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1 Introduction.

The annular Temperley Lieb algebra AT L has a parameter 0 and is linearly
spanned by isotopy classes of (m,n) diagrams. For m and n nonnegative
integers, an (m,n) diagram consists of an annulus with m marked points on
the inside circle and n marked points on the outside connected to each other
by a family of smooth disjoint curves, called strings, inside the annulus. There
may also be (necessarily closed) curves that do not connect boundary points.
If such a curve is homologically trivial in the annulus, the diagram may be
replaced by the same one with the closed curve removed, but multiplied in
the algebra by 6. By definition a basis of AT L consists of such diagrams with
no homologically trivial circles. Multiplication of an (m,p) diagram T by a
(p,n) diagram S is by identifying the outside boundary T with the inside
boundary of S in such a way that the boundary points coincide, smoothing
the strings at the p common marked boundary points, and removing the
common boundary to produce the annular diagram ST

To the best of our knowledge, the first explicit investigation of AT'L was
in [15] where it was encountered in a concrete form as an algebra of linear
transformations on the tensor powers of the n x n matrices (and § = n?).
This study was relatively simple because of the concrete situation and the fact
that as soon as n is greater than 2 the algebra is "generic" and the structure
of the representations does not depend on n. Also, homologically non-trivial
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circles in the annulus are no different from contractible ones, which, as we
shall see, is quite special.

The second explicit analysis of AT'L was by Graham and Lehrer in [9],
where the abstract algebra more or less as defined in the first paragraph was
defined and studied in its own right. One can no longer avoid homologically
non-trivial strings, and the version of ATL in [9] introduced a second pa-
rameter to account for this. Graham and Lehrer produced an impressively
complete analysis and we have been greatly inspired by their results. In [12]
we showed how to use AT L to obtain results about subfactors. It was recog-
nised that, for a general planar algebra P, the operadic concept of a module
over P is the same thing as an ordinary module over a canonically defined
algebra spanned by annular tangles in P. This lead to the perhaps confus-
ing notation of T'L-module in [12], which in fact means an ordinary module
over the annular algebra. Applications to subfactors required consideration
of positivity of the natural sesquilinear form on the AT'L modules — which
are necessarily Hilbert spaces if they occur in subfactors.

2 Notation

n__ ,—n
First of all let us agree on the notation [n] = % for the entirety of this

paper. The Tchebychev polynomials P,(z) = [n] with z = ¢ + ¢! satisfy
P.y1 = xP, — P,_; and we define essentially the same polynomials @Q,,(z) by
Qo =0, Q1 =1and Qni1 = Qn — 2Qn-1.

For the entirety of this paper, if i is a complex number we let w be such
that p = /w + \/5_1. Note that w = —1 is the same as 1 = 0.

It will be important to distinguish clearly between the abstract Temperley
Lieb algebra defined by multiplication on a basis of diagrams, and a quotient
of it which supports a C*-algebra structure, and is only defined for special
values of the parameter. So let T'L,,(0) be the *-algebra over C with basis
formed by systems of disjoint curves (called strings) in a rectangle with m
boundary points on the top and bottom as usual, with multiplication defined
by stacking one rectangle on top of the other and removing closed strings with
a multiplicative factor §. See [18] and [14] for details. (The * structure is
defined by reflecting diagrams in a straight line half way between the bottom
and top of a rectangle.)

It is important to note that there is a natural inclusion of T'L,, in T'L,, .1,
obtained by adding a new through string to the right of a basis element of
TL,. We will often make the identification of T'L,, with a subalgebra of
TL, 1 without comment.



We include a picture of an element, called E; for i =1,....n—1,in TL,
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below for the convenience of the reader.

In [13], for 6 > 2 and 0 = 2cos7/a for each integer a = 3,4,5,... we
constructed a tower of C*-algebras, which we will call 7L, for n =1,2,3, ..
generated by the identity and orthogonal projections e;, 7 = 1,2,..,n — 1
with the relations e;e;11e; = 07 %¢; and e;e; = eje; for |i — j| > 2. It is
well known (see [7]) that there is a *-algebra homomorphism ®,, from T'L,,
onto 7L, sending E; onto de;. This homomorphism is compatible with the
inclusions of T'L,, C T L1 and TL,, C TLy41. P is "generically" (i.e. for
d > 2) an isomorphism. When ® is not an isomorphism it is known (see
below) that its kernel is the ideal generated by the "Jones-Wenzl" (JW)
idempotent p, € T'L, defined in [23] by the inductive formula p; = 1 and

Prnsl = Dn — PuEnp, with 6 = ¢+ ¢! as long as [j] # 0 for j =
[n+ 1]

1,2,....,n+ 1. As for TL, C TLyy1, T L, is naturally included in 7L, 1 by
adding a new vertical string to each basis diagram, and the ®,, are unital.

The unique irreducible representation of T'L,, on which E; (hence all E;)
acts by zero will be called the trivial representation. Note that this passes
to T L, exactly when n < a — 1.

For the convenience of the reader we give a proof that the kernel of ® is
the ideal generated by the JW idempotent. Our proof will actually give a
set of basis elements of T'L,, that span a subalgebra mapped isomorphically

onto TL,, by ®.

Theorem 2.2 (Goodman-Wenzl) The kernel of the map ® : TL,, — TL,, is
the ideal generated by p,_1 forn > a—1.

Proof. First we construct a sequence A,, of subalgebras of T'L,,. Forn < a—1
let A,, = T'L,, and proceed inductively, setting A, ., = A, E, A, forn > a—2.
(Clearly A, has a basis consisting of words on the E;’s.) Although the A,
are not included in one another, each is individually an algebra. To see this
use the maps ("conditional expectations") &, : T'L,, 11 — T'L,, defined on the
diagram basis by connecting the rightmost top and bottom boundary points
of a T'L,, diagram to give a T'L,, diagram. It is clear that &,(zE,y) = zy
for x,y € TL, and that E,xE, = &,_1(x)E, for x € TL,.



One then proves inductively the following three assertions:

(i) A, is a subalgebra of T'L,,.

(i) £.(Ay) C Apg.

(iii) A, is an A,,_1-A,_; bimodule under multiplication in T'L,,.

Now let I,, be the ideal in T'L,, generated by the JW idempotent p,_;
defined above. Observe that I,, C I,,.1. It follows immediately from the stan-
dard form of words on the E;’s (see e.g. [13]) that T' L,y = (T'L,)E, (T L,) &
Cid for all n. So since 1 —p,—1 € (T'L,)E,(TL,) for n > a — 1, we have
TL,1 = (TLy)E,(TL,) mod (I,41) for n > a — 1. Thus by induction

(%) TL,1 = AE,A, mod (I,41) for n>a—1.

