 is the equalityFig. 7.1.2. x

u*

u

= α(x) .We will make onsiderable use of the following result:37



Lemma 7.1.3. If u = u∗ is in the normaliser as above then
u

u

u= Proof. We �rst establish that for any u in the normaliser with
u = α as above, and x ∈ N ′ ∩ M1,Fig. 7.1.4. α(x) = x u .For this observe that if a = xe2y for x, y ∈ M1 and b ∈ M1 ⊆ L2(M1),

EM1
(abe2) = δ−2xEM(yb) = a(b). Sine linear ombinations of elements ofthe form xe2y span M2 we have

EM1
(abe2) = δ−2a(b)for all a ∈ M2 and b ∈ M1. Drawing this relation diagramatially for a = uand b = x in N ′ ∩ M1 we obtain the diagram for α(x). Finally apply 7.1.2with x = e1, and the above diagram to obtain the lemma.Corollary 7.1.5. With notation as above, u is a oprojetion.Proof. Use the property that α is a ∗-automorphism in the previous lemma.7.2 The struture of N ′ ∩ M1.We need to adopt some onventions for the position of ertain operators in

N ′ ∩ M1. Sine the angle between P and Q onsists of one value (di�erentfrom 0, π/2), we know that eP and eQ generate a 2×2 matrix algebra modulo
eN . We also know from the dual prinipal graph that there is an intermediatesubfator S with [S : N ] = 2. If eS is the projetion onto S then the trae of
eS is 2

6+4
√

2
and it is eN plus a minimal projetion in N ′ ∩ M1. This meansthat eS must be orthogonal to both of the 2 × 2 matrix algebras in N ′ ∩ M1sine the traes of minimal projetions therein do not math.De�nition 7.2.1. We write N ′ ∩M1 = eNC⊕A⊕B ⊕ (eS − eN)C where Aand B are 2 × 2 matrix algebras with ePA 6= 0.This de�nition spei�es A uniquely sine tr(eP ) = (2 +

√
2)−1, tr(EN) =

(2 +
√

2)−2 and the trae of a minimal projetion in A is 1+
√

2
(2+

√
2)2
. Thus

ePB = 0. 38



7.3 Relations between elements in N ′ ∩ M1From 5.2.5 we know that the prinipal and dual prinipal graphs are thesame and that there is a single projetion of trae equal to that of eN inall the (seond) relative ommutants. This means by [28℄ that eah for eahinlusion Mi ⊂ Mi+1 there is an intermediate inlusion Ri with [Ri : Mi] = 2.By duality there are thus Si with Mi ⊂ Si ⊂ Mi+1 so that Si ⊂ Mi+1 ⊂ Ri+1is a �xed point/rossed produt pair for an outer ation of Z/2Z. In parti-ular there are unitaries ui satisfying the onditions of the previous setion atevery step in the towwer. So let α be the period two automorphism of M(whih is the identity on N) de�ning an element u of N ′ ∩ M1. Then u+1
2

isthe projetion onto an intermediate subfator of index 2 for N ⊂ M whihwe shall all R. Thus
[M : R] = 2 or tr(eR) = 1

2
, and u = 2eR − 1.Lemma 7.3.1. The subfators P and R oommute but do not ommute,

ePeReP = eN + (1 − 1√
2
)(eP − eN) and eRB 6= 0.Proof. Sine L2(M1) ∼= U0 ⊕ 2U1 ⊕ 2U2 ⊕ U3 as M − M bimodules, where

L2(P̄ ) ∼= U0⊕U1 and L2(R̄) ∼= U0⊕U3, the dual subfators P̄ and R̄ ommute.However, [P̄ : M ][R̄ : M ] < [M1 : M ] so by 3.3.1 P̄ and R̄ do not oom-mute. Thus P and R oommute but do not ommute. Then L2(R) must beof the form V0 ⊕ V1 ⊕ V2, so eRB 6= 0. Sine N ⊂ P is 2-supertransitive, by5.3.1 we have ePeReP = eN +
tr(eP̄ R̄)−1 − 1

[P : N ] − 1
(eP −eN ). Sine the dual quadri-lateral ommutes, by 4.1.1 we have tr(eP̄ R̄) =

