Runge Kutta methods are ways of finding numerical solutions to the ordinary differential equation

$$
\frac{d y}{d x}=f(x, y)
$$

with initial value $\left(x_{0}, y_{0}\right)$. The simplest such method is Euler's method where to approximate the solution y at some value x we divide the interval $\left[x_{0}, x\right]$ up into intervals of equal size h (called the step size) and we define the sequence (x_{n}, y_{n}), by

$$
\begin{gathered}
x_{n+1}=x_{n}+h \\
y_{n+1}=y_{n}+h f\left(x_{n}, y_{n}\right) .
\end{gathered}
$$

We hope that as $h \rightarrow 0$, the calculated approximation to $f(x)$ will tend to the actual value of $f(x)$.

Thus in between x_{n} and x_{n+1} we are approximating the solution by a straight line whose slope is $f\left(x_{n}, y_{n}\right)$. The corresponding change in y is $h f\left(x_{n}, y_{n}\right)$.

In the special case where $f(x, y)$ is independent of y, call it $f(x)$, the solution to the differential equation is $y=\int f(x) d x$. Thus Euler's method would be a numerical integration of the function $f(x)$. The value $h f\left(x_{n}\right)$ is the area of a rectangle which would occur if we were using the "left end-point" integration. Thus Euler's method generalises the left end-point rule, a very crude method.

Runge Kutta methods use different values of $f(x, y)$ for x in the interval $\left[x_{n}, x_{n+1}\right]$ to come up with an approximation of y_{n+1}. The most well known of these appears to be RK4 also known as the Runge-Kutta method.

To define RK4 all we have to do is specify how y_{n+1} is obtained from y_{n}. For this purpose one defines (with $x_{n+1}=x_{n}+h$)
$k_{1}=f\left(x_{n}, y_{n}\right)$
$k_{2}=f\left(x_{n}+\frac{h}{2}, y_{n}+\frac{h}{2} k_{1}\right)$
$k_{3}=f\left(x_{n}+\frac{h}{2}, y_{n}+\frac{h}{2} k_{2}\right)$
$k_{4}=f\left(x_{n+1}, y_{n}+h k_{3}\right)$
EXERCISE 1: Draw a diagram of a direction field for x between x_{n} and $x_{n+1}=$ $x_{n}+h$ to illustrate the meaning of the slopes $k_{1}, k_{2}, k_{3}, k_{4}$.

Then y_{n+1} is defined to be

$$
y_{n}+\frac{h}{6}\left(k_{1}+2 k_{2}+2 k_{3}+k_{4}\right)
$$

In the case where $f(x, y)$ is independent of y we see that $k_{2}=k_{3}$ and that $R K 4$ is nothing but Simpson's rule!

EXERCISE 2: Use RK4 with step size 0.1 to approximate the solution to $\frac{d y}{d x}=$ $x+y$ with $x_{0}=0, y_{0}=1$ for $x=0,0.1,0.2,0.3$. Check that $y=2 e^{x}-x-1$ is the actual solution to the ODE and compare the values with those calculated by RK4 and Euler's method (values calculated in the book, page 576).