We now show, also by induction, that ®|4, is an isomorphism onto 7 L,,.
This assertion for n = a — 1 is in some sense the main point of [13] since
ker(®,_1) is spanned by 1 — p,—1. Now consider the following commutative
diagram:

Ty Ly
A, ®a,_, A Ania

o P o

T'Cn ®T£n,1 T'Cn — Tﬁn—i—l
TR Y= wre,y

All the maps in this diagram are A-bimodule homomorphisms where 7 £
becomes an A-A bimodule by transport of structure. It is shown in [7] that
the bottom horizontal arrow is an isomorphism. The top horizontal arrow is
surjective. It follows that the restriction of ®,; to A, is an isomorphism.

Together with (x), this proves the theorem. OJ

Thus the tower of algebras 7 L£,, admits a Bratteli diagram, which was
shown in [13] to be as in Figure 2.3, exhibited for § = 2cos /7.
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This Bratteli diagram can alternatively be thought of as giving the Hilbert
space representations of T'L, which may be obtained explicitly as follows.
For each n = 0,1,2,... and each t < n with ¢t = n mod 2 let W;,, be the
vector space whose basis is the set of rectangular (¢,n) planar diagrams with
t through strings. T'L,, acts on W, ,, by concatenation in the obvious way, the
answer being 0 if there are less than ¢t through strings in the concatenated
diagram. There is an invariant inner product (-, -) on W, , defined by (a, 3) =
B*a, which is an element of the one dimensional vector space Wy ,,. This inner
product is positive semidefinite and the quotient W, , is a Hilbert space
affording a representation of 7 L,,. This result is well known to the experts
but probably does not appear anywhere in the literature.

Since the source of positivity for our annular Temperley-Lieb modules
will be that of this inner product, we give a reasonably detailed proof here
— tracking positivity down to its von Neumann algebraic origin.

Theorem 2.4 for 6 > 2 or 6 = 2cosw/a, for a = 3,4,5,..., the inner
product on Wy, defined in the previous paragraph is posilive semidefinite;
that is, (o, ) > 0 for all c.

Proof. We will effectively identify the representation on W, , with the
action on a principal left ideal in 7 L,,, which has a positive definite inner
product coming from the Markov trace of [13].

5



The algebra 7 £,, was analysed in [13] using the basic construction. Adopt-
ing that technique, by induction, the irreducible representations ¢, for 0 <
t <n witht =n mod 2 so obtained are uniquely defined up to equivalence
by the following property: if p is the largest integer such that ¢ (ejeses....e2,_1)
is not zero, then p = "T_t For each such t let ¢, be the minimal central idem-
potent in 7L, corresponding to 1; and define another inner product {-,-}
on Wy, by .

{a, 8} = tr(®(5°a)q.)
where tr denotes the Markov trace of [13] and, given a basis diagram v € W, ,,,
7 is the T'L,, ,, diagram obtained from ~y as in Figure 2.5.

~
AT ol i
— — .

Fig. 2.5 p caps t strings

Now observe that if 3*a has fewer than ¢ through strings then @(B*d)qt =
0. This is because *& may be written in the form v FyE3FEs.... Eop_1y2 with
k> "T_t On the other hand if 8*a has t through strings then

G*a = (a, B)O(E 1 EsEs... Eyp_y).

Thus in this case the Markov trace of (B*d)qt is a positive non-zero multiple,
K, depending only on n,d, and ¢, of (o, 3). Combining the two possibilities
for the number of through strings we see that {a, 8} = K{(«, 5). Since the
trace on a II; factor gives a positive definite inner product, {-,-} is positive
semidefinite and so is (-, -). O

We shall now obtain formulae for the dimensions of the individual W!
for 6 = 2cosm/a. To this end let d; ,,, = dim(W},,,,) for t =0,1,2,...,a —2
and m = 0,1,2,.... Then the meaning of the Bratteli diagram is precisely
that

dt m = dt—l,m + dt—i—l,m—l;

)

with d; 1 = 0 for all ¢, d4—1,, = 0 for all n and d_; o =1 but d_;,, = 0 for
n > 0. By induction these relations uniquely determine the d;,. If we form
the generating functions

[e.e]
Dyi(z) = dez"
n=0
then these relations are equivalent to

2Dy = Dy — Dy_y,
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with D,_1 =0 and D_; = 1.
Thus any power series D;(z) satisifying these conditions must be the
generating functions for the d;,. But if @), are the modified Tchebychev

Qa—t—l

polynomials defined above then setting D; = we see that the relations
a

are satisfied.
We see we have proved the following.

Theorem 2.6 [For § =2cos7w/a and all integers t > 0, the generating func-

tion Dy(z) =D o o dim W, 10,2" is equal to Qgt_l.
a

Remark 2.7 The ordinary Temperley-Lieb algebras may be turned into an
algebroid in the obvious way with objects being the non-negative integers and

morphisms from m to n being linear combinations of rectangular Temperley-
Lieb diagrams with m points on the bottom boundary and n on the top.
(So the morphisms are the zero vector space if m and n are different modulo
2.) It is clear that if we define for each t the vector space (graded by m),
W = {W, .} to be zero if ¢ < m or t and m are not equal modulo 2, then
these are are the Hilbert space modules over the algebroid.

3 Affine Temperley-Lieb

Motivated by a conjecture of Freedman and Walker, we are going to define
a slightly different version of the annular Temperley-Lieb algebra from that
of [12]. It will be essentially the same as that of [9]. The difference is in how
isotopies are required to act on the boundary. In order to avoid confusion
with the definitions of [12], we will here call our diagrams "affine" rather
than annular.

In the following definition, for a positive integer k, {k} will denote the set
of kth. roots of unity in C. "The" annulus A will mean the set of complex
numbers z with 1 <|z| < 2.

Definition 3.1 Let m and n be two non-negative integers equal mod 2. An
affine (m,n) TL diagram will be the intersection with the annulus of a system
of smooth closed curves (strings) in C that meet the boundary of the annu-
lus transversally, precisely in the points {m} and 2{n}. Such diagrams are
considered to be the same if they differ by isotopies of the annulus which are
the identity on the boundary.

An affine TL diagram will be called connected if it has no closed curves
in the interior of the annulus.



A through string in an affine TL diagram will be a string whose end points
lie on different boundary components of A.