[P̄ : M ][R̄ : M ]

[M : N ]
=

2

2 +
√

2
.Combining these equations gives the result.We want to investigate the algebrai and diagrammati relations between

eP , eQ and u. First a simple but ruial omputation:Lemma 7.3.2. tr(ueP) = tr(ueq) = 0.Proof. Sine P and R oommute, by 3.2.11 tr(ePeR) = tr(eP)tr(eR) =
1/2tr(eP ), and u = 2eR − 1.We will use on several oasions the following result whih is no doubtextremely well known. We inlude a proof for the onveniene of the reader.Lemma 7.3.3. Let P, Q, R, S be distint projetions onto four one-dimensionalsubspaes of C

2 all making the same angle with respet to one another. Thenthat angle is cos−1 1√
3
. 39



Proof. If we hoose a basis so that P =

(

1 0
0 0

) then any other projetionat cos−1(
√

a) to P is of the form P =

(

a ω
√

a(1 − a)

ω−1
√

a(1 − a) 1 − a

)where |ω| = 1. Equating a to the traes of QR, RS and QS we see that ωmust be a proper ube root of unity and that 3a2 − 4a + 1 = 0.Corollary 7.3.4. uePu = eQ and uePQu = eQP .Proof. These are equivalent to α(P ) = Q. By 7.3.1 uePu 6= P . If α(P )were not equal to Q then P, Q, α(P ) and α(Q) are four distint intermediatesubfators. But uePu = eα(P ) and ueQu = eα(Q) so the N − N bimodulesde�ned by these four intermediate subfators are all isomorphi to L2(P )and none of them ommutes with any other. By 7.3.1 whih guarantees that
α(P ) and P do not ommute, the angles between all four subfators are thesame and, by 5.2.4, equal to cos−1(

√
2 − 1). By 7.3.3 this is impossible.Corollary 7.3.5. ueP = eN + 1

1−
√

2
(eQeP − eN) and

ueQ = eN + 1
1−

√
2
(ePeQ − eN).Proof. u(eP − eN) and eQ(eP − eN) are in A and both multiples of a partialisometry with intial domain eP −eN and �nal domain eQ−eN . They are thusproportional. Taking the trae we get the result using 7.3.2 and 5.2.4.This yields a di�erent derivation of the angle between P and Q. We seethat modulo the ideal CeN we have ueP = 1

1−
√

2
eQeP so that mod this ideal

eP = ePuueP = ( 1
1−

√
2
)2ePeQeP whih determines the onstant in the angleformula ePeQeP − eN = constant(eQ − eN ).Corollary 7.3.6. The identity 1A of the 2 × 2 matrix algebra A ⊆ N ′ ∩ M1is √

2+1
2

(eP + eQ) + 1/2(ueP + ueQ) − (2 +
√

2)eNProof. From 5.2.4, (eP − eN )(eQ − eN )(eP − eN) = (
√

2 − 1)2(eP − eN) so
1A =

√
2+1
2

(eP − eQ)2. 7.3.5 gives ePeQ =
√

2eN + (1 −
√

2)ueQ hene theresult.Lemma 7.3.7. tr(uePQ) = 0Proof. Sine u = 2eR − 1, tr(uePQ) = 2tr(eRePQ) − 1/
√

2 by 5.2.4. But
tr(eRePQ) is given by 1

δ3tr(ePeQ)
times the following diagram:

P Q

R .40



This is essentially the otrae of eR ◦ eP ◦ eQ, and we know that eR ◦ eP is
(2 +

√
2)tr(eR)tr(eP )id by 3.2.7 sine P and R oommute. Using this inthe �gure we obtain tr(eRePQ) =

1

δ3tr(ePeQ)
(2+

√
2)tr(eR)tr(eP)δ2tr(eQ) =

1

2
√

2
.Lemma 7.3.8. tr(ePQeQP ) = 5

√
2−6
2Proof. As in 3.2.14 we reognise tr(ePQeQP ) as being 1

2[M :N ]
times the otraeof eP ◦ eQ ◦ eP ◦ eQ. But sine [M : P ] = [P : N ], eP and eQ are oprojetionsand the angles between them as oprojetions are the same as the anglesbetween them as projetions. So tr(ePQeQP) = 1

