
Let us find a particular solution of the differential equation coming from
LCR circuits:
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Q = E cos ωt

Watch how sweetly it goes if we make it complex-we’ll solve instead:
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and the real part of the solution is necessarily a solution to our oringal problem.
Suppose Aei(ωt+θ) is a solution. Then differentiating and plugging in to the

equation we get:
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So we get a solution if and only if
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where we have used ω0 to represent the natural frequency of the circuit without

resistance, namely ω0 =
√

1
LC .

Now let’s write the complex number A as |A|eiθ:

|A| =
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and the argument is - the argument of the denominator, i.e.
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So
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L2(ω2 − ω2
0)2 + R2ω2

is a solution of (*) and
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is a solution of our original differential equation.
Differentiating we find that the current I in the circuit oscillates with a

magnitude of

E√
R2 + (ωL − 1

ωC )2

Note the interesting fact that this is clearly a maximum when ω = ω0 whereas
the maximum amplitude for the charge oscillations occurs at a different fre-
quency.
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