To make the set of all affine TL diagrams into a category we compose an
(m,p) diagram « with a (p,n) diagram [ by foa = O(26 U a) where we
have smoothed the strings of o and 28 where they meet and O is the trans-
formation of C which sends re? to y/re®. (Smoothing could be avoided by
requiring the isotopies to be the identity in a neighbourhood of the boundary
and insisting that the strings be C'* perpendicular to the boundary.)

If m and n are even, an affine T'L diagram admits a shading, 1.e. a 2-
colouring of the connected components of the complement of the strings in
A, so that two components whose closures meet have different colours. The
precise category that will interest us is the category with two objects (n, £)
for each non-negative integer n and where the set of morphisms from (m, &)
to (n,=£) is the set of shaded affine (2m,2n) T'L diagrams. Shadings are
determined by the following convention where "+" means shaded and "-"
means unshaded — if § is a diagram giving a morphism from (m, sgn) to
(n, sgn’) then on the inner boundary of A a small region close to 1 and in the
first quadrant is shaded according to sgn and a small region close to 2 and
in the first quadrant is shaded according to sgn’. We illustrate in Figure 3.2
by giving an example of a morphism from (2, —) to (3,+).

Fig. 3.2

Given an affine T'L diagram «, & will denote the connected diagram formed by
removing all contractible closed strings from «, and ¢(«) will be the number
of contractible closed strings in «.

Definition 3.3 The affine TL algebroid Af fTL with parameter 6 € C will
be the category whose objects are NU{0} x {+, —}, whose set of morphisms,
AffT Ly 1)), 15 the vector space having as basis the set of shaded con-
nected affine TL (2m,2n) diagrams as above, and multiplication between
composable morphisms is the linear extension of the map on basis elements
given by

Ba = 54956 q.



A representation of AffTL will be a covariant functor from this category
into the category of vector spaces.

The transformation z — 2/z of C preserves affine TL diagrams and so
defines a conjugate-linear antiinvolution * of the algebroid AffTL. A rep-
resentation m of AffTL will be called a Hilbert representation if the repre-
senting vector spaces are Hilbert spaces and w(a*) = w(a)* for all diagrams
a.

Remark 3.4 Having taken linear combinations of annular diagrams we can
now give a meaning to an annular diagram which also contains a (con-
tractible) rectangle with 2m boundary points labelled by an element x € T Ly,.
Such a diagram will mean the linear combination of annular diagrams ob-
tained by writing x as a linear combination of basis elements and inserting
those basis elements in the rectangle to obtain a linear combination of Af fTL
elements. The beginning boundary point on the rectangle would need to be
marked if there were any ambiguity.

Hilbert representations admit an obvious direct sum operation and in this
paper we wish to classify all Hilbert representations into the category of finite
dimensional Hilbert spaces. They will all be quotients of a universal family
which we now define.

For the rest of this section we suppose that sgn is a fixed sign, + or —,
and all statements are to be true for both values of sgn.

Definition 3.5 For any positive integer k and complex number w let Vn'f’s“;n be
the graded vector space (graded by the subscripts, in (N U{0}) x {4+, —}) that
is the quotient of Af fT Lk 4),(n,sqn) by the subspace spanned by all diagrams
with less than 2k through strings (so that Vn'f’s“;n =0 forn < k) and all
elements of the form ap —wa where p € Af fT L, 4y (r4) 15 the diagram all
of whose strings are through strings and for which 1 is connected to 2e* /%%,
(We will use the notation py, if we need to specify the actual number of strings
p has. Note that pf is the rotation by 2r.)

Forw # —1 and p # 6 we let Vﬁg‘;n be the graded vector space (graded by
(NU{0}) x {+, =}) that is the quotient of the vector space Af fT L 4y (n,sqn)
by the linear span of elements of the form ao*o — pua, where o is an element
of AffT L4, 0,—) 15 the diagram having exactly one closed homologically
non-trivial (in A) string.

For k=0 and p = 9 we let Vﬁg‘;n be the vector space with basis the sel
of all ordinary Temperley-Lieb diagrams in a disc with boundary points being
the 2n-th. roots of unily, and having the shading determined by sgn. This

is acted on in the obvious way by AffT L. Note also that it is the quotient



of Af fTLo,sgn),(n,sgn) by the relation that sets a diagram equal to any other
diagram with the same system of connections between boundary points.

For w= —1 (hence up =0) we let

(a) VX’S;}L’SQ” be the quotient of the vector space Af fT Lo sgn),(n,sgn) by the
linear span of elements of the form ac*c, and

(b)) Vg’sgi’_sgn be the quotient of the vector space Af fT L —sgn),(n,sgn) bY
the linear span of elements of the form ac™ (or ac according to sgn).
Remark 3.6 Note that Vﬁg‘;n depends only on u through w (as p = J/w +
\/(;_1), so using w in the notation is justified.

The special treatment of the case w = —1 s unfortunate but unavoidable.
If one defined two different such representations in all cases, then if k # 0
they would be isomorphic via either p or a diagram with one homologically
non-trivial circle, but this last map is not invertible if p = 0. Also of course
these two representations | A
by 0 have different dimensions.

are inequivalent since the two spaces graded

Remark 3.7 Since composition of tangles does not increase the number of
through strings and the action of tangles on the inside annular boundary com-
mutes with the action on the outside, the V** become modules over AffTL
by composition in that category.

Remark 3.8 Observe that Vnkf is finite dimensional for fired k and n. We
will need their dimensions, which can be calculated by counting diagrams
exactly as in [12]:

2
a)%rk>0mmnzkmeWﬁU=(nfg)

1/2
b) Fork=0,p =0 andn >0, dim(Vﬁi”i)zi(:);

dim(Vy ™) = 1, dim(Vy"*") = 0
1 2n
Fork=0 and u =90, dim(V>%) = ——
C) or ana [t ) lm( n,:l:) n—l—l(n)

2
d) For k=0 and 0 < pu <6, dim(Vﬁi}) = (:)

For uniformity of notation, in the case k = 0, p = 0 we will use the
superscript w to denote the pair (—1,4) in the above formulae.

We now define the key ingredient of this paper, a sesquilinear form on
each Vnkf To this end note that the quotient Af fi sgn of Af fT Ly sgn), (k,s9n)
by the subspace spanned by diagrams with fewer than & through strings is
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a unital x-algebra freely generated by the element p when k£ > 0, and o*c
when k& = 0. These generators are unitary and self-adjoint, respectively.
Thus if |w| = 1 and p € C we may define unital x-algebra homomorphisms
¢ 1 Af frsgn — C by ¢(p) = w and ¢(0*0) = fip respectively. We also use
the letter ¢ for the *-algebra homomorphism from Af fT L sgn),(k,sgn) to C
obtained by composing with the quotient map.

