Practice final, Math 1A, Fall 2005 V. Jones

YOUR NAME:	
YOUR TA's NAME:	
YOUR SECTION NUMBER:	
There are two parts.	

PART I is multiple choice and contains 6 problems. Each of these problems is worth 2 points for a total of 12 points possible. No partial credit.

PART II has 15 problems. You must **show** your **work** to get full credit on these problems.

No calculators, or books but a two-sided "cheat-sheet page" is allowed.

Do all work on the exam, use back pages if you need more space.

PART I: PART II: TOTAL:

Circle the MOST CORRECT answers for PART I

PART I

(multiple choice)

- 1. Which of the following is correct for positive x, y and a?
 - (a) $\log_a(x+y) = \log_a(x)\log_a(y)$.
 - (b) $2\log_a(x) = \log_a(x^2)$.
 - (c) $(\log_a(x))^2 = \log_a(2x).$
 - (d) $a^x = e^{a \ln x}$.
 - (e) $e^x = a^{e \ln x}$.
 - (f) $e^{\log_a(x)} = a^{x \ln e}$.
- 2. Which of the following is a correct definition of $\lim_{x\to\infty} f(x) = L$?.
 - (a) For all $\epsilon \ge 0$ there is a $\delta > 0$ such that $x > -\delta \implies |f(x) L| < \epsilon$.
 - (b) For all $\epsilon > 0$ there is a $\delta > 0$ such that $x > \delta \implies |f(x) L| < \epsilon$.
 - (c) For all $\epsilon \ge 0$ there is a $\delta > 0$ such that $f(x) > \delta \implies |f(x) L| \le \epsilon$.
 - (d) For all $\epsilon > 0$ there is a $\delta > 0$ such that $x < -\delta \implies |f(x) L| \le \epsilon$.
 - (e) For all $\epsilon > 0$ there is a $\delta > 0$ such that $f(x) > \frac{1}{\delta} \implies |f(x) L| \le \epsilon$.
 - (f) For all $\epsilon \ge 0$ there is a $\delta > 0$ such that $x > \frac{1}{\delta} \implies |f(x) L| \le \epsilon$.

3. Which of the following is correct concerning the function $f(x) = \frac{1}{x} \cos \frac{1}{x}$ defined for all real x besides 0 which is NOT IN THE DOMAIN OF THE FUNCTION.

- (a) f(x) is continuous at 0 by the squeeze theorem.
- (b) f(x) is discontinuous at all points in the domain of f.
- (c) f(x) is continuous at 0 because |x| is continuous.
- (d) f(x) is continuous at 0 because it is differentiable at 0.
- (e) $\lim_{x\to 0^+} = \infty$.
- (f) f(x) has neither a left nor a right limit as $x \to 0^{\pm}$
- 4. Suppose that the domain of f(x) is $(0, \infty)$ and that for $x \neq 4$,

$$f(x) = x^2 + 32\frac{x-4}{\sqrt{x-2}}.$$

Suppose f'(4) exists. Find f''(4).

- (a) There is not enough information to solve for f''(4)
- (b) 2
- (c) 1
- (d) -2
- (e) -1
- (f) 4

5. Which of the following is a Riemann sum for $\int_1^2 x^2 dx$?

(a)
$$\sum_{i=1}^{n} 1 + (\frac{i}{n})^{2}$$

(b) $\frac{1}{n} \sum_{i=1}^{n} 1 + (\frac{i}{n})^{2}$
(c) $n \sum_{i=1}^{n} 1 + (\frac{i}{n})^{2}$
(d) $\sum_{i=1}^{n} (1 + \frac{i}{n})^{2}$

