Practice Midterm \# 2, Math 1A, Fall 2005 V. Jones

There are two parts.
PART I is multiple choice and contains 2 problems. Each of these problems is worth 2 points for a total of 4 points possible. No partial credit.

PART II has 5 problems. You must show your work to get full credit on these problems.

No calculators, or books but a one-sided "cheat-sheet page" is allowed.

Do all work on the exam, use back pages if you need more space.

PART I:

PART II:
TOTAL:

Circle the MOST CORRECT answers for PART I

PART I

(multiple choice)

1. The function f is differentiable everywhere and so is its derivative f^{\prime}. It satisfies $f(0)=0, f^{\prime \prime}(0)<0$ and $f(1)=1$. Which of the following is necessarily true?
(a) There is a c with $0<c<1$ such that $f^{\prime}(c)>1$.
(b) There is a c with $0<c<1$ such that $f^{\prime \prime}(c)>0$.
(c) There is a c with $0<c<1$ such that $f(c)>1$.
(d) There is a c with $0<c<1$ such that $f^{\prime \prime}(c)<-1$.
(e) There is a c with $0<c \leq 1$ such that $f^{\prime}(c)=0$.
(f) There is a c with $0<c \leq 1$ such that $f^{\prime \prime}(c)=0$.
2. Let $f(x)$ and $g(x)$ be functions whose graphs are sketched below (the graph of $g(x)$ is the dotted curve). Which of the following could be a relation between f and g ?

(a) $f(x)=g(x)+1$
(b) $f(x)=g(x)-1$
(c) $f^{\prime \prime}(x)=g(x)$
(d) $g^{\prime \prime}(x)=f(x)$
(e) $f^{\prime}(x)=g(x)$
(f) $g^{\prime}(x)=f(x)$

PART II

1. (3 points - each answer right or wrong-no partial credit)
(i) Find an antiderivative of $1+\ln x$
(ii)Differentiate with respect to x :

$$
e^{\frac{d y}{d x}}
$$

(iii) Differentiate: $f(x)=(\sinh x)^{\frac{1}{x}}$
2. (3 points - each answer right or wrong-no partial credit) Evaluate the limits
(i) $\lim _{x \rightarrow 2} \frac{x^{2}-4}{x^{2}+x-2}$
(ii) $\lim _{x \rightarrow \pi / 2^{-}}\left(x^{2}-\pi^{2} / 4\right) \tan x$
(iii) $\lim _{x \rightarrow 0^{+}}(\sin x)^{x}$
3. (3 points) Use linearization to find an approximation to $e^{(\ln 2)+.01}$. Is this an overestimate or an underestimate of the actual value?
4. (3 points) Let $f(x)$ be the function whose domain is $[0,4]$ and is defined by: $f(x)= \begin{cases}2 x & \text { for } 0 \leq x \leq 1 \\ x^{2}-4 x+5 & \text { for } 1 \leq x \leq 3 \\ x-1 & \text { for } 3 \leq x \leq 4\end{cases}$
If your answer to this problem is x, your score will be $f(x)$, (fractions will be rounded down to the largest whole number less than $f(x)$).
5. (3 points) Sketch the curve $y=x^{2} \ln x$