Definition 3.9 With notation as in the last paragraph, define the sesquilin-
ear forms (-,-) on each Af fT L 1) n,sqn) by (v, w) = ¢p(w*v).

Proposition 3.10 The sesquilinear form of Definition 3.9 is invariant; that
is, (v, w) = (v, a*w).

Proof. This follows immediately from w*av = (aw)*v and the fact that
¢ 1s a *-algebra homomorphism. [

Proposition 3.11 The sesquilinear form of 3.9 passes to the quotient V¢

n,sgn*

Proof. If § # p it follows from the x-homomorphism property of ¢ that
the elements defined in Definition 3.5 spanning the subspace by which the
quotient was taken are orthogonal to all diagrams in Af fT L 4 (n,sgn). The
case (b) of 3.5 requires care. One observes that if v = ac and w is any
diagram in the same space then w*v is actually a multiple of § times an
element of the form So*0. This is because, after the removal of homologically
trivial circles, w*v has a homologically nontrivial circle, hence at least two
because the shadings near the inner and outer boundaries have to match.

Finally in the case u = ¢, if two diagrams v and v’ define the same system
of connections among boundary points, the diagrams for w*v and w*v’ are
both the same system of closed curves with the inner annulus boundary
possibly in different regions. The homologically non-trivial closed curves
must occur in pairs for the annulus boundary shadings to match, and since
i = 0, such a pair will count the same if it is dealt with by ¢ or if it is
homologically trivial. [J

The element 1 € V,ff clearly generates V% as a representation of AffT'L.
We will call it the vacuum vector and write it v,, . It satisfies the following
properties, where the ¢; are as in Definition 2.8 of [12].

a) When k£ > 0,
(i) (U, v0) =1

i) p(vy) = wu,

11

(
(iii) €(vy) =0 for 0<i<2k—1
b) When k =0,

11



(i) (Vu,v0) =1
(il) oo (vy) = fipv,
The following fundamental lemma was poorly treated in [12]. This was
because the conclusion was obvious from spherical invariance in the planar
algebras to which it was applied. We give a careful proof here.

Lemma 3.12 The inner products in V¥ can be calculated using just prop-
erties a) and b) above.

Proof. Since any vector in V** is a linear combination of affine diagrams
applied to v,,, it suffices by invariance to show how the equations suffice to
calculate < aw,,, v,, >, with o connected. First consider the case t > 0. Then
a is a connected affine tangle with 2k inner and outer boundary points. If
all the strings are not through strings, o = o’¢; for some i, and the inner
product is zero. If all the strings are through strings « is necessarily some
power of p so the inner product is determined by properties (i) and (ii).

Now suppose k = 0. Then by connectedness a consists of a certain num-
ber of strings which may be isotoped into concentric circles. They must be
even in number since the inner and outer boundaries have the same shading.
This means precisely that « is a power of o*0. [J

Corollary 3.13 [If w is such that there is an irreducible Hilbert representa-
tion of AffTL, then it is isomorphic to a quotient of a V** and the corre-
sponding (-,-) of Definition 3.9 is positive semidefinite. If k=10, 0<pu <94.

Proof. As in [12], if U is an irreducible Hilbert space representation, all
the Uy, sgn have to be irreducible Af fT' Ly, sgn), (m,sgn) modules. Let k be the
smallest integer for which U, + is non-zero (this k is called the lowest weight
and Uy 1) is called the lowest weight space). Then Af 1Ly sgn),(m,sgn) acts
on the lowest weight space via the abelian quotient Af f1'Ly, 44, defined before
Definition 3.9. By some version of Schur’s lemma the lowest weight space is
thus one dimensional and the unitary p must act by some w, with |w| = 1, or,
if k =0, 00 must act by some non-negative constant — choose p to be a non-
negative square root of that constant and then choose w accordingly. A lowest
weight vector of unit length in Uy, . will then satisfy all the conditions of (a)
or (b) above so we may define a (-, -)-preserving map from the corresponding
Vi onto U by sending, for any connected a, a(v,) onto the a applied to a
lowest weight unit vector uw € U. So (-,-) is positive semidefinite, since the
inner product in U is.

The case k = 0, w = —1 does not quite work as above. Then either
Up,+ or Up,— must be non-zero; suppose that it is U s4n and choose u therein.

12



Then ||lo(u)|| = 0 (or ||[c*(uw)]| = 0) so by irreducibility Uy _sgn, = 0. Then
proceed as before to obtain an isomorphism between I/ and V0 —1som,

That p < § follows as in [12]. O

Conversely if (-,-) is positive semidefinite on some V*<  the quotient by
its kernel is a Hilbert space representation of AffT L, which we call V*«,

Lemma 3.14 V5% is irreducible.

Proof. Suppose v € V** is non-zero. Then (v,v) # 0. But v = ana U
o
for some affine diagrams « and constants c,. So (Z@a*v, v,) # 0 so that

«

Uy, hence all of V¥ is in the AffTL span of v. [J

Definition 3.15 IfU is an irreducible representation of Af fT L isomorphic
to V&< then k will be called the lowest weight of U and w will be called the
chirality.

The determination of the set of values of §, w and p for which the sesquilin-
ear form (-, -) is positive semidefinite is the subject of the next sections.

Finally remark that the representations V% are all mutually inequivalent
except when k = 0 (when clearly V*< and VF " are the same). Also V00T
and V%%~ are inequivalent since the dimensions of the spaces graded by
(0,+) and (0, —) are different. Thus at the end of this paper we will have
obtained a complete list of irreducible Hilbert representations of Af fTL.

4 The formula of Graham and Lehrer.

Let V*< with |w| =1 or 0 < p < 6, be the affine Temperley-Lieb module
constructed in the previous section and let v, be a lowest weight unit vector
therein.

Definition 4.1 For k <n we will call oy, the element of AffT L 4y n+)
containing one copy of the JW idempotent po, tn a rectangle whose first
boundary point is connected to —2 and the next 2n —1 (in cyclic order) are
also connected to the outside boundary of A. The 2k boundary points on the
inside boundary of A are connected to the middle 2k of the remaining bound-
ary points of the rectangle and the other boundary points of the rectangle are
connected to each other in the unique (planar) way so that none is connected
to its nearest neighbour.