2
tr((ePeQeP )2). Howeverfrom 5.2.4 ePeQeP = eN +

√
2−1√
2+1

(eP − eN). Squaring and taking the traegives the answer.Corollary 7.3.9. uePQ = eN + u1A − (
√

2 + 1)(eQPePQ − (eN + 1A)).Proof. As in 7.3.5, u(ePQ − eN − 1A) and eQPePQ − eN − 1A are both in B(ertainly ePQ > eQ and the trae of ePQ is the trae of eN plus 3 times thetrae of a minimal projetion in A so that ePQeS = 0) and are multiples ofa the same partial isometry. Taking the trae using the last two lemmas weget u(ePQ − eN − 1A) = 3+2
√

2√
2−1

(eQPePQ − eN − 1A) and the result follows.Corollary 7.3.10. ePQeQPePQ − 1A − eN = (
√

2 − 1)2(ePQ − 1A − eN)Proof. Modulo the ideal spanned by eN and A, uePQ = −(
√

2 + 1)eQPePQ.So mod this ideal ePQuuePQ = (
√

2+1)2ePQeQPePQ. The left and right handsides are proportional and this determines the onstant.Taking the trae of this equality provides a useful hek on our alu-lations. It is urious that ePQ and eQP make the same angles as eP and
eQ.7.4 A basis and its struture onstants.De�nition 7.4.1. Let C = {eN , 1}∪A ∪B where A= {eP , eQ, ueP , ueQ} andB= {ePQ, eQP , uePQ, ueQP}.Theorem 7.4.2. C is a basis for N ′ ∩M1 and all multipliation and omul-tipliation struture onstants for this basis are determined.41



Proof. That C is a basis follows easily from the previous results- {eN}∪A isa basis for CeN ⊕A by 7.3.5 and 2×2-matrix alulations. Similarly B formsa basis for B modulo CeN ⊕A by 7.3.10. The identity spans N ′∩M1 modulo
CcP ⊕ A ⊕B.With the results so far, it is easy to see that all the struture onstantsfor multipliation are determined: Multipliation of any basis element by
eN produes eN . Multipliation within A is determined by 7.3.5 and 5.2.4.Similarly multipliation within B is determined by 7.3.9, 7.3.10 and the ex-pliit form of 1A in 7.3.6. This leaves only multipliation between A and B.But ePQeP = eP (and other versions with P and Q interhanged) takes areof this. Note also that C=C∗ so that the ∗-algebra struture of N ′ ∩ M isexpliitly determined on the basis C.We now turn to omultipliation. The ∗ struture for omultipliationis rotation by π and insertion of ∗'s of elements. Inspetion shows thatthe basis C is stable under this operation sine u = u∗ is a projetion foromultipliation by 7.1.5. The subsets A and B no longer orrespond tothe algebrai struture but it will be onvenient to organise the alulationaording to them. Determination of all the struture onstants will just bea long sequene of ases, the most di�ult of whih will be diagrammatiand make frequent use of 7.1.3. Note that the shading of the piture will bethe opposite of that in 7.1.3 sine u is in M1 and not in M2. Oasionallythe diagrammati redutions will produe the element u itself. It is easy toexpress u as a linear ombination of basis elements sine u(1−eN−1A−1B) =
1− eN −1A −1B and u times any element of A∪B is another element of A∪B.We will also use the exhange relation for biprojetions from [25℄:

P

P

=
P

P .We have no need for the exat values of the struture onstants, we onlyneed to know that they ould be alulated expliitly. Thus we introdue thenotation x ≈ y to mean that the elements x and y of N ′ ∩ M1 are equal upto multipliation by a onstant that ould be alulated expliitly.Thus for instane eN ≈ 1̃ when 1̃ is the identity for omultipliation. Soall struture onstants for omultipliation by eN are determined. Comulti-pliation by 1 is easy by the formula x ◦ 1 ≈ tr(x)1 for x ∈ N ′ ∩M1 and theonly trae that requires any work at all is that of uePQ whih is determinedfrom 7.3.9 and 7.3.10.Case 1. Comultipliation within A. We may replae ueP by eQeP whih42



