Let us find a particular solution of the differential equation coming from LCR circuits:

$$
L \frac{d^{2} Q}{d t^{2}}+R \frac{d Q}{d t}+\frac{1}{C} Q=E \cos \omega t
$$

Watch how sweetly it goes if we make it complex-we'll solve instead:

$$
\text { (*) } \quad L \frac{d^{2} Q}{d t^{2}}+R \frac{d Q}{d t}+\frac{1}{C} Q=E e^{i \omega t}
$$

and the real part of the solution is necessarily a solution to our oringal problem.
Suppose $A e^{i(\omega t+\theta)}$ is a solution. Then differentiating and plugging in to the equation we get:

$$
A\left\{-L \omega^{2}+i R \omega+\frac{1}{C}\right\} e^{i \omega t}=E e^{i \omega t}
$$

So we get a solution if and only if

$$
A=\frac{E}{L\left(\omega_{0}^{2}-\omega^{2}\right)+i R \omega}
$$

where we have used ω_{0} to represent the natural frequency of the circuit without resistance, namely $\omega_{0}=\sqrt{\frac{1}{L C}}$.

Now let's write the complex number A as $|A| e^{i \theta}$:

$$
|A|=\frac{E}{\sqrt{L^{2}\left(\omega_{0}^{2}-\omega^{2}\right)^{2}+R^{2} \omega^{2}}}
$$

and the argument is - the argument of the denominator, i.e.

$$
\tan \theta=\frac{R \omega}{L\left(\omega^{2}-\omega_{0}^{2}\right)}
$$

So

$$
\frac{E e^{i(\omega t+\theta)}}{\sqrt{L^{2}\left(\omega^{2}-\omega_{0}^{2}\right)^{2}+R^{2} \omega^{2}}}
$$

is a solution of $\left({ }^{*}\right)$ and

$$
\frac{E}{\sqrt{L^{2}\left(\omega^{2}-\omega_{0}^{2}\right)^{2}+R^{2} \omega^{2}}} \cos (\omega t+\theta)
$$

is a solution of our original differential equation.
Differentiating we find that the current I in the circuit oscillates with a magnitude of

$$
\frac{E}{\sqrt{R^{2}+\left(\omega L-\frac{1}{\omega C}\right)^{2}}}
$$

Note the interesting fact that this is clearly a maximum when $\omega=\omega_{0}$ whereas the maximum amplitude for the charge oscillations occurs at a different frequency.