13



We illustrate Definition 4.1 in Figure 4.2 for £ = 2 and n = 5. The
boundary points of the inner circle are the 4th roots of unity and the ones on
the outer circle are the 10th (=2nth) roots of unity. Note that the order of
shaded regions on the boundary of the rectangle containing ps, will depend
on the parity of n, but the ordinary T'L algebra makes sense without shading
the regions.

Ay = gn

i

Fig. 4.2

Note that Figure 4.2 represents a (non-zero) linear combination of annular
(2,6) tangles obtained by expanding the J-W idempotent po, in the rectangle.
For each r > 0 we set 2n = 2k + 2r and define the vector w,, € Vnk"" to
be the result of applying the annular element «,, of Figure 4.2 to v,,.
Let C,, = (wp,w,) for n > k and C;, = 1. Our main task in this paper
will be to establish whether C,, is positive, negative or zero.

Theorem 4.3 Suppose § (= q+ q~') and n salisfy § > 2cosm/2n > 0 (so
that in particular the map ® : T Lo,_1 — T Lo,_1 is an isomorphism, and the
JW idempotent poy, is defined). Then with r =n — k,

[r][r + K]

Cn = 2n][2n — 1]

(q2n ‘l‘ q—2n —w— (.4)_1) Cn—l
Proof. First note that neither [2n] nor [2n — 1] is zero. If § > 2 this is

obvious. Otherwise write § = 2cos7/a (a not necessarily an integer) so that
. sin2n7/a
the condition becomes 7/2n > 7 /a, or 2nm/a < 7. Then [2n| = mrja
sinm/a
which is strictly positive.
We want to calculate C,, = (ay,(vy,), an(v,)). By invariance it will suffice

to express o oy, in terms of o _;a,_1, which we proceed to do.

Case (i), k > 0.

14



In Fig. 4.4 we have drawn o cv, (where for clarity we have reduced from
n=>5in Fig. 4.2 to n = 4).

Fig. 4.4

The first step is to introduce a JW idempotent on one less string. Because
of the order on these idempotents, the Af fT'L element in Figure 4.5 is the
same as in 4.4.

Fig. 4.5

It is easily seen that there are only 3 tangles in the expansion of po,, that
give non-zero contributions in Fig. 4.5. There must be at least 2n—2 through
strings inside the rectangle, or two adjacent boundary points on the left side

15



of the rectangle containing ps,—1 would be connected — giving zero. So the
only adjacent boundary points on the right side of the py, rectangle that can
be connected are the top two. Then it is easy to check that the only two
pairs of adjacent boundary points on the left side of the ps, rectangle that
can be connected are the ones which have exactly one point connected to the
inner boundary circle of A. Thus we see that

ayo, =X +coyY +czZ
where XY and Z are given in Figures 4.6, 4.7, and 4.8, respectively.
Fig. 4.6

Fig. 4.7

16



Fig. 4.8

We deal first with the situation in 4.6. Here after an isotopy we see that
the bottom left and right boundary points of the po, 1 rectangle are con-
nected to each other. The result is well known to be a multiple of ps, 5. By
comparing the coefficient of the identity in the expansion of the idempotent,

the multiple is seen to be [2[5@1], so that
[2n]
X = 1 Op_1.
2n — 1] ‘1%t

The arguments for Y and Z are structurally identical and differ only in the
constants and the direction in which the inner circle is rotated. In Figure 4.7,
the the diagram inside the rectangle for po, is E,.E,_1--- E;, which has a

—1) 2
% in JW (see e.g. [12]). In Figure 4.8, the diagram
v 7]

is EriokEriok—1 Fryop—o - -+ Ey; this diagram’s coeflicient is (—1) m
n

we will be doing many of these calculations, we record the relevant coefficient
in the JW idempotent pictorially below:

coeflicient of

. Since

r—1
N

Coefficient in JW of: R U _____ is (—1)"

[2n]
Fig. 4.9 m

17



Thus at this stage we have

2
N 0

[+ 2k] [7]
’ 7[271 ) Y + Z}.

11 + (1) [2n] [2n]

If we now start with Fig. 4.8 and insert a py,_2 we obtain Fig. 4.10.

Fig. 4.10

For Z, consideration of all the possible T'L diagrams inside the py,,_1 rectangle
shows that the only ones giving a non-zero contribution are ones with 2n — 2
through strings and the top and bottom boundary points of the inner annulus
boundary are connected down and up respectively to their nearest neighbours
as shown in Fig. 4.11 and Fig. 4.12.

18



Fig. 4.11

Fig. 4.12

The coefficient of the T'L diagram from Fig. 4.11 is, again by 4.9,

(—=1)"[r + 2k]
[2n — 1]

and the coefficient of the T'L diagram from Fig 4.12 is

(=1)[r]
2n —1].

19



But notice that Figure 4.11 is just o _;o,—1 composed with p and Fig. 4.12
is just o _ja,—1 . So we have

[+ 2k] 7]
2n— 1" " 2n—1

Z = (=1)"ay_ an(

).

Doing the corresponding calculation for Fig. 4.7 we obtain that

[+ 2k] 7]

Y = (=1)"a;_a,( 2n—1] " [2n—1]

ph).

So
-1 . ) ) B
CyY +CzZ = man_lan_l([r] + 2k +7r]" = [r][r+2kj(p+p)).
Altogether,
v o Dllr 28] { 2 ] [+ 2] _p_p_l}.
nn T onl2n — 1 T [l + 2k [+ 24] 7]

But we have the identity [2n]* — [r]® — [2n —r]* = (¢*" + ¢ *")[r][2n — 7],
and on V,f’w, p = w so that

[n—Fklln+ k] 5, —2n ~1
CHZW{(] +q — W —w }Cn—l

This proves the theorem when £k > 0.

The case 4t = 0 needs no consideration since in this case ordinary T'L
diagrams inside a disc provide a Hilbert representation.

Case (ii); 0 < p < 6.

We may consider Figure 4.5 when k = 0. In this case there are only two
ways to fill in the py, rectangle to obtain non-zero diagrams. The first is

[2n]

2n —
common case r = n of the terms Y and Z in the previous argument , so we

with the identity which gives as before, and the second, which is the

have:

R 5 EUVUR g
W = f 1+ (D) o Y

where Y’ is the tangle with the inner annulus boundary surrounded by a
homologically nontrivial circle as illustrated in Fig. 4.13.