is ≈ the projetion onto L2(PQ) for omultipliation. It is thus greater than
eP and eQ so eP ◦ (ePeQ) ≈ eP . The �rst ase where any work is required is
(ueP) ◦ (ueQ) and up to simple modi�ations of the argument this handlesall omultipliations within A. The labelled tangle de�ning (ueP ) ◦ (ueQ) is:

u u

P Q

.Applying 7.1.3 to the region inside the dotted retangle we obtain:
P Q

u .But this is ≈ ePQu whih is a basis element.Case 2. Comultipliation within B.Comultiplying ePQ with itself or with eQP is easy sine under omultipli-ation eP and eQ generate a 2× 2 matrix algebra mod 1 and eP ◦ eQ ≈ ePQ.Comultiplying ePQ or eQP with uePQ or uePQ an, after applying 7.3.4 ifneessary, a labelled tangle like:
P Q Q P

u .The point of using 7.3.4 is to ensure that in the dotted retangle we seeeither two P 's or two Q's. The u may thus end up below the P 's and Q'sbut that does not a�et the rest of the argument. In the dotted retangle wemay thus apply the exhange relation for Q to obtain, after a little isotopy:
P Q P

Q u . Notie that inside the dotted retangle we seethe omultipliation of eQ and u. Replaing u by 2eR − 1 gives 2 tangles,the one with the identity being ≈ eP ◦ eQ ◦ eP . The tangle with eR an behandled easily sine eQ ◦ eR = 1 whih also yields eP ◦ eQ ◦ eP .43



Finally we need to be able to omultiply uePQ with itself and ueQP . Thisgoes very muh like omultiplying ueP and ueQ exept that after applying7.1.3 we �nd a oprodut of more than two terms on eP and eQ. These wordsmay be redued to eP , eQ, ePQ or eQP modulo eN . The term with eN willprodue a u by itself but as observed above we know how to write u as anexpliit linear ombination of basis elements.Case 3. Comultipliation between A and B. Terms without u like eP ◦ePQare simple. The most di�ult ase is of the form eP ◦ ueQP but as abovewe may rearrange it so that there are two like terms in the dashed retanglebelow:
P P Q

u .Applying the exhange relation as before we obtain:
P Q

P u .Note the omultipliation of u and eP whih an be redued to an expliitlinear ombination of basis elements using u = 2eR − 1 and eR ◦ eP ≈ 1.The oprodut of ueP with ePQ works similarly exept that applyingthe exhange relation immediately produes an expliit multiple of a basiselement. Finally terms like ueP ◦ uePQ an be redued to expliit linearombinations of basis elements using 7.1.3 and omulitpliation of words on
eP and eQ. One again u terms may be produed.Lemma 7.4.3. Let v ∈ M ′∩M2 be the self-adjoint unitary in the normaliserof M1 guaranteed by the form of the dual prinipal graph in 5.2.5. Then
vAv = B.Proof. By 7.1.4 we have vePv = P v . So ePvePv =

P

P

v

.Applying the exhange relation to this we obtain P P v . Inside44



the dotted irle we reognise a multiple of the trae in M2 of the produtin M ′ ∩ M2 of the projetion eP de�ned by eP and v. But v bears the samerelation to this oprojetion as u does to eP so by 7.3.2 we obtain zero. Thus
ePV ePV = 0. We may apply 7.3.4 to eP and v to dedue in the same waythat eQV ePV = 0. This is enough to onlude that vAv = B from thestruture of N ′ ∩ M1 whih is normalised by v.Corollary 7.4.4. If eM is the projetion onto L2(M) in the basi onstru-tion of M2 from M1 then D =CeMC ∪ A ∪ vA ∪ B ∪vB is a basis for N ′∩M2.Proof. From the prinipal graph, N ′ ∩ M2 is the diret sum of the ideal Igenerated by eM , whih is isomorphi to a basi onstrution oming fromthe pair N ′ ∩ M ⊆ N ′ ∩ M1, and a 4 × 4 matrix algebra. Sine N ⊆ Mis irreduible the map x ⊗ y 7→ xeMy is a vetor spae isomorphism from
N ′ ∩ M1 ⊗ N ′ ∩ M1 to I. Thus CeMC is a basis for I.Sine v is in the normaliser of M1, it is orthogonal to M1 by irreduibilityand N ′∩M2 ontains a opy of the rossed produt of N ′∩M1 by the period 2autormorphism given by Ad v. By the previous lemma the algebra generatedby A, B, and v is a 4 × 4 matrix algebra-all it E. It is spanned modulo
I by A ∪ vA ∪ B ∪vB sine A and B are spanned modulo eN by A andB respetively (see the proof of 7.4.2). Sine a matrix algebra is simple, tohek that E spans N ′∩M2 mod I we need only show that it is not ontainedin I. But from the prinipal graph we see that A itself is non-zero mod I.7.5 The uniqueness proof and some orollaries.We an now give the main argument for the uniqueness of a subfator ofindex (2+

