Let us find a particular solution of the differential equation coming from
LCR circuits:
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Watch how sweetly it goes if we make it complex-we’ll solve instead:
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and the real part of the solution is necessarily a solution to our oringal problem.
Suppose Ae’“*9) is a solution. Then differentiating and plugging in to the
equation we get:
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So we get a solution if and only if
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where we have used wy to represent the natural frequency of the circuit without
resistance, namely wy = 1/%.

Now let’s write the complex number A as |Ale®
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and the argument is - the argument of the denominator, i.e.
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is a solution of (*) and
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is a solution of our original d1fferent1al equation.

Differentiating we find that the current I in the circuit oscillates with a
magnitude of
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Note the interesting fact that this is clearly a maximum when w = wy whereas
the maximum amplitude for the charge oscillations occurs at a different fre-
quency.