20



Fig. 4.13
Introducing a py,_2 as before there is only one contributing diagram that
-1 n—1
can be put in the py,_1 rectangle and its coefficient is % The
n —_—

resulting annular diagram is Fig 4.14:

Fig. 4.14

Note that the innermost circle is an annulus boundary and the next two
are strings — which contribute precisely o*o. Thus we have

=i s { gy~ i)

21



But o*c acts as u? on VOO’“’ so that

o 2n] )
Cn = ([m —1]  [2n][2n— 1])0"‘1‘

Using [m] = %, and p? =2 + w + w! we get:
q9—q
[n]? 2 -2 -1
Cp=—r——q™" "—w— Chr1.
2ol —1\¢ T e :

This proves the theorem in case (ii).

The only remaining case is k = 0,w = 0 where of course "w + w™" is
taken to mean zero. In this case the argument is extremely simple as the
term Y in case (ii) already acts by zero. Note that in fact there are two
cases for w, in this situation according to the shading on the inside annulus

boundary. This does not change the argument in any way.

O

5 Restrictions on 9, £ and w when ¢ < 2.

Theorem 5.1 Suppose U is an irreducible Hilbert space AffTL module
with lowest weight k and chirality w. Suppose § = 2cosn/a for a = 3,4,
(choose ¢ = e’ ). Then

w= ¢ for some integer r with k<r <a/2.

Proof. Our first job is to show that & < a/2. Suppose 2k > a and let u be a
unit vector spanning Uy. Then consider the a annular tangles v, [ =1,...;a
with 2k inner boundary points and 2k + 2 outer ones, 2k through strings,

. Awi (I4+1)ms . .
with Qeklﬂ connected to 2¢ 1 and 1 connected to 2. The matrix of inner

products of the vectors v;(u) is the a x a matrix with ¢ on the diagonal, one on

the first off-diagonals and 0 elsewhere. The determinant of this matrix is well

sin(a + 1) /a
sinm/a

in a Hilbert space, so k < a/2.

Since the rotation is unitary and 0 < p < 6 we know that |w| =1 and we
may suppose, by taking the complex conjugate if necessary, that Im(w) > 0.
Let 0 = arg(w). We know from Corollary 3.13 that U is a quotient of a V%
so that it makes sense to talk about wvg, w, etc. Then if # is not 2rm7/a for
some r with k <7 < a/2 then let r¢ be the largest value of r with 6 > 2r7/a.
Suppose first that 2(rp + 1) < a. Then by Theorem 4.3 we have C,,, > 0 for

known to be [a + 1] = , which is negative. This is impossible
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E<m < rgbut C, <0 for m = ry+ 1, which is disallowed by positivity.
So we may suppose 2rg < a but 2(rg + 1) > a. We will divide the proof into
two cases.

Case (i) a odd so that 21y + 1 = a.

The difficulty is clear: using Theorem 4.3 we get C,, > 0 for 1 <m < ry
but we cannot apply Theorem 4.3 for ro+ 1 as the hypotheses of the theorem
are no longer valid.

But the vector w,, still exists and by Theorem 4.3 it is non-zero. Now
form, as above, 2ry + 1 vectors in U, 41 from w,, by applying 2ry+ 1 annular
(270, 2r9+2) diagrams in which one pair of outer boundary points is connected
to its nearest neighbour and all other strings are through strings, excluding
the one in which —2 is connected to the neighbouring boundary point with
negative imaginary part. If the vector w,, is normalised to be a unit vector,
we get vectors whose matrix of inner products is the (2rg + 1) x (2rg + 1)
matrix with d on the diagonal, one on the first off-diagonals and 0 elsewhere.
(Careless choice of how the inside annulus boundary is connected to the
outside will lead to powers of w on the off-diagonal but they can be removed
by renormalizing the vectors one after another.) The determinant of this
sin(a + 1)7/a

- which is
sinm/a

matrix is well known to be [2rg + 2] = [a + 1] =

?

negative. This is impossible in a Hilbert space.

Case (ii) a even so that 2rp = a — 2.

We will suppose that & > 0. The case k = 0 goes in exactly the same
way but the diagrams need to be modified a little. We leave the details to
the reader.

Here we will use the tangle encountered midway through the proof of
Theorem 4.3. First let 3 be the (2k,a) annular tangle with the 2k internal
boundary points connected to a JW idempotent on a — 1 strings (the last
one for which the inductive definition works) in a rectangle, a — 2k — 2
boundary points of the rectangle connected pairwise by strings that go around
the internal annulus boundary and one rectangle boundary point connected
to —2, as shown in Figure 5.2 for a = 8 and k = 1. The other a — 1 rectangle
boundary points are connected to the outer annulus boundary points.
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Fig. 5.2

The first thing we want to show is that 5(v,) = 0. We do this by calcu-
lating (6*3(v,),v,). Since p,—1 is a projection, 5*3 is as in Figure 5.3.

Fig. 5.3

But in Figure 5.3 we see the JW idempotent with two boundary points
capped off. In general this would be non-zero since the boundary points are
not on the same side of the rectangle, but since this JW idempotent is the
last one to exist, it spans the kernel of the natural inner product on T'L
diagrams so is invariant (at least up to a scalar) under the rotation. Thus if



any two adjacent boundary points are connected the result is zero. (One can
also show this by Wenzl’s inductive formula.)

Thus £(v,) = 0.

We will now derive a contradiction by showing that the inner product
of B(v,) with another vector is non-zero. This vector will be obtained from
applying a (2k, a) tangle called v to v,, where  is obtained from the (2k, a—2)
tangle a,_s of definition 4.1 by connecting —2 to —2e@*V™/% and the other
outer boundary points to the boundary points of the rectangle as indicated
in Figure 5.4.

Fig. 5.4

To calculate the inner product (3(v,),v(v,)) we use the tangle v*3, which
we have drawn in Figure 5.5.
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Fig. 5.5

As in the proof of Theorem 4.3, there are only two diagrams that can be
put in the rectangle which give non-zero contributions- those in which the
boundary points connected to the first and last internal annular boundary
points are connected to their neighbours (which are not connected to the
inner annulus boundary). The coefficients of these diagrams are (from figure
4.9), [¢/2— K] and le/2+ k] But these are both equal to M # 0.

la — 1] la — 1] sin(a — 1)7/a
On the other hand the two resulting tangles are (& times) o) ,a,—2p and
Q) _504—2. Since w # —1 (by the assumption on @) , the sum of these two
tangles applied to v, is non-zero. Hence by Theorem 4.3 , (5(v,,), v(vw)) # 0,
a contradiction, so we are done. [

We would like to point out two corollaries of Theorem 5.1. The first is
immediate but somehow surprising.

Corollary 5.6 Let U be a Hilbert space representation of AffT'L. Then
none of the rotations p; fort > 1 acts by the identity.