√
2)2 with nonommuting intermediate subfators. It relies on the"exhange relation" developed by Landau in [25℄. We begin with a planaralgebra result from whih our uniqueness will follow.NOTE: We will assume that all planar algebras P satisfy dimP1 = 1.De�nition 7.5.1. Let P = Pn be a planar algebra and R a self-adjoint sub-set of P2. Let Y be the set of planar 3-tangles labelled with elements of R,with at most one internal dis. We say that R satis�es an exhange relationif there are onstants bQ,R,Y , cQ,R,S,T and dQ,R,S,T suh that

R

Q

=
∑

S,T∈R

cQ,R,S,T

S

T

+
∑

S,T∈R

dQ,R,S,T
S

T

+
∑

Y ∈Y

bQ,R,Y Y.The onstants will be alled the exhange onstants for R.45



Theorem 7.5.2. (Landau,[25℄) A subfator planar algebra P generated by
R = R∗ ⊆ P2 is determined up to isomorphism by the exhange onstantsfor R and the traes and otraes of elements in R.The idea of the proof is that one may alulate the partition funtion ofany labelled tangle in P0 by applying the exhange relation. The strategyis to take any fae and redue it to a bigon, whih is either a multipliationor omultipliation of elements in R. But multipliation and omultiplia-tion are also determined by the exhange relation by suitably apping o� thepitures in the above de�nition. As soon as the planar algebras in questionare non-degenerate in the sense that they are determined by the partitionfuntions of labelled planar tangles in P0, the theorem will hold. The iso-morphism between two planar algebras with the same subset R is de�nedby extending the identity map from R to itself to all labelled tangles on R.Then any relation for one planar algebra is neessarily a relation for the otherby nondegeneratess of the partition funtion as a bilinear/sesquilinear formon the Pn. This strategy for proving uniqueness was already used for a proofof the uniqueness of the E6 and E8 subfators in [19℄.Lemma 7.5.3. Let P be a subfator planar algebra with R a self-adjoint sub-set of P2 whih satis�es an exhange relation. Then the exhange onstantsfor R are determined by the traes and otraes of elements of R together withthe struture onstants for multipliation and omultipliation of elements of
R.Proof. Using positive de�niteness of the inner produt given by the trae on
P3, it su�es to prove that the partition funtion of any planar diagram withat most 4 internal diss, all labelled with elements of R, is determined bythe given struture onstants.For this, we may suppose the labelled diagrams are onneted and byour hypothesis on dim P1, we may suppose that no 2 − box is onneted toitself. If there are 4 internal diss one must be onneted to another with amultipliation or a omultipliation. This redues us to the ase of 3 internalboxes where it is even learer. To see these assertions it is helpful to viewthe labelled tangles as the generi planar projetions of links in R3 whih areobtained by shrinking the internal 2-boxes to points.Putting the previous results together we have:Theorem 7.5.4. Let N1 ⊆ M1 and N2 ⊆ M2 be two irreduible II1 sub-fators of index (2 +

√
2)2 with pairs P1, Q1 and P2, Q2 of non-ommutingintermediate subfators of index 2+

