Let S be a set, a relation on S is a subset of $S \times S$ and we write for $s, t \in S$, $s \sim t$ when (s, t) is in that subset.

An equivalence relation is a relation \sim with the three properties

- (i) $s \sim s \quad \forall s \in S$
- (ii) $s \sim t \iff t \sim s$
- (iii) If $s \sim t$ and $t \sim r$ then $s \sim r$.

A partition of S is a collection $\{S_i|i\in I\}$ of subsets of S with

$$S = \coprod_{i \in I} S_i$$

The notion of equivalence relation and partition are actually the same. Given an equivalence relation \sim and an element $s \in S$ we write [s] for $\{t \in S | t \sim s\}$ and call it the *equivalence class* of s. It is easy to check the following:

(i) $s \in [s]$ so $S = \bigcup_{s \in S} [s]$

(ii) $[s] = [t] \iff s \sim t \text{ and } [s] \cap [t] = \phi \text{ otherwise.}$

So S is the disjoint union of the equivalence classes.

On the other hand if a partition $\coprod_i S_i$ of S is given we define \sim by $(s \sim t) \iff \exists i \text{ such that } s \in S_i \text{ and } t \in S_i$.

It is easy to check that \sim is an equivalence relation whose equivalence classes are the S_i .