Proof. One may reduce to the irreducible case by using a maximal abelian
subalgebra in the commutant of the algebra acting on the lowest weight space.
Then the result follows from Theorem 5.1. [J

In [12] we studied representations of the quotient AnnT'L of our Af fTL
in which the rotations by 2w, pl, act by the identity. We know that any
Hilbert space representation of AnnT'L will give one of AffTL, so we now
identify those ones allowed by Theorem 5.1.
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Corollary 5.7 LetU be an irreducible Hilbert space representation of Af fTL
with chirality w and lowest weight k > 0. Then U passes to AnnT L iff there

r
is an integer b so that a = —.

b

Proof. The main thing to observe is that pf = 1 on Uj, 1 implies that p" = 1
on Uy, 1 for all n > k. This is because U is a quotient of VE and it is clear
that pla = ong for any a € Af fT Lk sgn),(n,+sgn)-

So whenever w is a kth. root of unity, U passes to AnnT'L. This is the

,
condition ¢ = — combined with the conclusion of Theorem 5.1.

b
O

6 Construction of the allowed Hilbert space rep-
resentations.

In this section we will undertake the most difficult part of this paper, namely
the explicit construction of a representation V¥ for each pair (k,w) allowed

by Theorem 5.1.

Theorem 6.1 Lel (k,w) be a pair where k is a non-negative integer and w is
a complex number (or w = (—1,%), if k =0). Then V¥ exists if

1) 6 > 2 and either k=0 and 0 < <9, ork >0 and |w| =1, or
1

(ii) § = 2cosm/a for a =3,4,5,---, and w = ¢**" for some integer r with
k<r<a/2 (where by —1 we mean (—1,L) if k=0).

Proof. Asobserved in Section 3, it suffices to show that the sesquilinear forms
(-,-) of 3.9 are positive semidefinite on V*. The method, as in [12], where
it is done for the generic case, is to inductively decompose the representation
V(I:L“i) with respect to a large ordinary TL subalgebra, which we will soon
define. When ¢ = 1 (so that 6 = 2) and w = 1 the argument is different
from the generic case because the form is only positive semidefinite and we
must identify the kernel. In this case, it follows from Theorem 4.3 that
C, = 0 for all n > k + 1, so that in fact V¥¢ is generated by V,f’l. When
0 < 2, the large ordinary TL subalgebra will eventually fail to be semisimple.
Semisimplicity is so important to our analysis that we begin our proof by
taking a quotient of V*¢ on which, by Theorem 2.2, the action of TL passes

to the C* quotient, 7 L,,.
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It will be convenient to consider only the spaces Vnkf The rotation

provides an isometry between this and anf’f in all but a special case when
k = 0, where the situation is clear.

Thus let 6 = 2cosw/a for a = 3,4,5,--+ and let w and k be as in the
statement of the theorem. Define the subspace ijLi of Vnkf to be the span
of the image of v, under annular diagrams containing a rectangle labelled
by the JW idempotent p,_; (see Remark 3.4). The subspaces ijLZi, as n
varies, are clearly invariant under the action of Af fT'L. We claim that they
are in the kernel of (-, -). To see this, it suffices to show that an annular (k, k)
diagram containing the JW idempotent p,—1 in a rectangle is zero modulo
diagrams with fewer than k& through strings. Let a be such a diagram. We
shall show that it has the same form as the element o, of Theorem 4.3
and then apply the Graham-Lehrer formula.

If a had a string connecting the inside annulus boundary to the outside,
then, cutting along that string, the rectangle would lie in a disc (after isotopy)
with 4k — 2 boundary points. The rectangle itself has 2a — 2 boundary points
and k£ < a/2 so some boundary point on the rectangle must be connected
to its nearest neighbour, which gives zero. So all of the strings from the
inner annulus boundary are connected to the rectangle as are all those from
the exterior annulus boundary. In fact £ < a/2 — 1 so that 4k < 2a — 4
so there are boundary points on the rectangle that are not connected to
the annulus boundary. If these points were not connected symmetrically
around the interior of the annulus there would be a rectangle boundary point
connected to its nearest neighbour.

Let us first treat the case where a is odd so the rectangle has an even
number of boundary points at the top and at the bottom. Since the JW
idempotent is rotationally invariant (up to a scalar, as observed in the proof
of Theorem 5.1), and v, is invariant up to a scalar, we may suppose that «
is as in Figure 4.4 (which illustrates the case a =9, n = 3. Thus (a(v,), v,)
is equal to C'aTﬂ and thus, by 4.3, proportional to C, since r < “T_l But,
again by 4.3, C, = 0 since w = ¢*".

Now turn to the case where a is even. Then by rotational invariance as
above we may suppose that « is as in Figure 5.5.

First suppose r = a/2 so w = —1. Then by the argument after Figure 5.5
we get that (a(vy),v,) = 0 precisely because w = —1 (which is the value it
did not take there). The case k = 0 is slightly different. In this case there is
only one diagram, shown in Fig. 6.2, that can be put into the rectangle to give
a non-zero contribution, and that results in a homologically non-trivial circle
surrounding the inner annulus boundary. This will give zero for (a(vy), vy).
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Fig. 6.2

Finally if r < a/2 we also get the situation of Figure 5.5, and again by the
argument after that figure, we see that (a(v,),v.) is proportional to C,/o_1.
By Theorem 4.3, Cyj2_1 is proportional to C, but as w = ¢*" and k < r,
Theorem 4.3 applies again to give C,. equal to zero.

At this stage we have shown that in all cases allowed by the theorem,
JW is contained in the kernel of (-, ), so that (-, -) defines an invariant form

k,w
on the quotient AffT L-module @ = ‘7‘]//\/’“"
of (-,-) on Oy, would therefore imply it on V*“. We will establish this

positivity by restricting to a large ordinary TL algebra of Af fT'l(, 1) n,+) for
n > 1.
The intersection of the annulus A with the complement of the wedge
{re e C: (1 + ! )m< 0 < (1+
n-+2 n+
2n marked points on the top and on the bottom. Thus the subalgebra of
AffT Ly 4),n+) spanned by isotopy classes of tangles that lie outside the

wedge is isomorphic to the Temperley-Lieb algebra T'Ly,. We will call it

tlon. Define F,, € AffTLn4),n+) to be the unique diagram in tf5, with
i(1=1/n)m

Positive semidefiniteness

1)7T} is isotopic to a rectangle with

2n — 2 through strings and —1 connected to e . One may jiggle the

boundary points to exhibit an isomorphism between F,tls, [, and tly(,_1),

which makes FnV(I:L“jr) into a tfy(,—1)-module isomorphic to ‘/(I:L’TLJF).

