Runge Kutta methods are ways of finding numerical solutions to the ordinary differential equation

$$\frac{dy}{dx} = f(x, y)$$

with initial value (x_0, y_0) . The simplest such method is Euler's method where to approximate the solution y at some value x we divide the interval $[x_0, x]$ up into intervals of equal size h (called the step size) and we define the sequence (x_n, y_n) , by

$$x_{n+1} = x_n + h$$
$$y_{n+1} = y_n + hf(x_n, y_n).$$

We hope that as $h \to 0$, the calculated approximation to f(x) will tend to the actual value of f(x).

Thus in between x_n and x_{n+1} we are approximating the solution by a straight line whose slope is $f(x_n, y_n)$. The corresponding change in y is $hf(x_n, y_n)$.

In the special case where f(x, y) is independent of y, call it f(x), the solution to the differential equation is $y = \int f(x)dx$. Thus Euler's method would be a numerical integration of the function f(x). The value $hf(x_n)$ is the area of a rectangle which would occur if we were using the "left end-point" integration. Thus Euler's method generalises the left end-point rule, a very crude method.

Runge Kutta methods use different values of f(x, y) for x in the interval $[x_n, x_{n+1}]$ to come up with an approximation of y_{n+1} . The most well known of these appears to be RK4 also known as the Runge-Kutta method.

To define RK4 all we have to do is specify how y_{n+1} is obtained from y_n . For this purpose one defines (with $x_{n+1} = x_n + h$)

 $k_{1} = f(x_{n}, y_{n})$ $k_{2} = f(x_{n} + \frac{h}{2}, y_{n} + \frac{h}{2}k_{1})$ $k_{3} = f(x_{n} + \frac{h}{2}, y_{n} + \frac{h}{2}k_{2})$ $k_{4} = f(x_{n+1}, y_{n} + hk_{3})$

EXERCISE 1: Draw a diagram of a direction field for x between x_n and $x_{n+1} = x_n + h$ to illustrate the meaning of the slopes k_1, k_2, k_3, k_4 .

Then y_{n+1} is defined to be

$$y_n + \frac{h}{6}(k_1 + 2k_2 + 2k_3 + k_4)$$

In the case where f(x, y) is independent of y we see that $k_2 = k_3$ and that RK4 is nothing but Simpson's rule!

EXERCISE 2: Use RK4 with step size 0.1 to approximate the solution to $\frac{dy}{dx} = x + y$ with $x_0 = 0, y_0 = 1$ for x = 0, 0.1, 0.2, 0.3. Check that $y = 2e^x - x - 1$ is the actual solution to the ODE and compare the values with those calculated by RK4 and Euler's method (values calculated in the book, page 576).