(e)
$$n \sum_{i=1}^{n} (1 + \frac{i}{n})^2$$

(f) $\frac{1}{n} \sum_{i=1}^{n} (1 + \frac{i}{n})^2$

- 6. If f(x) and g(x) are continuous functions on [a, b] and a < c < b, which of the following is necessarily true?
 - (a) If f(x) > g(x) for a < x < c and f(x) < g(x) for c < x < b then $\int_{a}^{c} f(x)dx > \int_{c}^{b} g(x)dx$ (b) If f(x) > g(x) for a < x < c and f(x) < g(x) for c < x < b then $\int_{a}^{c} (f(x) - g(x))dx > \int_{c}^{b} (g(x) - f(x))dx$ (c) If f(x) > g(x) for a < x < c and f(x) < g(x) for c < x < b then $\int_{a}^{c} |f(x)|dx > \int_{c}^{b} |g(x)|dx$ (d) If f(x) > g(x) for a < x < c and f(x) < g(x) for c < x < b then $\int_{a}^{c} (f(x) - g(x))dx > \int_{c}^{b} (f(x) - g(x))dx$ (e) If f(x) > g(x) for a < x < c and f(x) < g(x) for c < x < b then $\int_{a}^{c} f(x)^{2}dx > \int_{c}^{b} f(x)dx$ (f) If f(x) > g(x) for a < x < c and f(x) < g(x) for c < x < b then $\int_{a}^{c} f(x)^{2}dx > \int_{c}^{b} g(x)dx$ If f(x) > g(x) for a < x < c and f(x) < g(x) for c < x < b then $\int_{a}^{c} f(x)^{2}dx > \int_{c}^{b} g(x)dx$ If f(x) > g(x) for a < x < c and f(x) < g(x) for c < x < b then $\int_{a}^{c} f(x)^{2}dx > \int_{c}^{b} g(x)dx$ If f(x) > g(x) for a < x < c and f(x) < g(x) for c < x < b then $\int_{a}^{c} f(x)^{2}dx > \int_{c}^{b} g(x)dx$
- 1. (3 points each answer right or wrong-no partial credit) Differentiate:

(a)
$$f(x) = x^3 - 4x + 7$$

(b)
$$f(x) = \int_0^x \sqrt{\cos(t^3)} dt$$

(c)
$$f(x) = x(\ln x)(e^x)$$

- 2. (3 points) (i) True or false If f(x) is continuous and satisfies f(x) = -f(-x) for $-a \le x \le a$ then $\int_{-a}^{a} f(x) dx = 0.$
 - (ii) True or false: If f(x) is differentiable at x then

$$\lim_{h \to 0} \frac{f(x + \sin h) - f(x)}{h} = f'(x)$$

. (iii) True or false: The fundamental theorem of calculus asserts that a function that is differentiable on an interval has a local maximum on that interval.

3. (6 points-2 each) Evaluate the following indefinite integrals:

(a)
$$\int \frac{\sin x}{1 - \cos^2 x} dx$$

(b)
$$\int \frac{e^x}{e^x + 1} dx$$

(c)
$$\int \cosh x dx$$

4. (6 points-2 each) Evaluate the following definite integrals.

(a)
$$\int_{0}^{1} x^{3} dx$$

(b)
$$\int_{-1}^{1} x e^{x^{4}} dx$$

(c)
$$\int_{0}^{\pi/4} \frac{1 + \cos^{2} \theta}{\cos^{2} \theta} d\theta$$

5. (3 points)Evaluate the following limits: (i) $\lim_{x\to 0} \frac{\tan x}{\sec x}$

(ii)
$$\lim_{x \to \infty} (1 + 2/x)^x$$

(iii)
$$\lim_{t \to 0} \frac{e^{3t} - 1}{t}$$

6. (3 points) Sketch the graph of $y = \frac{x^2}{x-4}$

7. (3 points) Evaluate the limit:

$$\lim_{n \to \infty} \frac{1}{n} \Big[\Big(\frac{1}{n}\Big)^9 + \Big(\frac{2}{n}\Big)^9 + \Big(\frac{3}{n}\Big)^9 + \dots + \Big(\frac{n}{n}\Big)^9 \Big]$$

- 8. (3 points) Express $\int_2^4 \sin x \, dx$ as a limit of Riemann sums.
- 9. (3 points) For what values of x is f(x) = x|x| differentiable? Find a formula for the derivative.

10. (3 points) Differentiate with respect to
$$x$$
: $\int_{x^2}^{\cos x} \cos 2t \, dt$

- 11. (3 points) Find the area of the bounded region bounded by the curves $x = 2y^2$ and x + y = 1.
- 12. (3 points) Find the volume of the solid formed when the region between $x = y^2$ and $y = x^2$ is rotated about the line x = -1.
- 13. (3points) Explain what the fundamental theorem of calculus is and why it is true.
- 14. (3 points) Use cylindrical shells to find the volume of the region bounded by $x = 1 + y^2$, x = 0, y = 1 and y = 2 about the x axis. Make sure to sketch the region and a typical shell.
- 15. (3 points) Find the average of the function $\frac{x}{\sqrt{1+2x}}$ over the interval [0,4].