√
2. Then there is a unique isomorphismfrom the planar algebra for N1 ⊆ M1 to the planar algebra of N2 ⊆ M2 whihextends the map sending eP1

and eQ1
to eP2

and eQ2
respetively.46



Proof. The only allowed prinipal graph for the elementary subfators is A7so there is no extra struture and we know the prinipal graph and dualprinipal graph. The normalising unitaries ui, i = 1, 2 an be written as anexpliit linear ombination of eN , 1 and produts and oproduts of ePi
and

eQi
. Then form the sets Ai and Bi, i = 1, 2 in the obvious way. The planaralgebra for Ni ⊆ Mi is generated by Ai and Bi by 7.4.4. By 7.4.2 and 7.5.3 wemay apply 7.5.2 to the sets Ri =Ai∪Bi to dedue the result. (The traes andotraes of the basis elements of C were determined in the ourse of proving7.4.2.)Corollary 7.5.5. Given a quadrilateral N ⊂ P, Q ⊂ M with [M : N ] =

6+4
√

2 and suh that P and Q do not ommute, there are further subfators
P̃ and Q̃ with [M : P̃ ] and [M : Q̃] equal to 2 +

√
2, whih ommute withboth P and Q and are at an angle cos−1(

√
2 − 1) to eah other.Proof. This is the ase for the example so by uniqueness it is always true.It is obvious that the projetions onto P̃ and Q̃ are in B mod eN .Corollary 7.5.6. The only subfators between N and M are P, Q, P̃ , Q̃, Rand S so the intermediate subfator lattie is M

N

R

S

P          Q P
~

Q
~ .Proof. Let T be a seventh intermediate subfator. From the prinipal graphand obvious index restritions the possible values of (6 + 4

√
2)tr(eT ) are

2 +
√

2, 3 + 2
√

2 and 2. The ases 3 + 2
√

2 and 2 orrespond to index 2subfators and would show up as extra verties on either the dual or dualprinipal graphs, so we must have tr(eT ) =
1

2 +
√

2
. This fores eT −eN to bea minimal projetion in either A or B, so by the previous orollary and theobservation after it we may suppose wolog that eT − eN ∈ A. If ePeT = eNthen by a 2×2 matrix alulation T makes a forbidden angle with Q. So theangle between all three of P , Q and T is cos−1(

√
2− 1). But by lemma 7.3.1applied to T , T and R do not ommute so there must be a fourth subfator

α(T ) whih makes the same angle with all of P, Q, and T . By lemma 7.3.3this is not allowed. This ontradits the existene of T .Corollary 7.5.7. If M is hyper�nite there is an automorphism of M sending
P to P̃ and Q to Q̃. 47



Proof. This follows from theorem 7.5.4 and Popa's lassi�ation theorem [29℄whih states that in �nite depth one may onstrut the subfator diretly asthe ompletion of the indutive limit of the tower of relative ommutants.It is not obvious what the automorphism of the previous orollary lookslike in the GHJ realisation of setion 6. It will ertainly require the omplexnumbers to write it down as guaranteed by the next result. Observe �rstthat the D5-based GHJ example of 6.4 is de�ned over the real numbers sothe intermediate subfators exist in the setting of real II1 fators. That theGHJ pair for D5,2 needs the omplex numbers is the next result.Corollary 7.5.8. If N ⊂ P, Q ⊂ M is a nonommuting quadrilateral of realII1 fators with [M : N ] = 6 + 4
√

2, then P and Q are the only intermediatesubfators of index 2 +
√

2.Proof. Let N ⊂ M be the subfator for the D5,2 Coxeter graph. Sine thissubfator may be de�ned over the reals (as the GHJ subfator for the trivalentvertex) omplex onjugation de�nes a onjugate linear *-automorphism σ of
N ⊂ M with σ(P̃) = P̃ and σ(Q̃) = Q̃ but with σ(gi) = g∗

i so σ(P ) = Q.Thus σ will at on the planar algebra of N ⊂ M exhanging eP and eQ.However the �xed points for σ ating on the planar algebra is again a planaralgebra so there is a real subfator NR ⊂ MR with [MR : NR] = 6+4
√

2 havinga pair (P̃ σ and Q̃σ) of nonommuting intermediate subfators of index 2+
√

2and no other intermediate subfators of the same index sine σ(eP ) = eQ 6=
eP . Our uniqueness result never used the omplex numbers (all the strutureonstants were real) so that no other suh real subfator an have more thantwo intermediate subfators of index 2 +

√
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