All this is as in [12]. Moreover, these isomorphisms take the subspace

jW@’:}ﬂ to the subspace jW?y’;}_Lﬂ and the ideal 7y, generated in tfy, by

Pa—1 (which we take to be zero when 2n < a — 1) onto Zy,_». It is obvious
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k,w

that the ideal Zs, preserves TIWE 5o that the quotients XM = )
(n:5) "IWEe,
n,+
tly, .
become modules over the quotients 7 (s, = Iz . But by Theorem 2.2, 7 (s, is
2n

a finite-dimensional C*-algebra (with irreducible representations as described
in Section 2). Note further that, by using the isomorphisms established
above, we see that for every value of ¢ F;,WV, 2, 1s isomorphic to W 9,2 as a
T ls,,_o-module.

Thus X% as a T/ly,-module is a direct sum of as many copies of each
Wi on as Xf’_wl is of W on—2, plus a certain number of copies of the trivial
representation if 2n < a — 1 (and none if 2n > a — 1). The form (-,-) is
invariant under ¢/ and there is only one such form (up to a scalar) on W,
so positive semidefiniteness on the span of the non-trivial representations
follows by induction as soon as it is established on the trivial ones as they
appear. But the JW idempotent p,, projects on to the trivial representation
for 2n < a — 1, and annihilates all vectors in Vnkf except for the w depicted
in Fig. 6.3, where all strings that connect the outside boundary to itself go
through the wedge defined above.

Fig. 6.3

Thus there is exactly one copy of the trivial representation for 2n < a—1
and none for 2n > a — 1. Inspection of Fig. 6.3 shows that ps,(w) = a;,(vy,)
so that positive semidefiniteness of (-,-) follows from C,, > 0. This follows
from Theorem 4.3 and the choice of k,w and §, which force C,, to be zero
before it has a chance to be negative. [

We see in the proof of the theorem that we have in fact determined
the structure of the Hilbert space representations as modules over the large
Temperley-Lieb subalgebra. In fact the V;fi become modules over the TL
algebroid explained in Remark 2.7. The ordinary TL algebroid is spanned
by all diagrams in Af fT' L, +),n,+) that do not intersect the wedge {re? ¢

C:(1+ L)7T <0< (1+ L)7T} where 7 = max(m,n). The Hilbert
r+2 r+1

space representations of this algebroid are precisely the modules W,
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Scholium 6.4 Let § =2cos7/a fora = 3,4,5,---. Suppose w and k salisfy
the conditions of Theorem 6.1. Then as a module over the ordinary TL
algebroid, V&wﬂ is

r—1
(i) P ws  ifw=q¢"7,
j=k

a—1
(i) P Wi ifk=0andw=(-1,+),
7=0

n—3j=0 mod 2
a—1
(i) @ W ifk=0andw=(-1,-).
n—jzjl:?nod 2

Corollary 6.5 The dimension of VF* is

r—1
(1) 0 1(Z) Y FQuaia(z)  ifw=gq*",
a =k
) 1 & .
(ii) 0.0 ;zan_zj_l(z) if k=0 and w = (—1,+),
a—1
(i) 2@1(2) S 2Quayal(z) k=0 andw = (~1,-).
a ‘7:1
References

[1] J. Bion-Nadal, Subfactor of the hyperfinite 11, factor with Cozxeter graph
Es as invariant. J. Operator Theory 28 (1992), 27-50.

[2] D. Bisch and V.F.R. Jones, Singly generated planar algebras of small
dimension, Duke Math. Journal 101 (2000), 41-75

[3] D. Bisch and V. Jones, Algebras associaled lo intermediate subfactors.
Inventiones Math. 128 (1997), 89-157.

[4] O. Bratteli, Inductive limils of finite dimensional C*-algebras. Transac-
tions AMS 171 (1972), 195-234.

[5] J.H. Conway, An enumeralion of knots and links, and some of their
algebraic properties.Computational Problems in Abstract Algebra (Proc.
Conf., Oxford, 1967) (1970), 329-358

31



[6] D. Evans and Y. Kawahigashi, Quantum symmetries on operator alge-

bras Clarendon Press, Oxford (1998).

[7] F. M. Goodman, P. de la Harpe, and V.F.R. Jones, Cozeter graphs and
towers of algebras Springer-Verlag, 1989.

[8] R. Graham, D. Knuth and O. Patashnik, Concrete Mathematics(second
edition) , Addison Wesley (1994).

[9] J. J. Graham and G.I. Lehrer, The representation theory of affine Tem-
perley Lieb algebras, 1."Enseignement Mathématique 44 (1998), 1-44.

[10] U. Haagerup, Principal graphs of subfactors in the index range 4 <
[M : N] < 3+ /2 in: "Subfactors", World Scientific, Singapore-New
Jersey-London-Hong Kong (1994) 1-39.

[11] M. Izumi, On flatness of the Cozeler graph Fg., Pacific Math. Journal
166 (1994), 305-327.

[12] V.F.R. Jones, The annular structure of subfactors, to appear.

[13] , Index for subfactors, Invent. Math 72 (1983), 1-25.
[14] , Planar Algebras, I, N7 Journal Math, to appear.
[15] , A quotient of the affine Hecke algebra in the Brauer algebra.,

L’Enseignement Mathematique 40 (1994), 313-344.

[16] , The planar algebra of a bipartite graph. In Knots in Hellas "98

World Scientific (2000), 94-117.

[17] V.F.R. Jones and V.S. Sunder,Introduction to Subfactors LMS lecture
note series 234 (1997)

[18] L. Kauffman, State models and the Jones polynomial. Topology 26
(1987), 395-407.

[19] G. Kuperberg, Spiders for rank 2 Lie algebras, Commun. Math. Phys.
180 (1996), 109-151.

[20] J.P. May, Definitions: operads, algebras and modules, Contemporary
Mathematics 202 (1997), 1-7.

[21] A. Ocneanu, Quantized group, string algebras and Galois theory for al-
gebras in Operator algebras and applications, vol. 2 L..M.S lecture
note series, 136 , (1987), 119-172.

32



22| S. Popa, An aziomatization of the lattice of higher relative commutants,
pa,

Invent. Math 120 (1995), 427-445.

[23] H. Wenzl, On sequences of projections, C. R. Math. Acad. Sci. Soc. R.
Can. 9 (1) (1987), 5-9.

33



