Here is an alternative way of visualising the derivative of a function $f(x)$ at a point $x=a$. The idea is simple-if we zoom in on the graph of a function it should look more and more like a straight line. The slope of the limiting straight line is called the derivative $f^{\prime}(a)$ of f at a.

So start with a function $f(x)$ whose graph is depicted below:

Scaling f is most conveniently done at the origin so move the graph so that the point $(a, f(a))$ becomes the origin - i.e. consider $g(x)$ depicted below:

Now zoom in on the picture at the origin with a large scaling factor C :

Recall that if $y=h(x)$ is a straight line through the origin, the slope of that line is $h(1)$. So the slope of the straight line to which the graph of g is getting closer at the origin is approximately

$$
C g\left(\frac{1}{C}\right)
$$

or, in terms of f,

$$
C\left\{f\left(a+\frac{1}{C}\right)-f(a)\right\}
$$

The above approximation to the slope of the limiting straight line should be as good as C is large so we deduce:

$$
f^{\prime}(a)=\lim _{C \rightarrow \infty} C\left\{f\left(a+\frac{1}{C}\right)-f(a)\right\}
$$

To reconcile this definition with the usual one put $1 / C=\delta$ so $C=\frac{1}{\delta}$ and the formula becomes:

$$
f^{\prime}(a)=\lim _{\delta \rightarrow 0} \frac{f(a+\delta)-f(a)}{\delta}
$$

